An algorithm for checking whether the toric ideal of an affine monomial curve is a complete intersection

Ignacio García-Marco University of La Laguna, Spain

Based on the paper

I. Bermejo, I. García-Marco, J.J. Salazar-González, An algorithm for checking whether the toric ideal of an affine monomial curve is a complete intersection, *J. Symbolic Comput.* **42** (2007), 971–991.

Implementation

I. Bermejo, I. García-Marco, J.J. Salazar-González, cimonom.lib, Singular 3.0.3, 2007.

Main references

- I. Bermejo, Ph. Gimenez, E. Reyes, R. H. Villarreal, Complete intersections in affine monomial curves, *Bol. Soc. Mat. Mexicana (3a)* Serie 11 (2) (2005), 191–204.
- M. Clausen, A. Fortenbacher, Efficient Solution of Linear Diophantine Equations, *J. Symbolic Comput.* **8** (1989), 201–216.
- **Ch. Delorme**, Sous-monoïdes d'intersection complète de \mathbb{N} , *Ann. Sci. École Norm. Sup.* **9** (1976), 145–154.
- **J. Herzog**, Generators and relations of abelian semigroups and semigroup rings, *Manuscripta Math.* **3** (1970), 175–193.

Definitions and basic results I

Let $R = K[x_1, ..., x_n]$ be the polynomial ring in n variables over an arbitrary field K.

Denote by x^a the monomial $x_1^{a_1} \cdots x_n^{a_n}$, where $a = (a_1, \dots, a_n) \in \mathbb{N}^n$.

A **binomial** f in R is a difference of two monomials, i.e., $f = x^a - x^b$ for some $a, b \in \mathbb{N}^n$. An ideal of R generated by binomials is called a **binomial ideal**.

Let $\{d_1, \ldots, d_n\}$ be a set of all-different positive integers and consider the affine monomial curve:

$$\Gamma = \{(t^{d_1},\ldots,t^{d_n}) \in \mathbb{A}^n_K \mid t \in K\}$$

The kernel of the homomorphism of K-algebras $\phi: R \longrightarrow K[t]$ induced by $x_i \longmapsto t^{d_i}$ is called the **toric ideal of** Γ and will be denoted by

$$I(d_1,\ldots,d_n)$$

Definitions and basic results II

- ullet $I(d_1,\ldots,d_n)$ is a 1-dimensional binomial ideal
- $ullet I(d_1,\ldots,d_n)$ is generated by **quasi-homogeneous** binomials, i.e., homogeneous binomials when one gives degree d_i to variable x_i for all $i\in\{1,\ldots,n\}$
- ullet If either $\gcd\{d_1,\ldots,d_n\}=1$ or $K=\overline{K}$, we get $\Gamma=V(I(d_1,\ldots,d_n))$, i.e., Γ is a toric variety
- ullet If K is an infinite field, $I(\Gamma)=I(d_1,\ldots,d_n)$

 $I(d_1, \ldots, d_n)$ is a complete intersection if there exists a system of quasi-homogeneous binomials g_1, \ldots, g_{n-1} such that

$$I(d_1,\ldots,d_n)=(g_1,\ldots,g_{n-1})$$

The definition coincides with the usual one.

Aim of the work

To obtain an **efficient algorithm** for checking whether or not $I(d_1, \ldots, d_n)$ is a complete intersection.

For all $i \in \{1, \ldots, n\}$ let us define

$$c_i := \min \left(\mathbb{Z}^+ d_i \cap \sum_{j \in \{1,...,n\} \setminus \{i\}} \mathbb{N} \, d_j
ight)$$

Herzog gives the following result when n=3:

 $I(d_1, d_2, d_3)$ is a complete intersection \Leftrightarrow $\exists r, s: 1 \leq r < s \leq 3$, such that $c_r = c_s$.

This result does not hold for n > 3.

The aim of this work is to design an efficient algorithm for checking whether $I(d_1, \ldots, d_n)$ is a complete intersection which is mainly based on the computation of some c_i .

First attempt I

Proposition. Let $I(d_1, \ldots, d_n)$ be a complete intersection. Then the following two conditions hold:

- 1. $\exists r, s : 1 \leq r < s \leq n$ such that $c_r = c_s$;
- 2. whenever $c_r = c_s$ for $r,s:1 \leq r < s \leq n$, one has
- (a) $I(d_1,...,\widehat{d_r},...,\widehat{d_s},...,d_{n+1})$ is a complete intersection, where $d_{n+1}:=\gcd{\{d_r,d_s\}};$
- (b) if one sets

$$c_{n+1} := \min \ \left(\mathbb{Z}^+ d_{n+1} \cap \sum_{j \in \{1,...,n\} \setminus \{r,s\}} \mathbb{N} \, d_j
ight)$$

then $c_{n+1} \in \mathbb{N} \, d_r + \mathbb{N} \, d_s$;

(c) if for all $i \in \{1, \dots, n\} \setminus \{r, s\}$ one sets

$$c_i' := \min \ \left(\mathbb{Z}^+ d_i \cap \sum_{j \in \{1, \dots, n+1\} \setminus \{i, r, s\}} \mathbb{N} \ d_j \right)$$

then $c_i' = c_i$.

First attempt II

The 2 necessary conditions for $I(d_1, \ldots, d_n)$ to be a complete intersection in **Proposition** also turn out to be sufficient when n=4.

Therefore, they provide an algorithm for determining whether or not $I(d_1, d_2, d_3, d_4)$ is a complete intersection that requires the design of procedures to solve the following problems:

- To compute the smallest positive multiple of an integer that belongs to a semigroup.
- To check whether or not a positive integer belongs to a semigroup.

First attempt III

This characterization does not hold for $n\geq 5$

Example. For $d_1 = 45$, $d_2 = 70$, $d_3 = 75$, $d_4 = 98$ and $d_5 = 147$, the toric ideal $I(d_1, d_2, d_3, d_4, d_5)$ is not a complete intersection.

Nevertheless, $c_1=c_3=225$ and setting $d_6:=\gcd\left\{d_1,d_3\right\}=15$, one has that

- \bullet $I(d_2, d_4, d_5, d_6)$ is a complete intersection
- $\bullet \ c_6 = \min(\mathbb{Z}^+ d_6 \cap \langle d_2, d_4, d_5 \rangle) = 210 \in \langle d_1, d_3 \rangle$
- $ullet \ c_2' = c_2 = 210 \ , \ c_4' = c_4 = c_5' = c_5 = 294$

In spite of this, **Proposition** is **essential to describing our algorithm**.

Binary trees labeled by $\{d_1,\ldots,d_n\}$

A **binary tree** is a directed tree in which every node has either two children or zero. Nodes with no children are called **terminal nodes** and the only node with no parent is called the **root**.

A binary tree with n terminal nodes v_1,\ldots,v_n and non-terminal nodes v_{n+1},\ldots,v_{2n-1} is said to be **labeled by** $\{d_1,\ldots,d_n\}$ if v_i is labeled by $\{d_i\}$ for all $i\in\{1,\ldots,n\}$, and for all $i\in\{n+1,\ldots,2n-1\}$, v_i has children v_j,v_k with j,k< i.

This is a binary tree labeled by $\{10, 14, 15, 21\}$:

Main result I

Let \mathcal{T} be a binary tree labeled by $\{d_1,\ldots,d_n\}$ and v_i a node of \mathcal{T} different from the root node. Denote by Δ_{v_i} the subset of $\{d_1,\ldots,d_n\}$ such that the subtree of \mathcal{T} whose root node is v_i is labeled by Δ_{v_i} .

Moreover if v_i is a non-terminal node define $d_i := \gcd(\Delta_{v_i})$ and c_i as

 $\min \left(\mathbb{Z}^+ d_i \cap \mathbb{N} \left\{ d_s \, | \, v_s ext{ child of } v_t, \; s < i < t
ight\}
ight).$

Theorem - Algorithm. $I(d_1,\ldots,d_n)$ is a complete intersection \iff one can construct a binary tree $\mathcal T$ labeled by $\{d_1,\ldots,d_n\}$ such that for each $i\in\{n+1,\ldots,2n-2\}$, the node v_i of $\mathcal T$ with children v_j and v_k has $c_j=c_k$ and $c_i\in\sum_{d_r\in\Delta_{v_i}}\mathbb N\,d_r$.

Main result II

I(10,14,15,21) is a complete intersection since the following binary tree labeled by $\{10,14,15,21\}$ satisfies the arithmetical conditions stated in **Theorem - Algorithm**:

Indeed, $c_1 = c_3 = 30$.

Setting $d_5 := \gcd\left\{d_1, d_3
ight\} = 5$ and

$$c_5:=\min\left(\mathbb{Z}^+d_5\cap\mathbb{N}\left\{d_2,d_4
ight\}
ight)=35\,,$$

one finds that $c_5 \in \mathbb{N}\{d_1,d_3\} \longleftrightarrow c_5 = 2d_1 + d_3$

Moreover, $c_2 = c_4 = 42$.

Setting $d_6 := \gcd \{d_2, d_4\} = 7$ and

$$c_6:=\min\left(\mathbb{Z}^+d_5\cap\mathbb{N}\,d_6
ight)=35\,,$$

one finds that $c_6 \in \mathbb{N}\{d_2,d_4\} \longleftrightarrow c_6 = d_2 + d_4$.

Algorithm CI

```
Require: \{d_1,\ldots,d_n\}
Ensure: TRUE or FALSE
G_1 := \{d_1, \dots, d_n\}
for i=1 to n do
    V_i := \{d_i\}, c_i := \min\left(\mathbb{Z}^+ d_i \cap \sum_{j \in \{1,...,n\} \setminus \{i\}} \mathbb{N} \, d_j
ight)
end for
for i=1 to n-2 do
    if c_j 
eq c_k for all j,\, k: j 
eq k and d_j,\, d_k \in G_i then
        return FALSE
    end if
    Let j,\,k:j
eq k such that d_j,\,d_k\in G_i and c_j=c_k
    d_{n+i} := \gcd\{d_i, d_k\}, V_{n+i} := V_i \cup V_k
    G_{i+1}:=G_iackslash\{d_i,\,d_k\}\cup\,\{d_{n+i}\}
    c_{n+i} := \min \left( \mathbb{Z}^+ d_{n+i} \cap \sum_{d_s \in |G_{i+1} \setminus \{d_{n+i}\}} \mathbb{N} |d_s 
ight)
    if c_{n+i} 
ot \in \sum_{d_i \in V_{n+i}} \mathbb{N} \, d_j then
        return FALSE
    end if
end for
return TRUE
```

Algorithm CI

Given $\{d_1, \ldots, d_n\}$ such that $I(d_1, \ldots, d_n)$ is a complete intersection, **Algorithm CI** returns, with no additional effort, a system of n-1 quasi-homogeneous generators for the toric ideal $I(d_1, \ldots, d_n)$.

In the previous example, one gets:

$$x_1^3 - x_2^2 \quad \dots \quad c_1 = c_3 = \underline{3}d_1 = \underline{2}d_3$$
 $x_2^3 - x_4^2 \quad \dots \quad c_2 = c_4 = \underline{3}d_2 = \underline{2}d_4$
 $x_1^2x_3 - x_2x_4 \quad \dots \quad c_5 = c_6 = \underline{2}d_1 + \underline{1}d_3 = \underline{1}d_2 + \underline{1}d_4$

Moreover, when $\gcd\{d_1,\ldots,d_n\}=1$, \mathbf{Algo} -**rithm CI** also returns the Frobenius number $\mathbf{g}(\mathcal{S})$ of the semigroup $\mathcal{S}:=\sum_{i=1}^n\mathbb{N}\,d_i$,
i.e., the largest integer not in \mathcal{S} , using the formula:

$$g(\mathcal{S}) = rac{1}{2} \sum_{i=1}^{2n-2} c_i - \sum_{i=1}^n d_i$$
.

In the previous example, $g(\mathcal{S})=47$.

Computational aspects I

A direct implementation of **Algorithm CI** requires an **efficient procedure** to compute the values c_i .

Given $\{d_1, \ldots, d_n\}$, the optimization problem of computing

$$c_1 = \min \ ig(\mathbb{Z}^+ d_1 \cap \sum_{oldsymbol{j} \in \{2,...,n\}} \mathbb{N} \, d_{oldsymbol{j}} ig)$$

can be formulated by the following Integer Linear Programming (ILP) model:

$$x_1^* := \min \qquad x_1$$
 (1)
 $d_1 x_1 = d_2 x_2 + \dots + d_n x_n$ (2)

$$x_1 \ge 1; x_2, \dots, x_n \ge 0 \tag{3}$$

$$x_1, x_2, \dots, x_n \in \mathbb{Z}$$
 (4)

Then $c_1 = d_1 x_1^*$.

The computation of c_1 is a \mathcal{NP} -hard problem.

Computational aspects II

To compute x_1^* , we use a **Graph Theory** representation of the problem.

The approach is similar in spirit to that of **Clausen & Fortenbacher** to solve linear diophantine equations.

The idea is to represent each solution

$$(x_1,x_2,\ldots,x_n)$$

of (2)–(4) as a **walk** in a **graph**, where the **weight** of the walk is x_1 .

Then the combinatorial problem modeled in (1)–(4) is equivalent to **finding a shortest** path in the graph.

Computational aspects III

Consider the following directed weighted graph G = (V, A), where the **node set** is

$$V := \{0, 1, \ldots, d_1 - 1\},$$

the arc set is

$$A:=igcup_{i=2}^nig\{(v,(v+d_i)mod d_1)\,|\,v\in Vig\},$$

and for all $v \in V$ and $i \in \{2, \ldots, n\}$, the weight of the arc $(v, (v + d_i) \mod d_1)$ is defined equal to

$$w_{(v,i)} := \left\lfloor rac{v + d_i}{d_1}
ight
floor.$$

Lemma. There is an onto map of the set of closed walks in \mathcal{G} starting at 0 with weight x_1 into the set of solutions (x_1, x_2, \ldots, x_n) of (2)–(4).

Proof. $(v+d_i) \bmod d_1 = v+d_i-w_{(v,i)}d_1$

Computational aspects IV

The graph \mathcal{G} for the instance $d_1 = 5$, $d_2 = 6$, $d_3 = 8$ is the following:

where arcs represented by **single lines** have a **weight** equal to **one**, and arcs represented by **double lines** have a **weight** equal to **two**.

The path
$$0 \rightarrow 3 \rightarrow 4 \rightarrow 0$$

corresponds to the solution (4,2,1) of (2)–(4):

$$egin{array}{c|c} 0+d_3-1\cdot d_1=3 \ 3+d_2-1\cdot d_1=4 \ 4+d_2-2\cdot d_1=0 \ \end{array} \Rightarrow 4d_1=2d_2+d_3$$

Computational aspects V

To compute x_1^* one can apply **Dijkstra's algorithm** to find a shortest cycle starting from 0 in \mathcal{G} .

The **complexity** of the Dijkstra algorithm depends on the number of nodes and arcs in the graph. Since the number of nodes in \mathcal{G} is d_1 and the number of arcs is $(n-1)d_1$, the optimization problem (1)–(4) can be solved in $\mathcal{O}(n \cdot d_1 + d_1 \cdot \log(d_1))$.

Corollary. Each c_i in Algorithm CI can be computed in pseudo-polynomial time.

Computational aspects VI

Our computational experiments show that **Al- gorithm CI** is able to solve **large-size ins- tances**.

For instance, our implementation takes **less** that one second on a personal computer with Intel Pentium IV 3Ghz. to prove that the toric ideal $I(d_1, \ldots, d_{13})$ is a complete intersection, where

$$d_1 = 304920$$
 $d_2 = 381150$ $d_3 = 457380$
 $d_4 = 571725$ $d_5 = 97911$ $d_6 = 223146$
 $d_7 = 239085$ $d_8 = 159390$ $d_9 = 334719$
 $d_{10} = 224112$ $d_{11} = 238119$ $d_{12} = 252126$
 $d_{13} = 334949$

Computational aspects VII

Additionally, the implementation also gives a minimal set of quasi-homogeneous generators of the toric ideal:

and shows that the **Frobenius number** of the semigroup $\sum_{i=1}^{13} \mathbb{N} \, d_i$ is 6229597.