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Abstract

In symmetric bifurcation theory it is often necessary to describe the restric-
tions of equivariant mappings to the fixed-point space of a subgroup. Such
restrictions are equivariant under the normalizer of the subgroup, but this
condition need not be the only constraint. We develop an approach to such
questions in terms of Hilbert series — generating functions for the dimension
of the space of equivariants of a given degree. We derive a formula for the
Hilbert series of the restricted equivariants in the case when the subgroup
is generated by a reflection, so the fixed-point space is a hyperplane. By
comparing this Hilbert series with that of the normalizer, we can detect the
occurrence of further constraints. The method is illustrated for the dihedral
and symmetric groups.

AMS classification: 13A50, 34A47, 58F14, 20C40

1 Introduction

A central object of study in symmetric bifurcation theory is the space 5V(F) of
smooth equivariant mappings f : V' — V where V is a finite-dimensional represen-
tation (real or complex) of a compact Lie group I', see Golubitsky et al. [9]. This
space is a module over the ring &y (I") of invariant functions. For many purposes it
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is sufficient to consider the space Py (T') of equivariant polynomial mappings, which
is a module over the ring Py (I') of polynomial functions.

Some useful information about the structure of Py (I') can be encoded in its
Hilbert series, which is a generating function for the dimensions of the polynomial
equivariants of given degree. Specifically, define

PLUT) = {p € Py(I') : Op = d}

where 0 indicates the degree, and form the power series in an indeterminate ¢ defined
by

Up(t) =Y aqt?,
d=0

where
ag = dim PE(T).

The celebrated theorem of Molien [17] generalized to the module of equivariants [18]
provides an explicit formula

_ tr(y~)
Ur(t) = /yEF mdur

where ur is normalised Haar measure on I'.

The problem that we discuss in this paper concerns analogous Hilbert series for
the restrictions of ['-equivariants to fixed-point spaces. Suppose that ¥ is a subgroup
of ', and let

Fix(¥) ={zreV:iox =2 Vo eX}

be its fixed-point space. It is well known that W = Fix(X) is mapped to itself by
every ['-equivariant f, so that

f=flw:W—=W

In applications to bifurcation theory, this fact is exploited to find solutions of a I'-
equivariant differential equation that have symmetry 3, see Golubitsky et al. [9]. A
key question is to understand what constraints the map f must satisfy. In particular,
it is useful to do so without computing the I'-equivariants explicitly.
It is well known that every restricted mapping f possesses an equivariance prop-
erty, as follows. Let
Y={ocel:ox=x Vr e W}

and let H = Np(X)/% where Nrp indicates the normalizer. Then W is invariant
under the action of H, and f is H-equivariant. Thus there is a map

It is here that the problem becomes interesting, because in many cases the map
" is not surjective: for example, see Section 2, where [' = Dj in its natural action
on R? and ¥ is generated by a reflection. That is, in order for a map on W to



be the restriction of a I'-equivariant on V, it must satisfy non-trivial constraints in
addition to H-equivariance. Another way to phrase this is that not all polynomial
H-equivariants on W extend to polynomial I'-equivariants on V. (Note that such
an extension always exists in the category of continuous mappings. The obstacle
to extension is to ensure a sufficient degree of smoothness.) This phenomenon has
major consequences for symmetric bifurcation theory, because in many problems the
‘obvious’ symmetry group is H, but a larger group I' is involved in a less obvious
manner. We refer for example to [1, 2, 3, 4, 5, 6, 7, 8, 11, 16]. See Gomes et al.
[10] for an overview of the subject.

Golubitsky, Marsden and Schaeffer [8] identified one source of extra constraints
on f, which they called hidden symmetries. Suppose that some element v € T'\

Nr(Y) exists with the property that W N ~yW /A{0}. Then for all w € W NyW we
have

flyw) = fyw) = 7f(w) = v f(w).

That is, f is y-equivariant on the subspace W N ~yW of W.

However, hidden symmetries are not the only constraints on f Again, the
example of Dy in Section 2 illustrates this, because W is a line, so W NnyW = {0}
for all v € '\ Np(X). These additional constraints arise from a combination of
symmetry properties and smoothness, and are difficult to characterize in a concrete
manner.

We shall say that ¥ C T" is deficient if the map "is not surjective. How can we
characterize deficient subgroups?

A separate, but related, issue is whether " is injective. Equivalently, if a I'-
equivariant vanishes on W, must it be zero on V7

We show here that both of these issues can usefully be studied in terms of Hilbert
series, at least in the special case for which X is generated by a single reflection. In
particular we prove an analogue of Molien’s theorem for the generating function of
the dimensions of the spaces of polynomials f of degree d.
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2 An Example

As a motivation we start with a simple example. Consider I' = Dy acting on
V = R? = C by the standard action generated by

- (i) ),

sin(2)  cos(%)

(o 4)

It is well known that the ring of the invariant polynomial functions Py (T') is
generated by

u=x?+y? =2z,

v =1z° — 10y%2® + 5y'z = Re(2°)
which are algebraically independent, and the module of the equivariant polynomial
mappings Py (T) is freely generated over Py (') by

4 _ @22 1 o4
V = x 36.’13 Y +3y = 4
—4x’y + 4zy

(see for example [9]). Thus if f € ’ﬁV(F), then there are polynomial functions pi, po
such that

f(@,y) = p1(u, v)U + pa(u, v)V.

Let ¥ = {1, x} and so W = Fix(¥) = {(z,0) : = € R}. Note that ¥ = ¥ and
Nr(¥) = %. Thus H = Np(¥)/% = 1 and so we have the trivial group acting on
W. Consider f. As

2

i = x°,
0= a°
and
A T
o=(3)
A~ $4
=(5),
then

Note that although

(5)

is a polynomial mapping on W that is H-equivariant (H is trivial), it can not appear
as a restriction of a polynomial mapping f to W. Thus {1, k} is deficient in Ds.
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3 Preliminaries

Let V be a real vector space and let I' be a compact Lie group acting linearly and
(without loss of generality) orthogonally on V. Recall that a polynomial function
p: V — R is invariant under T if p(y - v) = p(v) for all v € T', and a polynomial
mapping g : V. — V is equivariant under ' if g(y - v) = 7.9(v) for all y € T'. In
applications to bifurcation theory, ¢ is a truncation of the Taylor series of a smooth
equivariant vector field, but in this paper we focus only on polynomial functions and
mappings in the abstract.

Denote by Py (T') the ring of [-invariant polynomials and by P& (T) the vector
space of homogeneous I'-invariant polynomials of degree d. Let Py (T') be the space
of T'-equivariant polynomial mappings from V' to V', which is a module over Py (T').
Denote by 733(1“) the vector space of homogeneous ['-equivariant polynomial maps
of degree d.

3.1 Review of Hilbert Series

We review Hilbert series for the rings of invariants and modules of equivariants for
general compact Lie groups.

It will be convenient to change from a real representation to a complex represen-
tation, and we briefly explain why this useful step produces no extra complications.
Let I' be a compact Lie group acting on V = R, so that v € ' acts as a matrix
M,. The matrix M, has real entries, and we can view it as a matrix acting on
Ck. If (x1,...,7;) denote real coordinates on R*, z; € R, then we obtain complex
coordinates on C* by permitting the x; to be complex. Moreover, there is a natural
inclusion Rz, ...,z¢] C Clzy,...,zx] where these are the rings of polynomials in
the z; with coefficients in R, C respectively.

Every real-valued I'-invariant in R[z1, . .., x| is also a complex-valued I'-invariant
in Clzy,...,z]. Conversely the real and imaginary parts of a complex-valued in-
variant are real invariants (because the matrices A, have real entries). Therefore a
basis over R for the real vector space of real-valued invariants of degree d is also a
basis over C for the complex vector space of C-valued invariants of degree d. That
is, the ‘real’ and ‘complex’ Hilbert series are the same. Similar remarks apply to
the equivariants. Bearing these facts in mind, we ‘complexify’ the entire problem,
reducing it to the following situation.

Let V be a k-dimensional vector space over C, and let zq,...,z; denote co-
ordinates relative to a basis for V. Let I' C GL(V') be a compact Lie group. Let
Clz1,. .., x| denote the ring of polynomials over C in zy, ..., z,. Consider an action
of I' on V. Note that C[z,...,zx] is graded:

C[:Ul,...,xk]:RO@Rl@RQ@...

where R; consists of all homogeneous polynomials of degree i. If f(z) € R; for some
i, then f(yz) € R; for all v € I'. Therefore for any subgroup I' of GL(V') the space
Py (T') has the structure

Py([) =PL(T) @ PLI) @ P2D) D - -
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of an N-graded C-algebra given by Pi (I') = Py(I') N R;. Similarly Py (T) is a
graded module over the ring Py (T'):

Pv(l) =Py(T) @ Py(T) @ Pr(T) & -

Since I' is compact, consider the normalized Haar measure pr defined on I' [9]
and denote the integral with respect to ur of a continuous function f defined on "

by
/ fdur.
r
Recall that if I is finite, then the normalized Haar integral on I' is
1
fdpr = = > f(7),
ot = %

where |I'| denotes the order of " [9].
The Hilbert series or Poincaré series of the graded algebra Py (I') is a generating

function for the dimension of the vector space of invariants at each degree and is
defined to be -
Or(t) = dim(Py(T))t (3.1)
d=0
There is a famous explicit formula:

Theorem 3.1 (Molien’s Theorem) Let I' be a compact Lie group. Then the
Hilbert series of Py (L) is

1
Pr(t) Z/Fmdur-

Proof. See [17] (or [20]) for the original proof of the finite case, and [18] for the
extension to a compact group. Both proofs make use of the complex representation. B

The Hilbert series of the graded module Py (I') over the ring Py (I') is the gen-
erating function

Ur(t) = 3 dim(PL(T)) 2.
d=0
There is an explicit formula that generalizes the Molien Theorem for the equivari-
ants:

Theorem 3.2 (Equivariant Molien Theorem) Let I be a compact Lie group.
Then the module Py (I') over the ring Py (L") has a Hilbert series given by

Wp(t) = tr(y™")

= [ —————dur.
v det(1 — t7) T

Proof. See [18]. Again the proof involves complexifying the representation. N



Remark 3.3

Theorem 3.2 also holds for the module of I'-equivariant polynomial mappings
f:V — W where the actions of I" on V' and W may be different (non-isomorphic).
In this case the expression is

tr(vw)
Un(t) = _
r(t) r det(1 — tyy) Hrs

where vy and vy represent the matrices v corresponding to the actions of I' on V
and on W respectively. See [21].

Note that for orthogonal group representations tr(y!) = tr(y). Molien’s Theo-
rem has considerable theoretical interest, but is not always a practical way to com-
pute Molien series because of difficulties in evaluating the integral. Two alternatives
to the Molien formula, which can be more suitable for computations, can be found in
Jari¢ and Birman [13]. An example of their application to a crystallographic space
group is given in [14].

4 Hilbert Series and Deficient Subgroups

As before, we consider a compact Lie group I' acting orthogonally on V = RF.
Denote the coordinates for a given basis of V' by z1,...,z. Recall the beginning
of section 3.1, where it is shown that the ‘real’ and ‘complex’ Hilbert series are the
same for I'. That is, the (real) dimension of the space of homogeneous equivariants
P2(T) (for each d) is equal to the (complex) dimension of the space 7330 (T'), where
the action of I' on V¢ is given by the same (real) matrices.

Suppose that ¥ is a subgroup of I" and let W = Fix(X) be the fixed-point space of
Y on V. Recall that Fix(X) is given by the vectors on V' that are fixed by the group
Y. Note that the space W, complexified, is the space Fix(X) in the complexified
space Ve. If f is I'-equivariant, then

f(Fix(X)) C Fix(X).
Denote by f the restriction of f to W:
f=Flw:W oW

Call

Qw={p : pePv()}
and

dv=1{p : pe P}
Since Py (T') is a graded module, we have

Gw=0% o0y ol o
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Consider the generating function for the dimensions of the Q%V:
e —
Us(t) = Y dim(@)
d=0

The question we address at this point is: using the Hilbert series ¥ of the module
73V(F), how can we compute the Hilbert series Uy of QW? If this is possible, then
we can compare the result with the Hilbert series Uy for the H-equivariants on W.
The group ¥ is deficient if and only if Ux(t) # Yg(7).

Remark 4.1

Recall that for any subgroup X of I, if we define
YS={oc€el : c-w=w Ywe W},

then the normalizer Np(X) is the biggest subgroup of I' that leaves W invariant,
and X acts trivially on W. If we let H = Np(X)/X then H acts on .

Lemma 4.2 Let ' be a compact Lie group acting orthogonally on V = RF. Suppose
that X is a subgroup of T' and let W = Fix(X) be the fized-point space of ¥ on V.

Let d be a nonnegative integer, define the map

RGPYT) > Gy
p=

p = P lw

and call K¢ = ker(R"). Then
Q% =r PLT)/KY.
Proof. Note that for p € ﬁ{'ﬁ(F), since p is the restriction of p to W, then p

belongs to Q%,. Thus R* is well defined. Moreover R? is surjective by definition of
Q%,. Since R? is R-linear, the result follows. |

Lemma 4.2 implies that
B =Rekloile..
and . . .
dimg (P} (T)) = dimg (K{) + dimg (Qf)

for each nonnegative integer d. Moreover, if we complexify V' and W and consider
the action of I' on V¢ by the same matrices, we get

dimc(ﬁgc () = dimc(fégc) + dimc(égvc).

Recall that dimg (B¢ (T)) = dimg (PH(T)) and dime(Qé,,) = dimg(Q§,). There-
fore if we define -
V(1) = > dim(KY) ¢
d=0
we obtain:



Lemma 4.3 The Hilbert series Uy, Up and U9 are related by:

Us(t) = Up(t) — UL (2).

5 Reflection Subgroups

In this section we obtain a formula for the series U%, in the case where Y. is a subgroup
of I" generated by a single geometric reflection o.

5.1 Semi-invariance

As before, I' is a compact Lie group, so we may assume without loss of generality
that I acts orthogonally on V = R*. Suppose that there is a decomposition of the
space V as W @ W+, where W has dimension k£ — 1 and there exists o € I" that acts
as the identity on W and as minus the identity on W+; namely o is a reflection.
Orthogonality is defined with respect to a I'-invariant inner product <, >r defined
on V. Throughout, let ¥ be the subgroup of I' generated by o, so W = Fix(X).

Remark 5.1

Note that x € W if and only if Ly (z) = 0 for some linear polynomial func-
tion Ly (z). That is Ly (z) = 0 is an equation defining the hyperplane W. Take
Ly (x) =< ny,x >p with ny any nonnull vector in W+. Observe that W+ is one-
dimensional.

Lemma 5.2 Let f € ”ﬁv(F). Then f vanishes on W if and only if f is of the form
f(@) = Lw(z)g(),
for some polynomial mapping g:V — V.

Proof. This is an immediate consequence of the Remainder Theorem for Multi-
variable Polynomials [15], but it is easy to give a direct proof. Choose a basis for V'
such that z; is the coordinate corresponding to W+, so that Ly (z) = z; is a linear
polynomial that vanishes on W. Write f as (f1,..., fn). Then

fl@)=0forzy =0« fi(z)=---= fu(x) =0 for 1 =0,
thus
fi(x) = z195(2),
for some g; : V — R, and so f(z) = z1(g1 (), -, gu(2)). |



Remarks 5.3

(a) If f is T-equivariant and f(z) = 0 for z € W, it follows that f(vy-z) =
v - f(x) =v-0=0 for all z € W. Therefore, if we define

TW={y-w: weW, yeTl},

then
flw=0<= f|tw=0.
The set I'W is a union of hyperplanes yW'.

(b) The linear function Ly, in Lemma 5.2 is unique up to a nonzero real constant
multiple.

Recall Remark 4.1 and let N = Np(X) (the normalizer of ¥ in I'). Suppose
now that N is of finite index in I'. Let {73 = 1, 72, ..., 7s} be a set of coset
representatives for IV, where s is the index of N, so that

LC=yNUpNU- - UyN.

Choose ny, # 0 in W+. We have:

Corollary 5.4 (a) If N is of finite index in T', then a polynomial mapping f €
Py (T') vanishes on W if and only if there exists a polynomial mapping g :' V — V
such that

where
Ly(z) =<wi-ng,x>p, i=1,...,s.

(b) If N is of infinite index in T, then the map” is injective.

Proof. (a) Note that L, (z) =< ny,z >r and so L, (z) = 0 if and only if
x € W. Since f vanishes on W, it follows that L., (z) divides each component f;(x)
of f(z) (Lemma 5.2). Moreover,

Lw(% : 95) =<7 Ny, T >r=<ny,r >r=0

for v € W and i = 2,...,n. That is, each L, (z) divides f; since it represents a
linear polynomial that vanishes on v, /W = {y;-w : w € W} (recall Remark 5.3).
Note that W N ~v;W = {0} for ¢ # j.

It follows easily that the polynomials L., (z) are coprime in the ring of k-variable
polynomials. Since this is a unique factorization domain [15], it follows that we can
choose g = (g1, ..., ¢gn) With g; : V' — Rsuch that f(z) = L., ()L, () - - - L, (z) g(z).

(b) The same argument applies for an unbounded set of coset representatives
{7, .-+, Vs}, s = oo. Therefore f =0. |

10



Remark 5.5
When the index of N is finite, define
A(z) = Ly, (2) Ly, (2) - - - Ly, (7) (5.2)
as in Corollary 5.4. Then
A(Y ) = Lyt (2) Lytny (x) « - - Loyt ().
Note that for each 7 = 1,...,n, we have
Vg = 70" - ny

for some p and some o* € N. Moreover o* -ny, belongs to W+ since < o*-ny, w >p=
< ny, o w >p=0 for all w € W. As W+ is an one-dimensional real vector space
and o* - ny belongs to W+, it follows that o* - ny = c;(y)ns for ¢i(y) = 1 or
¢i(y) = —1, and so
Ly (@) = ei(7) Lo, ().
Moreover, for a fixed v € T', if ¢ # j, then v'y;ny, # Fv'y;ny. Thus
Aly-z) =c(y)ea(y) - es(V)A(z), (5.3)

where each constant ¢;(7y) is 1 or -1.

In the next proposition we use the notion of semi-invariant.
Definition 5.6

Following [19], we say that a polynomial function f : V' — R is a semi-invariant for
[ if there exists a homomorphism C' : T' — {+1, —1} such that

fly-z)=CH)f(z)
for all vy € T

Proposition 5.7 With the conditions of Corollary 5.4 the polynomial function A(z)
(as defined in (5.2)) is a semi-invariant of T'.

Proof. From Remark 5.5, A(y-z) = C(v)A(x) where C(7y) = ¢1(7)ca(7y) - - - es(7)-
We prove now that C : ' — {1, —1} is a group homomorphism. Since

A((mre) - z) = C(nr)A)
and
A((mye) - 7) =AM - (12-7)) = C(m)A(y2 - 7) = C(11)C(7)A(x)
for all x € V, then

C(nre) = C(1)C (1)
for all vq, 2 €T. |
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Definition 5.8

Let I" be a compact Lie group with an action defined on V, and let C' : ' — {1, -1}
be a homomorphism. A polynomial mapping g : V — V is (I, C)-equivariant if

g(v-z) =C(v)7-9(z)

forallz € V and v €T

Theorem 5.9 A polynomial mapping f € 73V(F) vanishes on W if and only if there
exists a (', C)-equivariant g : V — V such that

where A 1V — R is a semi-invariant for T' as obtained in (5.2) and C : T —
{1, -1} is the corresponding homomorphism determined by A(zx).

Proof. Since C(y) = F1, then C(y)~! = C(y). The result follows from Corol-
lary 5.4, Remark 5.5, and Proposition 5.7. |

5.2 Hilbert Series

Recall Section 4 where we use the notation f € Ky for those f € Py /(') that vanish
on W. We can now combine Lemma 4.3 and Theorem 5.9, and obtain a formula for
Uy, for the cases where ¥ is a subgroup of I" generated by a geometric reflection (as
defined at beginning of Section 5.1).

Theorem 5.10 Let I' be a compact Lie group acting orthogonally on V = RF, and
let ¥ be a subgroup of I' generated by a reflection o that fires W (a k—1 dimensional

subspace of V). With the conditions of Theorem 5.9, if N = Np(X) and the index s
of N in T is finite, then

Us(t) = Up(t) — t°¥ (),
where
Uir,o)(t) = Aer %dur
Proof. From Theorem 5.9, ¥% in Lemma 4.3 becomes

y(t) =t r,0)(1).

The conclusion of the theorem follows from a direct application of Remark 3.3. Note
that tr((C(y)y)™") = C(y)tr(y) since C(y) = +1 and T acts orthogonally. |
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Remark 5.11

Applying Lemma 4.3 and the ideas involved in the proof of Theorem 5.9, it follows
that for the cases where the index of NV in I' is infinite, and again X is a subgroup
of I" generated by a reflection,

So " is injective.

Theorem 5.12 With the conditions of Theorem 5.10,
\Ifz(t) = (1 + ts)qu(t) - ts\I’FO (t)
where T'y = ker(C).

Proof. Let

A(t) = Yro)(t) = /yEF %

If Fl =T \ F(), then
[ fdue = [ fdpe+ [ fdur
T To I'y

for any continuous function f on I'. Thus
A(t) = Bo(t) — Bi(t), (5.4)

where ()
r\y
Bw=[ O
(t) ver; det(1 — 1) Hr

for i =0,1. Also

Ur(t) = By(t) + Bi(t). (5.5)
Moreover, since |I'/T| = 2
Bo(t) = %\pro (®). (5.6)
From (5.5) and (5.6),
Ba(t) = Wr(t) — 5, ). (5.7
From (5.4), (5.6) and (5.7),
A(t) = Ury(t) — Ur(?). (5.8)
Therefore
Us(t) = Ur(t) — t°(Vr,(t) — Ur(t)) = (1 4+ t°)Ur(t) — 7, (8). |
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6 Examples

We illustrate our methods by applying them to the dihedral groups D,, and sym-
metric groups S,.

Example 1. D,

Let I' = D, in its standard action on V = R? = C, generated by

and

The invariants are generated by 2z and Re(2"), which are algebraically indepen-
dent [9]. The equivariants are generated by z and z"~', and form a free module. It
follows that

1
(1 =) —1tm)

®p,(t) =
and
Up, (t) = ({t+t"1)Pp, (1)

t(1+" )
(1—-2)(1—tr)

(For small n these formulas are easy consequence of Molien’s theorem, but for gen-
eral n the combinatorics becomes less tractable.)

Case (a) n odd.

When n is odd, every reflection in D, is conjugate to k. We therefore let
Y. =< k>. Since N(X) =X, so H = 1, it follows that

The polynomial A has degree n, and determines a homomorphism C with kernel
[y = Z,,. Therefore ¥r,(t) = 2¥p, (t). Theorem 5.12 implies that

14



Us(t) =(1-1")¥p,(?)

t
:1—_t_(t2+t4+"'+tn_3)-

Thus ¥ is deficient in D,, for all odd n > 5. In particular we recover the results of
the example in Section 2.

Case (b) n even.

When n is even, every reflection in D, is conjugate either to x or to k&, so we
define

El =< K >
Yo =< KE >
Since n is even, D,, contains £"/? = —id, which commutes with every element of

D,, and hence normalizes both >; and 5. Therefore

t

Vult) =15

in both cases; that is, the H-equivariants are the odd functions. Since (2Z)™z
restricts to W to give 2™ we deduce immediately that neither ¥; nor X, is
deficient. We now check that this result is compatible with our method.

Let ¥; =< k >. Then H=Z, and

as expected. The polynomial A; has degree n/2, and determines a homomorphism
Cy with kernel 'y =< &2, k€ >. Therefore ¥r1(t) = ¥p, , (). Theorem 5.12 implies
that

t
11—

Us(t) = (L+ ") Up, (t) — t"*Tp, , () =

Thus ¥, is not deficient, as claimed.
Now let X9 =< k€ >. Again H=Z, and

t

The polynomial A, has degree n/2 and determines a homomorphism Cs with kernel

15



I =< &, k>. Therefore ¥12(t) = ¥p, ,(¢). From Theorem 5.12
Uy, (t) = ¥y, (1)
and Y, is not deficient.
Example 2. S,

Consider I' = S; acting on R* by permutation of a basis, and let ¥ =< o >
where o is a 2-cycle. Say o = (12). Thus

W =Fix(2) = {(z,z,z,w) : z, z, we R}.

Note that i = Y and Np(i) = SQ X SQ, and so H = Nr(i)/i = SQ.
By Molien’s formula, the Hilbert series for equivariants of S, is given by

w @)__1 8 N 6 X 2 N 4
SV T =)@ =) T -2 —2) " (1—1¢)
B 1
S (I-0f 1+ +t+12)
=142t +42 + 73 + 11t* + 16t + 235 + 31¢7 + - - ..
We have

Alz,y,z,w) = (y —2)(z — o) (w = 2)(z = y)(w — y)(w — 2).

This determines a homomorphism C' with kernel the alternating group A4, that is

To = {1, (123), (132), (124), (142), (134), (143), (234), (243),
(12)(34), (13)(24), (14)(23)}.

Now
1 4 8
) = laom T asga-s
P p—

(1- 21— 2)

1—t+¢?
(1 =841+t +12)

=1+ 2t + 412 + 83 + 13t* + 20t5 + 30t® + 42t" + - - -,
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and Theorem 5.12 yields
Us(t) = (1+1°)s,(t) — "Wy (1)

t6
(1 -1 -7

= (1 - ZL’G)\IJS4(1L’) +

143416
(1 —1)3(1 +1)

=1+ 2¢+4¢2 + 763 + 11¢* + 16t° + 23¢5 + 31" + - - -
Comparing this series with

1 3 1
Vil =5 | T aopa—o)

2+1
(1—1)°(1 +1)

= 2+ 5t + 10t% + 16t3 + 24t* + 33t + 44t° + 567 + - - -
we conclude that ¥ is deficient.
Example 3. S, for n > 4.

More generally, consider I' = S,, acting on R™ by permutation of a basis, and as
before let ¥ =< (12) > and

W =Fix(2) ={(z,z,23,..., %) : x, T3, -..,Tn € R}.

Since Nr(X) = Sy x S, it follows that H = S,,_,. Moreover,

2—t—t"?
(1 _ If)?’(l _ t2) .. (1 — tn—2)'

The Hilbert series for equivariants of S,, is

1
1=t =) (1—tt)

Vg, (t) =

This formula is obtained from the formula for &g . As it is well known the ring
Py (T) is generated by n algebraically independent homogeneous polynomials of
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degrees 1, ..., n: for example the symmetric functions. Again, these degrees de-
termine ®g, . That is,

1
(1=t (1t

®s,(t) =

(see [12] for details). Since Py (T) is a free module over the ring Py (T) and f =
(f1,---, fn) is Sp-equivariant if and only if the first component f; is S, j-invariant
in the last n — 1 variables, it follows straightforwardly that

1

Us,(t) = 75 ®s.-a (1),

and we get the above formula for ¥g,_ .

We can choose
A(xla s 7-7/'71) = H(.TZ - .Z'])
i<j

This determines a homomorphism C with kernel the alternating group A,,, see [15].
The degree of A is n(n — 1)/2. From Theorem 5.12 we get

n(n—1) n(n—1)

Uy, (1) =(1+t ; )‘Ifsn(t)—tT\IfAn(t).

Since A is invariant under A, but changes sign under even permutations, every
A ,-invariant has a unique expression of the form p(x)+ ¢(z)A(z) where p and g are
S,-invariant. Therefore

n(n—1)

Since A,, acts transitively on {1,...,n}, every A,-equivariant f : R" — R" is
uniquely determined by its first component f;. It is straightforward to show that f;
has the unique expression

fl(x) = Z .T;pr(.fg, .- 7~Tn)
r>0

where the p, are A, _i-invariant, and there are no further restrictions on f;. There-
fore

Up, () = 1—_t(I)An_1 ()

(n—1)(n—2)
2

14+t
(1_t)2(1_t2)"'(1—t"—1)’
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and it follows that

1 — =1y

V0 =g pa—ey a—e)

B R AR o
(1=t (1 =t

Thus X is deficient.

The natural common generalization for all of the above examples is when I is a
finite Coxeter group — a group generated by reflections, see [12]. However, we shall
not investigate this generalization here.
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