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3-dim Frobenius Problem

Let S
(
d3

)
⊂ Z+ be the additive numerical semigroup

S
(
d3

)
=



s | s =

3∑

j=1
djxj, xj ∈ Z+ ∪ {0}





finitely generated by a minimal set of positive integers

d3 = (d1, d2, d3) such that

3 ≤ d1 < d2 < d3 , gcd(d1, d2, d3) = 1

The smallest integer C
(
d3

)

C
(
d3

)
:= min

{
s ∈ S

(
d3

)
| s + Z+ ∪ {0} ⊂ S

(
d3

)}

is called the conductor of S
(
d3

)
.

The number

F
(
d3

)
= C

(
d3

)
− 1

is referred to as the Frobenius number

Denote by ∆
(
d3

)
the complement of S

(
d3

)
in Z+, i.e.

∆
(
d3

)
= Z+ \ S

(
d3

)

The number of gaps, or a genus,

G
(
d3

)
:= #

{
∆

(
d3

)}
< ∞

The number of non-gaps



˜G
(
d3

)
:= #

{
S

(
d3

)
∩ [0; F

(
d3

)
]
}

so that

G
(
d3

)
+ ˜G

(
d3

)
= C

(
d3

)

The semigroup S
(
d3

)
is called symmetric iff for any integer s holds

s ∈ S
(
d3

)
⇐⇒ F

(
d3

)
− s 6∈ S

(
d3

)

Otherwise S
(
d3

)
is called non-symmetric.

2G
(
d3

)
= C

(
d3

)
if S

(
d3

)
is symmetric,

2G
(
d3

)
> C

(
d3

)
otherwise

Denote by p
(
d3

)
a fraction of the segment [0; F

(
d3

)
] which is occupied

by the semigroup S
(
d3

)

p
(
d3

)
=

˜G
(
d3

)

C (d3)

Note that for every symmetric semigroup it holds

p
(
d3

) symmetric
semigroup

=
1

2



Polynomial Ring Associated with Semigroups
S

(
d3

)

Let R = k [X1, X2, X3] be a polynomial ring in 3 variables over a field k of

characteristic 0 and

π : k [X1,X2,X3] 7−→ k
[

zd1, zd2, zd3
]

be the projection induced by π (Xi) = zdi. Denote

k
[
S

(
d3

)]
:= k

[

zd1, zd2, zd3
]

Then k
[
S

(
d3

)]
is a 1-dim Cohen-Macaulay graded subring of

k [X1, X2, X3].

The type of the ring k
[
S

(
d3

)]

t
(
S

(
d3

))
= #

{
S′ (

d3
)}

,

S′ (
d3

)
=

{
x ∈ Z | x 6∈ S

(
d3

)
, x + s ∈ S

(
d3

)}

for all s ∈ S
(
d3

)
\ {0}

Lemma (Herzog, 1970)

t
(
S

(
d3

))
=





1 , if S
(
d3

)
is symmetric,

2 , if S
(
d3

)
is non-symmetric

Theorem (Fröberg, Gottlieb, Häggkvist, 1987)

G
(
d3

)
≤ ˜G

(
d3

)
t

(
S

(
d3

))
.



Theorem (Brown, Curtis, 1991, and Brown, Herzog, 1992)

G
(
d3

)
= ˜G

(
d3

)
, iff

d3 is symmetric,

G
(
d3

)
= 2 ˜G

(
d3

)
, iff

d3 = {3, 3k + 1, 3k + 2}, k ≥ 1,

G
(
d3

)
= 2 ˜G

(
d3

)
− 1 , iff

d3 = {3, 3k + 2, 3k + 4}, {4, 5, 11}, {4, 7, 13}

G
(
d3

)
= 2 ˜G

(
d3

)
− u , 1 < u < ˜G

(
d3

)
, iff

d3 = {?, ?, ?}

Wilf’s Question (1978)

Is it true that for fixed m the following inequality holds

p (dm) =
˜G (dm)

C (dm)
≥ 1

m

with equality only for

dm = (m, m + 1, . . . , 2m − 1) .

Dobbs, Mattews (2003) proved WQ for m = 3



Weak Asymptotics

Two sequences of real numbers A(k) and B(k), k ∈ Z+, are said to have

the same weak asymptotics, or to have asymptotically equal average growth

rates, or to have the same Cesáro asymptotics,

A(k)
Cesáro

≡ B(k) if lim
N→∞

∑N
k=1 A(k)

∑N
k=1 B(k)

= 1

E.g.

sin2


πk

2




Cesáro

≡ 1

2
, φ(k)

Cesáro

≡ k

ζ(2)

φ(k) and ζ(k) are Euler and Riemann functions

Weak Asymptotics at Large Integers

Let us replace k by a neighborhood UN,r(k) of length 2r of a scaled

integer Nk, N ∈ Z+. Replace the values of A(k) and B(k) by the

arithmetic means AN,r(k) and BN,r(k), respectively

AN,r(k) =
1

2r

r∑

j=−r
A(Nk+j), BN,r(k) =

1

2r

r∑

j=−r
B(Nk+j),

where Nk + j ∈ UN,r(k). Two sequences of real numbers A(k) and

B(k), k ∈ Z+, are said to have the same weak asymptotics at large k

A(k)
Cesáro

≡ B(k) if lim
r,N→∞

r(N)/N→0

AN,r(k)

BN,r(k)
= w(k) = 1



Weak Asymptotics in Semigroups S
(
d3

)
at typical large

vectors d3

Arnold’s recipe (V. Arnold, 1999)

Let S
(
d3

)
be a semigroup, i.e. a generating set (d1, d2, d3) is minimal.

Replace the vector d3 by a cubic neighborhood UN,r

(
d3

)
of edge r of a

scaled vector Nd3 ∈ Z3
+, N ∈ Z+ such that

1 � r � N , r(N)/N → 0 when N → ∞
Denote by j3 a vector (j1, j2, j3). Replace the value A

(
d3

)
by the

arithmetic mean AN,r

(
d3

)
of the functions A

(
Nd3 + j3

)
at the vectors

Nd3 + j3 ∈ UN,r

(
d3

)
whose components Ndi + ji, ji ∈ Z+, −r ≤ ji ≤ r,

satisfy two constraints:

C1.

gcd(Nd1 + j1, Nd2 + j2, Nd3 + j3) = 1

otherwise a semigroup has infinite complement ∆
(
d3

)

C2.
{Nd1 + j1, Nd2 + j2, Nd3 + j3}

is a minimal generating set, otherwise Nd3 + j3 does not generate

the 3-dim semigroup

Call the vector Nd3 + j3 typical if its components satisfy both

constraints, C1 and, C2



Denote by MN,r

(
d3

)
an entire set of typical vectors, MN,r

(
d3

)
⊂ UN,r

(
d3

)

MN,r

(
d3

)
=





Nd3 + j3



−r ≤ ji ≤ r, 1 � r � N

C1, C2 are satisfied





Denote by #
{
MN,r

(
d3

)}
a cardinality. Notice that

Nd3 6∈ MN,r

(
d3

)
→ #

{
MN,r

(
d3

)}
< (2r)3

Define a mean average

AN,r

(
d3

)
=

1

# {MN,r (d3)}
r∑

ji=−r
i=1,2,3

A
(
Nd3 + j3

)

Say that two numerical functions A
(
d3

)
and B

(
d3

)
have the same weak

asymptotics at the typical large d3

A
(
d3

) Cesáro

≡ B
(
d3

)
if lim

r,N→∞
r(N)/N→0

AN,r

(
d3

)

BN,r (d3)
= w(d3) = 1



1.1. Arnold’s Conjectures

Conjecture #1999 − 8

Explore the statistics of C
(
d3

)
for typical large vectors d3.

Conjecturally,

C
(
d3

) Cesáro

≡
√

2
√

d1d2d3

Conjecture #2003 − 5

The mean values CN,r

(
d3

)
have a growth rate (probably

provided by conjectured formula)

C
(
d3

) Cesáro

≡ const ·
√

d1d2d3

Conjecture #1999 − 9

Determine p
(
d3

)
for large vectors d3. Conjecturally, this

fraction is asymptotically equal to 1/3

G̃
(
d3

) Cesáro

≡ 1

3
C

(
d3

)

Conjecture #1999 − 10

(It implies Conjecture # 1999-9)

Find the typical density σ3(s) of filling the segment [0; F
(
d3

)
]

asymptotically for large d3. Conjecturally,

σ3(s) =




s

C (d3)




2

, where
∫ C

0
σ3(s)ds = G̃

(
d3

)



Statistics of Numerical Semigroups

S
(
Nd3 + j3

)
, N → ∞

Represent a set MN,r

(
d3

)
as follows,

MN,r

(
d3

)
= M̂N,r

(
d3

)
\ M̃N,r

(
d3

)

M̂N,r

(
d3

)
=





Nd3 + j3



−r ≤ ji ≤ r, 1 � r � N

C1 is satisfied





M̃N,r

(
d3

)
=





Nd3 + j3



−r ≤ ji ≤ r, 1 � r � N

C2 is satisfied

C1 is satisfied





C2 : {Nd1 + j1, Nd2 + j2, Nd3 + j3} is not minimal

Lemma (LGF, 2005)

lim
r,N→∞
r/N→0

#
{ ̂MN,r

(
d3

)}

(2r)3
=

1

ζ(3)
' 0.8319

lim
r,N→∞
r/N→0

#
{ ˜MN,r

(
d3

)}

(2r)3
= 0

MN,r (dm) is a union of symmetric M sym
N,r

(
d3

)
and non-symmetric

Mnsym
N,r

(
d3

)
semigroups

MN,r

(
d3

)
= M sym

N,r

(
d3

)
∪ Mnsym

N,r

(
d3

)

#
{
MN,r

(
d3

)}
= #

{
M sym

N,r

(
d3

)}
+ #

{
Mnsym

N,r

(
d3

)}



Theorem (Herzog, 1970, and Watanabe, 1973)

A semigroup S (d1, d2, d3) is symmetric iff its minimal

generating set has a presentation with at least 2 relatively

not prime elements

gcd(d1, d2) = b , gcd(d3, b) = 1 , d3 ∈ S


d1

b
,
d2

b




Lemma (LGF, 2005)

Let S
(
d3

)
and S

(
Nd3 + j3

)
be semigroups and

{Nd1 + j1, Nd2 + j2, Nd3 + j3} be a minimal generating set

such that

−r ≤ j1, j2, j3 ≤ r , 1 � r � N .

If r(N)/N → 0 when r, N → ∞ then

lim
r,N→∞
r/N→0

#
{
M sym

N,r

(
d3

)}

(2r)3
= 0

Corollary (LGF, 2005)

Almost all numerical semigroups S
(
Nd3 + j3

)
are

non-symmetric

lim
r,N→∞
r/N→0

#
{
Mnsym

N,r

(
d3

)}

(2r)3
=

1

ζ(3)



Matrix R3 of Minimal Relations

for Non-Symmetric Semigroups

Lemma (Johnson, 1960)

R3 · d3 = 0 , R3 =




u1 + w1 −u2 −w3

−w1 u2 + w2 −u3

−u1 −w2 u3 + w3




ui, wi ∈ Z+ , i = 1, 2, 3

d1 = u2u3 + w2w3 + u2w3 , gcd(u1, w2, u3 + w3) = 1,

d2 = u3u1 + w3w1 + u3w1 , gcd(u2, w3, u1 + w1) = 1,

d3 = u1u2 + w1w2 + u1w2 , gcd(u3, w1, u2 + w2) = 1

Conductor C
(
d3

)
and Genus G

(
d3

)

Theorem (LGF, 2004/6)

C
(
d3

)
= 1 +

3∏

i=1
(ui + wi) − A2 − B2 − D + max{A3, B3}

2G
(
d3

)
= 1 +

3∏

i=1
(ui + wi) − A2 − B2 − D + A3 + B3

2G
(
d3

)
− C

(
d3

)
= min{A3, B3}

where

A2 = u1u2 + u3u1 + u2u3 , A3 = u1u2u3 ,

B2 = w1w2 + w3w1 + w2w3 , B3 = w1w2w3 ,

D = u1w2 + u2w3 + u3w1 .



New Scaling in the Z3
+ × Z3

+ Lattice

Consider two tuples u3 and w3

u3 = (u1, u2, u3) , w3 = (w1, w2, w3)

Their union is a tuple in the 6–dim cubic lattice

u3 ∪ w3 = (u1, u2, u3, w1, w2, w3) ∈ Z3
+ × Z3

+

A mapping Z3
+ × Z3

+ 7−→ Z3
+ is defined by three homogeneous

functions of the 2-nd order

di = fi(u1, u2, u3, w1, w2, w3), N 2d3 = f(Nu3, Nw3)

Replace a scaling in Z3
+ lattice, N 2di ∈ Z+, N ∈ Z+, by the scaling in

Z3
+ × Z3

+ lattice, Nui, Nwi ∈ Z+ and define

AN,r

(
u3 ∪ w3

)
=

{(
Nu3 + j3

)
∪

(
Nw3 + k3

) C
}

where

C =





gcd
(
D1,N

(
j3,k3

)
,D2,N

(
j3,k3

)
,D3,N

(
j3,k3

)
,

)
= 1 ,

j3 = (j1, j2, j3) , k3 = (k1, k2, k3) ,
−r ≤ ji, ki ≤ r , 1 � r � N





Di,N

(
j3,k3

)
= di

(
Nu3 + j3, Nw3 + k3

)
, i = 1, 2, 3

A cardinality #
{
AN,r

(
u3 ∪w3

)}

#
{
AN,r

(
u3 ∪ w3

)}
' (2r)6

ζ(3)

The averaging will be performed on the set AN,r

(
u3 ∪w3

)

instead of the set MN,r

(
d3

)



Asymptotics K
(
d3

)
and P

(
d3

)

Denote by V
(
d3

)
= d1d2d3. Define the asymptotics

K
(
d3

)
= lim

r,N→∞
r(N)/N→0

CN,r

(
d3

)

√
VN,r (d3)

P
(
d3

)
= lim

r,N→∞
r(N)/N→0

˜GN,r

(
d3

)

CN,r (d3)

Straightforward calculation gives

K
(
d3

)
=

(1 + ρ1)(1 + ρ2)(1 + ρ3) + max{1, ρ1ρ2ρ3}
√
(1 + ρ2ρ3 + ρ2)(1 + ρ3ρ1 + ρ3)(1 + ρ1ρ2 + ρ1)

P
(
d3

)
=

1

2


1 − min{1, ρ1ρ2ρ3}

(1 + ρ1)(1 + ρ2)(1 + ρ3) + max{1, ρ1ρ2ρ3}




where

ρi =
ui

wi
, i = 1, 2, 3 , 0 < ρi < ∞



Conjectures are refuted

Conjecture #1999 − 8

K
(
d3

)
>

√
3

Moreover, if ρ1 = ρ2 = ρ � 1, ρ3 = ρ−2 � 1, then

K
(
d3

)
=
√

ρ � 1

Conjecture #2003 − 5

K
(
d3

)
is not a constant

Conjecture #1999 − 9

4

9
< P

(
d3

)
<

1

2
P

(
d3

)
is not a constant

Conjecture #1999 − 10

σ3(s) 6=



s

C (d3)




2
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Figure 1: Differential (black zig-zag curve) and cumulative (blue curve) density
P2 − 1/ζ(2) of symmetric tuples (d1, d2) in Z2

+– lattice with edge N .
(Jointly with B. Rubinstein)
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Figure 2: Differential densities P3 of 4 different distributions of the triples
(d1, d2, d3) in Z3

+–lattice with edge N : gcd(d1, d2, d3) = 1 (black), symmetric
and nonsymmetric triples (red), only nonsymmetric triples (blue), only
symmetric triples (green).
(Jointly with B. Rubinstein)


