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Abstract. Invariant theory is an important issue in equivariant bifurcation
theory. Dynamical systems with wreath product symmetry arise in many areas
of applied science. In this paper we develop the invariant theory of wreath
product £1G where L is a compact Lie group (in some cases, a finite group) and
G is a finite permutation group. For compact £ we find the quadratic and cubic
equivariants of £1G in terms of those of £ and G. These results are sufficient
for the classification of generic steady-state branches, whenever the appropriate
representation of £1 G is 3-determined. When £ is compact we also prove that
the Molien series of £ and G determine the Molien series of £ G. Finally we
obtain ‘homogeneous systems of parameters’ for rings of invariants and modules
of equivariants of wreath products when £ is finite.

1 Introduction

Equivariant bifurcation theory studies the existence and stability of bifurcating
branches of steady or periodic solutions of nonlinear dynamical systems with
symmetry group I'. Usually T" is a compact Lie group, acting linearly on a real
vector space V, and the emphasis is on the symmetry group of each bifurcating
branch, which typically forms a proper subgroup of I'. Existing methods rely
heavily on being able to determine the equivariant polynomial mappings and
invariant polynomial functions for the action of I" on V', at least up to some suit-
able degree — cubic order being especially common. The methods used to do
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this have mostly been ‘bare hands’ calculations for particular groups and repre-
sentations. Computations can be cumbersome — especially for representations
of high dimension. In practice, the results are often limited to equivariants of
low degree.

Fortunately, low degree equivariants are sometimes sufficient for the bifurca-
tion analysis. Field et al. [7, 8, 9, 10] have developed a theory of ‘determinacy’
of group representations which guarantees, in some cases, that the picture ob-
tained by truncating the Taylor series to low degree remains accurate if higher
degree terms are included — at least for generic branches. However, there are
many instances where determinacy either fails, or seems difficult to prove.

Some general algorithms, suitable for implementation within computer al-
gebra packages, have recently been developed [21, 22] for calculating invariants
and equivariants, mainly for finite matrix groups. Important ingredients in such
algorithms are the use of Grébner bases, the Cohen-Macaulay property, and the
Molien series of the ring of invariants and the module of equivariants. The
groups involved are generally assumed to be finite because of the difficulty of
representing an infinite group as an exact data structure in a computer.

In this paper we investigate the invariant theory of a class of group repre-
sentations that arises naturally in the dynamics of systems of coupled nonlinear
oscillators (throughout, ‘invariant theory’ includes both invariant functions and
equivariant mappings). These wreath product representations were introduced
by Golubitsky, Stewart and Dionne [11] and Dionne, Golubitsky and Stewart
[5, 6]. The wreath product £1G is the semidirect product of a number of copies
of a ‘local’ group £, which is a compact Lie group, and a finite ‘global’ group
G which acts by permuting the copies of £. Applications of wreath product
symmetry to dynamical systems include Josephson junction arrays, gauge the-
ory, molecular dynamics, and crystallography: a more extensive list is given in
[11]. Other recent papers on bifurcations for wreath product systems include
Golubitsky et. al [11], Dionne et. al [5], and Dias et. al [2, 3, 4].

In essence, we shall prove that useful information about the invariants and
equivariants of £1 G can be read off in a simple manner from similar infor-
mation about £ and G. In particular this is the case for quadratic and cubic
equivariants, see propositions 3.5 and 3.7. It does not seem possible to describe
higher degree invariants and equivariants in such an explicit manner: we de-
scribe the complexity involved in such calculations in corollaries 7.11 and 7.12.
Although our results do not give a complete description of the invariants and
equivariants, they are sufficient for one important case: bifurcation problems
with wreath product symmetry that are determined by the third order Taylor
expansion of equivariant vector fields — ‘3-determined’ representations in the
sense of Field et al. [7, 8, 9, 10].

The aforementioned algorithms of Sturmfels [21] and Worfolk [22] make use
of the Molien series and of the Cohen-Macaulay property of the corresponding
graded ring or module. Their results are developed mainly for finite groups.
In theorems 6.4 and 6.7 we obtain formulas for the Molien series of £ G in



terms of Molien series for £ and G. Molien series are generating functions for
the dimensions of the spaces of invariants or equivariants of a given degree.
In other words, the dimensions of the spaces of invariants or equivariants of
degree d can be computed explicitly in terms of the dimensions of the spaces of
invariants or equivariants of degree < d for £ and for G. We make use of the well
known formula for the Molien series as an integral over the group. The invariant
case of this formula was originally proved by Molien [16], and the equivariant
case by Sattinger [17]. These results give explicit expressions for the relevant
Hilbert series in terms of the matrices by which the symmetry group I' acts. For
example Molien’s theorem states that the Hilbert series of the ring of invariants
is the average (with respect to Haar measure) of the reciprocals of characteristic
polynomials of all group elements. At root the results for wreath products are
possible because the invariant theory of £1G is that of £ ‘averaged’ over G, and
this paper constitutes a precise formalisation of this simple remark.

The equivariant mappings for a group action form a module over the ring
of invariant functions. When £ is finite, we develop a detailed theory along
the lines of Worfolk [22], using the Cohen-Macaulay property of graded rings
and modules to organise the structure of the invariants and equivariants, see
section 7. In particular we obtain information about ‘homogeneous systems of
parameters’ (h.s.0.p.), which are fundamental to the classification of invariants
and equivariants. Specifically, we relate h.s.0.p’s of £1G to h.s.0.p’s of £ and G.
Such information is useful for the algorithmic approach to computing invariants
and equivariants.

The organisation of the paper is as follows. In section 2 we review a few
concepts and results concerning linear actions of compact Lie groups on finite-
dimensional vector spaces, rings of invariants, and modules of equivariants for
those actions. In section 3 we present two of our main results. We introduce a
particular class of representations of wreath products, to which our results will
apply. We also present a result of Field [7] for wreath products £1G, where the
representation of the group of the internal symmetries £ is ‘radial’. In this case
the ring of invariants and the module of equivariants for £1G can be completely
described from the corresponding information for £ and G.

Next we consider more complicated cases, in which the representation of
L is not radial. The main results of this section are propositions 3.5 and 3.7,
which describe the third order terms of general £1G-equivariant vector fields. In
section 4 we illustrate these results for a few examples. Section 5 contains the
proofs of propositions 3.5 and 3.7. The main results of section 6 are theorems
6.4 and 6.7, which describe the Molien series and equivariant Molien series for
wreath products £1G in terms of the Molien series and equivariant Molien series
for £ and G.

Finally, section 7 concerns only finite wreath products, that is, the case when
L is a finite group. In section 7.1 we review some elementary results concerning
commutative algebra and combinatorial theory. In section 7.2 we obtain in
theorem 7.10, a set of primary invariants for £1G in terms of primary invariants



for £ and for G. By primary invariants we mean a set S of polynomial invariants
such that the ring (module) of invariants (equivariants) under the group in
question is generated freely over the subring generated by S. Corollaries 7.11
and 7.12 estimate the number of invariants and equivariants we need further to
generate the all ring (module).
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2 Preliminaries

Throughout sections 2, 3, 4 and 5 we consider real vector spaces. Let V be a
finite-dimensional real vector space and I' a compact Lie group acting linearly
and (without loss of generality) orthogonally on V. Recall that a polynomial
function p : V. — R is invariant under T if p(vy - v) = p(v) for all ¥ € T, and a
polynomial mapping g : V — V is equivariant under T if g(vy - v) = 7.g(v) for
all v € T'. In applications to bifurcation theory, g is a truncation of the Taylor
series of a smooth equivariant vector field, but in this paper we focus only on
polynomial functions and mappings in the abstract.

Denote by Py (T) the ring of I-invariant polynomials. When T is compact
the Hilbert-Weyl theorem (theorem [12] XII 4.2) states that there exists a finite
set of invariant polynomials u1, ..., us such that every invariant polynomial may
be written as a polynomial function of uy,...,us. Any such set is a Hilbert basis
for Py (T"), and it is minimal if no proper subset is a Hilbert basis. Denote by
PEL(T) the vector space of homogeneous I-invariant polynomials of degree d.

Let 73V(F) be the space of I'-equivariant polynomial mappings from V to V,
which is a module over Py (T'). We say that g1,...,g, € Py (T) generate Py (T)
over Py (T) if every I'-equivariant g may be written as

g=f191+"'+frgr (1)

for I-invariant polynomials fi,..., fr. For I' compact there exists a finite set
of generators for Py (T') (theorem [12] XII 5.2). If fig; + -- - + frg, = 0 implies
that f; = --- = f, = 0, then we say that g;,..., g, freely generate ’ﬁV(I‘) and
Py (T) is a free module over Py(T). In this case, the expression (1) is unique.
Denote by 73{‘5 (T) the vector space of homogeneous I'-equivariant polynomials
maps of degree d.

Since the homogeneous parts of an invariant polynomial are themselves in-
variant, we can always choose a homogeneous Hilbert basis — one that consists



of homogeneous polynomials. Similarly, the g; for i = 1,...,p can be chosen to
have homogeneous components of the same degree. This fact is important for
this paper.

In general, for a given group T, it may not be easy to find explicit generators
Ui,...,us and gi,...,gp,. However, it is sometimes sufficient to know the form
of a T-equivariant mapping up to some degree. The validity of such a trun-
cation relies on the concept of determinacy. The idea of determinacy is that
if the Taylor expansion of a bifurcation problem is known to degree d, and if
certain nondegeneracy conditions are satisfied, then the terms of degree greater
than d do not affect the branching pattern. See Field [7, 8] and Field and
Richardson [9, 10]. Indeed, several examples of wreath product representations
are 3-determined, so degree three truncation gives a complete picture of generic
steady-state bifurcations. For example Field [7] shows that this is the case for
the group Z» 1Sy acting on RY, where Z, acts on V = R by multiplication by
+1. This is the Weyl group of type B, denoted by W(Bx), and it is a reflec-
tion group. More generally, Field [7] proves that if V is a radial representation
for £ (see below for the definition) and G is a transitive group of Sy, then V'V
is 3-determined for £1G.

2.1 Group Action for Wreath Products

Finally we give a precise definition of wreath product, and the class of represen-
tations that we study. Suppose that £ C O(k), so that there is an action of £
on V = R¥. Assume that G is a subgroup of Sy. Then we can define I' = £1G
on W = V¥ in terms of the actions

(l,o‘).('l)l,.. .,’UN) = (l1 -1)0—1(1),.. .,lN -UJ—l(N))

for I = (Iy,...,In) € LN, 0 € G and (vy,...,vy) € VIV. Here the permutations
act on [ € LV by

U(l) = (la_l(l)a ) lo_l(N))‘
It follows that the group multiplication in £1§G is given by

(h,7)(U,0) = (h7(l), T0).

Thus, the homomorphism that sends the permutation group G into the au-
tomorphism group A(LY) takes a permutation o € G into an automorphism
Qg . LN = LN defined by aa(ll, .. .,lN) = (la-—l(l), .. .,l0—1(N)).

3 Invariant Theory for Wreath Products

We now begin to address the relationship between Py~ (L£1G), 73VN (£1G) and
Py (L), Prv(G), Pv(L), Prw(G). First, we review some results of Field [7]



about invariant theory for £1G when the representation for £ is ‘radial’. In this
case, the theory for £1G can be completely described in terms of those for £
and G.

3.1 Radial Representations

First we recall the definition of radial representations:

Definition 3.1

Let £ be a compact subgroup of O(V'). The representation (V, £) is radial
if the module Py (L) over the ring Py (L) is free with basis the identity map of
V.

Remark 3.2

If (V, £) is radial, then Py (L) is generated by ||z||*> and (V, £) is absolutely
irreducible. The representation (V, L) is absolutely irreducible because the £-
equivariants are generated over Py (L) by the identity map Idy on V. Thus
the only matrices that are equivariant under £ are the scalar multiples of Idy .
Since £ C O(V), the norm ||z||? is always an L-invariant. If there was another
non-constant L-invariant, algebraically independent from the norm, then the
basis for Py (£) would not contain only the identity map of V', because the
gradient of an L-invariant polynomial gives an L-equivariant mapping.

Examples of radial representations include O(p) (for p > 1) and SO(p) (for
p > 3) in their standard actions on R?.

The next result is from Field [7]. The notation A ~ B denotes that A and
B are isomorphic.

Proposition 3.3 Suppose that G is a transitive subgroup of Sy, with N > 1,
and (V, L) is radial. SetT' = L1G and A = Z21G. Denote by Gy the subgroup
of G containing the permutations fizing index 1. Then

(a) Py (D) ~ Prs (A) ~ Pres ().

(b)Py~ (L) = Pra (A) = Pru (G1).

Proof. See [7] pp 22. For example, for the rings of invariants, if we denote
coordinates on R™ by (z1,...,2x) and on VN by (X;,...,Xx), then each
element of Pr~ (A) may be written as a polynomial p(z?,...,z%), where p is G-
invariant. Each p determines the [-invariant polynomial p(|| X1|?, ..., || X~|?)
and every I'-invariant polynomial can be written uniquely in this form. O



3.2 Simplifying Assumptions

In order to simplify the presentation of our results, we shall impose two restric-
tions on the wreath product. We assume

o The action of G is transitive.
e The representation of £ on V is absolutely irreducible (and nontrivial).

Recall that a group G of permutations of {1,..., N} is transitive if given
any i, j € {1,..., N}, there exists 0 € G such that (i) = j. (It is sufficient to
establish this property when 7 = 1.) A real representation V' of £ is absolutely
irreducible if the only linear equivariants are scalar multiples of the identity. Ab-
solute irreducibility implies irreducibility, but not conversely — see Golubitsky
et al. [12] chapter XII section 3.

Results similar to those presented here can be obtained without these as-
sumptions, by applying the same methods, but they are cumbersome to state
and the extra complexities obscure the ideas. Moreover, in applications to
equivariant bifurcation theory, both of the above assumptions usually hold. In
particular, generic steady-state bifurcations can be Liapunov-Schmidt reduced
on to an absolutely irreducible representations. See Golubitsky et al. [12] chap-
ter XIII section 3 proposition 3.2.

When G is intransitive, its action on {1,...,N} can be decomposed into
disjoint orbits. The theory developed here can then be applied to each orbit
separately, and the results can be reassembled to complete the analysis. When
V is not absolutely irreducible, the list of linear equivariants is more extensive,
but it can be determined from the isotypic decomposition of V', Golubitsky et
al. [12] chapter XII section 3.

Remarks 3.4

If G is a transitive subgroup of Sy, then the space of linear invariants is
spanned by z1 + --- + znN.

The assumption that V is absolutely irreducible has the following conse-
quences:

(a) Since Fixy (L) is a L-invariant space, then it follows that

Fixy (£) = {0} (2)
and so

Fixy~(£1G) = {0}. (3)
By proposition [12] XIII 2.2, the only linear £ G-invariant function is the zero
function. Recall that, if ¥ is a subgroup of £, then Fixy(X), the fized-point
subspace of ¥, is formed by the elements of V' that are fixed by £. The spaces
Fixy (¥) are always L-invariant.

(b) Dionne et al. [5] prove that I' = £1G acts absolutely irreducible on V¥
if and only if £ acts absolutely irreducibly on V.



3.3 Hilbert Bases and Generators

We now state the main results of this section. Proofs will be given in section 5.
In section 4 we present some examples illustrating the results. Throughout we
assume nontrivial £-representations.

Proposition 3.5 Let (V, L) be absolutely irreducible. Let G be a transitive sub-
group of Sy. Consider (VN ,T) where T = £L1G and the action of T on VY is
defined in section 2.1.

Consider a minimal homogeneous Hilbert basis for Py (L). Denote by uq,. .., us
the degree two elements of this basis and by ws,...,w, those of degree three.

Consider a minimal homogeneous Hilbert basis for Pr~v(G) and denote by
f1 the element of this basis of degree one.

Then

{filuj(vr), .. suj(on)); 3=1,...8}

generates Py (T), and
{fi(wj(ve), ..., wi(wn)); 5 =1,...p}

generates P (T).

For the proof see section 5.

Corollary 3.6 With the conditions of proposition 3.5, if G = Sy, then
{uj(v) +---+ujlon); j=1,...,s}

generates Pyn (LU1Sy) and
{wj(wi) +---+w;on); j=1,...,p}

generates P (LUSN).

Proof. Since Pgy (Sn) is generated for example by 1 + ...+ z, the result
follows from proposition 3.5. O

In the statement of the next proposition we use the notation = e y with
z € RN and y € V¥, for the vector in V¥ with components z;y;. Recall that
G1 denotes the subgroup of G containing the permutations fixing the index 1.

Proposition 3.7 Let (V, L) be absolutely irreducible. Let G be a transitive sub-
group of Sn. (a) Suppose that fi,..., f, generate 73‘2,([,) Then

{(fi(/Ul); . 'afi(UN)); 1= ]-7 cee ap}

generates 73‘2,1\, (£L1G).



(b) Let uy,...,us generate Py (L) and py,...,p, generate Prx(G1). Sup-
pose also that hy, ..., hy generate ’ﬁ%(ﬁ) Fori=1,...,s, denote by U;(v) =
(ui(v1), ..., ui(vy)) where v = (v1,...,vn). Then ﬁ?,N (L£L1G) is generated by:

{(hi(v1), ..., hi(vn)); G =1,...,q}

and
{(pj(Ui(v)),pj(02Ui(v)), . .. ,pj(onUi(v))) ®v; j=1,...,r, i=1,...,s},
for some permutations o; € G with i =2,..., N such that o; (1) = i.
Since z; is Gy-invariant, the previous proposition yields the £1G-equivariants
{(ui(v1)v1, .- ui(on)on); i =1,...,8}.
For the proof see section 5.

Corollary 3.8 Under the conditions of proposition 3.7, if G = Sy, then
{(fi(v1),..., filvn)); i=1,...,p}

generates ﬁ%,N (L1SN).

4 Examples

Before proving the results stated in section 3 we give some examples. We con-
centrate on representations (V' ,T') to which the theory of Field [7, 8] and Field
and Richardson [9, 10] can be applied.

1. T =7Z51SnN

Consider (R", Z51Sy) where Z, acts on R by multiplication by F1. Then
(R, Z) is radial, so we can use proposition 3.3. A basis for Pr(Z) is {z2}.
Then PZ~(Z21Sy) is generated by {z} + - -- + 2%} and there are no Zy ! Sy-
invariants of degree three. Similarly, using the same proposition, there are no
Z.21S y-equivariants of degree two and ﬁ%N (Z21Sn) is generated by (23, ..., 2%).

The group Z»1Sy is the Weyl group W(By). In [7] it is proved that W (Bn)
is 3-determined. Indeed, define Sy to be the set of subgroups I' of Z2 1S such
that (RN,T) is absolutely irreducible and 7312{1\, (T) = {0}. Field [7] proves
that the bifurcation problems defined on representations in the class Sy are
3-determined.

2. T =7y 173

Consider (R?, Zs 1 Z3) where Z, acts on R as above. A basis for Pr(Z2)
is given by {z?}. Note that if G = Z3, then G; is the group formed by the



identity on R3. Therefore ’Pﬁa (G1) is generated by {x1, z2, z3}. As ’ISR(ZQ)
is generated by the identity on R, by proposition 3.7 the space Pl?;{3 (Z21Z3) is
generated by (z3z1, 2322, ¥323), (2321,7522,2223), (2321, 2322, T5T3).

3. T'=D31Sn

Consider (CV, D31Sy) with the standard action of D3 on C. Now (C, D3)
is not radial, but we can use corollary 3.6. A basis for Pc(D3) is given by
{|2?, 22 +2®}. Thus Py (D31Sn) is generated by {| 21 |* +---+ | 2n |*} and
Pi~ (D31Sy) is generated by {25 + 75 +-- -+ 23 +Zx }. In [7] it is proved that
(CVN, D31Sy) is 2-determined.

4. I'=T= Cp,N(SN) = (ZzZS,,)lSN

We consider here (R?,Z218S,) as in the first example. This representation
is absolutely irreducible but not radial. The ring Pre(Z2 1 S,) is generated
by {z3 + -+ 22,...,2;" + --- + 2P}, By corollary 3.6 the space Pg,n (T) is
generated by {«7 , +---+2) , +---+a7 y+-- -+, y}. There are no nontrivial
I-invariants of degree three.

By [7] bifurcation problems for (RPN, C, n(Sx)) are 3-determined.

5 Proof of Propositions 3.5 and 3.7

Throughout this section, we consider minimal homogeneous Hilbert bases for
the rings Py (I).

Proof of proposition 3.5.

Let T' = £1G and p € P25 (L£1G). Then pis LN -invariant, so it is L-invariant
inv; fori =1,...,N. Since there are no L-invariants of degree one (see remark
3.4), p is a linear combination of degree two L-invariants. Therefore

p(vi,...,on) =p1(v1) + -+ pn(vN)

where p;(v;) = ajur(v;) + - - - + azsus(v;)-

Also p is G-invariant, so p(ov) = p(v) for all o € G. Therefore p;(vy-1(;)) =
Po—1(3)(Vg-1(3)) for i = 1,...,N (and v; € V). That is, p;(v) = py-1(3;(v)
for all v € V and o € G. Therefore, a;; = a,-1(;; for i« = 1,...,N and
j = 1,...,s and for all c € G. That is, if we define f; : R¥Y — R as
filz1,...,zN) = ar;z1+...+an;zn for i = 1,. .., s, then each f; is G-invariant
(of degree one). The same method applies to the T-invariants of degree three.
O

10



Proof of proposition 3.7

Let g € Pyn (L), so that g : VN — V¥ is £N-equivariant and G-equivariant.
Write g as (g1,...,9~)- Since G is transitive there are permutations o; € G
(j =2,...,N) such that

o7 (1) = j. (4)

Since g commutes with G, the identity

g(oj(v1,...,vn)) = gjg(v1,...,vN)
implies that

gj(vla' "7UN) = gl(vj7va—j_1(2)7" '7U¢7]__1(N))

for j =2,...,N. Thus

9= (91(v),91(02(v)), -, g1(on(v))) ()
where v = (v1,...,vyn). So g is T-equivariant if and only if g, : VN — V
is equivariant under £ in vy, invariant under £ in ws,...,vN, and g is G-
equivariant. Thus g; is a sum of terms pg fr(v1) where each py, is a L-invariant
polynomial function (of vy,...,vyN) and f; is L-equivariant (in vy).

Case (a)

Let g € 73‘2,1\, (T"). Since any polynomial in the L-invariants has degree > 2
(remark 3.4 (a)) and g has degree two components, then the p;, must be constant,
so the fi must be L-equivariants with components of degree two. From (5), g
is a sum of functions of the type

(fi(v1), fi(v2),- .-, fi(vw)),

(which are G-equivariants), so we need consider only the generators f; of 73‘2, (L).
Case (b)
Let g € 733,,\, (T'). There are two subcases: p constant or not. If py is
constant then we get I'-equivariants

(hi(v1), hi(va), - - -, hi(vw))

with h; € 73‘3,(5) If p; is not constant then as g has components of degree
three, the polynomial pr must be a linear combination of L-invariants of degree
two. Then f}, is an L-equivariant function of v; with components of degree one,
hence a scalar multiple of the identity on V. In this case py f is I'-equivariant
if and only if

r(v) = (pr(010), P (020), - .., Pr(oNV))

is G-equivariant. Here oy is the identity of G and o9,...,0n are as in (4) . We
refer to r as a function of v = (v1,v,...,vN) to make the notation easier, but
in fact the py and r depend on w;(v;) fori =1,...,s and j =1,..., N. Recall
that u1, ..., us generate Pz (L).

11



Let 7 € G and denote 771 (j) =i, for j =1,...,N. From r(7v) = 77(v) we
obtain

(pk (UITU)ka (027_1))7 - Pe (UNTU)) = (pk (U'h v)apk (Uiz U)) - Dk (UiN 1})),
SO

pr(v) = pr(0i, 7 o7 0) = pr(0i, 7 0y M) = - = prloiy T oy )

for all 7 € G. Moreover,

(i, 7o) TN (1) = gj70; (1) = 047(i5) = 05(j) = 1.

If we define the subgroup G; = {r € G : 7(1) = 1} then

{aiJ.T*loj_l; j=1,...,N}CG.
In particular if 7 € G then iy = 7(1) = 1, so p is invariant under 7. Thus pg
is Gi-invariant. And if py is Gy-invariant then r is G-equivariant.
We describe now the G;-invariant polynomials pr. Recall that py is a linear
combination of invariants u;(v;). If we write p; as

qi(ur(v1), - ur(on)) + -+ gs(us(v1), - - -, us(vn)),

then py is Gi-invariant if and only if the ¢;(x1,...,2N) are G;-invariants of de-
gree one, fori =1,...,s. O

6 Molien Series

The aim of this section is to construct the Molien series for the ring P(L£1G)
and module 73(5 1 G) from the corresponding series for £ and G.

6.1 Review of Molien Series

We review Molien series for the rings of invariants and modules of equivariants
for general compact Lie groups.

It will be convenient to change from a real representation to a complex
representation, and we briefly explain why this useful step produces no extra
complications. Let I be a compact Lie group acting on V = RF, so that v € T
acts as a matrix M,. The matrix M, has real entries, and we can view it as
a matrix acting on Ck. If (z1,...,z;) denote real coordinates on R¥, z; € R,
then we obtain complex coordinates on C¥ by permitting the z; to be complex.
Moreover, there is a natural inclusion Rz, ..., 2] C C[zy,..., 2] where these
are the rings of polynomials in the z; with coefficients in R, C respectively.

12



Every real-valued I-invariant in R[zy,..., 2] is also a complex-valued T-
invariant in C[zy, ..., zx]. Conversely the real and imaginary parts of a complex-
valued invariant are real invariants (because the matrices M., have real entries).
Therefore a basis over R for the real vector space of degree d real-valued invari-
ants is also a basis over C for the complex vector space of degree d C-valued
invariants. That is, the ‘real’ and ‘complex’ Molien series are the same. Similar
remarks apply to the equivariants. Bearing these facts in mind, we ‘complexify’
the entire problem, reducing it to the following situation.

Let V be a k-dimensional vector space over C, and let zy,...,z; denote
coordinates relative to a basis for V. Let I' C GL(V) be a compact Lie group.
Let C[z1,...,z)] denote the ring of polynomials over C in z1,...,z;. Consider
an action of I on V and let Py (I') denote the subalgebra of C[z1, ..., zx] formed
by the invariant polynomials under I' (over C). Note that Clzy,...,z)] is
graded:

C[wl,...,wk]=R069R169R2€B"'

where R; consists of all homogeneous polynomials of degree i. If f(z) € R; for
some ¢ then f(yz) € R; for all v € T'. Therefore for any subgroup I’ of GL(V)
the space Py (') has the structure

Pv(D) =Py ePyT)ePrI)e---

of an N-graded C-algebra given by Pi (T') = Py (T) N R;.

The Hilbert series or Poincaré series of the graded algebra Py (T') is a gener-
ating function for the dimension of the vector space of invariants at each degree
and is defined to be

er(z) = ) _dim(Py(I))=". (6)

Since I' is compact, consider the normalized Haar measure y defined on T’
[12] and denote the integral with respect to p of a continuous function f defined

on F by
/f
r

Recall that if I is finite, then the normalized Haar integral on T is

1
/Ff:me(v),

yer

where |T'| denotes the order of T' [12].
There is a famous explicit formula:

Theorem 6.1 (Molien’s theorem) Let T' be a compact Lie group. Then the
Hilbert series of Py (T) is

1
) = [ G =y

13



Proof. See [16] for the original proof of the finite case, and [17] for the
extension to a compact group. O

Now we turn to equivariants, the module analogue of the ring of invariants.
Equivariants can be interpreted as invariants with respect to a different group
action on a different space. The Hilbert series of the graded module Py (T) over
the ring Py (T') is the generating function

Ur(z) = Y _ dim(P{H(T))z7
d=0

Again there is an explicit formula:

Theorem 6.2 (Equivariant Molien theorem) LetT be a compact Lie group.
Then the module Py (T) over the ring Py (L) has a Hilbert series given by

_ [ (Y
r(z) = r det(1p —v2)’
Proof. See [17]. DO

Note that for orthogonal group representations, in which T' C O(k), we have
tr(y) = tr(y™ ).

6.2 Molien Series for Wreath Products

We now obtain the Molien series ® £, and ¥ ;g from the Molien series ., ®g, U, ¥g.
Recall that the cycle type of a permutation o of Sy is the integer vector

k(o) = (k1,-..,kn), where k; counts the number of cycles of length i in the

cycle decomposition of o.

Remark 6.3

Let o be a permutation of Sy with cycle type k(o) = (k1,...,kn). Then

N
det(Iny —o2) = H(l — 28k,

i=1

Theorem 6.4 Let L C O(k) be a compact Lie group acting on a complex k-
dimensional vector space V. Suppose that G is a subgroup of Sn acting on CV.
Consider the group T = £1G acting on VN. Denote by ®(z) the Molien series
for Py (L), and by ®g(z) the Molien series for Pon(G). Then

oeote) = gy X Teoete*

oeg Li=1

14



The proof is given below after the next lemma.
Remark 6.5

Explicitly,

where k; denotes the number of cycles of length ¢ in the cycle decomposition of
o,fori=1,...,N.

Lemma 6.6 Let ly,...,l, € My, the set of k X k matrices, and let z € C.
Denote by A(z,l1,...,1,) the matrix

Ix 0 0 --- 0 =zl
-2l Iy 0 --- 0 0
A(zall7"-7l7‘): 0 —Zl3 Ik 0 0
0 0 0o - =zl I

Then
det(A(z,l1,...,1)) =det(Iy — 2"l l—g ... o).

Proof. Note that

I 0 0 0 0
X I 0 --- 0 O
det(A(z,l4,...,1;)) = det(A(z,11,...,1.)) det X5 0 I --- 0 O ,
X1 0 O 0 I
for any matrices X1,...,X,_1 in My. Thus
Iy — 2 X, 0 o --- 0 —2zly
—Zl_g + X1 Ik 0 s 0 0
det(A(z,ll,...,lr)) = det —2sX; + Xy —z2g I - 0 0
-2 X, o+ Xy 0 0o --- —z, I

Set X; = zly and X; = 28l 1l;... 1o for 2<i <7 —1 to get

15



Ik—zrlllrlT,1 lg 0 0 0 —Zl1

0 I, 0 - 0 0
det(A(z,l1,...,1,)) = det 0 —2ds Iy -+ 0 0
0 0 0 - =zl I

Thus

det(A(z,l1,...,0.)) =det(ly — 2"l l—1 ... lg). O

Proof of theorem 6.4. Write £V = £; x - --x Ly where each £;=L. Haar
measure on L% is the product of Haar measures on the £;. Moreover, since £1G
is the semidirect product, we have

f=[].1
£2G GJLN
72,
- 1.
A2 )e e
By theorem 6.1 the Molien series for Py~ (£1G) is

begls) = [ !
z frnd
£G (1, IN) € LN, s €G det(INk — ((l1,.. .,lN),O')Z)

1 1
B @ Z v/(l1,...,lN) c LN det(INk - ((l17' st lN)7U)Z) '

oc€eG

Let o be a permutation of G with cycle type k(o) = (ki1,...,kn). Denote

by ¢, = (p{’k",...,pg’k") the jth cycle of o with length ¢ (for j = 1,...,k;),

and by li, the vector in Ei, = ;ij,lci X oo X L’pj,k,- with the components of [
* * 1 i

16



corresponding to the ¢ indices p{”“, e ,p{’k" in c,’c Then by lemma, 6.6

N k;
det(ng — (L, In),0)2) = det(Ly, — (1, ¢} )2)
i=1j=1
=1 1] det@x — ()2,
i=1j=1

where (ll, e ,li)* = lll,’lz;l PN l2.
Note that

1 1
/ e of, det(T — ()" T = e

1
/,1 c /, ¢z, det(Ty — b lili 1 ...la2%)

It follows that

1 N
/(11,...,1N) cen N ki , - B 11;[1 1;[1
TI IT det(te — (&)= !

i=1j=1

1
</l;1 € [,{ei det(Ik — (llz:,)*zz)>

Theorem 6.7 Let £ C O(k) be a compact Lie group acting on a complex k-
dimensional vector space V. Suppose that G is a subgroup of Sn acting on CVV.
Consider the group T = L1G acting on VV. Denote by ®.(z) the Molien series

17



for Py (L) and by U, (2) the Molien series for Py (L). Let Ug(z) be the Molien
series for Pan (G). Then

N
\I’ng ‘g| Z kllIJL ( ))k1—1) (H(@L(zl))kz>] .

o€EG i=2
Remark 6.8
Explicitly,

where k; denotes the number of cycles of length i in the cycle decomposition of
o,fori =1,...,N.
Proof. By theorem 6.2

. tr((ly,---,ln),0))
Yag() = /mg ol — (o), )3

If o is a permutation of G with cycle type k(o) = (ki,...,kn) and lil the
component of [ corresponding to the index in the jth cycle of o with length 1
(for j =1,...,k1), then

tr((lgs- -, In),0)) = tr(BL) + -+ + te([).
The rest follows as in the proof of theorem 6.4. O

Examples.

1. Consider (V, L) = (R, Zs), where Z, acts by multiplication by +1. Then

Bs,(2) =3 [(1—1z)3 + ay + (1—22?)’(1—2)]
=14+24+222+32°+424 +52° + 725+ 827+ ---,

1
Us,(2) =3 [(1—32)3 + (1—22§(1—z)]
=14+22+4224+623+92* +1225+ 1625 +202" + - - -,

18



<I)Z2153 (Z) = % ((I>Z2 ) + 2<I)Z2( )+ 3‘1’22(22)(I>Z2 (Z)]
1422+ 224 +326 +.

lIlzzlss(z) :%[S\IJZQ ¢Z2 )) +3§["Z2(z)q’z2(z2)]
=2+223+5254+62"+---
(b) Z21Z3
Bz,(2) =3 [1—35 + 12
=14+2+222+423 + 524 + 725 + 1020 + 1227 +.
Uy (2) =1
Z3 30— 2)3
:1+3z+6z + 1023 + 152* + 2125 + 2826 + 3627 + -
B7,2,(2) =1[(®z )+2<1>()]
ZnZ3\? 3 Z\?
=1+z +2z + 425 + .
‘I’Z22Z3 % [3\I’Zz @Zz )) ]
=24+3224+6254+102" +-

2. Consider (V, £) = (R?,Z4), where the action of Z, is generated by
0 -1
p= ( 10 ) Then

®z.(2) =1 [(l—lz)2 + e+ (1+1z)2]
1+22 4324 +325+--+,

Uz.(2) = [aty + o5
=224+42° 4625 +827T +---.

(a) 24183

CI)Z4253 (Z) = % [( ) + 2<I>Z4( ) + 3<I)Z4(Z2)‘I’Z4 (Z)]
1422 +424 + 726+

Uz85(2) = § [302,(2)(Pz,(2))? + 3z, (2)®z,(2?)]
=22+62% + 1825 + 4227 + ---.
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(b) Z41Z3

(I)Z42Z3(Z) = % [((I)Zz; (z))3 + 2(I)Z4(Z3)]
1+ 22 +42* +1028 + -,

lI’Z42Z3(z) = % [3‘1124(2)(@%1 (z))2]
=224+ 82% 42825+ 72274 ---.

7 Finite Wreath Products

We consider now finite wreath products, that is, groups £ 1 G where £ is fi-
nite, and derive some results on higher-order invariant theory along the lines of
Worfolk [22]. The aim of this section is to construct the theory for £1G from
the corresponding theories for £ and G. In particular we consider primary and
secondary invariants, the Cohen-Macaulay property, and homogeneous sets of
parameters. We give formulas for the number of secondary invariants (corollary
7.11) and fundamental equivariants (corollary 7.12).

7.1 Preliminaries

In this section we review some elementary results related to combinatorial the-
ory and commutative algebra. For proofs and more extensive discussions see
Stanley [20], Sturmfels [21], and Worfolk [22]. The restriction to finite groups
seems necessary for their methods to apply, although some — but not all — of
their results extend to the compact case using other methods.

For finite groups T' the ring Py (T') is generated by a set of primary and
secondary invariants (see below for definitions). The equivariant results are
analogous to those for the invariants. Note that g : V — V is I'-invariant if
and only if the function f : V x V — R defined by f(z,y) =< g(z),y > is
P-invariant. Here the action of T' on V' x V is defined by - (z,y) = (v-z,v-v),
and the functions g and f are related by g(z) = (dy f);r’o, where T indicates the
transpose.

As before, let V' be a k-dimensional vector space over C, and let x1,...,2
denote coordinates relative to a basis for V. Let I' C GL(V) be a finite matrix
group of order |T'| and Clz1,...,z;] the graded algebra of polynomials over C
inz1,...,2z. Consider an action of I on V and Py (T') the N-graded subalgebra
of Cl[z1,...,z,] formed by the invariant polynomials under I" (over C). Thus
Py () =Py(I) & Py(T) & PH(T) & - -

Let dim Py (') be the Krull dimension of Py (), that is, the maximum
number of elements of Py (T') that are algebraically independent over C.

Theorem 7.1 If dimV = k then there exist k, but not k + 1, algebraically
independent invariants over C. Equivalently Py (') has Krull dimension k.
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Proof. See [1]. O

Consider the subring Clpy,...,pr] of Py (') generated by k algebraically
independent elements p1,p2,...,Pk.

Lemma 7.2 The subring C[p1,...,pr] of Pv(T') has Hilbert series

1
1_zd1)...(1_zdn)

H(C[p1,..-,pr),2) = (

where d; is the degree of p;.

Proof. See [21]. O

A set {p1,...,pr} of k homogeneous invariant polynomials with positive de-
gree is a homogeneous system of parameters (h.s.0.p.) of Py (T) if dim Py (T') =
k and Py (T) is a finitely generated module over Clp1, ..., pk].

Theorem 7.3 A set {p1,...,pr} of k homogeneous invariant polynomials is
an h.s.o.p. for Py (), where k = dim Py (L), if and only if the polynomials in

{p1,...,pr} have no common zeros except 0.

Proof. See for example [15] pp 104-105. O

A ring is Cohen-Macaulay if it is finitely generated as a free module over
the ring determined by any h.s.o.p. For finite groups T, the rings Py (T) form
Cohen-Macaulay rings:

Theorem 7.4 For any finite T' C GL(V), the ring Py (T) is Cohen-Macaulay.
That is, there are k homogeneous invariant polynomials p,...,pr and homoge-
neous qi, - - - ,qm, oll in Py (L), such that Py (L) is finitely generated as a free
module over the subring Clp1, . ..,p]:

Pv(F) = @qu[pl,...,pk]. (7)

Thus the set {p1,...,pr} is an h.s.o.p.

Proof. See [21]. DO

Remark 7.5

Theorem 7.4 also holds for compact Lie groups I' by Hochster and Roberts [13].
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The decomposition (7) is called a Hironaka decomposition of the Cohen-
Macaulay algebra Py (T'). Then the Hilbert series of Py (I') equals

m k
@r(z) = (3 2t/ T[ 1 - steem)
i=1 j=1
by corollary [21] 2.3.4.
Thus, given an h.s.o.p. {p1,...,pr}, there is a finite set of homogeneous
invariants {qi,...,¢m} such that any invariant may be written uniquely as a

linear combination of the ¢; with polynomials in the p; as coefficients. Usually
the p; are called primary invariants and the g; secondary invariants. The p; and
q; form a set of fundamental invariants for T'. The primary invariants are not
unique, and neither are their degrees. However, once the degrees of the primary
invariants are fixed, the number and degrees of the secondary invariants are also
fixed.

Theorem 7.6 ForT finite and p1,...,pr a set of primary invariants for Py (T)
with degrees d,...,dy, the number of secondary invariants is
dy---dy

o

m =

The degrees with multiplicity of the secondary invariants are the exponents of
the generating function

(I)F(Z)/H(C[pla tee apk]az) =z 4+ zema
where H(Clpu, ..., pk|, 2) is the Hilbert series of Clp1, ..., pk].
Proof. See [21]. O

Consider now the graded module Py (T') over the ring Py (T'). A set {py, ..., px}
of k homogeneous invariant polynomials with positive degree is a homogeneous
system of parameters (h.s.0.p.) of the module Py (T) over the ring Py (T) if
dim Py (T) = k and Py (T) is a finitely generated module over C[py,...,pi]. A
module is Cohen-Macaulay if it is finitely generated as a free module over the
ring of any h.s.0.p. The modules Py (T) for finite groups I' are Cohen-Macaulay:

Theorem 7.7 For finite T C GL(V) there are k = dimV homogeneous in-
variant polynomials py,...,pr such that ﬁV(F) is finitely generated as a free
module over the ring Clp1,...,pr]. There exist g1,...,9s in 751/ (T") with each g;
homogeneous, such that

Py () = @wc[?h < DE)- (8)
i=1
That is, {p1,..-,Pr} is an h.s.o.p. and Py (T") 4s Cohen-Macaulay.
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Proof. See [22]. O

Remark 7.8

The proof of this proposition not only shows that the module is Cohen-Macaulay,
but also shows that the set of primary invariants that forms an h.s.o.p. for the
ring Py (T") is also an h.s.o.p. for the module Py ().

Call the g; a set of fundamental equivariants for the module ’,5V(I‘). Again,
as for the secondary invariants, once the degrees of the primary invariants are
fixed, the number and degrees of the fundamental equivariants are also fixed:

Theorem 7.9 ForT finite and p1,...,pr a set of primary invariants for Py (T)
with degrees dy,...,dy, the number of fundamental equivariants is
dy -+ dp

s=k
T

The degrees with multiplicity of the fundamental equivariants are the exponents
of the generating function

l:[’1—‘(Z)/I{((j[pla te :pk]az) =2+ 4+ zesa
where H(Clpx, ..., pk|, 2) is the Hilbert series of Clp1, ..., pk].

Proof. See [21]. O

Given a module decomposition as presented in this theorem, any equivariant
g may be written uniquely in the form

where the g; are a fundamental set of equivariants and the h; are polynomials
in the primary invariants. This result does not generalise to the compact case:
see Kostant [14], Schwarz [18, 19]. Schwarz calls groups satisfying the above
uniqueness condition cofree, and studies the more general case of ‘reductive’
groups.

7.2 Primary and Secondary Invariants

We return now to wreath products. We restrict attention to groups £1G, where
L is a finite subgroup of the orthogonal group O(k). In this section we obtain
two types of result. We construct a set of primary invariants for Py~ (£1G) from
a set of primary invariants for Py (£) and Pcw~ (G). Moreover, the set chosen
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for Pcn(G) can be any set of primary invariants generating Pon (Sny). With
this information we get the number of secondary invariants and the number
of fundamental equivariants needed to generate the modules Py~ (L1 G) and
ﬁvzv (£1G) over the ring generated by the set of primary invariants constructed
for Py~ (L1G), respectively.

Theorem 7.10 Let £ C O(k) be a finite group acting on a complex k-dimensional
vector space V. Suppose that G is a subgroup of Sn acting on CN. Consider
the group T = L1 G acting as usual on V. Let {uy,...,u} be a h.s.o.p. for
L, and {f1,...,fn} for G. Then

(i Wivr), -y uilon)); i =1,k = 1,...,N}

is an h.s.o.p. for £L1G.

Proof. By theorem 7.3, the polynomials u1 (v;), - - ., uk(v;) have no common
zeros besides v; = 0. Also fi(z1,...,2ZN),---, fn(®1,--.,2N) have no common
zeros except (z1,...,2n) = (0,...,0). Using theorem 7.3, it suffices to prove

that the polynomials in
S: {fj(uz-(vl),...,uz-(vN)); 1= 1,...,k; j= 1,...,N}

have no common zero, since by theorem 7.1 the Krull dimension of Py~ (£1G)
is Nk, and S contains Nk polynomials. Suppose that there is a common zero
(?,...,v%), and suppose that v? # 0. Let X! = (u;(v?),...,u;(v%)) for

i=1,...,k. Since the set {u;(v)} has no common zero, then it cannot happen
that uy (v)) = -+ = ug(v9) = 0. Therefore X* # 0 for some i. But then X? is a
nontrivial zero of fi(z1,...,ZN),-.., fn(Z1,...,2N), a contradiction. Thus S

is an h.s.o.p. for £1G. O

Applying the previous theorem and theorem 7.6, we can relate the number
of invariants and equivariants for £1G to the numbers for £ and G. If dy, ..., dj
denote the degrees of uq, ...,ur and D1,..., Dy the degrees of f1,..., fn, then
let d be the number of secondary invariants for £ and D the number of secondary
invariants for G.

Corollary 7.11 With the conditions of theorem 7.10 and the above notation,
the number of secondary invariants for L1G (using the h.s.o0.p. S)isdND(Dy---Dy)*1.

Proof. Note that I' = LV 4G and so |T'| = |£|"|G|. By theorem 7.6

dy - dy D,---Dn
I£| [

The rest follows by theorem 7.6. O

d= , D=

Let r denote the number of fundamental equivariants for £ and R the number
of fundamental equivariants for G.
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Corollary 7.12 With the conditions of theorem 7.10 and the above notation,
the number of fundamental equivariants for L1 G (using the h.s.o.p. S) is
rdV'R(D;---Dy)* L.

Proof. By theorem 7.9

dy - -dy,

D,---Dn
]| '

9l

The rest follows using theorem 7.9 and the fact that an h.s.o.p. for Py~ (£1G)
is also a h.s.o.p. for Py~ (L£1G) (by remark 7.8). O

r=k

, R=N

Remark 7.13

A good choice of primary invariants for G consists of the elementary sym-
metric functions o1,09,...,0N, or any algebra basis for the ring of symmet-
ric polynomials P(Sy). Another possibility is the set of the kth power sums
g +ak+-.+zk for 1 <k < N. If we choose either of these sets for the primary
invariants, then with the conditions of corollaries 7.11 and 7.12 the number of
secondary invariants for £1G is d¥ D(N!)*~! and the number of fundamental
equivariants is rd¥ "' R(N!)*~1. Here D = N!/|G| and R = (NN!)/|G|.
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