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Abstract

Nesta tese, são obtidos modelos matemáticos determinísticos a partir de modelos bioquímicos da célula
eucariótica, em dois casos distintos, para efeitos de comparação: célula saudável e célula cancerígena. O
primeiro modelo é baseado nos modelos de [3] e [8] e faz uso da cascata de sinalização MAPK, proposta
em [7], e da via de transdução de PI3K/AKT descrita em [37], de modo a criar um modelo actualizado
mais abrangente da regulação da célula saudável. O segundo modelo, da célula cancerígena, é construído a
partir do primeiro modelo da célula saudável por alteração de vias específicas de transdução, e interpretando
o resultado à luz da literatura em oncologia molecular. Esta interpretação é feita em duas abordagens:
simulação de desregulações comuns e simulação de dois cancros específicos, o cancro do cólon e o cancro da
mama.
O modelo actualizado proposto é analisado de acordo com a sua adequação aos modelos bioquímicos do
ciclo celular, e ainda da sua robustez quando é usado para simular desregulações em cancro. São propostas
terapias-alvo, de acordo com os resultados.
São, portanto, exploradas a eficácia e a utilidade da modelação matemática em fornecer resultados in silico,
dos quais se possam retirar sugestões úteis para possíveis terapias. O objectivo é validar a matemática,
novamente, como uma ferramenta poderosa com a qual se pode modelar a natureza dos sistemas biológicos e
extrair conclusões para problemas da vida real.
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Abstract

In this thesis, deterministic mathematical models are derived from biochemical models, within a human
cell, in two distinct cases, for comparison: healthy cell and cancerous cell. The former model is based in
[3] and [8] and makes use of the MAPK cascade pathway [7] and the PI3K/AKT pathway for signalling
transduction [37], to create a wider updated model for the regulation of a healthy cell. The latter model,
for the cancer cell, is derived from the healthy cell model, by altering specific pathways, and interpreting
the outcome in the light of literature in cancer. This last study is done in two approaches: simulation of
common deregulations and specific cancer simulation, colon and breast cancer. After studying both models,
we propose targeting therapies and simulate their consequences. We thus explore mathematical modeling
efficacy and usefulness in providing enough information from which to derive ideas for therapies. The
purpose is to validate mathematics, once again, as a powerful tool with which one can model the underlying
nature of biological systems and extract useful conclusions to real-life problems.
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Introduction

Cancer is one of the most deadly diseases among humanity, in great part due to the
large amount of variables which have to be taken into account in its development
and dynamics, making it particularly difficult to approach therapeutically. Each

cancer is unique in the sense that the particle’s path arrangements, in the circumstances
that originated it, can vary greatly according to the organism where it develops, the
quality and quantity of its nurturing habits which, in turn, also depend on the resources
of the environment where that organism lives, among many other degrees of freedom.
The understanding of how cancer mechanism works, starts with understanding how a
healthy cell behaves, since the differences between cancer dynamics and healthy tissue
dynamics are a reasonable object of analysis in cancer theory.
When a single mammalian cell fails to stop cell cycle, when it needs to, proceeding
to replicate and originate offspring with anomalies, it can quickly develop a tumor
whose priority is to grow and divide uncontrollably, selfishly, wearing all resources in its
environment, destabilizing its neighbouring healthy cells in the tissue and, consequently,
the whole organism. The study of individual healthy and cancerous cells dynamics is
therefore an understandable approach for cancer therapy development and is the one we
discuss in this thesis.
The advance in the technology relevant to this field, is itself divided in two main branches:
improvement in computing power and in measurement accuracy. As the computing
power increases, according to Moore’s law, the ability to store huge amounts of data is
enhanced and this is a feature of vital importance when it comes to simulate in a computer
complex systems such as the ones embedded in cell metabolism or cancer morphogenesis.
Of course all the storage capacity wouldn’t mean much if there weren’t breakthroughs
in measurement tools. To accurately arm the simulations with reasonable predictions,
the input information should be as close to reality as it can get. This is why the link
between in vitro/in vivo research is of such importance for in silico approaches. In this
way cancer, among other diseases, is being fought in many inter-connected battle fronts.
The interaction between in silico and in vitro or in vivo technique, permits the upgrade of
each one of these approaches without unnecessary waste of the resources. For instance, if
the simulation of a specific cancer pathway exhibits a given feature for which it is known
a treatment, in vitro or in vivo researchers can then focus on that specific feature, thus
narrowing down the set of possible experiments, saving time and money in this process.
With this in mind, we will explore in this thesis an updated model for the healthy cell,
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in order to simulate the cell cycle, and afterwords use it to study important pathways in
cancer dynamics, whether they are commonly deregulated, relevant for cancer treatment,
or because of the existence of cross-talks between them and cancer-related pathways.
To accomplish these simulations, we will base our ground-knowledge on the general
accepted chemical interactions within the cell, among biologists and biochemists, although
this doesn’t necessarily mean we completely exclude hypothesis which we find useful for
the construction of the models.
The mathematics behind the creation of the models is reviewed in the first chapter, thus
over viewing the contents of biomathematics and systems biology. The following chapters
focus on the eukaryote cell cycle and the restriction point, p53 protein and signalling
transduction pathways, i.e., in the biological and biochemical background needed to
justify the reaction network chosen for modelling. We reserve chapter 5 to explore
cancer’s dynamics and main features and chapter 6 to summarize the state-of-the-art
of mathematical models. Chapter 7 is dedicated to the explanation of our model of
the cell cycle, which we then use to simulate the healthy cell in chapter 8 and common
deregulations in chapter 9. In the last three chapters, two specific cancers are studied,
colon cancer and breast cancer, as well as possible target therapies we could derive from
the results of the simulations restricted to today’s advances in personalized medicine.
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Chapter 1

Preliminaries: Systems Biology

I Introduction and overview

In the 21st century, biology is being transformed from a purely lab-based science to a
collaboration between in vivo or in vitro experiments and information science. As such,
biologists have had to draw assistance from mathematicians, computer scientists and
engineers. The result has been the development of the fields of Bioinformatics and
Computational Biology (terms often used interchangeably).
The major goal of these fields is to extract new biological insight from the large noisy set
of data being generated by high-throughput technologies. Initially, the main problems in
bioinformatics were how to create and maintain databases for massive amounts of DNA
sequence data. Addressing these challenges also involved the development of efficient
interfaces for researches to access, submit and revise data. Bioinformatics has expanded
into the development of software that also analyzes and interprets these data.
Systems Biology involves the collection of the large experimental data sets with which
the development of mathematical models that predict important elements in this data is
done. The quality assessment of these models by comparing numerical simulations with
experimental data allows the update of these models to better fit observation. The ultimate
goal of systems biology is therefore to develop models and analytic methods that provide
reasonable predictions of experimental results. While it will never replace experimental
methods, the application of computational approaches to gain understanding of various
biological processes held the promise of helping experimentalists work more efficiently.
These methods also may help gain insight into biological mechanisms when information
could not be obtained from any known experimental methods. Eventually, it may be
possible that such models and analytical techniques could have substantial impact on our
society such as aiding in drug discovery.
System biologists analyze several types of molecular systems, including genetic regu-
latory networks, metabolic networks and protein networks. During the genomic age,
standards for representing sequence data were (and still are) essential. Data collected from
a variety of sources could not be easily used by multiple researchers without a standard
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data format. For systems biology, standard data formats are also being developed. One
format that seems to be getting some attraction is the Systems Biology Markup Language
(SBML) - a XML based language for representing chemical reaction networks. This kind
of modelling is implemented in software like COPASI.
The basic structure of a SBML model is a network consisting of a list of chemical species
coupled with a list of chemical reactions. Each chemical reaction includes a list of reac-
tants, products and modifiers, and also a mathematical description of the kinetic rate law
governing the dynamics of this reaction.
For the purposes of this thesis, the reaction network consists of the three key elements:
system components or pools of components, arrows that indicate flow of material and ar-
rows that indicate flow of information or signals. By connecting pools with heavy arrows,
we indicate which system components can be transformed into others, and following
these arrows within the network, we obtain an impression of the different routes through
which material can be processed by the system. In contrast to heavy arrows, we use
dashed arrows to indicate that a system’s component can affect or modulate a process in
the system. An arrow of this type may represent, for instances, a feedback inhibition or the
activation of a reaction.

Figure 1.1: Reaction network. SBML represen-
tation in Cell Designer.

The overall strategy of analyzing a biochemical system consists of a sequence of six steps:

• List all components or pools of components that affect the system.
• List all interactions between these components and all modulations by which

components affect the system.
• Arrange components, pools, interactions and modulations in the form of a network.
• Transcribe the network in terms of mathematical symbols and equations.
• Analyze these equations.
• Interpret the results.

The list of steps signals the fundamental importance of setting up the network in a proper
form. The network connects reality and mathematical analysis, and if this connection is
faulty, the results are unreliable or even wrong. When all components and interactions of
a biochemical system are known, and when we strictly adhere to a few rules, it is usually
not too difficult to construct a proper network.

2
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On the other hand, ill-defined components, using the wrong types of arrows or confusing
the flow material with a regulatory influence often leads to incorrect conclusions. In
some cases, one may detect those problems early on, however, once the equations are
formulated - correctly of incorrectly - it is often very difficult to detect inconsistencies in
the map or the equations until it is time to interpret the results.

II The cell as a system

The functioning of a cell requires multiple processes to work in an orchestrated manner.
Basic properties of cellular life, such as proliferation, macromolecule synthesis and
degradation, and cellular metabolism, have to be tightly controlled. Failure in the
regulation of these cellular functions, for example through mutations of specific genes,
can result in another cellular phenotype and, eventually at the organism level, in severe
diseases such as cancer. Whatever the cell type - eukaryotic or prokaryotic - or its
neighboring environment - other cells, for example, like in a multicellular organism,
or other neighborhood, like in unicellular organisms - its ability to respond to external
stimuli, derive energy and materials needed to continually fabricate itself and eventually
reproduce, is always controlled by a complex network of chemical reactions. Each reaction
needs to be catalyzed by specific proteins, which are specialized molecules produced by
the cell itself. Many proteins are enzymes, which are biological catalysts present in nearly
every activity of the cell. Other proteins are used as structural elements to build cellular
parts, as activation or repression agents to control reactions, as sensors to environmental
condition, or take part in one of the many other tasks necessary for cellular function.
There are thousands of different proteins in each cell. Producing these proteins not only
requires the cell to obtain energy and materials, but also requires detailed communication
between different parts of a cell or between cells. Much of the cellular machinery is
devoted to ensuring the production of proteins at the right moment, in the right quantity,
in the right place.
A cell’s most reliable way to pass on the recipe for making proteins is contained in its
genetic material and is passed on to daughter cells at each division. The machinery for
reading this information is one of the core components of all living things and is highly
similar in all types of cells, being constituted by a complex of enzymes. The information
itself, called genetic material, is formed by molecules of DNA (deoxyrribonucleic acid),
which have a sequential structure that enables them to act as information storage devices.

III Chemical kinetics

As mentioned in the last section, the metabolism of a single cell can be broken down to a
network of chemical reactions. In this section we will show how to derive a system of
differential equations from a set of chemical reactions and then proceed to analyze the
resulting model quantitatively following the steps listed in section I.
A Reaction Network is a set of reactions Rmu, µ = 1, · · · , r, between reagents and

3
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Figure 1.2: The cell mechanisms.
From Douglas Hanahan
and Robert A. Wein-
berg The Hallmarks of
Cancer, Cell. Vol. 100,
57-70, 2000

products from the set of involved species,
{

Si
}

i=1,...,s.

Rµ :
s

∑
i=1

αiµSi → kµ ·
s

∑
i=1

βiµSi, µ = 1, 2, ..., (1.1)

with s species and r reactions. The scalars αiµ and βiµ are called the stoichiometric
coefficients, representing the participation of each specie Si, respectively as reagent and
as product in reaction Rµ. The rate constant kµ gives information on the kinetics of this
reaction. The Stoichiometric Matrix is defined by the reaction network as:

Siµ = βiµ − αiµ, i = 1, ..., s; µ = 1, ..., r (1.2)

To study the dynamics of the reaction network (1.1), we define the variables:

• Ni(t) = number of molecules of species Si (as a reagent or as a product) present in
instant time t.

• Zµ(t) = number of occurrences of reaction Rµ in time interval [0, t].

In the time interval [0, t], each reaction Rµ occurs Zµ(t) times. Each occurrence adds the
amount S = βiµ − αiµ to the current number of molecules of species Si. Therefore, the
number of molecules of species Si at time t can be writen as

Ni(t) = Ni(0) +
r

∑
µ=1

SiµZµ(t), i = 1, ..., s (1.3)

The term Ni(0) is the number of molecules of species Si at time t = 0, and it is a constant
value for each i since the system of reactions considered is assumed to be closed, i.e.,
there are no additions nor losses of any species at any time. This value may increase or
decrease throughout time according to the sum ∑r

µ=1 SiµZµ(t).
Using vector notation, N(t) = (N1(t), ..., Ns(t))> ∈ Zs

+, X(t) = (X1(t), ..., Xs(t))> ∈
Rs

+, Z(t) = (Z1(t), ..., Zs(t))> ∈ Zr
+, we can write (1.3) as

N(t) = N(0) + SZ(t) (1.4)

4
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Dividing (1.4) by Ω we obtain the equation in terms of concentrations

X(t) = X(0) +
SZ(t)

Ω
(1.5)

However, reactions are events that occur in a discrete set of time instants. Moreover, the
time of occurrence of a reaction and the reactions that occur in the set of possible reactions
are random variables since they are determined by several microscopic factors. Therefore
a deterministic description has to be based on several simplifying assumptions:

• Reactions are so frequent that the number of occurrences Z(t) can be approximated
by a continuum variable z(t). This assumption requires that a large number of
molecules are in a large volume free to interact with each other. It also requires
that the physical characteristics of each molecule (energy, orientation, etc.) favor the
interactions which translate into a rate constant k. The presence of a large number
of molecules also means that the occurrence of a reaction translates into a small
change of Ni, so we can also approach N(t) by a continuous variable n(t). The
concentration X(t) can also be approximated by a continuous x(t) = X(t)/Ω.

With these assumptions, (1.4) and (1.5) lead respectively to

n(t) = n(0) + Sz(t) (1.6)

x(t) = x(0) +
Sz(t)

Ω
(1.7)

Taking the derivative over time, we get

ṅ(t) = Sż(t) (1.8)

ẋ(t) =
Sż(t)

Ω
(1.9)

However, these ordinary differential equations are only useful if we can establish a
relationship between the derivative ż(t) and the variables n or x. Suppose that it is
possible to establish such a relationship, ż(t) = v̂(n) = Ωv(x). Thus, (1.8) and (1.9) could
be written as ṅ(t) = Sv̂(n) and ẋ(t) = Sv(x(t)).
In many reactions, the rates v and v̂ are proportional to the products of powers of
concentrations of the reagents, elevated to a certain exponent (mass-action law, Gulberg
and Waage 1864-1879):

v̂µ = k̂µ

s

∏
i=1

nαiµ
i ; vµ = kµ

s

∏
i=1

xαiµ
i (1.10)

Substituting (1.10) in ż(t) = v̂(n) = Ωv(x), we get

k̂µ

s

∏
i=1

nαiµ
i = v̂µ(n) = Ωvµ(x) = Ωkµ

s

∏
i=1

xαiµ
i

As x = n/Ω, then

k̂µ

s

∏
i=1

n
αiµ
i =

Ω

Ω
s
∑

i=1
αiµ

kµ

s

∏
i=1

n
αiµ
i ↔ k̂µ =

kµ

Ω
s
∑

i=1
αiµ−1

(1.11)
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IV Enzymatic Michaelis-Menten kinetics

Enzyme kinetics studies the chemical reactions catalyzed by enzymes, particularly the
rate of reaction. The study of the kinetics of an enzyme allows elucidate the details of its
catalyst mechanism, its role in metabolism, how its activity is controlled in the cell, for
example how it can be inhibited by drugs or poisons or potentiated by other molecules.
Many chemical and biological systems rely on enzymes that catalyze (i.e., accelerate
the rate of a reaction without being consumed during the process), one or more of the
possible reactions. A relatively simple model was proposed by Michaelis and Menten [45],
where the reaction involves an enzyme E manipulating a substrate S which in turn reacts
to form a new molecule, the product P [figure 1.3].

Figure 1.3: Michaelis-Menten model

The reaction network is

S + E
kb−−−−−⇀↽−−−−−
kd︸ ︷︷ ︸

binding/dissociation

SE kcat−−−−−→ P + E︸ ︷︷ ︸
catalysis

(1.12)

Using mass-action law and the notation for concentrations xE = E, xSE = SE, xP = P, the
kinetics equations are 

dS
dt = −kb · E + kdSE
dSE
dt = kbS · E− (kd + kcat)SE

dE
dt = −kbS · E + (kd + kcat)SE
dP
dt = kcatSE

(1.13)

As initial conditions, assume there is a certain quantity of S and E, but no SE nor P, i.e.,
S(0) = S0, E(0) = E0, SE(0) = 0 = P(0). Two useful conservation laws are d

dt (E+ SE) = 0
and d

dt (S + SE + P) = 0 which leads to E + SE ≡ Etotal = E0, S + SE + P ≡ S0. The first
equation tells us that enzyme E is not produced or consumed during the reaction, it can
be free or part of complex SE, but its total concentration remains constant equal to Etotal .
Therefore we can reduce the four kinetic equations above, only to two{

dS
dt = −kbEtotal · S + (kd + kb)SE
dSE
dt = kbEtotal · S− (kcat + kd + kbS) · SE

(1.14)
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However, these equations are intractable. One of the most used simplifying hypothesis
(Briggs and Haldane) is to assume that, with the progress of the reaction dynamics, the
system reaches a quase-steady state in which the concentration of the complex SE remains
constant. Experimental studies have shown that the concentration of the complex SE
reaches a steady state much faster than the substrate. At equilibrium, the concentration
SE doesn’t change with time. Therefore, we can assume that dSE

dt = 0. From the second
equation in (1.13), we get

SE =
EtotalS
Km + S

(1.15)

where Km = kd+kcat
kb

is the Michaelis-Menten constant. For the reaction rate we obtain the
Michaelis-Menten equation

v =
dP
dt

= kcatSE =
kcatEtotalS

S + kd+kcat
kb

=
VmaxS

Km + S
(1.16)

where Vmax = kcatEtotal .

The reaction network established in the model, explained in chapter 6, follows mass-action
law and Michaelis-Menten kinetics, as well as Hill’s function.

V Cooperation. Hill equation

Many enzymes have more than one site to bind to substrates. If these sites act indepen-
dently one another, the enzyme is said to non cooperative. If the binding of a molecule
of substrate to a site facilitates the attachment of another molecule at a second site, the
enzyme is said positively cooperative. If, however, the binding of a substrate molecule
at a site hinders the binding of another molecule at a second site, the enzyme is said
negatively cooperative.

Suppose that an enzyme can bind to two molecules of S substrate. the generic name
for a binding molecule is Ligand (Latin: Ligare). The binding reaction can be represented
by:

S + E
k1−−−−−⇀↽−−−−−
k−1

SE k2−−−−→ P + E

SE + S
k3−−−−−⇀↽−−−−−
k−3

SSE
k4−−−−→ P + SE

(1.17)

Using the conservation law
E + SE + SSE = Etotal

and the quasi-stationary
dSE
dt

= 0 =
dSSE

dt

we can deduce for the reaction rate S −→ P, υS→P =
dP
dt

=
(k2K2 + k4S) · Etotal · S

K1K2 + K2S + S2 , where

K1 = (k−1 + k2)/k1 and K2 = (k−3 + k4)/k3. Let’s examine two cases:
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• First let’s consider the case of non-cooperation – the binding sites act independently
and identically. So k1 = 2k3 = 2k+, 2k−1 = k−3 = 2k− e 2k2 = k4 where k+ e k−
are reaction rates for binding to each of the sites individually. The factor 2 occurs
because there are two identical binding sites involved in the reaction, doubling the

binding reaction rate. Doing K =
k− + k2

k+
, we obtain K1 = K/2, K2 = 2K and so

υ =
2k2Etotal(K + S) · S

K2 + 2K + S2 =
2k2Etotal · S

K + S

i.e. the reaction rate with two binding sites is exactly twice the speed for only one
place.

• Next, consider the case of positive cooperation, where the first substrate binding
molecule is slow and this first connection turns the second fastest. This implies that
k1 → 0 and k3 → ∞, keeping k1k3 constant. In this case, reaction speed is

υ =
VmaxS2

K2
m + 2K + S2

where K1K2 = K2
m e Vmax = k4Etotal.

In general, if the enzyme has n binding sites, then

υ =
VmaxSn

Kn
m + 2K + Sn , Hill equation (1.18)

The exponent n is generally determined from experimental data and can be non-
integer, therefore not equal to the number of active sites.
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Chapter 2

The Cell Cycle: An overview

I Different phases

Cell proliferation involves the reproduction of a cell to originate two daughter cells, each
with the potential to originate their own offspring. This activity in multicellular organisms
is fundamental not only to produce cells essential for development and growth, but also
to replace cells as they die, and it functions in a periodical fashion, following a sequence
of stages. This periodic sequence is called the cell cycle.
The cell cycle of eukaryotic cells can be divided in two main events: replication of DNA,
known as S phase, and Mitosis, known as M Phase, followed by cytokinesis. Between S
phase and M phase the cell enters G1 and G2 phase, in which different concentrations
of biomolecules change. The set of phases which includes G1, S and G2 phases is called
interphase . When the cell is not in mitosis nor in interphase, it means it is in a quiescence
state, the so called G0 phase, or is preparing itself for apoptosis, i.e. programmed cell
death.
After cell division, each one of the daughter cells enter G2 phase, in which they prepare
to enter mitosis. Mitosis proceeds through a series of stage conversions characterized by
the location and behaviour of the chromosomes. Some of the conversions during mitosis
are irreversible transitions. The first stage during mitosis is called prophase, in which
the chromosomes within the nucleus rearrange themselves to become condensate. In
warm-blooded creatures with small chromosomes, this stage can last less than 15 minutes.
At some point of prophase, the cell commits to mitosis, i.e., it passes through a series of
biochemical changes which are irreversible transitions. Before this point in prophase is
reached, chromosome condensation can be reversed by physical or chemical alterations to
the cell. Prophase in eukariotic cells is also commonly marked by the appearance of two
centrosomes, which is a molecular arrangement of microtubules whose function is to help
stabilizing the structure of the cell. The decomposition of the nuclear envelope signals the
beginning of the prometaphase. During prometaphase, the chromosomes interact with
the two centrosomes and their associated arrays of microtubules to form the spindle. As
the chromosomes become attached to the spindle, they go through a series of complex
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motions called congression, which make up the movement of the chromosomes to a plane
at the "spindle equator", halfway between the two poles. Even though complex, the events
that make up congression are reversible. In most cells, prometaphase is the longest stage
of mitosis, since it lasts until all of the chromosomes are positioned at the equator. This
may take just a few minutes in embryos or up to several hours in highly flattened tissue
cells.
Once the chromosomes are all lined up in the spindle equator, the cell is said to be in
metaphase. Metaphase ends when the two sister chromatids of each chromosome sep-
arate, beginning anaphase. The separation of chromatids in the beginning of anaphase
marks another point-of-no-return in mitosis, because after the separation the "glue" hold-
ing together the chromatids is destroyed. Following separation, each sister chromatid
moves towards a different pole of the spindle. The two poles themselves move farther
apart. As the two groups of chromosomes move apart, the spindle disassembles.
The final stage of mitosis, telophase, begins when each of the two groups of chromosomes
start forming their own nucleus (see figure 2.1).

Figure 2.1: The cell cycle (Weinberg)

After mitosis is successfully over, the cell is ready to divide. Eukariotic cells perform
this crucial event in reproduction, by constricting between the two newly separated sets
of chromosomes in a phenomena called cytokinesis. The cell then enters G1 phase, in
which it prepares for DNA replication phase by synthesizing mRNA. In this phase, a very
important point-of-no-return was identified, called the restriction point. The restriction
point is explored in more detailed in chapter 3. The phase following G1 phase is the
S phase, during which the DNA is duplicated. The cell then enters G2, growing and
preparing itself for another round of mitosis, hence completing the cycle.
The cell cycle’s average duration is 16 hours (15 hours for interphase and 1 hour for
mitosis), varying according to cell type.

In an adult, more than 25 million cells undergo cell division per second. The magni-
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tude of this number justifies the need for a precise mechanism of regulation of the cell
cycle. The biomolecules that regulate this cycle are the cyclins (Cyc’s) and the cyclin
dependent kinases (CDK’s), proteins and enzymes, respectively. The concentration of
cyclin proteins is dependent on the transcription of its gene and by subsequent regulated
protein degradation. The pairing of cyclins to the CDK’s is highly specific. Cyclins are
regulatory subunits of their CDK’s, and upon binding of a cyclin to its CDK partner, the
cyclin induces a conformational change in the catalytic subunit of the CDK revealing its
active site. Different Cyclin/CDK complexes are present at specific phases in the cell
cycle, and they are important regulators of irreversible phase transitions.
To enter the cycle from G0 phase, some external signal must be transducted through the
cell’s cytosol reaching the nucleus and promoting transcription of CycD and CDK4,6, thus
conducing the cell to enter G1 phase. This external signal is transducted via signalling
pathways, two of which are explored in chapter 5.
Cyclin D plays a role in the regulation of expression of the cyclin E gene, and consequently,
during the transition between G1 and S phase, CycE/CDK2 complexes increase their
concentration in the cytosol, allowing for the transcription of CycA and CDK2, which,
in the form of complex, promotes the movement to the G2 phase of the cycle, where
CycA/CDK1 complexes are predominant, leading the passage to mitosis, where, in turn,
CycB/CDK1 complexes are in abundance. Activation of the anaphase-promoting com-
plex (APC) by binding of cell-division cycle protein 20 (CDC20) and cadherin 1 (CDH1)
is necessary for exiting mitosis. This completes the cycle of concentrations of Cyclin/CDK
complexes, right before the cytokinesis event.
Two families of inhibitors are involved in regulating Cyclin/CDK activity: the p16ink4a

(INK) family and the p21 (Cip/Kip) family. The INK proteins bind CDK’s 4/6 and
interfere with the binding of CDK’s 4/6 to Cyclin D. The p21 proteins interact with both
cyclins and their associated CDK’s, blocking the ATP-binding site, thus disabling this site,
blocking kinase activity (hence the designation inhibitor).

II Cell cycle arrest and Apoptosis

The cell cycle can be disrupted by the cell itself if something is not according to the regu-
lation we summarized in the previous sections. As it was mentioned in the last section,
the cell cycle is armed with specific checkpoints to prevent anomalies in development
by correcting or stopping any malformations or errors before committing to following
phases in the cycle. An extensively studied checkpoint is the G1 checkpoint which, for the
purpose of this thesis, will be explored in more detail in the following section. Another
one of these checkpoints can be found during G2 phase, after S-phase and before mitosis.
When a G2 cell was fused with an S-phase cell, the G2 phase nucleus "waited" for the
S-phase nucleus to finish DNA replication before undergoing nuclear envelope breakdown
and entering mitosis. This suggested that a mechanism exists to prevent mitosis until
DNA replication is complete. There is also a checkpoint that monitors DNA replication
process during S-phase.
Even though these surveillance mechanisms happen during distinct phases of the cycle,
they all consist of a sensor that detects a defect in an event, a signalling module that
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transmits a signal upon detection of an error, and a target that is part of the cell cycle
engine controlled to halt cell cycle progression. In some cases, this conduces the cell
to a specific fate called programmed cell death. In general, it occurs by the mechanism
of cell death denominated apoptosis. Although most programmed cell deaths occur by
apoptosis, these are not the same thing. Programmed cell death refers specifically to cell
death occurring at a defined point in development, whereas apoptosis is defined by mor-
phological features of the cell death. Apoptosis is a mechanism of defense developed to
protect multicellular organisms from malformations in cell development and/or activity,
for it conduces the cell to destroy itself without damaging neighboring cells. It does so by
shrinking, condensing, tearing up its outer layers and breaking the DNA into fragments
[10]. However, apoptosis must be carefully regulated. Inadequate activation of apoptosis
can originate the unnecessary destruction of cells seen in some neurodegenerative dis-
eases.
It is important to note that not all cell death is apoptotic. It can also happen due to
necrosis,i.e., disabling damage or trauma, making it impossible for the cell to survive.
Apoptosis, on the other hand, is stimulated when the DNA is damaged, the cell suffers
withdrawal of essential growth factors or nutrients or it is attacked by cytotoxic lympho-
cyte.
When DNA is damaged, the ATM ("ataxia-telangiectasia mutated") kinase is activated,
culminating in p53 concentration increase, which in turn gives place to a sequence of
events that turn on Caspase-9 and ultimately induces apoptosis. The details on this
mechanism are far too extensive for the purpose of our model, which is why we kept the
apoptotic dynamics fairly simple, as we explain in chapter 7.

III The Restriction Point Regulation

In the late G1 phase there is some device that allows the cycle to continue regardless of
mitogenic activity at the membrane. This point, called Restriction Point, was set between
the 3rd and the 4th hour of G1 phase [11], and its regulation is managed by the expression
of the retinoblastoma protein, Rb.
Retinoblastoma is a rare childhood cancer. It is caused by a mutation in the retinoblastoma
tumor supressor gene, named after the disease, and found in chromosome 13 [46]. The
retinoblastoma protein, Rb, whose transcription is done from the retinoblastoma gene,
plays an important role in regulating the restriction point along with E2F transcription
factor family, which is crucial for the expression of genes needed for S phase. Active E2F,
migrates to the nucleus of the cell where it promotes DNA replication, initiating S phase.
Active Rb interferes with the transactivation domain of E2F, deactivating E2F and thus
inhibiting the passage to S phase. Rb is activated in its hypophosphorylated form and is
deactivated in its phosphorylated form. In response to a growth signal, CycD/CDK4,6
complexes inhibit active Rb, phosphorylating it partially, leading to a partial activation
of E2F. PP1 phosphatase dephosphorylates Rb, increasing the concentration of active
Rb and thus promoting the inhibition of E2F. Along with CycE/CDK2 complexes, E2F
promotes the passage through the G1-S phases frontier, hence leading to DNA replication,
independent of further mitogenic signals. At this point, the cell enters in automatic

12



Mathematical models in cancer• 2017

program.
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Chapter 3

P53: The Guardian of the Genome

I P53 pathway

The p53 gene, found in 1979 by separate groups of investigators [5-8], and set to be a
tumor supressor gene in 1989 ([17], [18]), expresses the p53 protein, a central biomolecule
in cancer research, specifically in the study of pathways within the cell. This is due to the
fact that virtually all cancers exhibit some sort of mutation of p53 gene or modifications
to its pathway. The study of p53 pathway revealed the core of its regulation as well as
several links that it establishes between other major pathways, such as the one of Rb
protein, E2F and Ras. The concentration of p53 protein within an unstressed cell is low,
however it has a fast turnover when the cell is under stress or has suffered DNA damage.
Upstream stress activators include radiation-, drug- or carcinogen-induced DNA damage.
P53 can elicit downstream cellular effects, which include transient or permanent cell cycle
arrest, DNA repair, apoptosis, and inhibition of angiogenesis. The ability it has to induce
cell cycle arrest allows for the repair of DNA damage. Cell cycle inhibition and apoptosis
are, however, two independent effects of p53.
The core regulation of p53 protein is co-protagonized by the protein Hdm2 (Mdm2 in
the mouse) that inhibits p53 protein by binding to it directly. P53 protein promotes
the transcription of Hdm2, defining a negative feedback loop between p53 protein and
Hdm2 [19], [20]. p14ARF (p19ARF in the mouse) in turn inhibits Hdm2 and its activity is
inhibited by p53 protein. The transcription factor E2F also plays a role in p53 regulation,
by sustaining a negative feedback loop with p14ARF by inducing it while being inhibited
by it [9]. In [21], downstream events were explored in distinct pathways, as well as useful
positive and negative feedback loops for p53 protein.
Inhibition of cell cycle involves the transcriptional induction of p21 gene. Its product, the
p21 protein, inhibits several Cyclin/CDK complexes and causes a pause in the G1 to S
(and G2 to mitosis) transition of the cell cycle.
Let us resume the main downstream event triggered by p53 protein activity which culmi-
nates in cell cycle arrest: the p21 gene product, a Cyclin Dependent Kinase Inhibitor (CKI),
that inhibits CycE/CDK2 complex is a relevant molecule in p53-mediated G1-S phase
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arrest. Its transcription is induced by p53 protein activity. In addition, p21 also binds
PCNA (proliferating cell nuclear antigen), a protein that has a role in DNA synthesis
and DNA repair. The interation with p21 inhibits PCNA’s role in DNA replication. This
facilitates the action of p53 in stopping cell cycle. The regulation of p21 gene is therefore
important in p53 decision-making process.
There is also CDC25 inhibited by 14-3-3-sigma, and CDC2 induced by CDC25 and CycB,
the latter inhibited by Gadd45. CDC2 promotes Cell Cycle arrest between G2-S phase.
This last pathway is not of our interest, as it concerns another checkpoint in the cell cycle,
not the restriction point. The cell cycle arrest pathway in which we focused our attention
was the one concerning the checkpoint during G1-S phase transition, and is obviously of
the most relevance for studying the regulation of the restriction point.
Cysteine aspartate-specific proteases (caspases) regulate many of the cellular and bio-
chemical changes in the dying cell undergoing apoptosis. They do not need to be
newly synthesized upon activation of apoptosis, as they are present in inactive forms.
Executioner, initiator and inflammatory caspases are the three main types of caspases.
Executioner caspases are responsible for cleaving many different proteins, and it has been
estimated that there are approximately 500 substrates for caspases in mammalian cells. In
most cases of apoptosis, the cleavage of these executioner caspases is mediated by another
set of caspases, the initiator caspases. The activation of the executioner caspases by the
initiator caspases defines the different pathways of apoptosis.
Another important element in the initiation of apoptosis is cytochrome c, which is one
of the components of the electron transport chain in the mitochondria. It has the ability
to bind to the apoptotic protease activating factor 1 (Apaf-1) once released from the
mitochondria, creating a protein designated apoptosome which will proceed to activate
an initiator caspase, caspase-9, forming a complex which will trigger cell destruction.
The p53 pathway that culminates in apoptosis is triggered by ATM. Active p53 releases
cytochrome c from the mitochondria [50], thus promoting binding to apaf-1 and subse-
quent activation of caspase-9, while in contrast protein kinase B (Akt) negatively regulates
pro-apoptotic proteins, thus inhibiting the activity of cytochrome c/apaf-1/caspase-9
complex. (see model diagram 7.1).
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Chapter 4

Signalling Transduction Pathways

To carry out biochemical signals throughout the cell, a sophisticated mechanism evolved
which includes several pathways collaborating in the complex intracellular environment.
In this section we explore two major signalling transduction pathways which are impor-
tant to the cell cycle paradigm since they influence its regulation direct or indirectly.

Epidermal growth factors (EGF) and its family of receptor tyrosine kinases are important
members of the mechanism that underlies signal transduction, gene expression regulation
and cell proliferation induced by an extracellular growth factor. The members of the
receptor tyrosine kinase receptor family contain an extracellular ligand-binding domain,
a single transmembrane domain, and a cytoplasmic protein tyrosine kinase domain. The
pathway of the signal from the extracellular source to the cell’s nucleus, where the gene
expression is preformed, is done in multiple layers forming the so called MAPK cascade
signalling pathway.

I The MAPK cascade signalling pathway

MAPK Cascade signalling pathway (Mitogenic-Activating-Protein Kinase Cascade), is a
main mechanism for protein synthesis motivated by extracellular signals. It depends on
MAPKKK, MAPKK and MAPK whose phosphorylated form is the activated form.

Extracellular signals, also called Ligands, such as Growth Factors, bind to transmem-
brane receptors, whose cytosolic domain may be allosterically altered, enabling its phos-
phorylation, inducing the binding of Growth factor receptor-bound protein 2 (GRB2)
molecule, activating it. Active GRB2 activates Son of Sevenless (SOS), which in turn
phosphorylates Ras-GDP complex to Ras-GTP complex. The latter can then activate
Raf (MAPKKK) by binding. Raf will proceed the mechanism by phosphorylating MEK
(MAPKK). Activated MEK promotes the phosphorylation of ERK (MAPK). Finally, active
ERK promotes the activation of transcription factors and subsequent migration to the
nucleus where it will bind to DNA transcription sites, leading to protein synthesis [7].
Phosphorylated ERK promotes cell growth [22]. Important transcription factors are the
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Early Response Genes (ERG) c-Fos, part of the Fos family of transcription factors, the protein
c-jun and the protein Myc. This cascade would continue indefinitely while Ras-GTP
complex continues active. This is why this cascade also induces the transcription of
GAP (GTPase-Activating Proteins) regulatory proteins, which act like a switch off button,
phosphorylating Ras-GTP complex back to Ras-GDP complex, inhibiting the rest of the
cascade and thus stopping the synthesis of the specific proteins that the mitogenic signals
triggered. It has been documented that the silencing of GAP proteins is related to some
human cancers [24], since it leaves the regulation of Ras protein to chance, resulting in
the deregulation of the concentration of Ras, and consequently of the whole Cascade [see
figure 4.1].
Overall, this signalling pathway needs to be well regulated to avoid cancers, because if
one of the biomolecules involved in it were to be mutated, it could imply the consistent
transcription of proteins necessary for deregulated growth and division, and thus it is
only natural the study of drugs that reverse the "on" or "off" states of these biomolecules
for cancer treatment, such as in [27].

Figure 4.1: The MAPK cascade signalling pathway

II PI3K-AKT-mTOR pathway

Another important intracellular transduction pathway is the PI3K (phosphatidylinositol-
4,5-bisphosphate 3-Kinase)-AKT-mTOR (mechanistic target of rapamycin) pathway (figure
4.2). This pathway is not as well studied as the MAPK cascade, however there are relevant
dynamics that are sufficiently well documented, as the ones we describe in this section.
The regulatory subunit of PI3K, binds to phosphotyrosine peptide motifs in receptor
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protein tyrosine kinases (RTK’s) or the insulin receptor substrate 1 (IRS-1). This activates
PI3K, which converts PIP2 (Phosphatidylinositol 4,5-bisphosphate) to PIP3 (Phosphatidyli-
nositol (3,4,5)-trisphosphate), a reaction that is counter-acted by PTEN. PIP3 binds to
AKT (Protein kinase B), forming the PIP3/AKT. PDK1 interveins to phosphorylate this
complex, fully activating it. Active PIP3/AKT phosphorylates TSC2 (Tuberous sclerosis 2),
deactivating it. TSC1 (Tuberous sclerosis 1) and active TSC2 form TSC1/TSC2 complex,
which inhibit Rheb (Ras homolog enriched in brain) activity. In turn, Rheb promotes
mTORC1 (mammalian target of rapamycin complex 1) activation. A feedback control
in this PI3K/AKT pathway is the inhibition caused by mTORC1 in RTK dynamics, by
phosphorylating IRS1, and also inhibiting EGF receptor, ERB2 and IGF1 receptor, therefore
not allowing for interaction with PI3K and subsequent activation and downstream of the
pathway [28].

Figure 4.2: The PI3K/AKT signalling pathway
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Chapter 5

Cancer: An overview

I Introduction

The biological revolution of the twentieth century, triggered by Watson and Crick’s
discovery of the DNA double helix, reshaped all fields of medical study, cancer research
being one of them. Cancer started being studied as a genetic disease, which allowed
researchers to link the genetic traits of cancer behaviour to intra- and inter-cellular
pathways that come about. With the development of technology, these cellular pathways,
were - and still are - being analyzed in evermore detail, promoting the establishment of
new concepts in the field of biology, biochemistry and, specifically, cancer research.
Thanks to this improvement in scientific knowledge, cancer is now seen as a disease
with a high level of complexity. The development of cancer is linked to many systems in
complicated ways, and as such it comprehends a large number of degrees of freedom,
making it particularly difficult to model due to the large number of variables that this
implies. To say the same from a biological point of view, the eukariotic cell’s is not an
isolated system, and so interacts with its environment and responds to input stimuli
in complicated ways. These output responses of a cell are based in many pathways
created by the motion and/or action of particles, biomolecules or organelles, inside
and outside the cell’s membrane, and are orchestrated by the cell’s genetic information.
This is what allows the cell to produce proteins which function in some part of its
metabolism. However, the genetic information, arranged in the DNA, does not operate in
a deterministic way, but rather in a strong stochastic way. This complicates the study of
genetic diseases, and hence this complicates the study of cancer. Not only the DNA of a
particular cell is initially formed from another cell whose DNA may not be exactly the
same due to mutations, but it also keeps on changing throughout the cell’s life according
to its environment. These changes in genetic information can originate a cancer cell. And
a cancer cell generates offspring with potentially the same anomalies it has.
Even though the problem of modeling cancer seems to complicated to be done using
uniquely deterministic approach and no type of data science whatsoever, our approach to
cancer is done in a more humble way. Instead of tackling the disease from all the possible
directions, studying the space and time dynamics of each component of all the possible
pathways and deriving stochastic parameters to count for the randomness present in
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nature, i.e., modelling each and every feature of cancer, we decided investigating only
a subset of the characteristics, preparing the ground for posterior research to introduce
more complexity to our model. This takes us to the next section.

II The hallmarks of cancer

In the year 2000, Hanahan and Weinberg defined six hallmarks of most, if not all, cancers.
They proposed that acquiring the capability for autonomous growth signals, evasion of
growth inhibitory signals, evasion of apoptotic cell death, unlimited replicative potential,
angiogenesis (formation of new blood vessels), and invasion and metastasis are essential
for carcinogenesis. More recently, two enabling characteristics were added, these being
genome instability and tumor-promoting inflammation, that are crucial for acquiring
the six hallmarks, and two emerging hallmarks, reprogramming energy metabolism
(metabolic stress) and avoiding immune destruction, were highlighted [see figure 5.1].
Reprogramming energy metabolism and avoiding immune destruction are considered as
emerging hallmarks because their relationship to the other mentioned hallmarks requires
further research, even though it is clear they are relevant to carcinogenesis.
Healthy cells need external signals, such as growth factors, to divide, and they respond
to inhibitory signals to maintain homeostasis (most cells of the body are not actively
dividing). They have an autonomous counting device to define a finite number of
cell doublings after which they become senescent. This cellular counting device is the
shortening of chromosomal ends, called telomeres, that occurs during every cycle of DNA
replication. Normal cells also maintain their location in the body, and generally do not
migrate if that is not part of their function (for example, blood cells). These cells depend
on blood vessels to supply oxygen and nutrients, but the vascular architecture remains
more or less constant in an adult, meaning that there is no induction of angiogenesis. A
healthy cell is eliminated by apoptosis, often in response to DNA damage.
Cancer cells on the other hand are independent of growth signals, and acquired mutations
can shorten the pathway of these signals, leading to unregulated growth. Also, they
have the capacity of ignoring growth inhibitory signals. There is evidence to support
the theory of immune surveillance which states that the immune system can recognize
and eliminate cancer cells. Cancer cells may be able to interfere or pass unnoticed by
the immune response of the body so as to avoid immune destruction. This is one of the
emerging hallmarks mentioned previously. Contrary to normal cells, cancer cells maintain
the length of their telomeres, by reconstruction via the activity of the protein telomerase,
which results in unlimited replicative potential. Virtually all tumors contain inflammatory
immune cells. Inflammation is an immune response that can help that acquisition of the
core hallmarks of cancer, which is why it is considered an enabling characteristic. This
happens, for example, when inflammatory cells provide growth factors and enzymes that
promote angiogenesis and invasion. Metastasis, i.e., the movement of cancer cells to other
parts of the body, is a major cause of cancer deaths. Alterations of the genome may affect
the activity or levels of enzymes involved in invasion or molecules involved in intercell or
extracellular adhesion. Cancer cells also include angiogenesis, needed for tumor survival
and expansion. Altering the balance between angiogenic inducers and inhibitors can
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activate the angiogenic switch, and cancer cells promote this event. Acquiring the core
hallmarks of cancer usually depends on genomic alterations, which can be caused by
external sources and/or faulty DNA repair pathways, contributing to genomic instability.
Thus, genome instability and mutation is an enabling characteristic of cancer. Evading
apoptotic signals, which are crucial to induce apoptosis, i.e., programmed cell death, is
a feature of every cancer cell. Finally, cancer cells have the capacity of reprogramming
their own energy metabolism, considered to be an emerging hallmark. This is a useful
characteristic for maintenance of energy given the uncontrolled cell division cancer cells
go through. The demand in fuel and byosynthetic precursors is matched thanks to the
intermediation of glycolysis carried out by cancer cells even in the presence of oxygen.
There two are major types of mutated genes that contribute to carcinogenesis, which are
the oncogenes and the tumor suppressor genes. Generally, an oncogene is a gene mutated
such that its protein product is produced in abundance, or has increased activity and
therefore acts in a dominant manner - i.e., the mutation is only required in one allele to
express an effect - to initiate tumor formation. Tumor supressor genes code for proteins
that play a role in inhibiting both growth and tumor formation. Loss of growth inhibition
occurs when mutations cause a loss of function of these genes. Tumor supressor genes are
mainly recessive genes, which means that usually it suffices that one allele is kept intact
to inhibit growth. However, recent evidence suggests there is a mechanism for particular
tumor suppressor genes, called haploinsufficiency, whereby only one mutated allele can
lead to the cancer phenotype.

Figure 5.1: The hallmarks of cancer
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III Relevant Pathways in Cancer and their deregulations

Even though cancer is a very complex disease, in the last decades, thanks to the develop-
ment of technology, specific pathways and key elements of the cell have been identified
and linked to carcinogenesis. The MAPK cascade signalling pathway and the PI3K-AKT-
mTOR pathway are two major examples. We will explore how these two pathways, as
well as key elements in the cell cycle, are related to cancer development.
The oncogenic activation of Ras is observed in about 30% of human tumors. This alteration
of the Ras protein implies a consequent loss of GTPase activity of Ras. In normal circum-
stances, GTPase activity is required to return active Ras-GTP to inactive Ras-GDP. This
leads to a constitutive activation of Ras protein, even in the absence of mitogens. Some
specific mutations in the Ras gene are characteristic for specific cancers. The majority of
mutations in Ras gene occur in codons 12, 13 and 61. A typical mutation within codon
12 that results in the substitution of valine (GTC) for glycine (GGC) is characteristic of
bladder carcinoma, while substitution of serine (AGC) is common in lung cancer.
Another protein vulnerable to mutations is the B-Raf protein. The oncogenic form of
B-Raf is common in melanomas. B-Raf’s oncogenic activation causes kinase over-activity
and insensivity to feedback mechanisms. MEK mutations, on the other hand, are less
common: approximately 1% of tumors contain MEK mutations and no mutations have
been identified as of 2010.
The PI3K pathway is commonly altered in colon cancer [51]. PI3K enhancement, AKT
hyperactivity and PTEN loss are just some of the most common deregulations in this
transduction pathway.
We already discussed in chapter 2 the Rb protein functions in the cell cycle. When this
mechanism is corrupted, the cell can proceed to DNA replication even with DNA errors
or other types of malfunctions, which can originate cancer. Rb is an indirect regulator of
transcription for specific gene expression that affects cell proliferation and differentiation.
Even though the Rb gene is expressed in all adult tissues, only retinoblastoma and a
very few other types of cancer are initiated by loss of Rb. But still, the Rb pathway is
inactivated in most human tumors.
A very important altered pathway in cancer is the p53 pathway, since it is deregulated
in virtually all cancers. This high frequency may be the result of tumor cells that escape
tumor suppressor effects of p53 through natural selection. p53 mutant cells are charac-
terized by genomic instability. Over 75% of p53 mutations result in single amino acid
substitutions, and in this sense p53 differs from other tumor suppressor genes, in that
other tumor suppressors are usually characterized by nonsense or frame-shift mutations
that lead to inactivated truncated proteins. Over-expression of the Hdm2 protein has been
demonstrated to affect the regulation of p53, leading to a "p53-inactivated" phenotype.

IV Molecular targets in cancer therapies

The development in technology not only allows researchers to identify the origins of
diseases but also to target core effectors in molecular pathways. This knowledge is vital
for the field known as personalized medicine, which, in contrast to one-fits-all therapies,
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investigates adequate individual treatments of diseases of each patient. As each cancer
is intimately linked to genetic information of the host, it is not to wonder the progress
that cancer therapies can have with the development of personalized medicine. These
therapies target common deregulated pathways in human cancers, such as the ones
discussed in the previous section.
Although 20% of all tumors have activating mutations in Ras, targeting downstream
effectors has proved to be valuable as a cancer treatment. Several strategies to target
Raf have been developed. The same idea used to target other kinases has been put
into practice with Raf. A multi-kinase inhibitor that targets ATP-binding site of Raf,
called NEXAVATARTM was approved for treatment of advance renal cell carcinoma and
hepatocarcinoma in countries like the USA, Switzerland and Mexico. Results exhibited
a reduction in downstream MAPK phosphorylation in the blood of patients under the
well-tolerated oral treatment. Inhibiting MEK is a possible approach for Ras or Raf
mutated patients. Several allosteric MEK inhibitors (inhibitors that do not compete with
ATP) are in clinical trials.
The role of p53 as a core tumor suppressor and the high incidence of its mutations in
cancer suggest promising p53-based therapies could be developed. The different ways
p53 can be altered indicate that studying the p53 genotype prior to start a treatment could
be the key for the success of p53-based therapies. Gene correction is therefore an obvious
approach. Adenoviruses, such as Onyx 015 adenovirus, have been used to selectively
kill cancer cells with p53 mutations. Another way to target p53 pathway is to develop
inhibitors of the p53-Hdm2 interaction since, as seen on chapter 3, Hdm2 inhibits p53.
Diminishing tumor growth by 90% has been demonstrated in animal models following the
idea of inhibiting p53-Hdm2 interaction. The success of chemotherapy and radiotherapy
is often limited by side-effects in healthy tissue, and many of these side-effects are, in part,
mediated by p53. There is normally high expression of p53 in tissues that are sensitive to
these therapies and the DNA damage caused by them induces p53 to cause apoptosis,
which is the mechanism behind the side-effects. Therefore, temporarily and reversible
suppression of p53 in normal tissue may help alleviate the side-effects, but only in patients
with tumors that have lost p53 function.
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Chapter 6

State-of-the-art Models and
Simulations

I Model and Simulation of Restriction Point regulation

Novak and Tyson constructed a deterministic mathematical model for the regulation of
the restriction point based on the Cyclin/CDK complexes, the Rb-E2F interaction and the
signal-transduction pathway, Growth Factors - Early response genes - Delayed response
genes (GF-ERG-DRG) [3]. They assumed rapid message turnover for mRNA, that is,
steady-state for mRNA transcription from the point of view of the other reactions, which
occur in a longer timescale.
The GF-ERG-DRG is a brief pathway resuming the MAPK signalling Cascade that trans-
ducts extracellular signals through the cell’s membrane and across the cytosol, reaching
the nucleus and promoting the transcription of proteins. In this case, GF-ERG-DRG is
going to be the triggering system that controls the CycD synthesis. CycD then binds to
CDK4,6, also assumed to be fast enough to be in steady-state quickly, forming complexes
CycD/CDK4,6 that phosphorylate Rb with the help of Cyclins A and B, inhibiting its
action on E2F inhibition, therefore releasing free E2F. PP1 phosphatase promotes the
dephosphorylation of Rb and is inhibited by CycE/CDK2, CycB/CDK1 and CycA/CDK2
complexes. CycE/CDK2 synthesis is in turn induced by E2F, and it can bind to Kip1,
leading to the inhibition of CycE activity. This inhibiton by Kip1 is also applied to CycA.
Kip1 degradation is mediated by CycB/CDK1 and CycA/CDK2. The former is medi-
ated by Cdh1, that targets CycB for degradation. CycB, along with APC, promotes the
deactivation of Cdh1, therefore establishing a mutual antagonism. Finally PPX mediates
the synthesis of an intermediary enzyme, IE, whose phosphorylated form promotes the
activation of CDC20. Active CDC20 and APC induce the degradation of CycA.
One of the most important features of this model is the growth and division simulation
of the cell. The rate of mass is determined by the level of "General machinery", GM,
controlled by the concentration of Rb and the absence of growth factors.
Using their model, they have simulated deregulations, such as cell lacking Rb, which
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caused the loss of cell volume, and the continuing of the cell cycle beyond the restriction
point. The model is an adaptation of their own yeast model, [4], to mammalian cells.

II Conradie Model and Simulation of Cell Cycle regulation

In the paper "Restriction Point Control of the Mammalian Cell Cycle via the CycE/CDK2/p27
complex", [8], the authors constructed a new framework in the restriction point model of
Novak and Tyson, focusing on the CycE/CDK2/p27 complex. This model includes the
dynamics of p27 and excludes the dynamics of Kip1 and Cyclins/Kip1 complexes. In this
way, protein p27 becomes the cyclins’ activity inhibitor – for every time p27 is active, the
cyclins must be inactive. It does so by binding directly to the cyclins A,D,E complexes
and keeping them inactive for the appropriate time in the cell cycle.
The changes in CycE/CDK2/p27 reactions lead to a shift in the restriction point, which
allowed the authors to conclude that a perturbation in the concentration of this complex
might cause the restriction point to happen earlier than expected.

III Kholodenko Model for the MAPK cascade pathway

The quantitative computational model done in [6] was performed around the MAPK
cascade pathway, studying negative feedbacks, ultrasensitivity and emergent oscillations
which simulate the nature of cellular biochemical pathways.
In this model, MKKKK (Ras) phosphorylates MKKK (Raf) to MKKK-P (Raf-P). In turn,
MKKK-P phosphorylates MKK (MEK) to MKK-P (MEK-P) and MKK-P to MKK-PP (MEK-
PP) which, finally, phosphorylates the bottom layer of the cascade, i.e., MAPK (ERK) to
MAPK-P (ERK-P) and MAPK-P to MAPK-PP (ERK-PP). In this model, MKKKK (Ras) is
not used as a variable, as its activity is simulated recurring to the negative feedback loop
established by the downstream activity of ERK-PP. In this way, ERK-PP directly influences
the concentration of MKKK (Raf).
It makes use of Michaelis-Menten kinetics [45] as main rate functions.
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Chapter 7

Updated Mathematical Model of the
Cell Cycle

The previous sections resumed the theory on which we based the construction of a wider
updated mathematical [Figure 7.1], compared to that of Novak and Tyson.
In this new model, the MAPK signalling cascade was constructed as in [6], except for
the fact that active ERK acts upon Ras-GDP phosphorylation, promoting it, instead of
promoting Raf phosphorylation. This way the cascade has in its structure the dynamics
of Ras, and maintains the feedback loop. It was also added another negative feedback,
through the inclusion of GAP protein, whose transcription is induced by the cascade and
whose inhibition on Ras-GTP decreases the flux of the cascade. The activity of the cascade
culminates in the regulation of ERG, whose influence on DRG models the transcription of
CycD [3].
The PI3K-AKT pathway was build inside another negative feedback loop - the inhibition
of RTK by active mTORC1 against the activation of the former by active Rheb. Activity
of AKT includes the formation of PIP3/AKT complex and the synthesis of CycD, which
allows a simple connection to the cell cycle. There are several cross-talks between MAPK
and PI3K-AKT pathways, and here we have focused only on two major influences acting
upon PI3K-AKT pathway: activation of PI3K by active Ras and inhibition of TSC1/TSC2
complex by active ERK.
E2F promotes transcription of p14ARF, suggesting another obvious link between models.
As for P53, its concentration is maintained low through normal cell cycle by inhibition
caused by Hdm2. The Hdm2 protein is downregulated by Rb, CycE/Cdk2 complex
and p14, following [21]. The apoptosis and cell cycle arrest events were added with the
features of the software used for the simulations, COPASI [48]. This is explained in more
detail in the next section (also, see notes on equations).
We based the core of our model, that is, the regulation of the Cyclins, in [8].
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Figure 7.1: Diagram of cell cycle dynamics divided according to specific functions in the model: gen-
eration of cell cycle oscillations through CDC20 and CDH1 reactions (green background);
MAPK cascade (grey background), connection between MAPK cascade and production of
Cyclin D through ERG and DRG synthesis (yellow background); PI3K/AKT pathway (light
purple background); cyclin A/D/E and p27 interactions (orange background); restriction
point regulation through E2F and Rb interactions (blue background); regulation of cell fate
by p53 tumor supressor (pink background).
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I Units of concentrations

The time dimension frequently used in intra-cellular activities is the hour, even though
some reactions take longer than others. Taking hour as the time unit, any reaction
much faster than one hour (suppose a reaction of the order of seconds), can be seen as
instantaneous, i.e., always in a steady state. For example, the time of messenger RNA
(mRNA) turn over (passage from RNA to protein) is much faster than protein reactions
time. From the time perspective of protein reaction, mRNA keeps roughly the same
concentration throughout time, and therefore d[mRNA]

dt ≈ 0, which does not really help
much in the system of differential equations unless the constant [mRNA] is used in
a parameter somewhere in the equations. However, in this thesis the parameters are
calibrated according to previous models and not directly from real-life dynamics.
To follow the modelling of Conradie (and also to be able to pick up the cell cycle model
from Tyson and Novak) we assumed the concentration variables are scaled in order to
have dimensionless Michaelis Menten parameters and rate constants with units hour−1

[5]. The concentration units are in µM, where M = mol/L.

II Simulation of Healthy Cell

As in [3], we implement in the model the cell cycle division, regulated by "mass", whose
concentration drops to half periodically (see notes on equations), as shown in [Figure
7.3]. The mass is the indicator of the current cell cycle phase. This is ought to depend on
external factors, such as growth factors, but the whole simulation is going to be performed
as if the healthy cell were in a stable environment, receiving periodical stimuli, and the
cancer cell in a proper environment for its development. Therefore, we exclude external
inputs for the model of both healthy and cancer cell, and can then focus on the internal
regulation of cell. This takes us to the second link: ERG/DRG dynamics are an isolated
system in Novak and Tyson model. As we discussed in the MAPK Cascade section, ERG
activity is induced by transcription factors at the bottom of the MAPK Cascade, thus
opening a hole in ERG/DRG isolation. For the sake of simplicity, we just assumed that
the biphosphorylated form of ERK has a positive impact in ERG concentration. Inspired
by Kholodenko [6], the model includes the MAPK cascade with a feedback created by
the influence of active ERK on the phosphorylation of Ras-GDP. This establishes a loop
around the MAPK cascade, generating one of the three sources of oscillation within this
model - the others being the dynamics of CDC20 and CDH1 [Figure 7.5], and the negative
feedback loop in PI3K-AKT pathway [Figure 7.4], which regulate the mass, which, in
turn, regulates the cyclins [Figure 7.6]. The Rb and E2F dynamics function as expected,
following the cell cycle [Figure 7.7].
When it comes to the regulation of Hdm2, we assumed a constant flux of synthesis plus
the induction by phosphorylated P53. The flux of synthesis is larger than the dependency
on phosphorylated P53. Here the tumor suppressor is playing the role of regulating
apoptosis and cell cycle arrest. Its concentration is low when Hdm2 is present, binding
directly to it and increasing the concentration of Hdm2/P53 complex.
Simulating Cell Cycle Arrest implies a steady behaviour of cyclins concentration and
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cell volume for the time scale we are dealing with. It was therefore added a switch-like
parameter in the rate functions of Cyclins, General Machinery, CDH1 and mass, regulated
by the condition of having a minimum amount of p21.
The programmed cell death can be triggered in two ways: from within the cell or through
extracellular signals. Intracellular induction of apoptosis is the only one we concerned
this project about, and therefore the intracellular pathway is the mechanism on which the
simulation of apoptosis of the model is based on.
For the simulation of intracellular induction of apoptosis, it was added the conditions on
minimum amounts of ATM which, if crossed, will trigger the increase in P53 dependency
of Caspase-9. This induces a rapid construction of this protein, which will dismount the
cell from within by degrading cyclins and leading the mass to zero in a switch-like way.
This control of apoptosis and cell cycle arrest can be seen as very simple Boolean system.
All parameters in common to the mentioned models were maintained or only slightly
changed. New necessary parameters were chosen according to the desired oscillation
output and links between pathways, i.e., to allow the concentrations to sustain negative
or positive feedback loops and at the same time establish smooth connections between
distinct pathways of the cell cycle.
Notice that ERG, DRG and ERK concentration’s order of magnitude is 100 times larger
than the other ones. This is allowed to happen as long as the reaction parameters are
adjusted to the correct value, in order to avoid over-dosing the system’s reactions with
these species. It was simpler to adjust the parameters to the correct flow (synthesis rate
and degradation rate) of reactions than to alter initial concentrations, since Kholodenko’s
model was not obeying the same scale as Conradie’s.
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Figure 7.2: Cyclins A (green), B (blue),
D (pink) and E (yellow)
complexes concentration
in healthy cell model Figure 7.3: Mass of healthy cell model

Figure 7.4: PI3K (blue), PIP2 (green)
and PIP3 (yellow) concentra-
tions in healthy cell model

Figure 7.5: CDH1 (blue) and CDC20
(red) concentration

Figure 7.6: ERG (blue), DRG (red) and
ERK (green) in healthy cell
model

Figure 7.7: Hypophosphorylated Rb
(green), active E2F (blue)
and E2F:Rb complex (red)
regulations in healthy cell
model 33
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Chapter 8

Simulation of Common
Deregulations

After setting the model of a healthy cell, we can now proceed to simulate the cancer cell.
Since cancer is a set of diseases rather than just one easily generalized disease, we will ap-
proach this simulation in two different ways: first, making use of the relevant information
on MAPK cascade and PI3K/AKT pathway, on the p53 protein and its pathway, as well as
the Retinoblastoma protein and the E2F transcription factor, to execute alterations on the
model so as to simulate the beginning of a random cancer, which will deregulate some or
several pathways. Second, starting in a specific type of cancer - colon cancer - we will
alter the relevant pathways to then proceed to logical therapies described in literature.

I MAPK cascade signalling pathway in cancer

As a first approach to simulate cancer, the MAPK cascade dynamics in the model were
altered, as it is a reasonable target for cancer study [7]. Starting by assuming mutated Ras
or Raf proteins, such that its phosphorylating activity on Raf or MEK proteins, respec-
tively, continues. For mutated Ras, the binding to GTP is still ongoing but the binding
to GAP protein and inactivation by active ERK ceases to be possible - and thus Ras de-
phosphorylation form becomes rare in the cascade. For mutated Raf, the phosphorylation
form becomes dominant and therefore the oscillation effect inherited by the Ras stage
of the cascade is lost. It is expected that a severe deregulation along the cascade takes
place, affecting the ERG production and therefore DRG as well [Figure 8.1]. The cyclins’
periodicity overall does not suffer from this change, except that of CycD, whose amplitude
diminishes, as we see in [Figure 8.2].
The result produced by Ras or Raf mutations on ERG, DRG and CycD is the same when
it comes to severe inhibition of dephosphorylation of the biphosphorylated forms of MEK
and ERK. The impact is not as strong for the analogous change on monophosphorylated
MEK forms [Figure 8.3], but it clearly is for monophosphorylated ERK [figure 8]. ERK
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sensitivity in the MAPK cascade is more notorious than the one of MEK.
A possible deregulation to explore in the MAPK cascade is the GAP synthesis, which
inhibits directly active Ras. Increasing the GAP-dependency of inactivation of Ras and
turning the production of GAP faster at the same time yields a decrease in wave length of
the MAPK cascade [Figure 8.4] and a subsequent inhibition of the cell cycle [Figure 8.5].
p27 complexes are also affected [Figure 8.6].
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Figure 8.1: ERG (blue), DRG (red) and
ERK-PP (green) with inef-
ficient Ras-GTP hydrolysis,
Raf dephosphorylation or
dephosphorylation of ERK-P

Figure 8.2: Cyclin D with inefficient
Ras-GTP hydrolysis

Figure 8.3: ERG (blue), DRG (red) and
ERK-PP (green) with inef-
ficient dephosphorylation of
MEK-P

Figure 8.4: MAPK cascade components
(red, green, pink, light blue,
yellow) with strong depen-
dency on and fast production
of GAP (dark blue)

Figure 8.5: Cylins, CDH1 (dark blue)
and CDC20 (red) regulation
with strong dependency on
and fast production of GAP

Figure 8.6: p27-CycA (red), p27-CycD
(dark blue), p27-CycE (green)
and free p27 (light blue) with
strong dependency on and
fast production of GAP
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II PI3K/AKT pathway deregulations

The PI3K pathway is commonly altered in colon cancer [40]. PI3K enhancement and
PTEN loss are just some of the common deregulations in this transduction pathway. AKT
hyperactivity is another possible deregulation.
For PI3K overexpression, synthesis was enhanced, leading to an ever-increasing concentra-
tion and loss of oscillation pattern in Rheb, mTORC1 and TSC1-2 concentrations [Figures
8.7-8.9]. Deregulations that are caused by the MAPK cascade, through cross-talks, are
simulated in the colon cancer section below, due to their importance in this cancer.

Figure 8.7: PI3K overactivated

Figure 8.8: Active Rheb (dark blue), ac-
tive (green) and inactive
(light blue) mTORC1 in
overactivated-PI3K cell model

Figure 8.9: Active TSC1 (dark blue),
active (light blue) and in-
active (green) TSC2, and
TSC1:TSC2 complex (red) in
overactivated-PI3K cell model
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III CDH1 deregulation

Complete loss of CDH1 is implicated in 84% of lobular breast cancer [De Leeuw WJ; et
al. (December 1997)], which may imply that the presence of CDH1 is a strong factor
against lobular breast cancer. In the model, in absence of CDH1, i.e., with no synthesis
whatsoever of CDH1, the wave length of the cycles in CDC20, the cyclins, p27 complexes,
E2F and p14ARF are shortened and the amplitude of these cycles are smoothed [Figure
8.10-8.13]. As the mass only engages in division whenever CDH1 concentrations surpasses
a certain threshold, the overall volume of the cell increases with no type of regulation
[Figure 8.15]. Although it may seem a positive feature of a deficient-CDH1 cell not having
auto-induced division, like in cancer cells, this only happens due to the lack of cancer cell
mechanism to induce its own division in this model. One can imagine that after CDH1 is
removed completely from the cell, cell division is guided by another pathway, that is, a
pathway which does not depend on CDH1 concentration nor CDC20 synthesis to induce
cell division. Another outcome of this simulation is that p53 is not turned on [Figure
8.14], which means there is no apoptosis nor cell cycle arrest, and this combined with the
already mentioned hidden cancerous mechanism for self-regulation of division becomes
the perfect combination for the birth of a cancer cell.

Figure 8.10: CDH1 (blue) and CDC20
(red) in CDH1-deficient cell

Figure 8.11: Cyclins A (green), B(light
blue), D (pink) and E (yel-
low) in CDH1-deficient
cell
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Figure 8.12: p27:CycD:CDK4 (dark blue)
and all other forms of p27 in
CDH1-deficient cell

Figure 8.13: E2F and p14ARF in CDH1-
deficient cell

Figure 8.14: p21 (light blue), Hdm2
(dark blue) and p53 (pink)
in CDH1-deficient cell

Figure 8.15: Mass in CDH1-deficient
cell

IV Retinoblastoma mutation

If mutated, Rb can lose its ability to connect with E2F, not inhibiting its activity in proper
time during the cell cycle, and consequently enabling E2F to migrate to the nucleus
inducing the motion to S-phase in the cycle, moving past the restriction point. To simulate
this, the chemical reaction of active Rb binding to E2F forming the complex E2F:Rb was
shut off. This originated an increase in concentration of free E2F [Figure 8.16] and also
an anticipation of the cell cycle, as the phase of the oscillation gets shifted [Figure 8.17],
showing that the cell commits to an extra cell cycle earlier than in the healthy case, i.e., the
restriction point was shifted. As a result of that, the general machinery does not have the
proper time to build up, leading to an ever-decreasing mass in each cycle [Figure 8.18].
It is important to highlight that a similar result to the one observed in figure 8.17
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comes about for alterations in the reactions p27 + CycE : cdk2 → p27 : CycE : cdk2 and
p27 + CycE : cdk2← p27 : CycE : cdk2, as reported in [8].

Figure 8.16: E2F (dark blue), active
(light blue) and inactive
(green) forms of Rb in Rb-
mutated cell

Figure 8.17: CDH1 (dark blue) and
CDC20 (red) in Rb-mutated
cell

Figure 8.18: Mass in Rb-mutated cell

V P53 deregulated pathway

Any damage to the DNA is ought to induce the production of ATM, promoting p53 syn-
thesis, which can trigger events for apoptosis or cell cycle arrest, the latter also involved in
eventual repair mechanisms. If synthesis of p53 is deregulated, arising the appearance of
mutated forms of p53, the ability of the cell to induce apoptosis or cell cycle arrest might
be compromised. If mutated p53 is not able to promote p21 synthesis or Caspase-9 syn-
thesis, then the cell does not have any defense mechanism, and will eventually continue
through the cycle, passing errors in DNA to the daughter-cells, leading to irreparable
cases of tumorigenesis.
To simulate this, the modifying role played by p53 in p21 and Caspase-9 synthesis was
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unintensified and the level of ATM was increased. The purpose is to simulate DNA
damage in a mutated p53 environment. The result is clear [Figures 8.19-8.21]: the cell
could not proceed to cell cycle arrest nor apoptosis and therefore the division continued.
The concentrations of Hdm2 quickly reaches a constant level, since it has not enough
supply of p53 to bind with.

Figure 8.19: Hdm2 (dark blue), Caspase-
9, p53 forms, p14ARF and
p21 in cell with mutated
p53 such that it can no
longer activate p21 synthe-
sis

Figure 8.20: Hdm2 (dark blue), p53
(pink) and Caspase-9 (red)
in cell with mutated p53
such that it can no longer
activate Caspase9 synthesis

Figure 8.21: Mass in p53-mutated cell
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Chapter 9

Colon Cancer Simulation

According to the World Cancer Research Fund International, colorectal cancer, or colon
cancer, is the third most common type of cancer in the world and nearly 95% of colorectal
cancers are adenocarcinomas, i.e., abnormal growth of epithelial tissue with glandular
origin [51]. The molecular pathways our model simulates, are reasonable targets for
therapy of this type of cancer. The Ras/Raf/MEK/ERK cascade is deregulated in approx-
imately 30% of all cancers, Ras alone being mutated in 36% [42] and B-Raf (a specific
type of Raf) found mutated in 10% to 15% of colorectal cancers [41]. The PI3K catalytic
subunit alpha (PI3KCA) mutations are implicated in about 32% of colorectal cancers
[42]. Hyperactivation of AKT has been linked to tumorigenic development, increasing
cell survival, and was proved to be vital for colon cancer stem cells [43]. The regulatory
system of the cell cycle is also afflicted by Ras mutations, which come with raised ERK
activity [42]. On the other hand, Raf inhibitors have shown to be promising in certain
cancers, with clinically manageable effects [44].
There is a correlation between colon cancer stages of progression and specific additional
mutations: a normal cell with loss of APC can lead to a small benign polyp, which, with
k-Ras activation, can conduce the cell to a Class II adenoma. From this stage, if the cell
suffers loss of chromosome 18q gene, developing a Class III adenoma, and a subsequent
loss of p53, it becomes a malignant carcinoma. From this last stage it can metastasize [1]
[2].

I Simulation of colon cancer

Ras hyperactivity in colon cancer was seen as a straight-forward approach. As in the
previous section on common deregulations, Ras dephosphorylation rate was diminished
sufficiently to affect the rest of the MAPK cascade and PI3K/AKT pathway. There is a
subsequent over-activation of PI3K, leading to a fast increase and posterior stagnation
of PI3K/AKT pathway active components in a high concentration level. DRG and ERG
concentrations frequency increase notoriously, following active ERK overactivation [Fig-
ure 10.1]. This contributes to shorter wave-lengths on CDH1 and CDC20 concentrations
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[Figure 10.2]. Hence the restriction point is overcome one more time than in healthy cell
conditions. Uncontrolled division, yet, as mentioned previously, is not sufficient to create
a cancer cell, according to the hallmarks of cancer [39], and thus, Ras hyperactivity, along
with P53 mutation, was performed in this simulation, in this way clearly avoiding the
Boolean switch of apoptosis or cell cycle arrest, generated by overproduced Caspase-9 or
p21, respectively.
AKT hyperactivity affects mainly PI3K/AKT pathway, and doesn’t seem to interfere with
cyclins A,B and E, however it is still troublesome for it stimulates the overall production
of CycD. TSC1 and TSC2 inherit the hyperactivity and raise, losing oscillation, while PIP3
lowers significantly and PIP3:AKT raises [Figure 10.3], both in active and inactive forms.
PI3K, RTK and mTORC1 concentration’s amplitude increases. Cell cycle is advanced, as
with Ras activation [Figure 10.2].

Figure 9.1: ERG (blue), DRG (red) and
ERK (green) in hyperactive-
Ras cell model

Figure 9.2: CDH1 (blue) and CDC20
(red) in hyperactive-Ras or
hyperactive-AKT cell model

Figure 9.3: PIP3 (blue) and inac-
tive PIP3:AKT (green) in
hyperactive-AKT cell model
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Chapter 10

Breast Cancer Simulation

According to the World Cancer Research Fund International (WCRF), breast cancer is the
most common cancer afflicting women worldwide and the second most common cancer
overall. In 2012, nearly 1.7 million new cases were diagnosed [52]. These facts, as well
as the social impact of this disease, make this particular branch of cancer study a very
important topic. Breast cancer is defined as an uncontrolled growth and division of breast
tissue. The normal regulation of the cancer cells that make up that anomalous tissue has
been corrupted at the level of their intra-molecular pathways.

I Simulation of breast cancer

Cell cycle main molecules have been linked to breast cancer in mutated forms or in
abnormal concentrations, as we already discussed briefly in Cdh1 deregulation section.
Cyclin D1 is overexpressed in many primary breast cancers [29] and it can lead, probably
with the help of other oncogenes, to the development of mammary carcinoma [32]. This is
because Cyclin D engages in other cancerous activities within the cell other than binding to
Cdk4. This idea has been previously explored in 1994 [35]. Ras protein is often enhanced
in breast cancer [29], [30], [31] which reveals a link to the MAPK cascade pathway. Cyclin
D1 is a target of estrogen signaling [29]. Estrogen in turn is a hormone which binds to
receptors in the cell membrane and promotes its growth and proliferation. About 70% of
breast cancers, once established, rely on supplies of estrogen to grow, i.e., a tumor whose
cells contain estrogen receptors (ER-positive), is fueled by estrogen supplies. This takes
us to the study of the estrogen pathway [53]. Estrogen signaling pathway through the
cell and into the nucleus relies on MAPK cascade as well as PI3K/AKT pathway. The
deregulation of the PI3K/AKT and MAPK pathways has been hypothesized to sustain
a metabolic switch, turning the former on and the latter off in a vast majority of breast
cancers [36]. Inhibition of MAPK pathway shortens early G1, and activation of PI3K/AKT
pathway induces the cell to progress to late G1, beyond the restriction point.
The simulation was performed based on the synthesized information from this section
on breast cancer. It was added a estrogen-driven growth mechanism with the power of
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Figure 10.1: MAPK cascade with
estrogen-dependency

Figure 10.2: CDH1 and CDC20 in
estrogen-dependent cell
model

amplifying or reducing the cell volume rate. This was done by altering the synthesis rate
of mass and that of Ras. Increasing the dependency on estrogen yields a faster volume
increase [Figure 10.3] and shorter wave-lenghts in Cdh1, Cdc20 and MAPK cascade overal
[Figures 10.1 and 10.2]. This is also the effect of estrogen-driven with overexpressed Ras
cell. Assuming a stable cell growth, still estrogen-driven, the concentration rate of Cyclin
D and Ras were deregulated. Corrupting the synthesis of Cyclin D by increasing its rate
[Figure 11.2] as to create the impact of an unknown underlying oncogene pathway, the
result is also an increase in Cdh1 and Cdc20 wave frequency [Figure 10.4], an unfair
but expectable amount of CyclinD:p27 complexes [Figure 11.1], and an ever-decreasing
cell volume [Figure 11.3]. No significant differences were seen in the complete lack
of p27 protein, besides the obvious vanishment of p27 complexes. Cyclin regulation
continued, only ever-so-slightly "disamplified". Even in the presence of ATM, conducing
to larger amounts of p21, complete lack of protein p27 didn’t seem to change the cell
cycle significantly.
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Figure 10.3: Mass in estrogen-dependent
cell model

Figure 10.4: CDH1 and CDC20 in
overexpressed-Cyclin D
cell

Figure 10.5: p27 complexes in
overexpressed-Cyclin D
cell

Figure 10.6: Cyclins regulation in
overexpressed-Cyclin D
cell
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Figure 10.7: Mass in overexpressed-
Cyclin D cell
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Chapter 11

Therapies

The simulations performed wouldn’t fulfill their purpose if one couldn’t derive therapeu-
tical intervention from them. Specifically, from the results it is possible to extract ideas for
biomolecular-based therapies or, at least, to detect pre-cancerous cells.
MAPK cascade pathway’s deregulation yields promising terrain for detecting possible cell
cycle corruption: constant levels of active Ras, active Raf or active ERK can be measured
indirectly through ERG and DRG concentrations [Figure 8.1] or Cyclin D concentration
[figure 8.2]; as the increase in GAP-dependency leads to cyclin inhibition [Figure 8.5],
targeting GAP in a previously-identified cancer cell for its overexpression is a possible
way to inhibit cell growth.
Complete loss of CDH1 consequently induces the cell to a faster passage through the
restriction point, whose regulation is done by E2F/Rb dynamics, meaning that a possible
treatment for CDH1-deficient cells could be the artificial introduction of fair amounts of
Rb or Rb-like biomolecules to create a delay that could ultimately compensate the fast
pace of S-phase commitment; the same idea could be applied to Rb-mutated cells, since
there are no biomolecules to hold the transcription factor activities of E2F in those cases.
Since p53 is mutated or its pathway is altered in virtually every cancer, therapies directly
turned towards its activity in the cell could imply groundbreaking approaches to fight can-
cer. The pathway described in the model presented in this paper is not complex enough
to allow one to easily derive therapies, but still some appear naturally: adding p53-like
biomolecules to a p53-deficient cell, inducing p21 or Caspase-9 synthesis in cancerous cell
or even targeting Hdm2 for destruction to indirectly increase the concentration of p53 are
just some, rather simplistic, approaches. However, p53 pathway is not target-like, being
extremely difficult to derive practical therapies from its deregulation.
It is also useful to make use of the altered model to find consequences of ideal therapies.
With this in perspective, some simulation of therapies were performed, based in the com-
mon deregulation in colon cancer explored in previous sections. For Ras hyperactivation,
MEK and Raf inhibition yield similar results, although the inhibitions were performed in
different intensities: strong inhibition of Raf or inhibition of MEK induces cell cycle arrest
without use of the p53 defense mechanism, starting with CDH1 and CDC20 stability
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[Figure 11.1]. The cell signalling transduction ceases to operate, leading to stagnation of
CycD production, and adding the arrest of CDH1 and CDC20, the cycle stops [Figure
11.2]. For this same deregulation, ERK inhibition delays cell cycle [Figures 11.3 and 11.4],
although not restoring completely MAPK cascade feedback [Figure ??] and leading to
faster stationarity in PI3K/AKT dynamics. The delay seems to help increase the mass of
the cell [Figure 11.6], since the first cell cycle takes longer to occur and the mass reaches
higher values in the same period. As for PI3K inhibition, it does not seem very promising
for Ras hyperactivity, because the cell cycle continues unharmed, even though PI3K/AKT
components take longer to reach stationarity.

Figure 11.1: CDH1 and CDC20 in
hyperactive-Ras cell treated
with strong Raf inhibition
or MEK inhibition.

Figure 11.2: Cyclins concentration in
hyperactive-Ras cell treated
with strong Raf inhibition
or MEK inhibition.

Figure 11.3: Cyclins concentration in
hyperactive-Ras cell treated
with ERK inhibition.

Figure 11.4: CDH1 and CDC20 in
hyperactive-Ras cell treated
with ERK inhibition.
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Figure 11.5: ERG (blue), DRG (red) and
ERK (green) in hyperactive-
Ras cell treated with ERK
inhibition.

Figure 11.6: Mass of the cell with
hyperactive-Ras treated
with ERK inhibition.

51



Mathematical models in cancer• 2017

52



Conclusion

After the analysis of the contents of this thesis and the work in developing it, the conclu-
sions drawn can be expressed in the following major topics:

First, the ease with which one can apply mathematics to real-life phenomena is in-
dubitably one of the features that has made applied mathematics such a valuable field.
Specifically, deriving systems of differential equations to model a network of chemical
reactions occurring within a cell, has revealed to be simple enough under certain assump-
tions, in contrast with the difficulty of actually setting the reactions network in the first
place. The main struggle in the development of this thesis was in fact the assembling of
the knowledge in the fields of biology, biochemistry and oncology, to create a trustworthy
model. These models’ simulations run very fast in an ordinary PC, which is an advantage
for any enthusiast in modelling. This is partially thanks to the existence of software like
COPASI that allows to treat numeric and efficiently systems of differential equations. The
other main reason why these simulations don’t require much memory to run, is because
the system is not very large, even though it can model fairly well important phenomena.
For systems of partial differential equations, for which one can account space as another
variable, the amount of information being processed is larger, resulting in time consuming
simulations, despite the fact that these models are usually more accurate.

Second, creating extensions of already existing models can be a cumbersome experi-
ence, however it is a reliable method to create new models instead of building them from
scratch. The model in the core of this thesis is still a simple model of the cell cycle, but it
already begins dealing with cancer paradigms, and it was set in an easy-to-understand
manner, which could help future researchers to expand it or enhance it according to more
recent literature.

Third, many of the simulations results, reported in this thesis, mimic the most relevant
and the most validated characteristics of statistical data extracted from many important
in vivo or in vitro experiments, and clinical trials. This meaning that we did the effort to
keep focus in the most corroborated results from literature. During the development of
this thesis, it happen more often than not to be confronted with information that, even
though promising, lacked support. In a few cases, information gathered from different
sources was contradictory. However, these experiments are being updated everyday and
faster than ever, which makes it particularly hard to be up-to-date.
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The ideas for therapies explored in chapter 11 are only reasonable in a theoretical
point of view, as time did not allow for further validation of the proposed treatments. The
simulation of ideal target treatments for the specific case of Ras-hyperactivation already
show that the model behaves as desired, inducing cell cycle arrest or regulating the cell.

In this thesis, we have began what can be later on the foundations of a system of
partial differential equations model to simulate more accurately not only the cell but also
a tissue of cells, bringing into the equations inter-cell interactions and eventually even
simulate the core mechanism of metastasis. The simple equations of our model can easily
be updated to match new information from in vivo or in vitro experiments.
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Further work and investigation

The model presented in this thesis, even though it can already fit some of the experimen-
tal observations in literature, is extremely simplistic. For this reason it is important to
mention approaches to construct a wider and more robust model of the cell and perhaps
of cell-cell interaction.
To extrapolate the paradigm of the cell cycle used in this thesis to a wider model, more
biomolecular species could be added, such as PCNA, CDC25, AP-1, c-fos, c-jun, myc
and even ATP. This not only would require deeper understanding of how these species
interact and influence the cell cycle, but also a careful examination of eventual groups of
other biomolecules that couldn’t be ignored by adding these new ones. It is also a risky
move, as the complexity begins to increase fast with each new specie added.

Another idea is to explore more than one dimension. Instead of analyzing the con-
centration of molecules throughout time, space can also be part of the analysis. Space
can be viewed with one, two or three dimensions, depending on the level accuracy we
desire and the amount of work we are willing to do. The complexity of constructing such
a model obviously increases with the number of spatial dimensions added. With one
time dimension and one spatial dimension, we could already study the distance of each
molecule to the nucleus of the cell, for example, while the cell cycle progresses. With one
time dimension and two spatial dimensions it is possible to evaluate the proximity of
each species to other organelles, such as the mitochondria, the Golgi apparatus and the
endoplasmatic reticulum. Adding a third spatial dimension might be too much.
The units considered for concentration of intra-cellular molecules is usually 1

12 of the
Carbon-12 atom in ground state, Dalton (Da), and not µM as it was used in this thesis
and as previous authors used. Study appropriate concentration units (or checking if the
ones used are the most reasonable) is also something to take into account in further work.
Detailed study of the most used target therapies should be a first step to begin deriving
new target therapies to interact with the cell’s biomolecular pathways. It is not only
chemotherapy that could be a good field of research. Also radiotherapy and nanotechnol-
ogy could be taken into account when modelling. Radiotherapy would be useful for a
model that already accounts for cell-to-cell interactions. Nanotechnology is a field that is
constructing very specific target therapies, and this is obviously an advantage to use in
these mathematical models.
By constructing inter-cell models, it is already possible to simulate the activity of the
body’s immune system in attempts to stop tumor progression. A tumor can be simulated
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with a variety of heterogeneous cells (which in these types means each cell is deregulated
with a pathology (or several) from a wide spectrum of possibilities) and immunitary
system’s cells can be simulated indirectly by inhibiting some of the cell’s tumors (the ones
with the higher proportion of antigens in their membranes for example).
Cancer stem cells is another realm of possibilities in modelling that may not have been
properly explored yet. In a tumor, these cells are less differentiated than their pairs and
are the most dangerous, as they are the ones that are able to colonize and originate a new
tumor in case of metastization.
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System of differential equations for
healthy cell model

d[Cdc20]
dt

=
k13(−[Cdc20] + [”inactiveCdc20”])[”phosphorylatedIEP”]

J13 − [Cdc20] + [”inactiveCdc20”]
− k14[Cdc20]

J14 + [Cdc20]

−k12[Cdc20] (1)

d[Cdh1]
dt

=
(k’

3 + k3[Cdc20])(1− [Chd1])
1 + J3 − [Cdh1]

− V4CycleArrest[Cdh1]
J4 + [Cdh1]

(2)

d[CycA]

dt
= k25r[p27 : CycA : Cdk2] + V6[p27 : CycA : Cdk2] + εk29CycleArrest[mass][E2F]

−k25[CycA][p27]− k25[CycA][Kip1]− k25r − k30[Cdc20][CycA] (3)

d[CycB]
dt

= εCycleArrest

k1’ +
k1[CycB]2

J1
2(1 + [CycB]2

J12
)

−V2[CycB] (4)

d[CycD]

dt
= V6[p27 : CycD : Cdk2]− k10[CycD] + εCycleArrestk9[DRG] + kakt[AKT]

−k24[CycD][p27] + k24r[p27 : CycD : Cdk2]− k24[CycD][Kip1]

+k24r[CycD : Kip1] + V6[CycD : Kip1] + k10[CycD : Kip1] (5)

d[CycE]
dt

= k25r[p27 : CycE : Cdk2]−V8[CycE] + V6[p27 : CycE : Cdk2] + ε(k7’ + k7[E2F])

−k25[CycE][p27]− k25[CycE][Kip1] + k25r[CycE : Kip1] + V6[CycE : Kip1]

+V8[CycE : Kip1] (6)

d[DRG]

dt
= ε

 k17[DRG]2

J17
2(1 + [DRG]2

J17
2 )

+ k17
’[ERG]

− k18[DRG] (7)

d[E2F]
dt

= k20(λA[CycA] + λB[CycB] + λD([P27 : CycD : Cdk2] + [CycD]) + λE[CycE])[E2F : Rb]

+k26r[E2F : Rb]− (k’
23 + k23([CycA] + [CycB]))[E2F]

+k22[”phosphorylatedE2F”]− k26[E2F][Rb] (8)

d[E2F : Rb]
dt

= k26[E2F][Rb] + k22[”phosphorylatedE2F : Rb”]

−k20(λA[CycA] + λB[CycB] + λD([p27 : CycD : Cdk2] + [CycD]) (9)

57



Mathematical models in cancer• 2017

+λE[CycE])[E2F : Rb]− k26r[E2F : Rb]− (k’
23

+k23([CycA] + [CycB])[E2F : Rb]

d[ERG]

dt
=

[ERG]kERK[”ERK− PP”]
kk34 + [ERG]

+
εk15

1 + [DRG]2

J15
2

− k16[ERG] (10)

d[GM]

dt
= CycleArrestk27[mass]r31switch− k28[GM] (11)
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d[Rb_hypo]
dt

= k20(λA[CycA] + λB[CycB] + λD([p27 : CycD : Cdk2] + [CycD])

+λE[CycE])([E2F : Rb] + [”phosphorylatedE2F : Rb”] + [Rb])

−(k19PP1A + k19’(PP1T − PP1A))[Rbhypo] (12)

d[”inactiveCdc20”]
dt

= ε(k11
’ + k11[CycB])− k12[”inactiveCdc20”] (13)

d[mass]
dt

= ε · CycleArrest · DeathSwitch ρ[GM] (14)

d[p27]
dt

= (k25r + V8)[p27 : CycE : Cdk2] + (k25r + k30[Cdc20])

·[p27 : CycA : Cdk2] + (k10 + k24r)[p27 : CycD : Cdk2]

−(V6 + k25([CycE] + [CycA]) + k24r[CycD])[p27] + εk5 (15)

d[p27 : CycA : Cdk2]
dt

= k25[CycA][p27]− (k25r + V6 + k30[Cdc20])[p27 : CycA : Cdk2] (16)

d[p27 : CycD : Cdk2]
dt

= k24[CycD][p27]− (V6 + k10 + k24r)[p27 : CycD : Cdk2] (17)

d[p27 : CycE : Cdk2]
dt

= k25[CycE][p27]− (k25r + V6 + V8)[p27 : CycE : Cdk2] (18)

d[”phosphorylatedE2F”]
dt

= (k20(λA[CycA] + λB[CycB] + λD([p27 : CycD : Cdk2] + [CycD])

+λE[CycE] + k26r))[”phosphorylatedE2F : Rb”] (19)

+k′23 + k23([CycA] + [CycB])[E2F]

−(k22 + k26[Rb])[”phosphorylatedE2F”]

d[”phosphorylatedE2F : Rb”]
dt

= −k20(λA[CycA] + λB[CycB] + λD([p27 : CycD : Cdk2] + [CycD])

+λE[CycE]− (k26r + k22))[”phosphorylatedE2F : Rb”] (20)

+k26[”phosphorylatedE2F”][Rb]

+(k′23 + k23([CycA] + [CycB]))[E2F : Rb]

d[”phosphorylatedIEP”]
dt

=
k31[CycB](1− [”phosphorylatedIEP”])

1 + J31 − [”phosphorylatedIEP”]

− k32[PPX]([”phosphorylatedIEP])
J32 + [”phosphorylatedIEP”]

(21)

d[PPX]

dt
= εk33 − k34[PPx] (22)

d[Rb]
dt

= −(k20(λA[CycA] + λB[CycB] + λD([p27 : CycD : Cdk2] + [CycD])

+λE[CycE] + k26r))[Rb] + (k19PP1A + k19
’(PP1T − PP1A))[Rb_hypo]

+k26r[E2F : Rb]− k26[E2F][Rb] + k26r[”phosphorylatedE2F : Rb”]

−k26[”phosphorylatedE2F”][Rb] (23)
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d[Kip1]
dt

= εk5 −V6[Kip1]− k24[CycD][Kip1] + k24r[CycD : Kip1]

+k10[CycD : Kip1] +−k25[Kip1]([CycE] + [CycA])

k25r([CycE : Kip1] + [CycA : Kip1]) + V8[CycE : Kip1]

+k30[Cdc20][CycA : Kip1]− ((k25([CycA] + [CycE]) + k24[CycD])[Kip1]

−k25r([CycA : Kip1] + [CycE : Kip1])− k24r[CycD : Kip1]

−V6([CycA : Kip1] + [CycD : Kip1] + [CycE : Kip1])

−k30[Cdc20][CycA : Kip1]−V8[CycE : Kip1]− k10[CycD : Kip1]) (24)

d[CycA : Kip1]
dt

= k25[CycA][Kip1]− k25r[CycA : Kip1]−V6[CycA : Kip1]

−k30[Cdc20][CycA : Kip1] (25)

d[CycE : Kip1]
dt

= k25[CycE][Kip1]− k25r[CycE : Kip1]

−V6[CycE : Kip1]−V8[CycE : Kip1] (26)

d[CycD : Kip1]
dt

= k24[CycD][Kip1]− k24r[CycD : Kip1]−

V6[CycD : Kip1]− k10[CycD : Kip1] (27)

d[Hdm2]
dt

= k37[”p53− P”] + k38 − (kp14[p14ARF] + kRb[Rbhypo]

+kcycE[CycE])−
(

k39[Hdm2][”p53− P”]− k40[p53 : Hdm2]
kk1 + [p53 : Hdm2]

)
(28)

d[p14ARF]
dt

= k41([E2F]− [p14ARF]) (29)

d[GAP]
dt

= kERK[”ERK− PP”]− k42[GAP] (30)

d[”p53− P”]
dt

= K43[ATM]− k39[Hdm2][”p53− P”] +
k40[p53 : Hdm2]

kk2 + [p53 : Hdm2]
(31)

d[p53 : Hdm2]
dt

= k39[Hdm2][”p53− P”] +
k40[p53 : Hdm2]

kk2 + [p53 : Hdm2]
(32)

d[p21]
dt

=
k44[”p53− P”]

k45 + [”p53− P”]
+

k46[PIP33 : AKT_On]
kk3 + [PIP3 : AKT_On]

− k47[p21] (33)

d[CytoC : Apa f 1 : Caspase9]
dt

= ”Caspase9 f lux”[”p53− P”]

−k48[AKT][CytoC : Apa f 1 : Caspase9] (34)

d[Ra f ]
dt

=
k49[”Ra f − P”]

kk4 + [”Ra f − P”]
− k50[”Ras− GTP”][Ra f ]

kk4 + [Ra f ]
(35)

d[”Ra f − P”]
dt

=
k50[”Ras− GTP”][Ra f ]

kk4 + [Ra f ]
− k49[”Ras− GTP”][Ra f ]

kk4 + [Ra f ]
(36)
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d[MEK]
dt

=
k51[”MEK− P”]

kk5 + [”MEK− P”]
− k52[”Ra f − P”][MEK]

kk5 + [MEK]
(37)

d[”MEK− P”]
dt

=
k52[”Ra f − P”][MEK]

kk5 + [MEK]
− k52[”Ra f − P”][”MEK− P”]

kk5 + [”MEK− P”]

+
k51[”MEK− PP”]

kk5 + [”MEK− PP”]
− k6[”MEK− P”]

kk15 + [”MEK− P”]
(38)

d[”MEK− PP”]
dt

=
k52[”Ra f − P”][”MEK− P”]

kk5 + [”MEK− P”]
− k51[”MEK− PP”]

kk5 + [”MEK− PP”]
(39)

d[ERK]
dt

=
k53[”ERK− PP”]

kk5 + [”ERK− P”]
− k52[”MEK− PP”][ERK]

kk5 + [ERK]
(40)

d[”ERK− PP”]
dt

=
k52[”MEK− PP”][”ERK− P”]

kk5 + [”ERK− P”]
− k53[”ERK− PP”]

kk5 + [”ERK− PP”]
(41)

d[”Ras− GDP”]
dt

= kgap[GAP] +
k54[”Ras− GTP”]

kk6 + [”Ras− GTP”]

−

kmass[mass] +
k55[”Ras− GDP”](

1 +
(
[”ERK−PP”]

ki

)n)
(k56 + [”Ras− GDP”])

 (42)

d[”Ras− GTP”]
dt

= kmass[mass] +
k55[”Ras− GDP”]

(1 + ( [”ERK−PP”]
ki )n)(k56 + [”Ras− GDP”])

−(kgap[GAP] +
k54[”Ras− GTP”]

kk6 + [”Ras− GTP”]
) (43)

d[RTK]
dt

= k57 − k58[RTK]− k59[RTK][mTORC1]
[RTK] + kk7

(44)

d[PI3K]
dt

=
kRas[”Ras− GTP”][PI3K]

kk8 + [PI3K]
− k60[PI3K]

kk8 + [PI3K]
(45)

d[mTORC1]
dt

=
k61[mTORC1_O f f ][Rheb_On]

kk8 + [mTORC1_O f f ]
+

V3PI3K(1− [mTORC1])
kk8− [mTORC1] + 1

− k62[mTORC1]
kk8 + [mTORC1]

− k63[mTORC1]
kk9 + [mTORC1]

(46)

d[PIP2]
dt

=
k63[PI3K][PTEN]

kk9 + [PIP3]
− k63[PI3K][PIP2]

kk9 + [PIP2]
(47)

d[PIP3]
dt

=
k63[PI3K][PIP2]

kk9 + [PIP2]

+k64[PI3K : AKT_O f f ]− k63[PIP3][PTEN]

kk9 + [PIP3]
− k65[PIP3][AKT] (48)

d[PIP3 : AKT_O f f ]
dt

= k65[PIP3][AKT]− k64[PI3K : AKT_O f f ]−

k63[PDK1][PIP3 : AKT_O f f ]
kk9 + [PIP3 : AKT_O f f ]

+
k63[PIP3 : AKT_On]

kk9 + [PIP3 : AKT_On]
(49)
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d[PIP3 : AKT_On]
dt

=
k63[PDK1][PIP3 : AKT_O f f ]

kk9 + [PIP3 : AKT_O f f ]
− k63[PIP3 : AKT_On]

kk9 + [PIP3 : AKT_on]
(50)

d[TSC2_O f f ]
dt

=
k66[”ERK− PP”][TSC2_On]

kk9 + [”ERK− PP”]
− k64[PIP3 : AKT_On][TSC2_On]

kk9 + [TSC2_On]

− k64[TSC2_O f f ]
kk9 + [TSC2_O f f ]

(51)

d[TSC2On]
dt

=
k64[TSC2_O f f ]

kk9 + [TSC2_O f f ]
+

k67[”ERK− PP”][TSC1 : 2]
kk9 + [”ERK− PP”]

− k66[”ERK− PP”][TSC2_On]
kk9 + [”ERK− PP”]

− k64[PIP3 : AKT_On][TSC2_On]
kk9 + [TSC2_On]

−k67[TSC1][TSC2_On] (52)

d[TSC1]
dt

= k68 +
k67[”ERK− PP”][TSC1 : 2]

kk9 + [”ERK− PP”]
− k67[TSC1][TSC2_On]

−k68[TSC1] (53)

d[TSC1 : 2]
dt

= k67[TSC1][TSC2_On]− k67[”ERK− PP”][TSC1 : 2]
kk9 + [”ERK− PP”]

(54)

d[RhebO f f ]
dt

=
k69[TSC1 : 2][Rheb_On]

kk9 + [Rheb_On]
− k70[Rheb_O f f ]

kk9 + [Rheb_O f f ]
(55)

d[Rheb_On]
dt

=
k70[Rheb_O f f ]

kk9 + [Rheb_O f f ]
− k69[TSC1 : 2][Rheb_On]

kk9 + [Rheb_On]
(56)

d[mTORC1_O f f ]
dt

=
k64[mTORC1]

kk9 + [mTORC1]
− k64[mTORC1_O f f ]

− k68[mTORC1_O f f ][Rheb_On]
kk9 + [mTORC1_O f f ]

(57)

d[AKT]
dt

= k71 − k72[PIP3][AKT]− k73[AKT] + k64[PIP3 : AKT_O f f ] (58)

d[PDK1]
dt

= k67(1− [PDK1]) (59)

d[PTEN]

dt
= K74(1− [PTEN]) (60)

Steady-state equations

PP1A =
[PP1T]

1 + K21(φE([CycE] + [CycA]) + φB[CycB])
(61)

V2 = k′2(1− [CDH1]) + k2[CDH1] + k′′2 [Cdc20] (62)

V4 = k4(γA[CycA] + γB[CycB]) (63)

V6 = k’
6 + k6(ηE[CycE] + ηA[CycA] + ηB[CycB]) (64)

V8 = k′8
k8(ψE([CycE] + [CycA]) + ψB[CycB])

J8 + [CYCET]
(65)

CYCET = [CycE : Kip1] + [CycE : Kip1] + [CycE] (66)
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CYCDT = [CycD : Kip1] + [p27 : CycD : Cdk2] + [CycD] (67)

CYCAT = [p27 : CycA : Cdk2] + [CycA] + [CycA : Kip1] (68)

P27T = [p27 : CycA : Cdk2] + [p27 : CycD : cdk2] + [p27 : CycE : Cdk2] + [p27] (69)

V1PI3K =
[RTK]VM1PI3K
[RTK] + kcPI3K

(70)

V3PI3K = [PI3K]VM3PI3K (71)

Notes on Equations:

(1) The mass of the cell drops to half, [mass]→ [mass]/2, every time [Cdh1] crosses 0.2
from bellow.
(2) To simulate cell cycle arrest, whenever [p21] > 20, [CDH1] = [GM] = [CycA] =
[CycB] = [CycD] = [CycE] = 0. To do so, CycleArrest binary parameter was put in
equations:

CycleArrest =

{
0, if [p21] > 20
1, in all other cases

(3) As an event to prepare apoptosis, whenever [ATM] > 20, the synthesis rate of Caspase-
9 increases with "Caspase9 flux" parameter:

”Caspase9 f lux” =

{
5, if [Cyto : Apa f 1 : Caspase9] > 10 and [ATM] > 20
10, if [ATM] > 20

(4) To simulate apoptosis, whenever [Cyto : Apa f 1 : Caspase9] > 10 and [ATM] > 20,
[mass] = [GM] = 0, using DeathSwitch:

DeathSwitch =

{
0, if [Cyto : Apa f 1 : Caspase9] > 10 and [ATM] > 20
1, in all other cases

(5) The same assumptions done in [3] were used in this system. The parameter r31switch
works as a two steps Heaviside function:

r31switch =

{
1, if [Rb]+[E2F_Rb]+[”phosphorylatedE2F:Rb”]

[Rb_hypo]+[Rb]+[E2F:Rb]+[”phosphorylatedE2F:Rb”] < 0.8

0, in all other cases

Parameters:

n = 1, k1 = 0.6, k’
1 = 0.1, k3 = 140, k’

3 = 7.5, k5 = 20, k6 = 100, k’
6 = 10, k7 = 0.6,

k’
7 = 0, k8 = 2, k’

8 = 0.1, k9 = 0.05, k10 = 5, K10 = 3.8, k11 = 1.5, k’
11 = 0, k12 = 1.5,

k13 = 5, k14 = 2.5, k15 = 0.25, k16 = 0.25, k17 = 10, k’
17 = 3.5, k18 = 10, k19 = 20, k’

19 = 25,
k20 = 10, k22 = 1, k23 = 1, k’

23 = 0.005, k24 = 1000, k24r = 10, k25 = 1000, k25r = 10,
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k26 = 10000, k26r = 200, k27 = 0.2, k29 = 0.05, k30 = 20, k31 = 0.7, k32 = 1.8, k33 = 0.05,
k34 = 0.05, k35 = 5000, k36 = 10, k37 = 25, k38 = 2, k39 = 1, k40 = 0.5, k41 = 0.1, k42 = 1,
k43 = 5, k44 = 100, k45 = 10, k46 = 10, k47 = 1, k48 = 0.1, k49 = 50, k50 = 100, k51 = 77.75,
k52 = 2.855, k53 = 53, k54 = 1000, k55 = 1000, k56 = 10, k57 = 1, k58 = 0.5, k59 = 0.82,
k60 = 0.15, k61 = 0.01, k62 = 1, k63 = 10, k64 = 0.5, k65 = 2, k66 = 0.7, k67 = 5, k68 = 0.1,
k69 = 12, k70 = 4, k71 = 0.1, k72 = 2, k73 = 0.4, k74 = 1, ki = 9, kAKT = 0.5, kerk = 0.5,
kgap = 0.1, kCycE = 0.3, kp14 = 0.3, kRas = 0.6, kRb = 0.3, kk = 1, kk1 = 5, kk2 = 5, kk3 = 10,
kk4 = 15, kk5 = 15, kk6 = 8, kk7 = 0.2, kk8 = 0.005, kk9 = 0.05, J1 = 0.1, J3 = 0.01,
J4 = 0.005, J8 = 0.1, J13 = 0.005, J14 = 0.005, J15 = 0.1, J17 = 0.3, J31 = 0.01, J32 = 0.01,
ε = 1, λA = 3, λB = 5, λD = 3.3, λE = 5, ψE = 10, ψB = 0.5, µE = 0.5, µA = 0.5, µB = 0.1,
PP1T = 1.
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Glossary

14-3-3sigma is a human protein encoded by the SFN (stratifin) gene.
AKT is a protein kinase that plays a key role in glucose metabolism, apoptosis, cell

proliferation, transcription and cell migration.
Allele is the short form of allelomorph (other form) used in genetics to describe variant

forms of a gene detected with different phenotypes.
Allosteric regulation is the regulation of an enzyme by binding an effector molecule at a site other than

the enzyme’s active site. The site to which the effector binds is termed the allosteric
site. Allosteric sites allow effectors to bind to the protein, often resulting in a
conformational change involving protein dynamics.

Angiogenesis is the physiological process through which new blood vessels form from pre-existing
vessel.

AP-1 (activator protein 1) is a transcription factor that regulates gene expression in
response to a variety of stimuli, including growth factors, stress, and bacterial and
viral infections.

Apaf-1 (Apoptotic protease activating factor 1) is a gene that encodes a cytoplasmic protein
that forms one of the central hubs in the apoptosis regulatory network.

APC (Amino Acid-Polyamine-Organocation) is a family of transport proteins.
Apoptosis (from Ancient Greek "falling off") is a process of programmed cell death that occurs

in multicellular organisms.
ATM (ataxia-telangiectasia mutated) is a serine/threonine protein kinase that is recruited

and activated by DNA double-strand breaks. It phosphorylates several key proteins
that initiate activation of the DNA damage checkpoint, leading to cell cycle arrest,
DNA repair or apoptosis.

ATP (adenosine triphosphate) is a nucleoside and is a small molecule used in cells as a
coenzyme. It is often referred to as the "molecular unit of currency" of intracellular
energy transfer.

Carcinogenesis or oncogenesis or tumorigenesis is the formation of a cancer, whereby normal cells
are transformed into cancer cells.

Caspase cysteine-aspartic proteases, cysteine aspartases or cysteine-dependent aspartate-
directed proteases) are a family of protease enzymes playing essential roles in
programmed cell death and inflammation.

Caspase-9 is an initiator caspase encoded by the CASP9 gene.
c-fos is a human proto-oncogene.
c-jun is a protein that in humans is encoded by the JUN gene. c-Jun in combination with
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c-Fos, forms the AP-1 early response transcription factor.
CDC2 (cell division cycle protein 2) is a highly conserved protein that has important

functions in cell cycle regulation. It is also known as CDK1.
CDC20 (cell-division cycle protein 20) is an essential regulator of cell division that is encoded

by the CDC20 gene in humans.
CDC25 (cell-division cycle protein 25) is a dual-specificity phosphatase.
CDH1 (Cadherin-1 or E-cadherin) is a protein that in humans is encoded by the CDH1

gene. It is a tumor suppressor gene.
Chromosome is a DNA molecule with part or all of the genome of an organism.

Cyclin is a biomolecule that controls the progression of cells through the cell cycle by
activating cyclin-dependent kinase enzymes.

Cyclin A is a cyclin that activates CDK2.
Cyclin B is a cyclin that activates CDK1.
Cyclin D is a cyclin that activates CDK4 and CDK6. Growth factors stimulate the Ras/Raf/ERK

that induce cyclin D production.
Cyclin E is a cyclin that activates CDK2.

CDK (cyclin-dependent kinases) are a family of protein kinases involved in regulating
transcription and mRNA processing.

CDK1 (cyclin-dependent kinase 1)is a highly conserved protein that has important func-
tions in cell cycle regulation. It is also known as CDC2.

CDK2 (cell division protein kinase 2) is an enzyme that in humans is encoded by the CDK2
gene.

CDK4/6 (cell division protein kinase 4 and cell division protein kinase 6, respectively), are
two enzymes that in humans are encoded by the CDK4 and CDK6 gene, respectively.

Checkpoints are control mechanisms in eukaryotic cells which ensure proper division of the cell.
CKI (cyclin-dependent kinase inhibitor protein) is a protein which inhibits cyclin-dependent

kinase.
Cytochrome c is a small human protein encoded by CYCS gene.

Cytosolic domain is the part of a transmembrane protein in interaction with the cytosol (cytoplasm) of
the cell.

Cytotoxicity is the quality of being toxic to cells.
Coenzyme is a non-protein chemical compound or metallic ion that is required for a protein’s

biological activity to happen (for example, coenzymes such as ATP).
Degradation is the breakdown of proteins into smaller polypeptides or amino acids, also called

proteolysis. It is typically catalysed by cellular enzymes.
DNA (deoxyribonucleic acid) is a molecule that carries the genetic instructions used in the

growth, development, functioning and reproduction of all known living organisms
and many viruses.

DRG (delayed-response genes) are genes which are activated at a slower rate than ERG.
E2F (E2 promoter binding factor) is a group of genes that codifies a family of transcription

factors in higher eukaryotes.
Enzyme is a macromolecular biological catalyst.

ERG (early-response genes) are genes which are activated rapidly in response to a wide
variety of cellular stimuli.
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ERK is a protein kinase widely expressed in intracellular signalling pathways.
Eukariotic is any organism whose cells have a nucleus and other organelles enclosed within

membranes.
Gadd45 (Growth Arrest and DNA Damage) is a protein implicated as stress sensors that

modulate the response of mammalian cells to several types of stress, and modulate
tumor formation.

GAP (GTPase-activating proteins) are a family of regulatory proteins whose members
can bind to activated G proteins (proteins with the ability to bind GTP) and down
regulate their activity

Genome is the genetic material of an organism.
Genotype is a DNA sequence which determines a specific characteristic (phenotype) of a

cell/organism/individual.
GRB2 (Growth factor receptor-bound protein 2) is an adaptor protein involved in signal

transduction/cell communication. In humans, the GRB2 protein is encoded by the
GRB2 gene.

Growth factor is a naturally occurring substance capable of stimulating cellular growth prolif-
eration, healing, and cellular differentiation. Usually it is a protein or a steroid
hormone.

Hdm2 is a protein that in humans is encoded by the MDM2 gene. Since MDM2 means
Mouse double minute 2 homolog, the human analog is sometimes refered to as
Hdm2.

Kinase is an enzyme that catalyzes the transfer of phosphate groups from high-energy,
phosphate-donating molecules to specific substrates.

Lymphocyte is one of the subtypes of white blood cell in a vertebrate’s immune system.
MAPK (mitogen-activated protein kinase) is a type of protein kinase that is specific to the

amino acids serine, threonine, and tyrosine.
MEK (mitogen-activated protein kinase kinase (MAPKK)) is a kinase enzyme which

phosphorylates mitogen-activated protein kinase (MAPK).
Mole is the unit of measurement in the International System of Units (SI) for amount

of substance. 1 mole is expressed by the Avogadro constant, which has a value of
6.022× 1023.

mTOR1 (mechanistic target of rapamycin 1) is a serine/threonine kinase mTOR which can
inhibit the mechanistic target of rapamycin. It is a downstream effector of the
PI3K/AKT pathway.

Myc (from "myelocytomatosis virus")is a regulator gene that codes for a transcription
factor.

Oncogene is a gene related to the appearance of tumors. Usually, when not working properly,
due to mutation for example, they can transform a healty cell into a cancer cell.

p14ARF (alternate reading frame protein 14) is a protein induced in response to elevated
mitogenic stimulation. It acts as a tumor suppressor by inhibiting initiating p53-
dependent cell cycle arrest or apoptosis.

p16INK4a is a tumor suppressor protein, that in humans is encoded by the CDKN2A gene.
p53 tumor protein, also known as TP53, is any isoform of a protein encoded by TP53

gene.
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PCNA (proliferating cell nuclear antigen) is a DNA clamp essential for replication.
Phenotype is the composite of an organism’s observable characteristics or traits.

Phosphorylation is the addition of a phosphoryl group (PO3)− to a molecule.
PI3K (Phosphatidylinositol-4,5-bisphosphate 3-kinase) are a family of enzymes involved

in cellular functions such as cell growth, proliferation, differentiation, motility,
survival and intracellular trafficking.

PIP2 (Phosphatidylinositol 4,5-bisphosphate) is a minor phospholipid component of cell
membranes.

PIP3 (Phosphatidylinositol (3,4,5)-trisphosphate) is a phospholipid that resides on the
plasma membrane.

PP1 (protein phosphatase 1) belongs to a certain class of phosphatases known as protein
serine/ threonine phosphatases.

Prokariotic is a unicellular organism that lacks a membrane-bound nucleus (karyon), mitochon-
dria, or any other membrane-bound organelle.

Protein are large biomolecules, or macromolecules, consisting of one or more long chains of
amino acid residues.

Proto-oncogene is a normal gene that could become an oncogene due to mutations or increased
expression.

Raf (mitogen-activated protein kinase kinase kinase (MAPKKK)) is a kinase enzyme
which phosphorylates mitogen-activated protein kinase kinase (MAPKK).

Ras (mitogen-activated protein kinase kinase kinase kinase (MAPKKKK)) is a kinase
enzyme which phosphorylates mitogen-activated protein kinase kinase kinase (MAP-
KKK).

Rb (retinoblastoma protein) is a tumor suppressor protein that is dysfunctional in
several major cancers.

Rheb (Ras homolog enriched in brain) is a GTP-binding protein that is ubiquitously
expressed in humans and other mammals.

RNA (ribonucleic acid) is a polymeric molecule essential in various biological roles in
coding, decoding, regulation, and expression of genes.

RTK (receptor tyrosine kinases) are the high-affinity cell surface receptors for many
polypeptide growth factors, cytokines, and hormones.

SBML (Systems Biology Markup Language) is a representation format, based on XML
(Extensible Markup Language), for communicating and storing computational
models of biological processes.

SOS (son of sevenless) refers to a set of genes encoding guanine nucleotide exchange
factors that act on the Ras family of small GTPases.

Synthesis is the execution of one or more named reactions to obtain a product, or several
products.

Transcription factor is a protein that controls the rate of transcription of genetic information from DNA
to messenger RNA, by binding to a specific DNA sequence.

TSC1 (tuberous sclerosis complex 1) is a protein that in humans is encoded by the TSC1
gene.

TSC2 (tuberous sclerosis complex 2) is a protein that in humans is encoded by the TSC2
gene.
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Tumor suppressor gene are genes that code for fundamental proteins in the defense of a cell against tumor
development. When this gene mutates causing a loss or reduction in its function,
the cell can progress to cancer, usually in combination with other genetic changes.

Ubiquitin is a small regulatory protein which can signal proteins for degradation, alter their
cellular location, affect their activity, and promote or prevent protein interactions.

Ubiquitination is the addition of ubiquitin regulatory protein to a substrate protein.
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