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Mathematical models of the dynamical properties of biological
systems aim to improve our understanding of the studied system

with the ultimate goal of being able to predict system responses in
the absence of experimentation.
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Abstract

Many processes in cell and molecular biology are comprised of
biochemical reaction networks.
It has proven useful to study these networks using computer
simulations because they allow us to quantitatively investigate
hypotheses about the networks.
Deterministic simulations are sufficient to predict average behaviors
at the population level, but they cannot address questions about
noise, random switching between stable states of the system, or
the behaviors of systems with very few molecules of key species.
These topics are investigated with stochastic simulations.
In this first Bridges talk, we will review, in an intuitive, and
hopeffuly comprehensive manner, some key Stochastic
Simulation Algorithms used in Sistems Biology. We will give
several illustrations of these methods.
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What are we talking about?

Mathematics: Markov jump processes (MJP=CTMC)

Biology. Biochemical reaction networks (BRN).

MJP + BRN = SKN= Stochastic kinetic networks

Applications ([9]) [Systems Biology, Computational Biology,
Immunology, etc.]

I Molecule Synthesis and Degradation

I Enzymatic Reactions

I Receptor-Ligand Interaction

I Gene Expression and Regulation

I Ion Channel Dynamics and Ion Transport Across Membranes

I Immunological processes (inter and intra cellular)

I Epidemiological models
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Deterministic/Stochastic

The cellular machinery differs a lot from the machines we see in
our everyday life:

I Cells are microscopic reactors. On a microscopic level,
individual molecules are constantly formed and destroyed by
chemical reactions.

I Proteins and other molecules tumble back and forth, diffuse,
change their conformations, assemble and disassemble in
permanent thermal movement.

I Biochemical reactions are probabilistic collisions between
randomly moving molecules, with each event resulting in the
increment or decrement of molecular species by integer
amounts. They can be described mathematically by random
processes: reactions happen unpredictably, and each sequence
of random events leads to a different history of the system.
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Deterministic/Stochastic

I The amplified effect of fluctuations in a molecular reactant, or
the compounded of fluctuations across many molecular
reactants, referred to as molecular noise, often can
accumulate as an observable phenotype.

I Stochastic models allow us to compute mean values,
fluctuations, and temporal correlations of system states.

I Furthermore, individual realizations of random processes can
often be obtained by stochastic simulation.
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Deterministic/Stochastic

1 On larger space and time scales, the microscopic processes
translate into an effective macroscopic behavior, for instance,
the dynamics of metabolic pathways governed by kinetic laws.

2 Random models provide a more detailed description than the
deterministic kinetic models. Whenever the random
fluctuations remain small, deterministic models provide a
good and numerically cheap approximation.

3 However, random fluctuations can become important if
molecule numbers are low, which typically happens in gene
expression, or in models with nonlinear and unstable dynamics.
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General settings

I Consider a well-stirred system of “molecules” of s species
{X1, · · · ,Xs}, which interact through r reaction channels
{R1, · · · ,Rr}. We assume the system in thermal equilibrium
and confined to a finite constant volume V .

I Consider the following reaction network

Rµ :
s∑

i=1

αiµXi︸ ︷︷ ︸
reactants

κµ−→
s∑

i=1

βiµXi︸ ︷︷ ︸
products

, µ = 1, 2, · · · , r

I Define the stoichiometric matrix S = (Siµ), where

Siµ = βiµ − αiµ, i = 1, · · · , s;µ = 1, · · · , r
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General settings

I Let:

Ni (t) = number of molecules of species Xi

present in instant t
(1)

I Aim. Compute the state vector time evolution
N(t) = (N1(t), · · · ,Ns(t)), assuming the initial state
N(0) = no .

I We can also use other state variable descriptions

X(t) = (X1(t), · · · ,Xs(t))> (real concentrations)
Z(t) = (Z1(t), · · · ,Zr (t))> (event reaction counts on [0, t])
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General settings

I each time reaction Rµ triggers, the Xi state changes
according to

Ni −→ Ni + Siµ

I So, the system update is made through

∆N(t) = S∆Z(t)

I The stoichiometry matrix therefore encodes important
structural information about the reaction network. In
particular, vectors in the left null-space of S correspond to
conservation laws in the network: any s-vector a that
satifies a>S = 0 has the property that N(t) remains constant
for all t.
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General settings

I Assuming very big numbers, we can approximate N, X and Z
by real (t-smooth dependent) numbers n, x and z and write
ODE’s

ṅ(t) = Sż(t), ẋ(t) = S
ż(t)

V
,

I However, these ODE’s are only useful if we can establish a
relationship between the derivative ż(t) and the variables n or
x.

ż(t) = υ̂(n) = V υ(x)
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ż(t)

V
,

I However, these ODE’s are only useful if we can establish a
relationship between the derivative ż(t) and the variables n or
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Mass-action law

I Usually we adopt the so called mass-action law (MAL)

υ̂µ(n) = k̂µ

s∏
i=1

n
αiµ

i , υµ(x) = kµ

s∏
i=1

x
αiµ

i

which leads to RRE (reaction rate equations) according to
MAL

ṅ(t) = S υ̂(n(t)), ẋ(t) = S υ(x(t)),
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An example: Lotka-Volterra Predator-prey model

Species: X1=prey; X2=predator. n1(t), n2(t) the corresponding
copy numbers. The number nA of food items is assumed
unchanged.

I The reaction network and action-mass conversion rates are

X1 + A
k̂1−→ 2X1 υ̂1 = k̂1n1nA

X1 + X2
k̂2−→ 2X2 υ̂2 = k̂2n1n2

X2
k̂3−→ ∅ υ̂3 = k̂3n2

I We will see later the SSA.
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An example: SIRS epidemic model

I The reaction network and action-mass conversion rates are

S + I
k̂1−→ 2I υ̂1 = k̂1nSnI

I
k̂2−→ R υ̂2 = k̂2nI

R
k̂3−→ S υ̂3 = k̂3nR

I The RRE’s are 
ṅS = −k̂1nSnI + k̂3nR

ṅI = k̂1nSnI − k̂2nI

ṅR = k̂2nI − k̂3nR

We will see later the SSA.
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An example: SIRS epidemic model
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An example: Michaelis-Menten enzyme kinetics

The reaction network is

S + E 
 C
C → P + E

where S is the substance which is transformed by the reaction, E is
the enzyme which facilitates the reaction, C is an intermediary
species and P the final product.
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An example: Gene regulation

where the gene G is transcribed to the mRNA M with rate
constant km , the mRNA is translated to the protein P with rate
constant kp, and the protein binds to (and represses) the gene with
rate constant kb and unbinds back with rate constant ku. The
mRNA and protein are degraded with respective rate constants k−m
and k−p .
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An example: Gene regulation

The reaction network is

G
km−→ G + M υ1 = kmxG transcription

M
kp−→ M + P υ2 = kpxM traslation

G + P
kb−→ G · P υ3 = kbxGxP binding

G · P ku−→ G + P υ4 = ku(x total
G − xG ) unbinding

M
k−
m−→ ∅ υ5 = k−mxM degradation

P
k−
p−→ ∅ υ6 = k−p xP degradation
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An example: HIV infection

The reaction network is

∅ s−→ T

T
δ−→ ∅

T + V
κ−→ T ∗

T ∗
η−→ NV

V
γ−→ ∅

where T is a CD4+ T-cell, V is virus and T ∗ is an infected active
T-cell. Refering to concentrations copies/µL, we have the RRE’s

ẋT = s − δxT − κxV xT
ẋT∗ = κxV xT − ηxT∗

ẋV = NηxT∗ − γxV
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Deterministic/Stochastic

Even though the deterministic approach has proven very successful,
it comes with some issues:

1 Small particle numbers in cellular subsystems (e.g. in
signaling pathways) lead to random fluctuations which can
change the dynamic behavior considerably.

2 Bi- or multi-stable systems can not be described adequately.

3 Stochasticity itself can be an important property of the
system, e.g. in evolution, noise-induced amplification of
signals or noise-driven divergence of cell fates.

4 For very small particle numbers (e.g. single genes) the
concept of continuous concentrations is not appropriate.
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Fundamental assumptions

I Hypothesis 1. The chemical system is under thermal
equilibrium conditions.

I Hypothesis 2. The chemical system is such that, at any time
t, the concentration of each species is homogeneous in the
reaction vessel (i.e., does not depend on space).
Homogeneity is in fact achieved if nonreactive collisions are
much more frequent than reactive ones, which ensures
diffusion processes proceed at much higher rate than any
reaction in the system.

I Hypothesis 3. In a bimolecular reaction, the time to the
occurrence of the reaction is largely determined by the time to
the reactive collision whereas the time necessary for the
chemical transformation of the colliding species into the
reaction products is negligible.

1
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Discussion

To each reaction channel Rµ we associate two quantities:

I the vector ϑµ = S·µ - stoichiometric matrix column µ. Thus,
if the sytem is in state n and if reaction Rµ triggers, the
sytem changes instantly its state to n + ϑµ.

I the propensity or hazard hµ(n, cµ), defined by

hµ(n, cµ)dt = probability that, assuming that N(t) = n,
reaction Rµ triggers in interval [t, t + dt)
somewhere in volume V .

(2)
Here cµ is the stochastic rate constant.

João Nuno Tavares and Ricardo Cruz CMUP

Stochastic Simulation in Biology



Why stochastic models? General settings Deterministic approach Stochastic approach Stochastic Simulation Space models References

Discussion

To each reaction channel Rµ we associate two quantities:

I the vector ϑµ = S·µ - stoichiometric matrix column µ. Thus,
if the sytem is in state n and if reaction Rµ triggers, the
sytem changes instantly its state to n + ϑµ.

I the propensity or hazard hµ(n, cµ), defined by

hµ(n, cµ)dt = probability that, assuming that N(t) = n,
reaction Rµ triggers in interval [t, t + dt)
somewhere in volume V .

(2)
Here cµ is the stochastic rate constant.
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Examples of reactions

Reaction Propensity hµ(n, cµ) Description

∅ −→X1 c1 Inflow
X1 −→ ∅ c2n1 Degradation
X1 + X2 −→X3 c3n1n2 Catalysation
2X1 −→X2 c4n1(n1 − 1)/2 Dimerisation
3X1 −→X3 c5n1(n1 − 1)(n1 − 2)/6 Trimerisation
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Chemical Master Equation(CME)

The first thing we can do is to deduce a master equation
(Kolmogoroff-Chapmann).

I Let
P(n, t) = Prob{N(t) = n|N(0) = no}

I We write P(n, t + dt) as the sum of the probabilities of the
number of ways in which the network can arrive in state n at
time t + dt

P(n, t + dt) = o(dt) +

1−
r∑

µ=1

hµ(n, cµ)dt

P(n, t) +

+
r∑

µ=1

hµ(n− ϑµ, cµ)dt P(n− ϑµ, t)
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Chemical Master Equation(CME)

I The first quantity in is the probability that the system
undergoes no reactions in [t, t + dt)

I The term hµ(n− ϑµ, cµ)P(n− ϑµ, t) dt is the probability
that the system is one Rµ reaction removed from state n at
time t and then undergoes such a reaction in [t, t + dt).
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Chemical Master Equation(CME)

The CME is then

dP(n, t)

dt
=

r∑
µ=1

[hµ(n− ϑµ, cµ) P(n− ϑµ, t)− hµ(n, cµ) P(n, t)]

I This a set of linear, autonomous ODEs. One ODE for each
possible n-state of the system. Solution of the n th equation
at time t gives the probability of system being in that
particular state at time t.

I Unfortunately, the CME is only tractable for a handful of
cases. Hence, for most systems of interest, an analysis via the
CME will not be possible and then stochastic simulation
techniques will present the only practical approach to gaining
insight into a system’s dynamics.
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Gillespie Algorithm (SSA)

Typically, the CME is too high dimensional to deal with
computationally. The SSA gets around this issue by computing
single realizations of the state vector rather than an entire
probability distribution.

The key point to design SSA is to compute the joint density
function for the two random variables µ and τ . We can prove that
this joint density is the product of two individual density functions.

I Next reaction index µ - discrete pdf
hµ(n, cµ)

h0(n, c)
, ie, choose

one of the reactions with the rule that the chance of picking
the µth reaction is proportional to its propensity hµ(n, cµ).
Here h0(n, c) =

∑r
µ=1 hµ(n, cµ).

I Time τ until next reaction. With exponential pdf
h0(n, c)e−h0(n,c)τ .
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Gillespie Algorithm (SSA)

I 1. Initialize in t = 0, with molecular numbers n = (n1, · · · , ns)
and stochastic constant rates c = (c1, · · · , cr ).

I 2. For each µ = 1, · · · , r , compute hµ(n, cµ), based in actual
state n, and h0(n, c). STOP if h0 = 0.

I 4. Simulate time τ until next reaction τ ∼ Exp(h0(n, c)).

I 5. Simulate the type µ of next reaction using
(hµ(n, cµ)/h0(n, c))µ=1,··· ,r .

I 6. Upadate time t = t + τ .

I 7. Update state n according to n = n + ϑµ.

I 8. If t < tmax, go to step 2.
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τ -leaping

Assume that there exists τ > 0 that satisfies the following Leap
condition : “∀µ, hµ(n, cµ) ≈ constant in interval [t, t + τ)”.

I We then can show that each reaction count number is Poisson
with mean (and variance) hµ(n, cµ)τ .

I So, we can leap the system by τ time units

N(t + τ) = n +
r∑

µ=1

Pµ(hµ(n, cµ)τ) ϑµ

with N(t) = n and Pµ(mµ) independent Poisson RV with
mean (and variance) mµ = hµ(n, cµ)τ .
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τ -leaping algorithm

I 1. Initialize in t = 0, with molecular numbers n = (n1, · · · , ns)
and stochastic constant rates c = (c1, · · · , cr ).

I 2. For each µ = 1, · · · , r , compute hµ(n, cµ), based in actual
state n, and h0(n, c). STOP if h0 = 0.

I 3. Simulate rv’s {pµ}rµ=1 from RVMs {Pµ(hµ(n, cµ)τ}rµ=1.

I 4. Update

N(t + τ) = n +
r∑

µ=1

pµ ϑµ

and t = t + τ .

I 5. Go to step 1.
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Langevin equation (CLE)

I Assume that we choose τ so that

hµ(n, cµ)τ >> 1, ∀µ

I Then

Pµ(hµ(n, cµ)τ) ≈ hµ(n), cµ)τ +
√

hµ(n, cµ)τ Nµ(0, 1)

I and substituting, we get we get the update (Euler-Maruyama)

Y(t + τ) = Y(t) + τ

r∑
µ=1

ϑµ hµ(Y(t), cµ) +

√
τ

r∑
µ=1

ϑµ

√
hµ(Y(t), cµ) Nµ(0, 1)
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Why we call this “diffusion approximation”?

I Drift. When the average value of a stochastic process
changes with time, we say that the process has a drift.

I Diffusion. When the (co)variance, a measure of spread of the
distribution, changes with time, we say that the process has
diffusion.

I Let ∆Zµ(t) = Zµ(t + ∆t)− Zµ(t be the short time
Rµ-reaction count increment. Then

(∆Zµ)n ≈ hµ(n, cµ)∆t +
√

hµ(n, cµ)∆t Nµ(t)

and since (∆Ni )n = S (∆Zµ)n, we obtain

(∆Ni )n ≈
r∑

µ=1

Siµhµ(n, cµ)∆t +
r∑

µ=1

Siµ

√
hµ(n, cµ)∆t Nµ(t)
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CLE. Langevin equation

I The increment vector then takes the form

(∆N)n ≈ A(n)∆t + D(n)
√

∆t N (t)

I The factor
√

∆t N (t) in the second summation on the right
can be recognized as the Wiener increment,

∆W =W(t + ∆t)−W(t) =
√

∆t N (t)

of an r vector W(t) of independent standard Brownian
motions, or standard Wiener processes.

I Finally we obtain the CLE

dY(t) = A(Y)(t))︸ ︷︷ ︸
drift-rate function

dt + D(Y)(t))︸ ︷︷ ︸
diffusion-rate function

dW(t)
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CLE. Langevin equation

I This SDE (CLE equation) represents the diffusion process that
most closely matches the dynamics of the associated Markov
Jump Process (MJP), and can be shown to approximate the
Stochastic Kinetic Network (SKM) increasingly well in high
concentration scenarios.

I However, it should be noted that the approximation breaks
down in low-concentration scenarios, and therefore should not
be expected to work well for models involving species with
very low copy-number. This is quite typical for many SKN’s;
yet the approximation often turns out to be adequate for
inferential purposes in practice.
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Summary

We summarize the high-level differences between the CME, CLE,
and RRE philosophies.

I Chemical Master Equation. A set of linear, autonomous
ODEs. One ODE for each possible state of the system.
Solution of the nth equation at time t gives the probability of
system being in that particular state at time t.

I Chemical Langevin Equation. A set of nonlinear,
autonomous SDEs. One SDE for each chemical species.
Solution of the ith equation at time t is a real-valued random
variable representing the amount of species i at time t.

I Reaction Rate Equations. A set of nonlinear, autonomous
ODEs. One ODE for each chemical species. Solution of the
ith equation at time t is a real number representing the
concentration of species i at time t.
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Summary (from [5])

Logical structure of stochastic chemical kinetics. Everything follows from

the fundamental premise at the top via the laws of probability theory.
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Computational Experiment. Michaelis-Menten system

I Reaction network

R1 : S + E
c1−→ C

R2 : C
c2−→ S + E

R3 : C
c3−→ P + E

I Stoichiometry vectors Species ordering (S ,E ,C ,P):

ϑ1 =


−1
−1

1
0

 , ϑ2 =


1
1
−1

0

 , ϑ3 =


0
1
−1

1

 ,

I Propensities
R1 : h1(n, c) = c1nS(t)nE (t); R2 : h2(n, c) = c2nC (t); R3 :
h3(n, c) = c3nC (t)
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Computational Experiment. Michaelis-Menten system

I Initial data and constant rates (deterministic)
xS(0)
xE (0)
xC (0)
xP(0)

 =


5× 10−7M
2× 10−7M

0M
0M

 , k1 = 106, k2 = 104, k3 = 10−1

I In a volume V = 10−15L, this correspondes to molecular data
nS(0)
nE (0)
nC (0)
nP(0)

 =


b5× 10−7NAV c
b2× 10−7NAV c

0
0

 =


312
125

0
0


c1 =

106

NAV
, c2 = 10−4, c3 = 10−1

where NA ≈ 6.023× 1023 is Avogadro number.
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Open Challenges

Stochastic modeling of biological dynamics, especially at the
cellular level, is increasingly making its way to the mainstream of
quantitative biology investigation. The CME and its accompanying
SSA have proven to be invaluable computational tools for such
studies. There are, however, many challenges that need to be
addressed in order to make stochastic modeling a widely applicable
tool for realistic biological problems.

I Efficient Stochastic Simulation and Analysis for Systems
Evolving at Disparate Temporal and Spatial Scales.

I Efficient Spatiotemporal Simulations. Biological networks
in practice consist of components that interact in a
three-dimensional space and are not necessarily distributed
homogeneously as they diffuse between different cellular
compartments.
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Open Challenges

I Holistic understanding of biological systems.
Understanding of biological systems often involves the probing
of cellular biochemical networks in the context of the cell, of
cells in the context of a tissue, and of a tissue in the context
of the organism. How to account for and move between these
spatial scales remains an open problem for stochastic
modeling.

I Parametrization and Sensitivity Analysis of Stochastic
Models. Stochastic models of biological systems typically
depend on a set of kinetic parameters whose values are often
unknown or fluctuate due to an uncertain environment. These
parameters determine the dynamic behavior of the model, and
changes in them may alter the system’s output in nonintuitive
ways.
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Next steps

Space as the final frontier in
stochastic simulations of

biological systems.
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First Reaction Method

In the his 1976 paper [4], Gillespie writes two algorithms: • Direct
Method (DM) that we have explored before and which requires 2
random numbers per iteration. • First Reaction Method (FRM)
which will be exemplified therefore:

R1 R2 R3 t = 0

0.75 0.20 1.20 t = 0.20 , R2

0.60 0.63 1.30 t = 0.20+0.60 , R1

algorithm: generate ti for each reaction i , based on its propensities
→ choose smallest ti

requires ν random numbers (number of reactions)

Gillespie proved it to be compatible (yet slower) than DM
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First Reaction Method

In the his 1976 paper [4], Gillespie writes two algorithms: • Direct
Method (DM) that we have explored before and which requires 2
random numbers per iteration. • First Reaction Method (FRM)
which will be exemplified therefore:

R1 R2 R3 t = 0

0.75 0.20 1.20 t = 0.20 , R2

0.60 0.63 1.30 t = 0.20+0.60 , R1

algorithm: generate ti for each reaction i , based on its propensities
→ choose smallest ti

requires ν random numbers (number of reactions)

Gillespie proved it to be compatible (yet slower) than DM
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First Reaction Method

I 1. Initialization: initial conditions.

I 2. Calculate reaction propensities hi (x, ci ), for i = 1, 2, · · · , ν.

I 3. Simulate a time to the next reaction i , ti ∼ Exp(hi (x, ci )),
for i = 1, 2, · · · , ν.

I 4. Let j be the index of the smallest time ti .

I 5. Set t := t + tj .

I 6. Update the state x according to the reaction with index j .
That is, set x := x + S (j).

I 7. If t < Tmax, return to step 2.
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Next Reaction Method

The former algorithm was improved by Gibson and Bruck [3] in
what they called Next Reaction Method (NRM):

R1 R2 R3

0.60 0.20 1.30 ⇒
R2 R1 R3

0.20 0.60 1.30 R2 , t := 0.20

R2 R1 R3

0.63 0.60 1.30 ⇒
R1 R2 R3

0.60 0.63 1.30 R1 , t := t + 0.60

= t + 0.43

Generate times only for reactions whose propensities have been
affected by the current one.

Always keep ti in absolute time by adding current time:
ti := t + Exp(hi (x, ci )).
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Next Reaction Method

I 1. Initialization: initial conditions.

I 2. Let j be the index of the smallest ti .

I 3. Set t := tj .

I 4. Update x according to reaction with index j .

I 5. Update hj(x, cj) according to the new state x and simulate a
new time tj := t + Exp(hj(x, cj)).

I 6. For each reaction i( 6= j) whose hazard is changed by
reaction j :

I a) Update h′
i = hi (x, ci ) (but temporarily keep the old hi ).

I b) Set ti := t + (hi/h′
i )(ti − t).

I c) Forget the old hi .

I 7. If t < Tmax, return to step 2.
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Next Reaction Method

Requires extra structures for:

a) graph identifying reactions whose propensities may have
been affected by current reaction.
b) event queue structure to keep ti sorted, avoiding performing
a full sort.

It may actually be faster than the Direct Method (DM),
depending on details of the model (DM always requires 2
random numbers; the model may require only 1 or more under
NRM) and implementation (structures used).

Iterations also have the potential to be run in parallel.
(Wilkinson, 2005)
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Next Subvolume Method

For spatial modeling, one algorithm is Next Subvolume
Method (NSM) by Elf and Ehrenberg [2].

This method modifies Next Reaction Method, so that it
uses “subvolumes” instead.
Each subvolume is a homogeneous mixture under the Direct
Method.
We may in fact look at these subvolumes as reactions, where
each molecule is subject to diffusion to another subvolume,
according to a diffusion rate (its hi ):

S1 : A(1,1)
D1−→ A(2,1)

Each spatial diffusion affects only 2 subvolumes, so only 2
times need to be regenerated (like in DM)
Can potentially represent any spatial geometry (2D, 3D, graph)
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Next Subvolume Method

I 1. For each subvolume k , calculate rates rk and sk , and
generate tk ∼ Exp(Dk(rk + sk)). Sort vector t.

I 2. For the smallest time τ of subvolume λ, choose either a
reaction event if rand < rλ/(rλ + sλ), or a diffusion event

I 3. If reaction:

I a) Reuse the previous random number to determine which
reaction occurred, as in the DM.

I b) Recalculate rλ, sλ and tλ for this subvolume.

I 4. If diffusion:

I a) Reuse the previous random number to determine which
molecule diffused away, given their respective diffusion rates.

I b) Another random number chooses a neighbor γ based on the
connectivity matrix.

I c) Recalculate r , s and t for both subvolumes λ and γ.

I 5. Go back to step 2.
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Lotka-Volterra simulation

Using this method, we simulate Lotka-Volterra predator-prey
model, in a 50x50 grid, by initially spreading around 100 X1 (sheep)
and 50 X2 (wolves), using the reaction rates C = (0.2, 0.5, 0.1) and
diffusion rates D = (1, 5)/32, and the reaction network as:

X1
C1−→ 2X1

X1 + X2
C2−→ 2X2

X2
C3−→ ∅
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Lotka-Volterra simulation

t = 10 (2.624s) t = 20 (18.213s)

t = 30 (535.229s) t = 40 (1013.944s)

Legend: Green=(0X1,0X2), White=(> 0X1,0X2), Black=(0X1,> 0X2),

Red=(> 0X1,> 0X2)
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Several spatial methods

A review of several spatial methods by Andrews and Arkin [1]:

The authors found that:

the Gillespie simulation has larger peaks than the Langevin one

the particle tracking simulation shows larger and fewer bursts than
does the Gillespie simulation because it accurately treats diffusion at
all length scales (this difference can be reduced by using smaller
subvolumes)
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Summary of Spatial Biological System Simulations

Mathematical methods often employed in kinetic studies: ODEs,
PDEs, SPDEs, SDEs ; MC, Monte Carlo; SSA, Gillespie-type

stochastic simulation approach; kreact= rate of biochemical
processes; kdiff = rate of diffusion processes.
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Summary of Biological System Simulations

The world is governed by deterministic laws

We need exogenous stochasticity to keep our models simple
[9, pp.2]

Using stochastic methods matter more when working with
fewer molecules/agents
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