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30. Two inaccessible points A and'B are visible from D, but no other point
can be found whence both are visible. Take some point C, whence 4 and D
can be seen, and measure CD, 200 ft.; ADC, 89°; ACD, 50° 80". Then take
some point E, whence D and B are visible, and measure DE, 200 ; BDE, 54° 30’;
BED, 88°3(0/. At D measure ADB, 72°80’. Compute the distance A B.

Ans. 34b.4 ft.

31. The angle of elevation of an inaccessible tower situated on a horizontal
plane is 63°26”; at a point 500 ft. farther from the base of the tower the ele-
vation of its top is 32° 14, TFind the height of the tower. Ans. 460.5 ft.

32. To compute the horizontal distance between two inaccessible points 4
and B, when no point can be found whence both can be seen. Take two points
C and D, distant 200 yd., so that 4 can be seen from C, and B from D. From
C measure CF, 200 yd. to F, whence 4 can be seen ; and from D measure DE,
200 yd. to E, whence B can be seen. Measure AFC, 83°; ACD, 53°30"; ACF,
54°31’; BDE, 54°30"; BDC, 156°25"; DEB, 88°30". Amns. 345.3 yd.

33. A tower is situated on the bank of a river. From the opposite bank the
angle of elevation of the tower is 60° 13/, and from a point 40 ft. more distant
the elevation is 50° 19°. Find the breadth of the river. Ans. 88.9 ft.

34. A ship sailing north sees two lighthouses 8 mi. apart, in a line due west;
after an hour’s sailing one lighthouse bears S.W. and the other S.S.W. Find
the ship’s rate. Amns. 138.6 mi. per hour.

35. A column in the north temperate zone is east-southeast of an observer,
and at noon the extremity of its shadow is northeast of him. The shadow is
80 ft. in length, and the elevation of the column at the observer’s station is 45°.
Find the height of the column. Ans. 61.23 ft.

36. At a distance of 40 ft. from the foot of a tower on an inclined plane the
‘tower subtends an angle of 41°19"; at a point 60 ft. farther away the angle sub-
tended by the tower is 23°45%, TFind the height of the tower. Amns. 56.5ft.

37. A tower makes an angle of 113° 12" with the inclined plane on which it
stands ; and at a distance of 89 ft. from its base, measured down the plane, the
angle subtended by the tower is 23°27”. Find the height of the tower.

Ans. 51.6 ft.

38. From the top Of a hill the angles of depression of two objects situated in
the horizontal plane of the base of the hill are 45° and 80°; and the horizontal
angle between the two objects is 30°, Show that the height of the hill is equal
to the distance between the objects.

39. Iobserve the angular elevation of the summits of two spires which appear
in a straight line to be «, and the angular depressions of their reflections in still
water to be 8 and . If the height of my eye above the level of the water be ¢,
then the horizontal distance between the spires is

2 ¢ cos2a sin (B — ) .
sin(8 — a)sin (y — a)

40. The angular elevation of a tower due south at a place 4 is 30°, and at a
place B, due west of 4 and at a distance a from it, the elevation is 18°. Show

a
V2B + 2

that the height of the tower is
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41. A boy standing ¢ ft. behind and opposite the middle of a football goal
sees that the angle of elevation of the nearer crossbar is 4 and the angle
of elevation of the farther one is B. Show that the length of the field is
c¢(tan 4 cot B — 1).

42. A valley is crossed by a horizontal bridge whose length is . The sides
of the valley make angles 4 and B with the horizon. Show that the height of

the bridge above the bottom of the valley ig — — .
g v cot A + cot B

43. A tower is situated on a horizontal plane at a distance a from the base
of a hill whose inclination is @. A person on the hill, looking over the tower,
can just see a pond, the distance of which from the tower is . Show that, if
the distance of the observer from the foot of the hill be ¢, the height of the

be sin

tower is ——M————.
a+b4ccosa

44. From a point on a hillside of constant inclination the angle of elevation
of the top of an obelisk on its summit is observed to be «, and a ft. nearer to
the top of the hill to be #; show that if A be the height of the obelisk, the incli-

nation of the hill to the horizon will be

cos—1J & sin a sin 8
; h sin(B —a)



CHAPTER X
RECAPITULATION OF FORMULAS

Praxe TRIGONOMETRY

Right triangles, pp. 2—11.

B
1) SinA=%' 4) cscA:-Z-
b ) C
(2) cos A=Z. (5) secA:Z.
a b
(3) tanA—_—b—- (6) eotA__a. 4 -

(7) Side opposite an acute angle

= hypotenuse x sine of the angle.
(8) Side adjacent an acute angle

= hypotenuse x cosine of the angle.
(9) Side opposite an acute angle

= adjacent side x tangent of the angle.

Fundamental relations between the functions, p. 59.

(19) sinzx = 1 ) escx = .1 .
ese @ v sin
1 : 1
(20) cosx =——> secx = — -
secx cosx
1 1
(21) tanx =iz’ cotoc_-—tanw-
(22) tanzx =202 cob 2 = ..
COS & sin
(23) sin®z 4 cos’zx =1.
(24) sec’x =1 + tan’z. (25) csc’x =1 4 cot’a.
Functions of the sum and of the difference of two angles, pp. 63—69.
40 sin (z + y) = sin x ¢os ¥ 4 cos x sin v.
( Y) = Y ¥
(41) sin (¢ — y) = sinx cos y — cos x sin y.
(42) cos (z + y) = cos x ¢os y — sin x sin y.
(43) cos (x — y) = cos & cos ¥ + sinx sin y.

189



190 PLANE TRIGONOMETRY

_ tanz 4 tany
(44) (@ +9)= 1 fanw tan y
tan x — tan y
(45) tan (v — y) = 1+ tanxtany |
__cotxcoty —1
(46) 00t (@ +y) = coty + cotx
47) Cot<m_y):cotxcoty+1_

coty — cotx

Functions of twice an angle, p. 7o.

(48) sin 2 = 2 sin x cos .
(49) cos 2 x = cos’x — sin’z.
2tan x

Functions of an angle in terms of functions of half the angle, p. 72.

. .ox x
(51) sinx = 2sin Ecos—? .
—_— 2 % _ ain?2 _51_7 .
(52) COS & = COS 5 sin 2
2 tang
(53) tan x = -
1 — tan? 5 ’

Functions of half an angle, pp. 72—73.

(54) sin _—_:l:'\j 1 —cosz 2008“. (58) tany = 1—cosz S—hf‘fx-
(55) eosg :i'Jl—_—FZﬂ)—S—E. (59) cotg =i*\f%—2§§—§-
x 1 —cosx x 14cosx
o) m—k{ om0 wrf=TE
x sin x x sin x
(57) tan§__1+cosw. (61) COtE_l—cosx.

Sums and differences of functions, p. 74.

(62) sin A + sinB = 2sin L (4 4 B)cos (4 — B).
(63) sind —sinB =2 cos (4 + B)sin L (4 — B).
(64) cos A + cos B= 2 cos } (4 + B)cos (4 — B).
(65) cos A — cos B=— 2sin L (4 + B)sin } (4 — B).

66 sind 4 sinB _ tan } (4 + B)
(66) sind —sinB  tan }(4 — B)
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Law of sines, p. 102.
a b e

2 - = — — .
<7) sin 4 smB sinC

Law of cosines, p. 109.
(73) a?=10%4 ¢*— 2 0bccos A.

Law of tangents, p. 112.
a+0b tan}(4+ B)
@b tan (4 — B)

(79)

‘Functions of the half angles of a triangle in terms of the sides,

Pp. II13—I1I5. s:§(a+b+c).

(81) sin 3 4 = \J(S - b>(3 —9,

(82) cos 3 A = W ,

(83) fan A — m\/@ ;(j) _(ea; 5

(84) T:\j@'—-a)(s;b)(s_@.
(85) g ="

(86) mmggzsi”

87 tan } ¢ = ——

Area of a triangle, p. 117.
- (88) = Y besin 4.
(89) S=Vs(s—a)(s—0b)(s— o).







SPHERICAL TRIGONOMETRY

CHAPTER 1
RIGHT SPHERICAL TRIANGLES

1. Correspondence between the face angles and the diedral angles of a
triedral angle on the one hand, and the sides and angles of a spherical
triangle on the other. Take any triedral angle O-A'B'C' and let a
sphere of any radius, as 04, be described about the vertex O as
a center. The intersections of this sphere with the faces of the

triedral angle will be three arcs of great circles of the sphere, form-
ing a spherical triangle, as 4BC. The sides (arcs) 4B, BC, C'4 of
this triangle measure the face angles A'OB', B'OC', C'0OA' of the
triedral angle. The angles ABC, BCA, CAB, are measured by the
plane angles which also measure the diedral angles of the triedral
angle; for, by Geometry, each is measured by the angle between
two straight lines drawn, one in each face, perpendicular to the
edge at the same point.

Spherical Trigonometry treats of the trigonometric relations be-
tween the six elements (three sides and three angles) of a spherical
triangle ; or, what amounts to the same thing, between the face and
diedral angles of the triedral angle which intercepts it, as shown in
the figure. Hence we have the

Theorem. From any property of triedral angles an analogous prop-

erty of spherical triangles can be inferred, and vice versa.
' 193
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It is evident that the face and diedral angles of the triedral angle
are not altered in magnitude by varying the radius of the sphere;
hence the relations between the sides and angles of a spherical tri-
angle are independent of the length of the radius.

The sides of a spherical triangle, being arcs, are usually expressed
in degrees.* The length of a side (arc) may be found in terms of
any linear unit from the proportion

circumference of great circle : length of arc ::360°: degrees in arc.

A side or an angle of a spherical triangle may have any value
from 0° to 360° but any spherical triangle can always be made to
depend on a spherical triangle having
each element less than 180°.

Thus, a triangle such as ADEBC
(unshaded portion of hemisphere in
figure), which has a side 4 DE B greater
than 180° need not be considered, for
its parts can be immediately found
from the parts of the triangle 4ABC,
each of whose sides is less than 180°.
For arc ADEB = 360° — arc 4 B, angle
CAD =180° — angle CAB, etc. Only
triangles whose elements are less than 180° are considered in this book.

2. Properties of spherical triangles. The proofs of the following
properties of spherical triangles may be found in any treatise on
Spherical Geometry :

() Either side of a spherical triangle is less than the sum of the
other two sides. ‘

(0) If two sides of a spherical triangle
are unequal, the angles opposite them are
unequal, and the greater angle lies opposite
the greater side, and conversely.

(¢) The sum of the sides of a spherical
ﬁriangle is less than 360°.F

(d) The sum of the angles of a spher-
ical triangle is greater than 180° and less
than 540°.1

* One of the chief differences between Plane Trigonometry and Spherical Trigonofnetry
is that in the former the sides of triangles are expressed in linear units, while in the latter
all the parts are usually expressed in units of arc, i.e. degrees, etec.

1+ In a plane triangle the sum of the sides may have any magnitude.

i In a plane triangle the sum of the angles is always equal to 1800°,
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(e) If A'B'C' is the polar triangle* of ABC, then, conversely,
ABC is the polar triangle of A'B'C".

(f) In two polar triangles each angle of one is the supplement
of the side lying opposite to it in the other. Applying this to the
last figure, we get

A=180°—«/, B =180°—10', ¢ =180° — ¢/,
A'=180° — q, B'=180° — b, C'=180° —¢.

A spherical triangle which has one or more right angles is called
a right spherical triangle.

EXAMPLES

1. Find the sides of the polar triangles of the spherical triangles whose angles
are as follows. Draw the figure in each case.

(a) 4 =170° B =80° C =100°. Ans. o = 110°, ¥ = 100°, ¢’ = 80°.

(b) A =56° B=197° C=112°

(c) 4 =08°14, B=52° 10/, C = 98° 44,

(d) 4 =115.6°, B = 89.9°, C =T74.2°,

2. Find the angles of the polar triangles of the spherical triangles whose sfdes
are as follows:

(a) a = 94° b= 52° ¢ = 100°. Ans. A’ = 86°, B’ =128° (" = 80°.

(b) @ = T4°42, b = 95° ', ¢ = 66° 25",

(c) @ =106.4°% b = 64.3°, ¢ = 51.7°.

3. If a triangle has three right angles, show that the sides of the triangle are
quadrants.

4. Show that if a triangle has two right angles, the sides opposite these angles
are quadrants, and the third angle is measured by the opposite side.

5. Find the lengths of the sides of the triangles in Example 2 if the radius of
the sphere is 4 ft.

3. Formulas relating to right spherical triangles. From the above
Examples 3 and 4, it is evident that the only kind of right spherical
triangle that requires further investigation is that which contains
only one right angle. '

In the figure shown on the next page let ABC be a right spherical
triangle having only one right angle, the center of the sphere being
at 0. Let C be the right angle, and suppose first that each of the
other elements is-less than 90° the radius of the sphere being unity.

*The polar triangle of any spherieal triangle is constructed by describing aves of great
circles about the vertices.of the original triangle as poles,
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Pass an auxiliary plane through B perpendicular ‘to 04, cutting
0OA at E and OC at D. Draw BE, BD, and DE. BE and DE are
each perpendicular to 04

[If a straight line is L to a plane, it is | to every line in the plane.]

therefore angle BED = angle A. The plane BDE is perpendicular to
the plane A OC; [If a straight line is { to a plane, every plane]
passed through the line is L to the first plane.

hence BD, which is the intersection of the planes BDE and BOC, is
perpendicular to the plane 40C,

[If two intersecting planes are each L to a third]
plane, their intersection is also L to that plane.

and therefore perpendicular to OC and DE.

Jﬂﬂ

t
!

In triangle L£OD, remembering that angle EOD = b, we have -

E_ cos b
op 7
or, clearing of fractions,
(4) OE = 0D - cos b.
But OE = cos ¢ (= cos EOB),
and OD = cos a (= cos DOB).
Substituting in (4), we get
(1) €os ¢ = €0s a cos b.

In triangle BED, remembering that angle BED =angle 4, we have

=sin 4
g = sind,
or, clearing of fractions,
(B) BD = BE -sin 4.
But BD = sin a (= sin DOB),

and BE = sin ¢ (= sin EOB).
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Substituting in (B), we get
(®) sin a = sin ¢ sin 4.

Similarly, if we had passed the auxiliary plane through 4 perpen-
dicular to OB,

3) sin b = sin ¢ sin B.
Again, in the triangle BED,
DE
(©) cos 4 = BB
. - DE
But DE = 0D sin b, from sin b = oD
OD = cos a (= cos DOB), .
and BE = sin¢ (= sin EOB).
Substituting in (C),
OD sin b in b
(D) cos d = =20 6os @ o
sin e sin ¢
But from (3), s1'nb = sin B. Therefore
sin ¢
4) cos A = cos a sin B.

Similarly, if we had passed the auxiliary plane through 4 perpen-
dicular to OB,

(5) cos B = cos b sin A.

The above five formulas are fundamental; that is, from them we
may derive all other relations expressing any one part of a right
spherical triangle in terms of two others. For example, to find a
relation between 4, b, ¢, proceed thus:

From (4), cos A = cos ¢ sin B
__cosc sind
" cosb sine

[Since cos @ = €95¢ from (1), and sin B= Si_n b from (3).]
eosb sin¢

__sind cosc
" cosb sine

(6) .". cos A = tan b cotc.

Similarly, we may get

(" cos B = tan a cot c.

(8) sin b = tan a cot 4.

(9) sin @ = tan b cot B.

(10) cos ¢ = cot A4 cot B.
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These ten formulas are sufficient for the solution of right spher-
ical triangles. In deriving these formulas we assumed all the
elements except the right angle to be less than 90°. But the formu-
las hold when this assumption is not made. For instance, let us
suppose that « is greater that 90°. In this case the auxiliary plane
BDE will eut CO and A0 produced beyond the center 0, and we
have, in triangle EOD, : :

OFE
E s DOE (= cos b) = .
But OFE = cos EOB = — cos AOB = — cos ¢,
and 0D = cos DOB = — cos (OB = — ¢os a.
Substituting in (E), we get
cos ¢
cos b = » OT COS ¢ == COS @ COS b,
cos a

which is the same as (1).

Likewise, the other formulas will hold true in this case. Similarly,
they may be shown to hold true in all cases.

If the two sides including the right angle are either both less or

both greater than 90° (that is, cos @ and cos b are either both positive
or both negative), then the product '

(F) COS &t COS b

will always be positive, and therefore cose¢, from (1), will always
be positive, that is, ¢ will always be less than 90°. If, however, one
of the sides including the right angle is less and the other is greater
than 90°, the product (F), and therefore also cos ¢, will be negative,
and ¢ will be greater than 90°. '

Hence we have

Theorem I. If the two sides including the right angle of a right
spherical triangle are both less or both greater than 90°, the hypotenuse
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is less than 90°; if one side is less and the other is greater than 90°,
the hypotenuse is greater than 90°.

cos B
cos b

s and sin 4 =

cos 4
d in B =
From (4) and (5), sin P

Since 4 and B are less than 180° sin 4 and sin B must always be
positive. But then cos 4 and cos ¢ must have the same sign, that is,
4 and a are either both less than 90° or both greater than 90°. Simi-
larly, for B and 4. Hence we have

Theorem II. In a right spherical triangle an obligue angle and the
side opposite are either both less or both greater than 90°.

4. Napier’s rules of circular parts. The ten formulas derived in the
last section express the relations between the three sides and the two
oblique angles of a right spherical triangle. All these relations may
be shown to follow from two very useful rules discovered by Baron
Napier, the inventor of logarithms.

For this purpose the right angle (not entering the formulas) is
not taken into account, and we replace the hypotenuse and the two

B,

a a
4 a . 43
b

oblique angles by their respective complements; so that the five
parts, called the circular parts, used in Napier’s rules are a, b, 4,,
¢,, B, The subscript ¢ indicates that the complement is to be
used. The first figure illustrates the ordinary method of represent-
ing a right spherical triangle. To emphasize the circular parts
employed in Napier’s rules, the same triangle might be represented
as shown in the second figure. It is not necessary, however, to draw
the triangle at-all when using Napier’s rules; in
fact, it is found to be more convenient to simply
write down the five parts in their proper order as on 4. B,
the circumference of a circle, as shown in the third
figure (hence the name circular parts).

Any one of these parts may be called a middle
part; then the two parts immediately adjacent to it are called adja-
cent parts, and the other two opposite parts. Thus, if « is taken as

a middle part, 4, and & are the adjacent parts, while ¢, and B, are
the opposite parts.

Cc
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Napier’s rules of circular parts.

Rule I. The sine of any middle part is equal to the product of the
tangents of the adjacent parts.
" Rule II. The sine of any middle part is equal to the product of the
cosines of the opposite parts.

These rules are easily remembered if we associate the first one
with the expression ¢ tan-adj.”’ and the second one with ¢ cos-opp.’’ *

Napier’s rules may be easily verified by applying them in turn to
each one of the five circular parts taken as a middle part, and com-
paring the results with (1) to (10).

For example, let ¢, be taken as a middle part; then 4, and B, are
the adjacent parts, while ¢ and & are the opposite parts.

Then, by Rule I,

sin ¢, = tan 4, tan B,,
Ce

or, cos ¢ = cot 4 cot B;
A, B, Wwhich agrees with (10), p. 197.
By Rule II, sin ¢, = cos a cos b,
a b or, COS € = COS @ COS b

which agrees with (1), p. 196.

The student should verify Napier’s rules in this manner by taking
each one of the other four circular parts as the middle part.

Writers on Trigonometry differ as to the practical value of Napier’s
rules, but it is generally conceded that they are a great aid to the
memory in applying formulas (1) to (10) to the solution of right
spherical triangles, and we shall so employ them.

5. Solution of right spherical triangles. To solve a right spherical
triangle, two elements (parts) must be given in addition to the right
angle. For the sake of uniformity we shall continue to denote the
right angle in a spherical triangle 4BC by the letter C.

General directions for solving right spherical triangles.

Cc CC CC Cc

b

Ac B, Ac B o DB -Ac Do

b a b a 3 a 2 a

First step. Write down the five circular parts as in first figure.

Second step. Underline the two given parts and the required un-
known part. Thus, if A, and a are given to find b, we underline all
three as is shown in the second figure.

* Or by noting that « is the first vowel in the words *“ tangent’’ and **adjacent,”” while o
is the first vowel in the words * cosine’’ and **opposite.”
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Third step. Pick out the middle part (in this case b) and cross the
line under it as indicated in the third figure.

Fourth step. Use Rule 1-if the other two parts are adjacent to the
middle part (as in case illustrated), or Bule 11 if they are opposite,
and solve for the unknown part.

Check: Check with that rule which involves the three required parts.*

Careful attention must be paid to the algebraic signs of the func-
tions when solving spherical triangles; the cosines, tangents, and
cotangents of angles or arcs greater than 90° being negative. When
computing with logarithms we shall write (n) after the logarithms
when the functions are negative. If the number of negative factors
is even, the result will be positive; if it is odd, the result will be
negative and (n) should be written after the resulting logarithm.
In order to be able to show our computations in compact form, we
shall write down all the logarithms of the trigonometric functions
just as they are given in our table; that is, when a logarithm has a
negative characteristic we will not write down — 10 after it.§

Ex. 1. Solve the right spherical triangle, having given B = 33° 50", a = 108°,
Solution. TFollow the above general directions.

To find 4 To find b To find ¢
Ce Ce _c_ﬂ
4,
£ 2|4 o 2
b (4 ) 1 b @
Using Rule II Using Rule I Using Rule I
sin A, = cos B, cosa sin ¢ = tan B, tan b sin B, = tane¢, tana -
cos 4 =sinBcosa tanb = sina tan B cotc = cos B cota
log sin B = 9.7457 log sina = 9.9782 log cos B = 9.9194
log cos @ = 9.4900 (n) log tan B = 9.8263 log cot @ = 9.5118 (n)
log cos 4 = 9.2357 (n) log tan b = 9.8045 log cotc = 9.4312 (n)
<. 180°— Aj = 80° 6’ « b =382°31. o 180° — ¢ = T4° b4’
and A = 99° b4". and c=106°6".

The value of log cos 4 found is the same as that found in our first computa-
tion. The student should observe that in checking our work in this example

* Thus, in above case, 4c and a are given; therefore we underline the three required
parts and cross b as the middle part. Applying Rule II, ¢c and B, being opposite parts, we
get sin b= cos ¢, cos B, or, sin b= sin ¢ sin B.

+ For example, as in the table, we will write log sin 24°=9.6093. To be exact, this should
be written log sin 240 =9.6093 — 10, or, log sin 24°= 1,6093.

i Since cos 4 is negative, we get the supplement of 4 from the table.
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it was not necessary to look up any new logarithms, Hence the check in this
case is only on the correctness of the logarithmic work.*

Check : Using Rule I

Co
sinAd,= tanb tan ¢,
A B. cos 4 = tanb cotc
+C c
log tand = 9.8045
log cot ¢ = 9.4312 (n)
b a log cos A = 9.2857 (n)

In logarithmic computations the student should always write down
an outline or skeleton of the computation before using his logarithmic
table at all. In the last example this outline would be as follows :

logsin B = log sina = log cos B =
log cosa = (n) log tan B = log cota = (n)
log cos 4 = (n) log tan b = log cot ¢ = (n)
- 180°— 4 = sob= oo 180°—¢ =
and A= and ¢ =

It saves time to look up all the logarithms at once, and besides it
reduces the liability of error to thus separate the theoretical part of
the work from that which is purely mechanical. Students should be
drilled in writing down forms like that given above before attempt-
ing to solve examples.

Ex. 2. Solve the right spherical triangle, having given ¢ = 70° 30/, 4 = 100°,
Solution. Follow the general directions.

To find a To find b To find B
' Le Ce Ce
‘ - 7
A, B, A, ,
4 4 2z Ae B
1)) -?L- Zl_ a b a

Using Rule I

sin @ = cosc.cos.d. |
sing = sin¢sin 4

Using Rule I

sin .= tan b tan ¢,
tanb = cos A tanc

Using Rule 1

sin ¢, =tan A.tan B,
cotB=cosctanA4d

log sinc = 9.9743

log sin A = 9.9934

logsina = 9.9677
.. 180°—at = 68° 107
and a = 111° 50".

log cos 4 = 9.2397 (n)
log tan ¢ = 0.4509
log tand = 9.6906 (n)
oo 180° — b =26°8
and b = 153° 52’.

log cos¢ = 9.5235
logtan.4 = 0.7537 (n)
log cot B = 0.2772 (n)

.. 180°— B = 27° 51’
and B =152°9.

The work of verifying the results is left to the student.

* In order to be sure that the angles and sides have been correctly taken from the tables,
in such an example as this, we should use them together with some of the given data in
relations not already employed.

+ Since @ is determined from its sine, it is evident that it may have the value 68° 10’ found
from the table, or the supplementary value 111°50°. Since 4 > 90°, however, we know from
Th. I1, p. 199, that o > 90°; hence a=111°50’ is the only solution.
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6. The ambiguous case. Two solutions. When the given parts of
a right spherical triangle are an oblique angle and its opposite side,
there are two triangles which

satisfy the given conditions. . B~\{&go\

For, in the triangle ABC, let a \C:\\

C =90°% and let 4 and CB 44X >4
(= @) be the given parts. If - ——15&3'5’

we extend 4B and AC to 4/,
it is evident that the triangle A'BC also satisfies the given condi-
tions, since BCA'= 90° A' = 4, and BC = a. The remaining parts
in A'BC are supplementary to the respective remaining parts in
ABC. Thus

A'B=180°— ¢, A'C =180°— b, A'BC =180°— ABC.
This ambiguity also appears in the solution of the triangle, as is

illustrated in the following example :

Ex. 8. Solve the right spherical triangle, having given 4 = 1056°59", a =
128° 33",
Solution. We proceed as in the previous examples.

To find b To find B To find ¢
Cc V Ce ﬁ(':
4,
A B 4o Be A, B.
L a b a b 9
sinb = tan @ tan 4, sind. = cosa cos B, sina = cos.4. cosc,
i sin B = oos 4 sine = sina
sind = tana cot 4 = cosa = SnA
log tan a = 0.0986 (n) log cos A = 9.4399 (n) log sin g = 9.8932
log cot.A = 9.4570 (n) log cosa = 9.7946 (n) log sin 4 = 9.9828
log sin B = 9.5556 log sin B = 9.6453 log sin ¢ = 9.9104
s b=21°4, or, - B=26°14, or, < 0= b4° 27, or,
180° — b =158°56" = b’.* | 180° — B =153°46'=B".1 | 180° — ¢’ = 125°33'=c.§{

Hence the two solutions are :

1. b =21°¢4, ¢ = 125° 33, B = 26° 14/ (triangle .ABCY);
2. b = 168° 567, ¢ = 54° 27, B’ = 153° 46’ (triangle 4’BC).

It is not necessary to check both solutions. We leave this to the student.

* Since sin B is positive and B is not known, we cannot remove the ambiguity. Hence
both the acute angle taken from the table and its supplement must be retained.

+ The two values of B must be retained, since b has two values which are supplementary-

i Since @ > 90° and b has two values, one > and the other < 900, it follows from Th. I,
p. 198, that ¢ will have two values, the first one < 90° and the second > 90°.
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EXAMPLES

Solve the following right spherical triangles:

No. GIvEN PARTS REQUIRED PARTS
1| a=182°6" b=77°51" | A=131°27 B=80°565 =987
2| a=159° c=137°20" | A=148°5 B=65°23 b=238°1
3| A=50°200 B=122°40" | a =40°42" b =134°31" ¢=122°T7"
4 | a=160° b=2388°30" | 4A=149°41" B=66°44" ¢ =137°20"
5 | B=80° b=167°40" | A=27°12" a=25°25 <¢= 69° 547; or,
A’=1562°48" o' = 1564° 35 ¢ =110°6"
6 | B=112° ¢ = 81° 50’ A =109°23" a=110°58 b=113°22
7| a=61° B=123°40" | A=066°12" b=127°17 ¢=107°¥%
8| a=61°40" b=144°10" | A =172°29 B =140°38" ¢ =112°3%
9| A=99°50" a=112° B=27°7T b=256°24" ¢ =109°46"; or,
B/'=152° 53" b’ =154° 36" ¢'= 70° 14’
10} D =15° ¢c=1562°20" | A =120°44" o = 156° 30" B = 33° 53’
11 | 4=62°569 B=37°4 a=41°6" b=26°25 ¢ =47°32
12 | A=73°T7 ¢c=114°82" | ¢ =60°31" B =143°50’ b = 147° 32’
13 | B=144°54" b =146°32" | 4 =178°47" a="70°10" ¢ = 106°28"; or,
A’=101° 18" o’=109° 50" ¢ = 73° 32’
14 | B=68°18" c¢=47°34 A=280°32 aq=22°V1 b=43° 18
15 | 4 =161°562" b =131°8" a=166°9" B =101°49" ¢=50°18
16 | a=118°25 b=110°47 | A =112°3 B =109°12" ¢ = 81°54"
17 | a=137°9 B ="74°51" A=135°% b=6817 ¢ =105°44
18 | 4 =144°54" B=101°14" | @ =146°33" b =109°48" ¢ = 73° 35’
19 a=069°18 ¢ = 84°27 A ="170° B="15°¢ b="T74°7

20. For more examples take any two parts in the above triangles and solve
for the other three.

7. Solution of isosceles and quadrantal triangles. Plane isosceles
triangles were solved by dividing each one into two equal right tri-
angles and then solving one of the right triangles. Similarly, we
may solve an isosceles spherical triangle by dividing it into two sym-
metrical (equal) right spherical triangles by an arc drawn from the
vertex perpendicular to the base, and then solving one of the right
spherical triangles.

A quadrantal triangle is a spherical triangle one side of which is
a quadrant (= 90°). By (f), p. 195, the polar triangle of a quad-
rantal triangle is a right triangle. Therefore, to solve a quadrantal
triangle we have only to solve its polar triangle and take the sup-
plements of the parts obtained by the calculation.

Ex. 1. Solve the triangle, having given ¢ = 90°, a = 67° 38", b = 48° 50",

Solution. This is a quadrantal triangle since one side ¢ = 90°. We then find

the corresponding elements of its polar triangle by (f), p. 195. They are ¢"=90°,
A’ =112°22, B’ =131° 10’. We solve this right triangle in the usual way.
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Construct the polar (right) triangle.
‘Given 4’ =112°22", B’ =181°10":

To find o’

log cos A’ = 9.5804 (n)
log sin B’ = 9.8767
log cos a’ = 9.7037 (n)
180° — a’ = 59° 38'.

a’ = 120° 227,
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.B'

C ’
bl
Similarly, we get

b’ =185° 28", ¢’ = 68° bb.
Hence in the given quadrantal tri-
angle we have
A =180° — a’ = 59° 38,
B =180° — b’ = 44° 37/,
C=180°—¢ =111° &

EXAMPLES

Solve the following quadrantal triangles:

GI1vEN PArTs

REQUIRED PaARrTS

A=139°
A =45°30

b=143° c=90°
B =139°20" ¢=90°
a=30°20" C=42°40" c¢=90°
B=170°12" (C=106°25" ¢c=90°
A =105°53 a=104°54" ¢=90°

o | 2

A=20°1
A =33°28
B = 69° 16’
B =110°44"

a=117°1
a = 57° 22’

B =153°42" C =132°34’
b=129°42" C =57°53
B=141°30" b=113°17
a=23856°4" b="78°47
b="170° C =84°30"; or
b=110° C = 95° 30"

Solve the following isosceles spherical triangles:

REQUIRED PARTS

No. GiveN PArTs
6 | a=54°20" c¢="72°54" A=B
7 la=54°30" (C=T71° A=B
8 | a=66°2 A4A=B=50°17
9

c=156°40" C=187°46’ A =B

b=154°20" A =B=>57°569 € =93°5Y
b="54°30" 4 =B=90° ¢ =180°
b=66°29 ¢=111°30" (=128°42
a="b=23°58 or 176°2’

A= B=289°12’ or 90° 48’

Prove the following relations between the elements of a right spherical

triangle (C = 90°):

10. cos?A sin2¢ = sin(c + a)sin(c—a). 13. sin(b + ¢) = 2cos?} A cosbsinc.

11. tana cosc =sinbd cot B.
12. sin2 4 = cos? B + sin?a sin2 B.

14, sin(c — b) =2sin21 A cosbsinc.



CHAPTER 1II
OBLIQUE SPHERICAL TRIANGLES

8. Fundamental formulas. In this chapter some relations between
the sides and angles of any spherlcal triangle (whether right angled
or oblique) will be derived.

9. Law of sines. In a spherical triangle the sines of the sides are
proportional to the sines of the opposite angles.

Proof. Let ABC be any spherical triangle, and draw the arc CD
perpendicular to AB. There will be two cases according as CD falls

C
J\
)
b D
4 /]
: D
Qe nBo__. N

upon AB (first figure) or upon 4B produced (second figure). For
the sake of brevity let CD = p, AD = n, BD = m, angle ACD = «,
angle BCD = y.

In the right triangle ADC (either figure)

(4) sin p = sin b sin 4. Rule II, p. 200
In the right triangle BC'D (first figure)
(B) » sin p = sin @ sin B. Rule II, p. 200

This also holds true in the second figure, for

sin DBC' = sin (180° — B) = smB
Equating the values of sinp from (4) and (B),
sinesinB =sin bsin 4,
or, dividing through by sin 4 sin B,

(©

sinae  sinb
sind = sinB
206
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In like manner, by drawing perpendiculars from 4 and B, we get

sin b sin ¢

D - = —
( ) sin B smC” and
sine sina
E . = — spectively.
( ) sinC~ sind’ Tespectively

Writing (C), (D), (E) as a single statement, we get the law of sines,

(11) sina sind sinc *
sind ~ sinB~ sinC

10. Law of cosines. In a spherical triangle the cosine of any side
is equal to the product of the cosines of the other two sides plus the
product of the sines of these two sides and the cosine of their included
angle.

Proof. Using the same figures as in the last section, we have in
the right triangle BDC,

COS @ = COS p COS M Rule II, p. 200
= 08 p cos (¢ — n)
= oS p §€0s ¢ cos n + sin¢ sin n¢

(4) = COS ) COS ¢ COS 7 + COS p Sin ¢ sin 7.

In the right triangle 4DC,

(B) COS P COS 1 = COS b.
 cosd
Whence © o cosp = )
cos

and, multiplying both sides by sin n,

() cos p sinn = cos b -sin 7 = cos b tan n.

Ccos 7
But cos A = tan » cot b, or, Rule I, p. 200
(D) tann = tan b cos 4.

Substituting value of tan» from (D) in (C), we have

(E) cos p sinn = cos b tan b cos 4 = sin b cos 4.

Substituting the value of cosp cosnfrom (B) and the value of
cos p sin » from (E) in (4), we get the law of cosines,

(F) cosa = cos b cos ¢+ sin b sin e cos 4.

* Compare with the law of sines in Granville’s Plane Trigonometry, p. 102.
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Similarly, for the sides 4 and ¢ we may obtain
(&) cos b = cos ¢ cos @ + sin ¢ sin @ cos B,

(H) COS ¢ = coS @ ¢cos b + sin a sin b cos C.

11. Principle of Duality. Given any relation involving one or more
of the sides «, b, ¢, and the angles 4, B, C of any general spherical
triangle. Now the polar triangle (whose sides are denoted by o/, 8/, ¢/,
and angles by 4/, B, C') is also in this case a general spherical
triangle, and the given relation must hold true for it also; that is,
the given relation applies to the polar triangle if accents are placed
upon the letters representing the sides and angles. Thus (F), (G),
(H) of the last section give us the following law of cosines for the

polar triangle:

(4) cos a' = cos {' cos ¢’ 4 sin b’ sin ¢’ cos 4.
(B) cos b' = cos ¢' cos a' + sin ¢' sin ' cos B'.
€9 cos ¢' = cos a' cos b' + sin ¢' sin &' cos C'.

But by (f), p. 195,
@' =180°— 4, b'=180°— B, ¢'=180°— C,
A'=180°— B'=180°— b, ¢'=180°—c.

Making these substitutions in (4), (B), (C), which refer to the
polar triangle, we get '

(D) cos(180°— A4) = cos (180° — B)cos (180° — C)
+ sin (180° — B)sin (180° — C) cos (180° — a),
(E) cos(180°—B) = cos (180°— ') cos (180°— 4)
+ sin (180° — C") sin (180° — 4) cos (180° — b),
(F) cos (180°— C) = cos (180° — 4) cos (180° — B)
+ sin (180° — 4) sin (180° — B) cos (180° —¢),
which involve the sides and angles of the original triangle.

The result of the preceding discussion may then be stated in the
following form :

Theorem. In any relation between the parts of a general Sphem'cal
triangle, each part may be replaced by the supplement of the opposite
part, and the relation thus obtained will hold true.
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The Principle of Duality follows when the above theorem is applied
to a relation involving one or more of the sides and the supplements
of the angles (instead of the angles themselves).

Let the supplements of the angles of the triangle be denoted by
@, B, y*; that is,

@=180°—4, B=180°—B, y=180°—C,
or, 4=180°—a, B=180°—pB, C =180°—1.
When we apply the above theorem to a rela-

tion between the sides and supplements of the
angles of a triangle, we, in fact,

replace a by a (=180°—4),
“replace b by B (=180°— B),
replace ¢ by y (=180°— C),
replace a (=180°— 4) by 180°— (180° — a) = q,
replace 8 (= 180°— B) by 180° — (180°— b) = b,
replace y (=180°—C) by 180°— (180°— ¢) = ¢,

or, what amounts to the same thing, interchange the Greek and
Loman letters. For instance, substitute

A=180°—a, B=180°—f, C=180°—y

in (F), (G), (H) of the last section. This gives the law of cosines
for the sides in the new form

(12) cos @ = cos b cos ¢ — sin b sin c cos a,
(13) cos b = cos ¢ cos @ — sin ¢ sin a cos B,
(14) €0s ¢ = c0s @ cos b — sin a sin b cos y.

[Since cos 4= cos(180° — @)= — cos a, etc.]

If we now apply the above theorem to these formulas, we get the
law of cosines for the angles, namely,

(15) cos @ = cos B cos Y — sin B siny cos q,
(16) cos B = cos ¥ cos @ — sin y sin a cos b,
17) cosy = cos @ cos # — sin a sin B cos c,

* a, B, y are then the exterior angles of the triangle, as shown in the figure.



210 SPHERICAL TRIGONOMETRY

that is, we have derived three new relations between the sides and
supplements of the angles of the triangle.* We may now state the

Principle of Duality. If the sides of a general spherical triangle are
denoted by the Roman letters a, b, ¢, and the supplements of the cor-
responding opposite angles by the Greek letters a, B, vy, then, from
any giwen formula involving any of these six parts, we may write
down a dual formula by simply interchanging the corresponding Greelk
and Roman letters.

The immediate consequence of this principle is that formulas in
Spherical Trigonometry occur in pairs, either one of a pair being the
dual of the other. 7

Thus (12) and (15) are dual formulas; also (13) and (16), or (14)
and (17).

If we substitute

4 =180°— q, B =180°— B, C=180°— 1y
in the law of sines (p. 207), we get

sine sind sine

sine  sinfB  siny
[Since sin 4 = sin (180° — @)= sin «, etc.]
Applying the Principle of Duality to this relation, we get

sine  sinB siny
. = — = — ’
sin a sin b sin ¢

which is essentially the same as the previous form.

The forms of the law of cosines that we have derived involve
algebraic sums. As these are not convenient for logarithmic calcu-
lations, we will reduce them to the form of products.

12. Trigonometric functions of half the supplements of the angles of
a spherical triangle in terms of its sides. Denote half the sum of the
sides of a triangle (i.e. half the perimeter) by s. Then

(4) 2s=a+0b+e
or, s=%(a4+b+c).

* If we had employed the interior angles of the triangle in our formulas (as has been the
almost universal practice of writers on Spherical Trigonometry), the two sets of cosine
formulas would not have been of the same form. That the method used here has many
advantages will become more and more apparent as the reading of the text is continued.
Not only are the resulting formulas much easier to memorize, but much labor is saved in
that, when we have derived one set of formulas for the angles (or sides), the corresponding
set of formulas for the sides (or angles) may be written down at once by mere inspection
by applying this Principle of Duality. The great advantage of using this Principle of
Duality was first pointed out by Mobius (1790-1868).
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Subtracting 2 ¢ from both sides of (4),
2s —2¢c=a+b+c¢—2¢ or,

(B) s=—c=4(a+b—c).

Similarly,

(€) s—b=1%(a—b+c),and

(D) s—a=3(—a+b+c)=%0+c—a).
From Plane Trigonometry,

(E) 2sin?la =1 —cos a,

(F) 20032%0;:14—008&.

But from (12), p. 209, solving for cos «,

cos b cosec —cosa
sin b sin ¢

COS @ =

hence (E) becomes .
cos b cos ¢ — COS ¢

2sin*fa=1—

sin b sin ¢
__sinbsinec — cos b cos ¢ 4 cos @
- sin b sin ¢
__cos @ —(cos b cos ¢ — sin b sin ¢)
- sin b sin ¢
__cosa—cos(b—]—c)
o sinbsine
—2sin} (a+b+e)sinf(a—b—c)
- sind sin ¢ > o
1 1 1 1 —_
@ owemCALEONL0teoa)

[Since sin L(@—b—c)=—sini(—a+b+c)=—sin}(b+c— a)}.]
Substituting from (4) and (D) in (&), we get

sin s sin (s — )

sin?la= - ; y Or
2 sin b sin ¢ o
] " Isinssin(s—a
(18) sinta =\j g ( )
sin b sinc¢
* Let A=a A=a
B=b+c¢ B=b+c¢
A+B=a+b+c A-—B:a——lb—c
34+ B)=i(a+b+o). 3(4~B)=}(a—b-o).

Hence, substituting in (65), p. 74, Granville’s Plane Trigonometry, namely,

cos A — cos B=—2sin }(4 + B)sin }(4 — B),

we get cosa—cos(b+c)=—2sini(a+b+c)sin(a—b—c).
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Similarly, (F) becomes

cos b cosc — cos a
sin b sin ¢

2co8?la=1+

sin b sin ¢ 4+ cos b cos ¢ — cos @
sin b sine

cos (b —¢) —cos a
sin b sin ¢

Il

—2sinl (a—[—b——c)smg(b—c—a) *
sin b sin e

2sin}(a+b—c)sin}(a—0b —|—o).
sin b sin ¢

(H) 2cos?}a=
[Since sin}(b—c—a)=—sin}(-b+c+a)=—sini(a-b+c).]
Substituting from (B) and (C) in (H), we get

sin (s — ¢)sin (s — b)

os?laq = or
cos"ga = sin b sin ¢ ’
sin (s — b)sin (s — ¢)
costa = .
(19) 2 sin b sin ¢
__sin} sin}a
Since tan } « “oosla’ we get from this, by substitution from (18)
and (19),
sinssin(s — a
(20) tnja=—SntnC—0
sin (s — b) sin(s — ¢)
* Let A=b-c A=b—-c¢
B=a B=a
A+B=a+b-c A—-B=b—-c~a
34+ B)=}(a+b—c). 34 - B)=4(b—c—a).

Hence, substituting in formula (§5), found on p. 74, Granville’s Plane Trigonometry,
namely,
cos 4 — cos B=—2sin (4 + B)sin {(4 — B),

we get cos(b—c)—cosa=—2sin j(a+ b—c)sin 1(b—-c—a).

+ In memorizing these formulas it will be found an aid to the memory to note the fact
that under each radical

(@) only the sine function occurs.

(b) The denominators of the sine and cosine formulas involve those two sides of the tri-
angle which are‘not opposite to the angle sought.

(¢) When reading the numerator and denominator of the fraction in the tangent formula,
s comes first and then the differences

s—-a, $s—-b, s—c,
in cyclical order; s and the first difference occurring also in the numerator of the cor-

responding sine formula, while the last two differences occur in the numerator of the
corresponding cosine formula.
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In like manner, we may get

(21) Sin%p___%sinssin(s—b)’

sincsina

sin(s — ¢)sin(s — a)

19 __
(22) cos3 B _\/ sin ¢ sin a

: : _—
(23> tan%ﬂ:\/ sin s sin (s )

sin (s — ¢)sin (s —a) )
Also

(24) Sin%.y=\jsinscsin(s—c),

sinasind

sin (s — a)sin (s — b)

1., —
(25) cszy = \, sin a sin b

(26) tan%y — ,\/ sin s sin (s — c)

sin(s — a)sin(s — b) )

In solving triangles it is sometimes more convenient to use other
forms of (R0), (23), (26). Thus, in the right-hand member of (20),
multiply both the numerator and denominator of the fraction under
the radical by sin(s — ). This gives

tan 1l @ = \/ sin s sin?(s — a)
277 Nsin(s — a)sin(s — b)sin (s — ¢)

=gin (s——a)\, 810 §

sin (s—a)sin (s—b)sin (s—c) '

Let t&n%d*:QSin(s— a’)Sin(.s_b)Sin(S—c),
. sin s
then tan 1l @ = M.
? tan t d

Similarly, for tan } 8 and tan }y. Hence

sin (s — a) sin (s — b)sin (s — ¢)

(27) tan}d = %

sin s
(28) tania = -SE::%-%—TGZ
(29) tan} g = 220 - 2
(30) tanly = Si‘:ﬁ %_dc)

* It may be shown that d = diameter of the circle inscribed in the spherical triangle,
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13. Trigonometric functions of the half sides of a spherical triangle in
terms of the supplements of the angles. By making use of the Princi-
ple of Duality on p. 208, we get at once from formulas (18) to (30),
by replacing the supplement of an angle by the opposite side and each
side by the supplement of the opposite angle, the following formulas :

sin o sin (00 — @)

i1
(31) sta_% sin 8 siny

: 1. sin (00 — B) sin (0 — y)
(32) cosza= \1 sin B siny !
1. sin 0 sin (00 — a)
(33) tanza = sin (0 — B) sin (0 — y) ’
(38) windp — \jsin o sin(c — )
z sinysina
(35) cosl b — Qsin(a-y)sin(o——a)
2T siny sina ’
1h sinO‘sin(O'—p)
(36) tanj b= \jsin T—y)sn@—a)’
i1 sino sin (0 — y)
37) Sz 6= Q sinasinf

sin (0 — a)sin (0 — p) ,

lc=
(38) c08g ¢ \j sin a sin

1. sin 0 sin (0 — )
(39) tan}c= \jsin it
(40) tanl §* — \Isin (0 — a)sin (o0 — B)sin(0 — y)
* B sino '
1, sin(0 — a)
(41) tanza = — 3
sin (o —
(42) tanlb = "tg_n;aﬁ’
1. sin (00 — y)
(43) tanjc=—— 5
where 0'—'—‘-%—((%—}—3_{-}\)

= 1(180°— 4 +180°— B 4 180° — C)
=270°— L (4+B 4 0).

‘What we have done amounts to interchanging the corresponding
Greek and Roman letters.

* It may be shown that § is the supplement of the diameter of the circumseribed circle.
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14. Napier’s analogies. Dividing (20) by (23), we get

tanfa \[ sinssin(s —a) sin s sin (s — b)
tan} 8 Vsin(s—&)sin(s—ec) = Nsin(s—c¢)sin(s—a)’
sin L & sin s sin (s — @)
or costa  [sin(s — b)sin(s —¢)
’ sink B8 sin s sin (s — b)
cos & B sin(s — ¢)sin(s — @)
Hence sinfacosyB _sin(s—a)

cosfasmmiB sin(s —b)
By composition and division, in proportion,

sinjacosyB+costasinyB sin(s —a)+ sin(s — b)
sinfacostB—costasinlB  sin(s —a)— sin(s — b)

From (40), (41), p. 63, and (66), p. 74, Granville’s Plane Trigo-
nometry, the left-hand member equals
sin(ya + 1)
sin(ya — 1 8) ’
and the right-hand member
sin(s —a)+sin(s—8) tanifs—a+(s—08)]  tanje %
sin(s —a)—sin(s — )  tanj[s —a —(s — )] T tan (b — a)

Equating these results,we get, noting that tan } (b—a)=—tan L(a—0),

sinj(e+pB)  tan}e

sing(x —f)  tanj(a—0) O

(44) tanj(a — b) = — zz—ig%gtan%c.

In the same manner we may get the two similar formulas for
tan L (b — ¢) and tan (¢ — a). '
Multiplying (20) and (23), we get
sinssin(s — a sinssin(s — &
fan } o tan ;8= ‘Jéﬁ(é — b) s(in (s —z c) \Jsin(s — 0)-s<in(s —> a) ’
sinJasinlfB  sins
coslacos} B sin(s —o)

or,

By composition and division, in proportion,

costacosiB—sinlasin}fB sin(s —c¢)—sins
cos facosyB+sinfasin}iB sin(s —c¢)+sins

*Fors—a+s—b=2s—a—-b=a+b+c—a—b=c,ands—-a—s+b=b—a.
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From (42), (43), p. 63, and (66), p. 74, Granville’s Plane Trigo-
nometry, the left-hand member equals

cos (b + 38).,

cos(ya —§ )’
and the right-hand member

sin(s —¢)—sins _ tan}(s —ec—s) tanl(—c¢) *
sin(s — ¢)+ sin s “tan%(s —c+9) _tan%(a—l— b)

Equating these results, we get, noting that tan } (— ¢) = — tan } ¢,
cos f(a+pB) tan }c or
cost(@—p)  tan(a+06)
cosi(a— B)
45 tani(a4+b)=— —2— tanlc
< ) 2( + ) cosé(a-l—ﬁ) 2

In the same manner we may get the two similar formulas for
tan % (0 + ¢) and tan § (¢ + a).

By making use of the Principle of Duality on p. 208,we get at once
from formulas (44) and (45),
) sinj(a —b)
(46) tani(a — B) =— STHCED)

cosi(a—b)
~cosi(a+ b)

By changing the letters in cyclic order we may at once write down
the corresponding formulas for tan } (8—v), tan § (y—a), tan  (8+7v),
and tan } (y + ).

The relations derived in this section are known as Napier's analogies.

Since cos L (e — &) and tan } y = tan § (180° — C') = tan (90°— 1 C)
= cot } C are always positive, it follows from (47) that cos } (« + b)
and tan } (« + B) always have opposite signs; or, since tan }(a + B)
=tan } (180°— 4 4180° — B) =tan } [360° — (4 + B) | =tan [180° —
1 (44 B)]=—tan} (4 + B), we may say that cos} (a4 0) and
tan } (4 + B) always have the same sign. Hence we have the

tany,

(47) tanz(a 4+ B) = tanjy.

Theorem. In a spherical triangle the sum of any two sides is less
than, greater than, or equal to 180°, according as the sum of the cor-
responding opposite angles is less than, greater than, or equal to 180°.

15. Solution of oblique spherical triangles. We shall now take up the
numerical solution of oblique spherical triangles. There are three
cases to consider with two subdivisions under each case.

* For §—c—8=-—c,
and : s—c+s8s=28—c=a+b+c—c=a+bd.
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Case L (a) Given the three sides.
- (b) Given the three angles.
Case 1L (a) Given two sides and their included angle.
(0) Given two angles and their included side.
Case IIL. (@) Given two sides and the angle opposite one of them.
(0) Given two angles and the side opposite one of them.

16. Case I. (a) Given the three sides. Use formulas from p. 213,
namely,

(27) fanld = Jsin (s —a) sins(;; b)sin (s — ¢) 7
(28) tan L a = .S.%%ff)

(29) tan } B = Sifﬁl;z—;db),

(30) tan Ly = S.i:ag‘:—;dc)

to find «, B, y, and therefore A, B, C, and check by the law of sines,
sing sin b __sine
sind ~ sinB~ sinC

Ex. 1. Given a = 60°, b =187° 20", ¢ = 116°; find 4, B, C.

Solution. ‘
a = 60° To find log tan § d use (27)
b =137° 20/ log sin (s — a) = 9.9971
L e=116° log sin (s — b) = 9.5199
2s = 3813° 20 log sin (s — ¢) = 9.8140
s = 156° 40", 29.3310
s — a = 96° 40/, logsins = 9.5978
s —b=19° 20 2[19.7382
8 — ¢ = 40° 40, logtan L d = 9.8666
To find A use (28) To find B use (29) To find C use (30)
log sin (s — a) = 9.9971 logsin(s — b) = 9.5199 | logsin(s — c¢) = 9.8140
log tan 1 d = 9.8666 log tan L d = 9.8666 log tan L d = 9.8666
log tan 1 a = 0.1305 log tan L g = 9.6533 log tan 1 v = 9.9474
L a=53°29". 13=24°14" Ly =41°32.
a = 106° 58’. B = 48°28’. v = 83°4".
. A=180°—106°58'=173°2".|... B=180°—48°28"=131°32".|... C=180°—83°4"=96°56".

Check: logsina = 9.9375 logsind = 9.8311 log sin ¢ = 9.9537
log sin 4 = 9.9807 log sin B = 9.8743 log sin C = 9.9969
9.9568 9.9568 9.9568

This checks up closer than is to be expected in general. There may be a
variation of at most two units in the last figure when the work is accurate.
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EXAMPLES

Solve the following oblique spherical triangles :

SPHERICAL TRIGONOMETRY

No. G1vEN PARTS REQUIRED PARTS
1|a=38 b=51° ¢ =42° A=51°58 B=83°54" C =58°563
2 | a=101° b =49° ¢ = 60° A=142°32" B=27°52" (C =32°28
3 |a=61° b=39° ¢ = 92° A=235°82" B=24°42" (C =138°24’
4 | a=62°20" b=054°10" ¢=97°560"| A=47°22" DB =42°20" C=124°38"
5 | @ =58° b =80° ¢ = 96° A=55°68 B=174°14" (O =10336"
6 |a=46°30" b=62°40" ¢=83°20"| A=43°58 B=15814" (C=108°¢6¢"
T1la=T1°15 b=289°10" ¢=40°35"| A=130°36" B=30°26" C=31°26"
81a=47°30" b=55°40" ¢=60°10"| A=56°32" B=69°7 (C=78°5H8
9 |l q=483°30" b=172°24" ¢=87°50"| A=41°27 B=66°26" C =106°3"

10 [ @ =110°40" b=45°10" ¢=173°30"| A=144°27 B=26°9 (=36°35

17. Case I. (b) Given the three angles. Use formulas from p. 214,
namely,* ,

(40)

fan b8 = \jsin(o- — @) sin (o — B)sin (o — -y)’

sin o
(41) tanfa = SH;;Z; )
(42) tan 35 = S”fﬁé‘;; A)
(43) tand ¢ = Snl;i ;87)

to find a, b, ¢ ; and check by the law of sines,

sin a . sind sine
sind sinB sinC

Ex. 1. Given 4 =70°, B =131°10", C = 94° 50; find a, b, c.
Solution. Here we use the supplements of the angles.
a =180°— 4 =110° To find log tan % 5 use (40)

B =180°— B = 48°50” )
v =180°— C' = 85°10’ log sin (e — a) = 9.3179
logsin(¢ — B) = 9.9810

20 = 244° 1 . ( ) 9.7778
ogsin(c —v)= 9.

o= 29.0767

T el logsine = 9.9284

c-B= ' 2[19.1483

oc—vy= 36°560".

log tan4 d = 9.5742

* These formulas may be written down at once from those used in Case I, (@), p. 217, by
simply interchanging the corresponding Greek and Roman letters.
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To find a use (41)

log sin (o — @) = 9.3179
log tan 4 & = 9.5742
log tan a = 9.7437
*a =29°.
coa= b8
Check: logsina = 9.9284

log sin4 = 9.9730
9.9564

To find b use (42)

log sin (¢ — B) = 9.9810
log tan 6 = 9.5742
log tan 4 b = 0.4068

1b =68 36"
b =137°12".

log sind = 9.8321
log sin B = 9.8767

9.95564

To find ¢ use (43)

log sin (¢ — v) = 9.7778
log tand 8 = 9.5742
log tan 4 ¢ = 0.2036

2c=057°568".
¢ = 115° 56",
log sinc = 9.9539
log sin C' = 9.9985
9.96564

EXAMPLES

Solve the following oblique spherical triangles:

No. G1vEN PArTS REQUIRED PARTS
1| A4=75° B =82° ¢ =61° a=067°52" b="T1°44" ¢=>57°
2 | A=120° B =130° C = 80° a=144°10" b=148°49" ¢=41°44"
3|1 A=91°10" B=85°40" C=172°30" | a =89°51" b=285°49" ¢=7T2°32"
4 | A=188°16" B=31°11" C=385°58" | a=100°5" b=49°59 ¢=60°6"
b | A="T840 DB=63°50 C=46°20"| a=39°30" b=285°36" ¢=27°5Y
6 | A=121° B =102° C=68° a=130°50" b=120°18" ¢ =54° 56"
7 | A4=130° B=110° ¢ =80° a=189°21" b=126°58 c=56°52"
8 | 4=28° B =92° C=85°26" | a=27°566" b=285°40" ¢=284°2"
91 4=59°18 B=108° C=176°22" | a=61°44" b=103°4" ¢=284°32"
10 | A=100° B =100° ¢ =50° a=112°14" b=112°14" ¢=46°4"
18. Case II. (a) Given two sides and their included angle, as a, b,
C. Use formulas on p. 216, namely,
sin 4 (a — b)
46 tand (@ —B)=— —2-———“tani
( ) 7( B) sm—%—(a—{-b) 27
- cost(a—0
(a7) tan 3@+ ) = — E Doy,

" cos{(a+0)

to find a and B and therefore A and B ; and from p. 215 use (44)
solved for tan % ¢, namely,

(44)
to find c. Check by the law of sines.

_ sing(a + B)tan§ (¢ — Z))’

tan 4 ¢ = ,
afwe sin § (e — B)

Ex. 1. Given a = 64°24’, b = 42080/, C' = 58°40’; find 4, B, c.

Solution. v =180° — C' = 121°20. .. %+ = 60°40".
a= 64°24 0 = 64°24
b= 42°30 b= 42030’
a+b=106°54 a—b=21°54

o (a+b) = 53027 . ¥ (@ —b) =10°57"



220 SPHERICAL TRIGONOMETRY

To find 4 (a — B) use (46)

log sin 4 (@ — b) = 9.2786

log tan 4y = 0.2503

9.56289

log sin & (& + b) = 9.9049
log tan 4 (a — B) = 9.6240 (n)
o d(a— B) = — 22049 %

To find A and B
F(a+p)= 108°4Y
F(a—p)=— 22049
Adding, a=  86°
Subtracting, B=131°38".
oo 4 =180° — a = 94°.

To find & (a + B) use (47)

log cos & (¢ — b) = 9.9920

log tan4vy = 0.2503

10.2423

log cos 4 (a + b) = 9.7749
log tan 4 (a + B) = 0.4674 (n)

180° — & (a + ) =710 11"+

e L (a+ B) = 108° 49",

To find c use (%4)

log sin § (@ + g) = 9.9761
log tan 4 (@ — b) = 9.2867
19.2628
log sin 4 (a — B) = 9.5886 (n)
logtandc= 9.6742 1

B =180°— 8 = 48° 22", Le=2517"

. ¢ = 50° 34",
Check: logsina = 9.9551 log sin b = 9.8297 log sin ¢ = 9.8878
logsind = 9.9989  logsinB = 9.8735  logsin C = 9.9315

9.9562 9.9562 9.9563

If ¢ only is wanted, we may find it from the law of cosines, (14),
p- 209, without previously determining 4 and B. But this formula
is not well adapted to logarithmic calculations. Another method is
illustrated below, which depends on the solu-
tion of right spherical triangles, and hence
requires only those formulas which follow
from applying Napier's rules of circular
parts, p. 200.

Through B draw an arc of a great circle per-
pendicular to 4 C, intersecting A C at D. Let

BD = p, CD = m, AD = mn.

>0

Applying Rule I, p. 200, to the right spherical triangle BCD, we

have cos C' = tan m cot a, or,
4) tan m = tan a cos C.

Applying Rule II, p. 200, to BCD,

COS @ = COS M COS P, OT,
(B) COS p = COS @ S€C M.

¥ Since tan 1(« — B) is negative, }(« — 8) may be an angle in the second or fourth quad-
rant. But a > b, therefore 4 > B and « < B8, since « and B are the supplements of 4 and B.
Hence }(« — B) must be a negative angle numerically less than 90°.

t Here i(a + B8) must be a positive angle less than 180°. Since tan i(« + B) is negative,
3(a 4+ B) must lie in the second quadrant, and we get its supplement from the table.

% tan §¢ is positive, since sin 1(«—8) is negative and there is a minus sign before the fraction.
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Applying the same rule to 4BD,

221

COS ¢ = COS 7 COS P, OF,

(©)
Equating (B) and (C),

COS p == COS ¢ Sec 7.

COS ¢ S€Cn = COS @ Sec Mm, Or,

COS ¢ = COS a SeC m COS N.

But n = 6 — m; therefore

(D)

o8 ¢ = ¢08 & sec m ¢os (b — m).

Now ¢ may be computed from (4) and (D), namely,

(48)

COS C =

tan m = tan a cos C,

cos a cos (b — m)

(49)

cos m

Ex. 2. Given a = 98°, b = 80°, C = 110°; find c.
Solution. Apply the method just explained.

To find b — m use (48)

log tan a = 0.8522 (n)
log cos C = 9.56341 (n)
log tan m = 0.3863

m = 67° 40"
oo b —m =12°200.

To find ¢ use (49)

log cosa = 9.1436 (n)
log cos(b — m) = 9.9899

19.13835
log cosm = 9.5798
log cosc = 9.5637 (n)
180° — ¢ = 69° 2",
¢ =110° 58,

EXAMPLES

Solve the following oblique spherical triangles

2
°

Gi1vEN PARrTS

REQUIRED PaARrTS

© W =T Utk WD

=
o]

A ="70°
¢ =33°

a=137°20" ¢ = 1160
a="72° b=47°
a = 98° ¢ = 60° B =110°
b=120°20" ¢="70°40" A =50°

a =125°10" b = 1568° 50" C = 140° 20/
a=93°20" b=056°30" C =T4°40
b="1T6°80" ¢c=47°20" A =92°3(0
¢ =40°20" a=100°30" B =46°40’
b="T6°86" c¢=110°26" A = 46° 50
a=84°23" b=124°48" C=62°

B=131°17 C =94°48" a = b7° 57"
A=121°33" B=40°57" ¢=37°26"
A=28T7° C=60°51" b=111°17"
B=134°57 (' =50°41" a =699
A=147°2Y B=163°9Y ¢=T6°8
A=101°24" B=54°58 ¢ =T79°10’
B=78°21" C=47°47 q=82°4%
A=131°29" C =29° 33 b=T72°40"
B=57°43" C=125°28" q¢ = 57°18
A=68°27" B=129°51" ¢ =70° 52’
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19. Case II. (b) Given two angles and their included side, as 4, B, c.
Use formulas™® on pp. 215, 216, namely,

P A s {2l ) ST
(44) tan § (e — b) = sind (et B tan 4 ¢,

1 __csF@—pB .,
(45) tan § (a 4 0) = cos +(a + B) tan 4 ¢,

to find a and b ; and from p. 216, use (46) solved for tan %y, namely,

sm 7(a + b)tan 7 (@ — /8)
sin 4 (a — 0)

(46) tan % Y=
to find y and therefore C. Check by the law of sines.

Ex. 1. Givenc¢=116°, 4 =70° B =131°20"; find a, b, C.
Solution. a=180°— 4 = 110°, and 8 = 180° — B = 48° 40".

a = 110° a = 110°
B = 48°40 B = 48°40’
a4+ B =1568°40" a—fB= 61°20/ ¢ = 116°.
" E(a+ B) =T 20" oo 3 (a— B) = 30°40". o de =568
To find & (@ — b) use (44) To find % (@ + b) use (45)
log sin & (@ — B) = 9.7076 log cos & (a — B) = 9.9346
log tan L ¢ = 0.2042 log tan 4 ¢ = 0.2042
9.9118 10.1388
log sin & (a + B) = 9.9924 log cos & (a + B) = 9.2674
log tan 4 (@ — b) = 9.9194 (n) log tan § (a + b) = 0.8714 (n)
cod(a—b)=— 890481 180° — L (a0 + b) = 82°21".
oo (a+ by =97°3Y.
To find a and b To find C use (46)
F@+b)= 97°3Y logsin (@ + b) = 9.9961
F(a—Db)=—39°4¥% log tan & (@ —B) = 9.7730
Adding, a= B1°56' 19.7691
Subtracting, b =137°22 logsin (@ —b) = 9.8055 (n)
logtan 4y = 9.9636
Ly = 42036,
v = 85° 12,
. € =180° — v = 94°48".

Check : log sin ¢ = 9.9281 log sin b = 9.8308 log sin ¢ = 9.9587
logsind = 9.9730  logsin B = 9.8766  logsin C' = 9.9985
9.9551 9.9552 9.9552

* Same as those used in Case IT,(a), p. 219, with Greek and Roman letters interchanged.
t Since 4 < B it follows that o < b, and }(a — b) is negative.
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If C only is wanted, we can calculate it without previously
determining @ and b, by dividing the given triangle into two right
spherical triangles, as was illustrated on

B
. 220.
p i
a

Through B draw an arc of a great
circle perpendicular to 4C, intersecting c
AC at D. Let BD= p, angle ABD = x,
angle CBD =y. Applying Rule I of
Napier’s rules, p. 200, to the right spher- 4 o
ical triangle 4 BD, we have b
cos ¢ = cotx cot 4, or,

(4) cot x = tan 4 cos c.

Aypplying Rule 11, p. 200, to 4BD, we have
cos 4 = cos p sin z, or,

(B) cos p = cos 4 esc .

Applying the same rule to CBD,
cos €' = cos p sin ¥, or,
() cos p = cos C' ¢sc y.
Equating (B) and (C),
cos C ¢scy = cos 4 cscx, or,

cos C' = cos A esc x sin y.

But ¥ = B — = ; therefore
(D) cos C' = cos A cscx sin (B — x).

Now € may be computed from (4) and (D), namely,
(50) | cot x = tan 4 cos C.

cos A sin (B — x)
sin x )

(51) cos C =

Ex. 2, Given 4 = 35°46’, B=115°9, ¢ = 51°2’; find C.
Solution. Apply the method just explained.

To find B — z use (50) To find C use (51)
log tan A = 9.8575 logcos4 = 9.9093
log cosc = 9.7986 logsin(B — z) = 9.8811
log cotx = 9.6561 19.7904
x = 65° 38", logsinz = 9.9595
. B—1x=49°871. log cos C = 9.8309
C=47°21,
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EXAMPLES

Solve the following oblique spherical triangles:

Gi1vEN ParTs ReQUirRED PARTS

A=067°80 B=45°50" ¢=T74°20" |a=063°1 b=43°54 C=95°V
B=198°30" (=067°20" a=60°40" | b=286°40" ¢=068°40" A=59°44
C =110° A=94° b =44° @ =114°10" ¢ =120°46" B =130° 34"
C=70°200 B=43°50" a=>50°46" | b=232°69 c¢=47°45 A=80°14
A=T8° B=41° ¢ =108° a=95°38" b=41°52" C=110°4Y
B =135° C =50° a="70°20" | b=120°17" ¢ =69°20" A= 50°26
A=31°4y C=122°20/ b=40°40" |a=34°% ¢=64°19 B=37°40"
A=108°12" B=145°46" ¢=126°32"| a=69°4" b=146°26" C =125°12’
A=130°36" B=30°26" ¢=40°35 |a=T71°15" b =239°10" C=31°26
A=>51°68" B=283°564" c=42° a = 38° b=51° C = 58° 63

= =2
CWOOTOOUN WM S

20. Case III. (@) Given two sides and the angle opposite one of them,
as a, b, B (ambiguous case *).
From the law of sines, p. 207, we get
sina sin B
ind = ———
(11) sin =

which gives AY. To find C we use, from p. 216, formula (46), solved
Jor tan % y, namely,
sin}(a + b)tani(a — f)
46 taniy = — —2— 2 .
(46) Y sin}(a — b)

To find ¢, solve (44), p. 215, for tan % ¢, namely,

sing(a + B)tani(a—b)
sinj(a — p) '

(44) tanic=—
Check by the law of sines.

Ex. 1. Given a = 58°, b =187° 20/, B =131°20'; find 4, C, c.
Solution.
To find A use (11) a=>58° a=58°
logsing = 9.9284 b:wz-gg); O=15T ?0/ y
log sin B = 9.8756 a-+b=195°20 a—b=-79°20
oy L(a+0)=97°40". 1 (a—b)=—39°40".

19.8040
logsinb = 9.8311 B8 =180° — B = 48°40".
logsind = 9.9729 Since a<b and both A; and A,
o A= 69° 58, are < B, it follows that we have fwo
or, As=180°— A4;=110°2". solutions.

* Just as in the corresponding case in the solution of plane oblique triangles (Granville’s
Plane Trigonometry, pp. 105, 161), there may be two solutions, one solution, or no solution,
depending on the given data.

+ Since the angle A4 is here determined from its sine, it is necessary to consider both of
the values found. If ¢>b then 4> B; and if a <b then 4 < B, Hence [next page]
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First solution. ay =180° — A4y =110° 2.

ay = 110° 2/
B = 48° 40/
ay + B = 158° 42
I(ay + B) =T9° 21",

To find Cy use (46)

log sin4 (@ + b) = 9.9961
log tan (a1 — B) = 9.7733
19.7694
log sin (¢ — b) = 9.8050 (n)
log tan§ y1 = 9.9644
Ly = 42° 39",
y1 = 85° 18",
. G]_ = 180° — Y1 = 94° 427,
Check :

log sina = 9.9284

log sinb = 9.8311

@y = 1100 2
B = 48°40
a; — B = 61°22

1 (a1 — B) =80°41".

To find c1 use (44)

logsin (a1 + B) = 9.9924
log tan 4 (@ — b) = 9.9187 (n)
19.9111
logsind (a; — B) = 9.7078
log tan § ¢; = 10.2033
Loy =570 57
. ¢p = 115° 54,

log sin ¢; = 9.9541

log sin 41 = 9.9729 . logsin B = 9.87566 log sin €y = 9.9985

9.9565

Second solution. ag =180° — Ag = 69° 58",

ay = 69° 58
B= 48 40

@z + B = 118° 38/

I (az + B) = 59 19",

To find Cy use (46)

log sind(a +b) = 9.9961
log tan 4 (g — B) = 9.2743
19.2704
logsind (¢ — b) = 9.8050 (n)

log tan 4 vys = 9.4654

Ly = 16° 17~

g = 320 347,
o Oy = 180° — g = 147° 267,

Check: logsina = 9.9284

log sin b = 9.8311

9.9555 9.9556
@ = 69° 58
B = 48° 40/

@z — B = 21° 18’
I (az — B) = 10° 39".

To find ¢y use (44)

log sin & (ag + B) = 9.9345
log tand(a — b) = 9.9187 (n)

19.8532

logsind (ap — B) = 9.2667

log tan 4 ¢, = 10.5865

Loy =75°98".

. cg = 150° 56",

log sin ¢y = 9.6865

logsin Ay = 9.9729 logsin B = 9.8756 logsin Cp = 9.7310

9.9565

9.9555

9.9555

225

If the side ¢ or the angle ¢ is wanted without first calculating the
value of 4, we may resolve the given triangle into two right triangles
and then apply Napier’s rules, as was illustrated under Cases 11, (@),

and 1I, (b), pp. 220, 223.

Theorem. Only those values of A should be retained which are greater or less than B

according as « s greater or less than b.

If log sin A= a positive number, there will be no solution.
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EXAMPLES

Solve the following oblique spherical triangles :

No. G1veEN ParTs REQUIRED PARTS

1 | a=43°20" b=48°30" A4=58°40" | B;=68°47" (C1=T0°40" ¢1=49°18
By=111°13" (9=14°29" c¢9=11°36"
a=566°40" b=380°50" A=103°40"| B=36°36" C=52° c=42° 39’
3 | a=30°20" b=46°30" 4=36°40" | B;=59°4" (1=97°39 ¢;=56°5HT7"
By=120° 57" Ca=28°5"  cg=23° 28

4| b=99°40" ¢=64°20" B=95°40" | ('=65°30" A=97°20" a=100°45

5 | a=40° b=118°20" A =29°40" | B1=42°40" (1=159°54" ¢1=1563° 30’
By=137°20" C2=560°21" ¢=90°10"

6 | a=115°20" ¢=146°20" C=141°10’ | Impossible

7 | a=109°20" ¢=82° A=107°40"| C=90° B=113°37" b=114°52"

8 | b=2108°380" ¢=40°50" C=39°50" | B;=68°18" A4;=132°34" q;=131°16’

Bg=111°42" 45,=T77°6" ay=95°50"
9 | @=162°20" b=15°40" B=125° Impossible

10 | a=55° c=138°10" 4 =42°30" | ('=146°38 DB=55°1 b=96° 34’

21. Case III. (b) Given two angles and the side opposite one of them,
as 4, B, b (ambiguous case ).

From the law of sines, p. 207, we get

sind sin b

(11) sina = "

which gives a.t To find ¢ we use, from p. 215, the formula § (44),
solved for tan ¥ ¢, namely,
sin}(a + B)tanj(a — b)

sinj(a — B) )

To find C, solve (46), p. 216, for tan § vy, namely,

sin}(a 4+ b)tan;(a — B)
sin(a — b) )

(44) tanic = —

(46) tanyy = —
Check by the law of sines.

* Just as in Case 1T, (b), we may have two solutions, one solution, or no solution, depending
on the given data.

+ Since the side is here determined from its sine, it is necessary to examine both of the
values found. If 4> B then a>b; and if 4 < B then a<b. Hence we have the

Theorem. Only those values of a should be relained which are greater or less than b
according as A is greater or less than B.

If log sin a = a positive number, there will be no solution.

+ Same as those used in Case III, (@), p. 224, when the Greek and Roman letters are
interchanged.
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Ex. 1. Given 4 =110°, B =131° 20", b =137°20"; find a, , C.
Solution. a =180° — A4 =70° and g =180°— B = 48° 40",

To find a use (11) a= 70° a ="T0°

logsind4 = 9.9730
logsinb = 9.8311
‘ 19.8041
logsin B= 9.8756
logsina = 9.9285
coap = B8 T,
or, ag = 180° — a; = 121° 59",

First solution.
@ = b8 1
b = 187° 20/
a; +b=195°21"
1 (a1 + b) = 97°41".

To find cq use (44)

logsin (a + g) = 9.9346
log tan 4 (a; — b) = 9.9187 (n)
19.85633
log sin (a — B) = 9.2674
log tan 4 ¢; = 10.5859
Loy ="75°27".
. ¢1 = 150° 64",

B= 48°40 B = 48° 40/
a+p=11840 a—pB=21°20
L(a+ ) =59°20". §(a—p) = 10°40".

Since A< B and both a; and a,
are <b, it follows that we have two
solutions.

ap= B8V
b= 137°20"

4y —b=— 7919

L(ay — b) =— 89°40,

To find C; use (46)

log sin 4 (a; 4+ b) = 9.9961
log tand (@ — B) = 9.2750
19.2711
log sind(a; — b) = 9.8050 (n)
log tand vy, = 9.4661
1oy =16018".
v = 32° 367,
oo Oy =180° — vy = 147° 24,

Check: logsinay = 9.9285 logsind = 9.8311  log sin ¢y = 9.6869
logsin A = 9.9730 logsin B = 9.8756 logsin (Cy = 9.7314

9.9565

9.9555 9.9556

Second solution. This gives cp = 64° 8/, and Cq = 85° 18",

Remembering that a; = 121° 59, we may now check the second solution.

Check : log sin az = 9.9285 logsinb = 9.8311 log sin ¢y = 9.9542
logsin A = 9.9730 logsin B = 9.8756 logsin Cy = 9.9985

9.9556

Hence the two solutions are

9.9555 9.9557

a; = 68° 17 c1 = 160° 64" (1 = 147° 23,
and ag = 121° 59 cq = 64° &’ Cp = 85° 18,

If the angle C or the side ¢ is wanted without first computing a,
we may resolve the given triangle into two right triangles and then
apply Napier’s rules, as was illustrated under Cases II, (a), and

11, (), pp. 220, 223.
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EXAMPLES

Solve the following oblique spherical triangles :

No. GivEN PARrTs REQUIRED PARTS
1| A=108°4(0’ B=134°20" 0¢=145°86"| b=154°45" ¢=34°9" (C=T0°18"
2 | B=116° C=80° c=84° b=114°50" 4A=T9°20" a=82° 56’
3 | A=132° B=140° b=127° a1=67°24" (C1=164°6" ¢1,=160°6"

ae=112° 36" C5=128°21" c;=103°2’

4 | 4=62° C=102° a=64° 30" c=90° B=63°43" b=66°26"

5 | A=133°5(0/ B=66°30" a=81°10" |Impossible

6 | B=22°200 (C'=146°40" ¢=138°20"| b=27°22" A=47°21 a=117°Y

7 | A=61°40" C=140°20" c¢=150°20"| a;=43°3" DB;=89°24" b;=120°8
ae=136° 57 By=26° 69" by=20° 36"

8 | B=173° C=81°20" b=122°40" | Impossible

9 | B=36°20" ('=46°30" 1=42°12" | A;=164°44" a;=162°38" ¢;=124°41"

Ae=119°19" a;=81°19Y ¢g=55°19"
10 | A=110°10" B=133°18" a=147°6" b=1565°5" ¢=33°2" (C=T70°21"

22. Length of an arc of a circle in linear units. From Geometry we
know that the length of an arc of a circle is to the circumference of
the circle as the number of degrees in the

are is to 360. That is

L:27R:: N :360, or,

TRN
52 L=—-
A (52) 180’
where L = length of are,
N = number of degrees in are,

R = length of radius.

In case the length of the arc is given
to find the number of degrees in it, we instead solve for N, giving

180L

(53) N=—.

Considering the earth as a sphere, an arc of one minute on a great
circle is called a geographical mile or a nautical mile.* Hence there
are 60 nautical miles in an arc of 1 degree, and 360 x 60 = 21,600
nautical miles in the circumference of a great circle of the earth. If
we assume the radius of the earth to be 3960 statute miles, the length

* In connection with a ship’s rate of sailing a nautical mile is also called a knot.
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of a nautical mile (=1 min. = g of a degree) in statute miles will

be, from (52
’ (52), L 31416 X 3960 X oy _ 4 1

Ex. 1. Find the length of an arc of 22°30” in a circle of radius 4 in,
Solution. Here N = 22° 30" = 22.5°, and R = 4 in.

Substituting in (52), L = iti0 >1<8‘(") X225 _ 1570 Ans,

Ex. 2. A ship has sailed on a great circle for 5% hr. at the rate of 12 statute
miles an hour. How many degrees are there in the arc passed over ?

Solution. Here L = b4 x 12 = 66 mi., and R = 8960 mi.

180 x 66 = .955° = 57.8". Ans.

bstituting in (53), N = o— oo =
Substituting in (53), 3.1416 x 3960

23. Area of a spherical triangle. From Spherical Geometry we
know that the area of a spherical triangle is to the area of the sur-
face of the sphere as the number of degrees in its spherical excess *
is to 720. That is,

Area of triangle : 4 wR?:: E : 720, or,
TR’E

(54) Area of spherical triangle = ST

In case the three angles of the triangle are not given, we should first
find them by solving the triangle. Or, if the three sides of the tri-
angle are given, we may find E directly by Lhuilier’s formula,{ namely,

(55) tan 1 E = \/tanéstan%(s— a)tani (s — b)tani (s — ¢),

where a, b, ¢ denote the sides and s = 4 (¢ + b + ¢).

The area of a spherical polygon will evidently be the sum of the
areas of the spherical triangles formed by drawing ares of great cir-
cles as diagonals of the polygon.

Ex. 1. The angles of a spherical triangle on a sphere of 25-in. radius are
A =T74°40', B=67°30", C = 49°50". Find the area of the triangle.

Solution. Here E = (4 + B + () — 180° = 12°.

3.1416 x (25)2 x 12

Substituting in (54), Area =
ubstituting in (54), a 180

=130.9 5q. in, 4ns.

* The spherical excess (usually denoted by E) of a spherical triangle is the excess of the
sum of the angles of the triangle over 180°. Thus, if 4, B, and C are the angles of a spher-
ical triangle,

E= A+ B+ C—180°,

1 Derived in more advanced treatises.
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EXAMPLES
1. Find the length of an arc of 5° 12’ in a circle whose radius is 2 ft. 6 in.
Ans. 2.72 in.

2. Find the length of an arc of 75° 30 in a circle whose radius is 10 yd.
Ans. 13.17 yd.

3. How many degrees are there in a circular arc 15 in. long, if the radius

is 6 in.? Ans. 143° 18",
4. A ship sailed over an arc of 4 degrees on a great circle of the earth each
day. At what rate was the ship sailing ? Ans. 11.515 mi. per hour.

5. Find the perimeter in inches of a spherical triangle of sides 48°, 126°, 80°,
on a sphere of radius 25 in. Ans. 110.78 in.

6. The course of the boats in a yacht race was in the form of a triangle
having sides of length 24 mi., 20 mi., 18 mi. If we assume that they sailed on
arcs of great circles, how many minutes of arc did they describe ?

' Ans. 53.85 min.

7. The angles of a spherical triangle are 4 = 63°, B = 84°21", ' = 79°; the
radius of the sphere is 10 in. What is the area of the triangle ?
Ans. 80.88 gq. in.

8. The sides of a spherical triangle are ¢ = 6.47 in., b = 8.39in., ¢ = 9.43in.;
the radius of the sphere is 25 in. What is the area of the triangle ?

Ans. 26.9 sq. in.
Hint. Find E by using formula (55).

9. In a spherical triangle 4 = 75° 16”, B = 39° 20/, ¢ = 26 ft.; the radius-of

the sphere is 14 ft. Find the area of the triangle. Ans. 158.45 sq. ft.

10. Two ships leave Boston at the same time. One sails east 441 mi. and the

other 287 mi. E. 88° 21’ N. the first day. If we assume that each ship sailed

on an arc of a great circle, what is the area of the spherical triangle whose ver-
tices are at Boston and at the positions of the ships at the end of the day ?

Ans. 41,040 sq. mi.

11. A steamboat traveling at the rate of 15 knots per hour skirts the entire

shore line of an island having the approximate shape of an equilateral triangle

in 18 hr. What is the approximate area of the island ? Ans. 34,960 sq. mi.

12. Find the areas of the following spherical triangles, having given

(a) @ =47°80’, b= 55° 40/, ¢ = 60°10’; R =10 ft. Ans. 42.96 sq. ft.
(b) @ =48°80/, b ="72°24, ¢ = 87°50; R =10 in. 59.19 sq. in.
(c) A="T4°40, B=67°30, C = 49°50’; R = 100 yd. 2094 sq. yd.
(d) A =112°80’, B = 83° 40, €' ="70°10’; R = 25 cm. 941.2 sq. cm.
(€) a=64°20’, b = 42°30’, C' = 50°40’; R = 12 ft. 46.78 sq. ft.
(f) ¢ =110° 4 = 94°, b = 44°; R = 40 rd. 709.2 sq. rd.
(8) @ = 48°207, b = 48°30/, A = 58°40’; R = 100 rd. 24.88 acres.

(h) 4 =108°40", B =134°20/, @ = 1456° 36’; R = 3960 mi. 86,460,000 sq. mi.



CHAPTER III

APPLICATIONS OF SPHERICAL TRIGONOMETRY TO THE CELESTIAL
AND TERRESTRIAL SPHERES

24. Geographical terms. In what follows we shall assume the earth
to be a sphere of radius 3960 statute miles.
~ The meridian of a place on the earth is that great circle of the
earth which passes through the place and the north and south poles.

(North pole)
N

( South pole)

Thus, in the figure representing the earth, NGS is the meridian of
Greenwich, NBS is the meridian of Boston, and NCS is the merid-
ian of Cape Town.

The latitude of a place is the arc of the meridian of the place ex-
tending from the equator to the place. Latitude is measured north
or south of the equator from 0° to 90°. Thus, in the figure, the
arc LB measures the north latitude of Boston, and the arc 7TC
measures the south latitude of Cape Town.

The longitude of a place is the arc of the equator extending
from the zero meridian * to the meridian of the place. Longitude is

* As in this case, the zero meridian, or reference meridian, is usually the meridian pass-

ing through Greenwich, near London. The meridians of Washington and Paris are also
used as reference meridians.

231
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measured east or west from the -Greenwich meridian from 0° to 180°.
Thus, in the figure, the arc M7 measures the east longitude of Cape
Town, while the arc ML measures the west longitude of Boston.
Since the arcs M7 and ML are the measures of the angles MN7T and
MNL respectively, it is evident that we can also define the longitude
of a place as the angle between the reference meridian and the
meridian of the place. Thus, in the figure, the angle MNT is the
east longitude of Cape Town, while the angle MNL is the west
longitude of Boston.

The bearing of one place from a second place is the angle between
the arc of a great circle drawn from the second place to the first
place, and the meridian of the second place. Thus, in the figure, the
bearing of Cape Town from Boston is measured by the angle CBN
or the angle C'BL, while the bearing of Boston from Cape Town is
measured by the angle NCB or the angle SCB.*

25. Distances between points on the surface of the earth. Since we
know from Geometry that the shortest distance on the surface of a

(North pole)
N

( Boston) 3

S
( South pole)

sphere between any two points on that surfuce is the arc, not greater
than a semicircumference, of the great circle that joins them, it is
evident that the shortest distance between two places on the earth
is measured in the same way. Thus, in the figure, the shortest

* The bearing or course of a ship at any point is the angle the path of the ship makes
with the meridian at that point.
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distance between Boston and Cape Town is measured on the arc
BC of a great circle. We observe that this arc BC is one side of
a spherical triangle of which the two other sides are the arcs BNV
and CN. Since

arc BN = 90° — arc LB = 90° — north latitude of Boston,
arc CN = 90°+ are TC = 90° + south latitude of Cape Town,

and angle BNC = angle MNL + angle MNT

= west longitude of Boston
+ east longitude of Cape Town

= difference in longitude of Boston and Cape Town,

it is evident that if we know the latitudes and longitudes of Boston
and Cape Town, we have all the data necessary for determining two
sides and the included angle of the triangle BNC. The third side
BC, which is the shortest distance between Boston and Cape Town,
may then be found as in Case I1I, (a), p. 219.

In what follows, north latitude will be given the sign 4 and south
latitude the sign —.

Rule for finding the shortest distance between two points on the earth
and the bearing of each from the other, the latitude and longitude of each
point being given.

First step. Subtract the latitude of each place from 90°* The
results will be the two sides of a spherical triangle.

Second step. Find the difference of longitude of the two places by
subtracting the lesser longitude from the greater if both are E. or both
are W., but add the two if one is E. and the other is W. This gives
the included angle of the triangle.t

Third step. Solving the triangle by Case 11, (@), p. 219, the third
side gives the shortest distance between the two points in degrees of
are,t and the angles give the bearings.

* Note that this is algebraic subtraction. Thus, if the two latitudes were 25° N. and
420 8., we would get as the two sides of the triangle,
900 — 25°=65° and 900 —(— 42°)= 90° + 420 = 1320,

+ If the difference of longitude found is greater than 180°, we should subtract it from
360° and use the remainder as the included angle.

i The number of minutes in this arc will be the distahce between the two places in geo-
graphical (nautical) miles. The distance between the two places in statute miles is given

by the formula 31416 3960 X N
= 180 ’

L

where ¥ = the number of degrees in the arc.
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Ex. 1. Find the shortest distance along the earth’s surface between Boston
(lat. 42°21” N., long. 71°4” W.) and Cape Town (lat. 33° 56 S., long. 18° 26’ E.),
and the bearing of each city from the other.

Solution. Draw a spherical triangle in agreement with
the figure on p. 232.

First step. ,
¢ = 90° — 42° 21" = 47° 39,
b = 90° — (— 33° 56") = 123° 56".
Second step.
N =1T71°4"+ 18°26" = 89° 30’ = difference in long.

Third step. Solving the triangle by Case II, (a), p. 219, we get
n = 68° 14’ = 68.23° = 4094 nautical miles,
C = 52°43’ = bearing of Boston from Cape Town,
and B = 116° 43’ = bearing of Cape Town from Boston.

Hence a ship sailing from Boston to Cape Town on the arc of a great circle
sets out from Boston on a course S. 63° 17" K. and approaches Cape Town on a
course S. 52°43” E.*

EXAMPLES

1. Find the shortest distance between Baltimore (lat. 39° 17" N., long. 76° 37
W.) and Cape Town (lat. 33° 56" 8., long. 18°26” E.), and the bearing of each
from the other. Ans. Distance = 65° 48’ = 3947 nautical miles,

S. 64° 58’ E. = bearing of Cape Town from Boston,
N. 57°42” W. = bearing of Boston from Cape Town.

2. What is the distance from New York (lat. 40° 43" N., long. 74° W.) to
Liverpool (lat. 53°24’N., 3°4” W.)? Find the bearing of each place from the
other. In what latitude will a steamer sailing on a great circle from New York
to Liverpool cross the meridian of 50° W., and what will be her course at that
point ? ' Ans. Distance = 47° 50’ = 2870 nautical miles,

N. 75° 7 W. = bearing of New York from Liverpool,
N. 49°29” E. = bearing of Liverpool from New York.
Lat. 51° 13" N., with course N. 66° 54" E.

3. Find the shortest distance between the following places in geographical
miles :
(a) New York (lat. 40° 43" N., long. 74° W.) and San Francisco (lat. 37° 48’ N.,

long. 122°28" W.). Ans. 2230.
b) Sandy Hook (lat. 40° 28’ N., long. 74° 1’ W.) and Madeira (lat. 32° 28" N.

’ b

long. 16° 55" W.). Ans. 2749,
(c) San Francisco (lat. 37° 48" N., long. 122° 28’ W.) and Batavia (lat. 6°9"S.,
long. 106° 53" E.). Ans. 7516,
(d) San Francisco (lat. 37° 48’ N., long. 122° 28’ W.) and Valparaiso (lat.
33°2 8., long. 71°41" W.) Amns. 5109.

* A ship that sails on a great circle (except on the equator or a meridian) must be con-
tinually changing her course. If'the ship in the above example keeps constantly on the
course S. 63° 17" E,, she will never reach Cape Town.
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4. Tind the shortest distance in statute miles (taking diameter of earth as
7912 mi.) between Boston (lat. 42°21” N., long, 71°4" W.) and Greenwich (lat.
51° 29" N.), and the bearing of each place from the other.

Amns. Distance = 3276 mi.,
N. 53°7 E. = bearing of Greenwich from Bostomn,
N. 71°39” W. = bearing of Boston from Greenwich.

5. As in last example, find the shortest distance between and bearings for
Calcutta (lat. 22° 33’ N., long. 88° 19" E.) and Valparaiso (lat. 83° 2" S., long.
710427 W.). Ans. Distance = 10,860 mi.,

S. 64°20.5” B. = bearing of Calcutta from Valparaiso,
S. 54° 54.5” W. = bearing of Valparaiso from Calcutta.

6. Find the shortest distance in statute miles from Oberlin (long. 82° 14" W.)
to New Haven (long. 72° 55 W.), the latitude of each place being 41° 17" N,
Ans. 483.2 mi,

7. From a point whose latitude is 17° N, and longitude 130° W. a ship sailed
an arc of a great circle over a distance of 4150 statute miles, starting S. 54°20° W,
Find its latitude and longitude, if the length of 1° is 69} statute miles.

Ans. Lat. 19°42 8., long. 178°21" W,

26. Astronomical problems. One of the most important applications
of Spherical Trigonometry is to Astronomy. In-fact, Trigonometry
was first developed by astronomers, and for centuries was studied
only in connection with Astronomy. We shall take up the study of
a few simple problems in Astronomy.

27. The celestial sphere. When there are no clouds to obstruct
the view, the sky appears like a great hemispherical vault, with the
observer at the center. The stars seem to glide upon the inner sur-
face of this sphere from east to west,* their paths being parallel cir-
cles whose planes are perpendicular to the polar axis of the earth,
and having their centers in that axis produced. Kach star t+ makes
a complete revolution, called its diurnal (daily) motion, in 23 hr.
56 min., ordinary clock time. We cannot estimate the distance of
the surface of this sphere from us, further than to perceive that it
must be very far away indeed, because it lies beyond even the
remotest terrestrial objects. To an observer the stars all seem to be
at the same enormous distance from him, since his eyes can judge
their directions only and not their distances. It is therefore natural,
and it is extremely convenient from a mathematical point of view,
to regard this imaginary sphere on which all the heavenly bodies
seem to be projected, as having a radius of unlimited length. This

¥ This apparent turning of the sky from east to west is in reality due to the rotation of
the earth in the opposite direction, just as to a person on a swiftly moving train the objects
outside seem to be speeding by, while the train appears to be at rest. The sky is really mo-
tionless, while the earth is rotating from west to east,

+ By stars we shall mean fixed stars and nebule whose relative positions vary so slightly
that it takes centuries to make the change perceptible.
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sphere, called the celestial sphere, is conceived of as having such
enormous proportions that the whole solar system (sun, earth, and
planets) lies at its center, like a few particles of dust at the center of
a great spherical balloon.. The stars seem to retain the same relative
positions with respect to each other, being in this respect like places
on the earth’s surface. As viewed from the earth, the sun, moon,
planets, and comets are also projected on the celestial sphere, but
they are changing their apparent positions with respect to the stars
and with respect to each other. Thus, the sun appears to move east-
ward with respect to the stars about one degree each day, while the
moon moves about thirteen times as far.

The following figure represents the celestial sphere, with the
earth at the center showing as a mere dot.

(Zenith)

( .No:rt;a §
n
point iy
horizon)

'p'(South
celestial
pole)

( Nadir)

The zenith of an observer is the point on the celestial sphere
directly overhead. A plumb line held by the observer and extended
upwards will pierce the celestial sphere at his zenith (Z in figure).

The nadir is the point on the celestial sphere which is diametric-
ally opposite to the zenith (Z' in the figure).

The horizon of an observer is the great circle on the celestial
sphere having the observer’s zenith for a pole; hence every point
on the horizon (SWNE in the figure) will be 90° from the zenith
and from the nadir. A plane tangent* to a surface of still water

* On account of the great distance, a plane passed tangent to the earth a;t the place of

the observer will cut the celestial sphere in a great circle which (as far as we are concerned)
coincides with the observer’s horizon.
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at the place of the observer will cut the celestial sphere in his
horizon.

All points on the earth’s surface have different zeniths and horizons.

Every great circle passing through the zenith will be perpendicular
to the horizon ; such circles are called vertical circles (as ZMHZ' and
ZQSP'Z' in figure).

The celestial equator or equinoctial is the great circle in which the
plane of the earth’s equator cuts the celestial sphere (EQWQ' in
the figure).

The poles of the celestial equator are the points (P and P’ in the
figure) where the earth’s axis, if produced, would pierce the celestial
sphere. The poles may also be defined as those two points on the
sky where a star would have no diurnal (daily) motion. The Pole
Star is near the north celestial pole, being about 11° from it. Every
point on the celestial equator is 90° from each of the celestial poles.

All points on the earth’s surface have the same celestial equator
and poles.

The geographical meridian of a place on the earth was defined
as that great circle of the earth which passes through the place and
the north and south poles. The celestial meridian of a point on the
earth’s surface is the great circle in which the plane of the point’s geo-
graphical meridian cuts the celestial sphere (ZQSP'Z'Q'NP in the
figure). It isevidently that vertical circle of an observer which passes
through the north and south points of his horizon. All points on the
surface of the earth which do not lie on the same north-and-south
line have different celestial meridians.

The hour circle of a heavenly body is that great circle of the celes-
tial sphere which passes through the body * and through the north
and south celestial poles. In the figure PMDP' is the hour circle of
the star M. The hour circles of all the heavenly bodies are contin-
ually changing with respect to any observer.

The spherical triangle PZ M, having the north pole, the zenith, and
a heavenly body at its three vertices, is a very tmportant triangle in
Astronomy. It is called the astronomical triangle.

28. Spherical cobrdinates. When learning how to draw (or plot) the
graph of a function, the student has been taught how to locate a
point in a plane by measuring its distances from two fixed and mutu-
ally perpendicular lines called the axes of codrdinates, the two dis-
tances being called the rectangular codrdinates of the point.

* By this is meant that the hour circle passes through that point on the celestial sphere
where we see the heavenly body projected.
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If we now consider the surface to be spherical instead of plane, a
similar system of locating points on it may be employed, two fixed
and mutually perpendicular great circles being chosen as reference
circles, and the angular distances of a point from these reference
circles being used as the spherical cosrdinates of the point. Since
the reference circles are perpendicular to each other, each one of
them passes through the poles of the other. '

In his study of Geography the student has already employed such
a system for locating points on the earth’s surface, for the latitude
and longitude of a point on the earth are really the spherical codrdi-
nates of the point, the two reference circles being the equator and
the zero meridian (usually the meridian of Greenwich). Thus, in the
figure on p. 231, we may consider the spherical codrdinates of Boston
to be the ares ML (west longitude) and LB (north latitude); and of
Cape Town the spherical codrdinates would be the arcs MT (east
longitude) and 7'C' (south latitude). Similarly, we have systems of
spherical cosrdinates for determining the position of a point on the

\ , celestial sphere, and
( Zenith)
/ we shall now take up
the study of the more
important of these.

29. The horizon and
meridian system. In
this case the two fixed
and mutually perpen-
dicular great circles of
reference are the Zori-
Horizon WM, zon of the observer

( Sunset) .
(SHWNE) and his
-meridian (SM,ZPN), and the spherical coordinates of a heavenly
body are its altitude and azimuth.

The altitude of a heavenly body is its angular distance above the
horizon measured on a vertical circle from 0° to 90°* Thus the
altitude of the sun M is the arc HM. The distance of a heavenly
body from the zenith is called its zenith distance (ZM in the figure),
and it is evidently the complement of its altitude. The altitude of
the zenith is 90°. The altitude of the sun at sunrise or sunset is zero.

The azimuth of a heavenly body is the angle between its vertical
circle and the meridian of the observer. This angle is usually

M(Noon)

—
SN

* At sea the altitude is usually measured by the sextant, while on land a surveyor’s
transit is used.
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measured along the horizon from the south point westward to the
foot of the body’s vertical circle.* Thus the azimuth of the sun M
is the angle SZH, which is measured by the arc SH. The azimuth
of the sun at noon is zero and at midnight 180°. The azimuth of
a star directly west of an observer is 90° of one north 180° and of
one east 270°.

Knowing the azimuth and altitude (spherical coordinates) of a
heavenly body, we can locate it on the celestial sphere as follows.
From the south point of the horizon, as S (which may be considered
the origin of codrdinates, since it is an intersection of the reference
circles), lay off the azimuth, as SH. Then on the vertical circle
passing through # lay off the altitude, as HM. The body is then
located at A.

Ex. 1. In each of the following examples draw a figure of the celestial sphere
and locate the body from the given spherical coordinates.

Azimuth — Altitude Azimuth  Altitude
(a) 45° 45° () 0° - 0°
(b) 60° 80° (k) 180° 0°
() 90° 60° I 00 90°
(d 1200 75° (m) 90° 0°
(e) 180° 55° (n) 270° 0°
(f) 225° 0° (0) 360° 0°
(@ 800° 60° () 830° 45°
(h) 315° 15° (@) 750 750
i - 178° 82° (r) 90° 900

Since any two places on the earth have, in general, different merid-
ians and different horizons, it is evident that this system of spher-
ical coordinates is purely local. The sun rises at M; on the eastern
horizon (altitude zero), mounts higher and higher in the sky, on a
circle (M, M,M,;) parallel to the celestial equator, until it reaches the
observer’s meridian M, (at noon, when its altitude is a maximum),
then sinks downward to M; and sets on the western horizon.

Similarly, for any other heavenly body, so that all are continually
changing their altitudes and azimuths. To an observer having the
zenith shown in the figure, a star in the northern sky near the north
pole will not set at all, and to the same observer a star near the south
pole will not rise at all. If its path for one day were traced on the
celestial sphere, it would be a cirele (as 4BC) with its center in the
polar axis and lying in a plane parallel to the plane of the equator.

* That is, azimuth is measured from 0° to 360° clockwise.
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30. The equator and meridian system. In this case the two fixed
and mutually perpendicular great circles of reference are the celestial
equator (EQDW Q") and the meridian of the observer (NPZQSP'Z'Q");
and the spherical coordinates of a heavenly body are its declination
and hour angle.

The declination of a heavenly body is its angular distance north or
south of the celestial equator measured on the hour circle of the
body from 0° to 90°.*
Thus, in the figure, the
arc DM is a measure of
the north declination
of the star M. North
declination is always
considered positive and
south declination nega-
tive. Hence the decli-
nation of the north
pole is 4 90°, while
that of the south pole
is — 90°.

The declinations of
the sun, moon, and
planets are continually
changing, but the dec-
lination of a fixed star changes by an exceedingly small amount
in the course of a year. The angular distance of a heavenly body
from the north celestial pole, measured on the hour circle of
the body, is called its north polar distance (PM in figure). The
north polar distance of a star is evidently the complement of its
declination.

The hour angle of a heavenly body is the angle between the merid-
ian of the observer and the hour circle of the star measured west-
ward from the meridian from 0° to 360°. Thus, in the figure, the
hour angle of the star M is the angle QPD (measured by the arc
QD). This angle is commonly used as a measure of time, hence the
name hour angle. Thus the star M makes a complete circuit in
24 hours; that is, the hour angle QPD continually increases at the
uniform rate of 360° in 24 hours, or 15° an hour. For this reason
the hour angle of a heavenly body is usually reckoned in hours from

(Zenith)

* The declinations of the sun, moon, planets, and some of the fixed stars, for any time of
the year, are given in the Nautical Almanacor American Ephemeris, published by the United-
States government.
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0 to 24, one hour being equal to 15°* When the star is at M, (on
the observer’s meridian) its hour angle is zero. Then the hour
angle increases until it becomes the angle M;PM (when the star is
at M). When the star sets on the western horizon its hour angle
becomes M;PM, Twelve hours after the star is at M it will be at
M,, when its hour angle will be 180° (=12 hours). Continuing on
its circuit, the star rises at M, and finally reaches M;, when its hour
angle has become 360° (= 24 hours), or 0° again.

Knowing the hour angle and declination (spherical coordinates) of
a heavenly body, we can locate it on the celestial sphere as follows.
From the point, as @, where the reference circles intersect, lay off the
hour angle (orarc),as QD. Then on the hour circle passing through
D lay off the declination, as DM. The body is then located at M.

Ex. 1. In each of the following examples draw a figure of the celestial sphere
and locate the body from the given spherical codrdinates.

Hour angle  Declination Hour angle  Declination
(a) 45° N. 30° §)) 60° S. 45°
(b) 60° N. 60° (k) 0° - 0°
() 90° S. 46° )] 180° 0°
(d) 120° S. 80° (m) 90° N. 90°
(e) 180° N. 50° (n) 270° 0°
() 5 hr, N. 75° (o) 12 hr. S. 10°
{2) 15 hr. — 25° () 3 hr. + 80°
(h) 6 hr. + 79° (q) 9 hr. — 45°
) 0 hr. — 90° (1) 20 hr. + 60°

31. Practical applications. Among the practical applications of
Astronomy the most important are:

(a) To determine the position of an observer on the surface of the
earth (i.e. his latitude and longitude).

(®) To determine the meridian of a place on the surface of the
earth.

(¢) To ascertain the exact time of day at the place of the observer.

(d) To determine the position of a heavenly body.

The first of these, when applied to the determination of the place
of a ship at sea, is the problem to which Astronomy mainly owes its
economic importance. National astronomical observatories have been

* On account of the yearly revolution of the earth about the sun, it takes the sun about
4 minutes longer to make the circuit than is required by any particular fixed star. Hence
the solar day is about 4 minutes longer than the sidereal (star) day, but each is divided into
24 hours ; the first giving hours of ordinary clock time, while the second gives sidereal hours,
which are used extensively in astronomical work. When speaking of the sun’s hour angle
it shall be understood that it is measured in hours of ordinary clock time, while the hour
angle of a fixed star is measured in sidereal hours. In either case 1 hour = 15°,.
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established, and yearly nautical almanacs are being published by the
principal nations controlling the commerce of the world, in order to
supply the mariner with the data necessary to determine his position
accurately and promptly.

32. Relation between the observer’s latitude and the altitude of the
celestial pole. To an observer on the earth’s equator (latitude zero)
the pole star is on the horizon; that is, the altitude of the star is
zero. If the observer is traveling northward, the pole star will grad-
ually rise; that is, the latitude of the observer and the altitude
of the star are both increasing. Finally, when the observer reaches
the north pole of the earth his latitude and the altitude of the star
have both increased to 90°. The place of the pole in the sky then

depends in some way on the observer’s latitude, and we shall now
prove that the altitude of a celestial pole is equal to the latitude of
the observer.

Let O be the place of observation, say some place in the northern
hemisphere ; then the angle QC'O (or arc QO) measures its north lati-
tude. Produce the earth’s axis C'P until it pierces the celestial sphere
at the celestial north pole. A line drawn from O in the direction (as
OPj) of the celestial north pole will be parallel to CP,, since the
celestial north pole is at an unlimited distance from the earth (see
§ 27, p. 235). The angle NOP, measures the altitude of the north
pole. But C0O is perpendicular to ON and CQ is perpendicular to
OP, (since it is perpendicular to the parallel line C'P,); hence the
angles NOP, and QCO are equal, and we find that ¢e altitude of
the pole as observed at O is equal to the latitude of O.

33. To determine the latitude of a place on the surface of the earth.
If we project that part of the celestial sphere which lies above the
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horizon on the plane of the observer’s celestial meridian, the horizon
will be projected into a line (as NS), and the upper half of the celes-
tial equator will also be projected into a line (as 0Q). From the last
section we know that the latitude of the observer equals the altitude
of the elevated celestial pole (arc NP in figure), or, what amounts to
the same thing, equals the angular distance between the zenith and
the celestial equator (arc ZQ in figure). If then the elevated pole
could be seen as a definitely
marked point in the sky, the
observer’s latitude would be
found by simply measuring Vi N
the angular distance of that 2
pole above the horizon. But & %S
there are no fixed stars visible A i
at the exact points where the o
polar axis pierces the celestial
sphere, the so-called polar star being about 11° from the celestial
north pole. Following are some methods for determining the lati-
tude of a place on the surface of the earth. _

First method. 70 determine latitude by observations on circumpolar
stars. The most obvious method is to observe with a suitable instru-
ment the altitude of some star near the pole (so near the pole that
it never sets; as, for instance, the star whose path in the sky is
shown as the circle 4BC in figure, p. 238) at the moment when it
crosses the meridian above the pole, and again 12 hours later, when
it is once more on the meridian but below the pole. In the first
case its elevation will be the greatest possible; in the second, the-
least jpossible. The mean of the two observed altitudes is evidently
the. latitude of the observer. Thus, in the figure on this page, if
NA is the maximum altitude and NB the minimum altitude of
the star, then

Horizon 0
( Observer)

NA 4+ NB

5 = NP = altitude of pole

= latitude of place of observation.

Ex. 1. The maximum altitude of a star near the pole star was observed .to be
54° 16/, and 12 hours later its minimum altitude was observed to be 40° 24/,
What is the latitude of the place of observation ?

Solution. 54° 16 + 40° 24" = 94° 40",

[e] /
Therefore 94° 40

= 47° 20’ = altitude of north pole
= north latitude of place of observation.
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Second method. 7o determine latitude from the meridian altitude
of a celestial body whose declination is known. The altitude of a star
.z M is measured when it is on

M M(Star) the observer’s meridian. If we

subtract this meridian altitude

(arc SM in figure) from 90°,

u’' Wwe get the star’s zenith dis-
45 ' tance (ZM). In the Nautical
Almanac we now look up the
star’s declination at the same
instant; this gives us the arc
QM. Adding the declination of the star to its zenith distance, we get

QM + MZ = QZ = NP = altitude of pole = latitude of place.

N

Horizon o
(Observer)

Therefore, when the observer is on the northern hemisphere and
the star is on the meridian south of zenith,

North latitude = zenith distance + declination.*

If the star is on the meridian between the zenith and the pole (as
at M'" 1), we will have

North latitude = NP =2Q = QM" — ZM"
= declination — zenith distance.

If the observer is on the
southern hemisphere and the Z___(star)

star M 1s on his meridian
between the zenith and south P('Somh
pole, we would have pole)
South latitude
= SP'= SM — MP' v s
o 0
= SM — (90 —_ QM) ( Observer)

= altitude — co-declination,

if we consider only the numerical value of the declination.
In working out examples the student should depend on the figure
rather than try to memorize formulas to cover all possible cases.

Ex. 2. An observer in the northern hemisphere measured the altitude of a
star at the instant it crossed his celestial meridian south of zenith, and found
it to be 63°40’. The declination of the star for the same instant was given by
the Nautical Almanac as 21° 15" N. What was the latitude of the observer ?

* If the star is south of the celestial equator (as at M’), the same rule will hold, for then
the declination is negative (south), and the algebraic sum of the zenith distance and decli-
nation will still give the arc @Z.

+ Maximum altitude, if a circumpolar star.
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Solution. Draw the semicircle NZSO. Lay off the arc SM = altitude = 63° 40’,
which locates the star at M. Since the dec- 7
lination of the star is north, the celestial

. . M (Star)

equator may be located by laying off the v, )
arc M@ = declination = 21° 15 towards the
south. The line QO will then be the pro-
jection of the celestial equator, and OP,
drawn perpendicular to QO, will locate the N S

north pole P, 0
Zenith distance = ZM = 90° — SM (alt.)

= 90° — 63° 40" = 26° 20",
.. North latitude of observer = NP =ZQ = ZM (zen. dist.) + MQ (dec.)
= 26° 20" 4 21° 15" = 47° 3¥".

Third method. 7% determine latitude when the altitude, declination,
and hour angle of a celestial body are known. Referring to the astro-
nomical (spherical) triangle PZM, we see that

_Z side MZ

= 90° — HM (alt.)

= co-altitude,
the altitude of the star

being found by measure-
ment. Also

side PM

ol G TN/ §  =90°— DM (dec.)
Horizon W H = co-declination,

the declination of the star being found from the Nautical Almanae.

Angle ZPM = hour angle, which is given. This hour angle will
be the local time when the observation is made on the sun. We then
have two sides and the angle opposite one of them given in the
spherical triangle PZM. Solving this for the side PZ, by Case
111, (a), p. 224, we get

Latitude of observer = NP = 90°— PZ.

Ex. 8. Thedeclination of a star is 69° 42" N. and its hour angle 60° 44’. What is
the north latitude of the place if the altitude of the star is observed to be 49° 40" ?
Solution. Referring to the above figure, we have, in this example,
side MZ = co-alt. = 90° — 49° 40" = 40° 20,
side PM = co-dec. = 90° — 69° 42" = 20° 18",
angle ZPM = hour angle = 60° 44".
Solving for the side PZ by Case 111, (a), p. 224, we get side PZ=47°9’=co-lat.
~o90° — 47° 9 = 42° 517 = north latitude of place.
The angle MZP is found to be 27°53"; hence the azimuth of the star
(angle SZH) is 180° — 27° 53" = 1562° 7",
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EXAMPLES

SPHERICAL TRIGONOMETRY

1. The following observations for altitude have been made on some north
circumpolar star. What is the latitude of each place ?

Maximum altitude

(a) New York 50° 467
(b) Boston 44° 22/
(c) New Haven 58° 24"
(d) Greenwich 64° 36
(e) San Francisco 55° 6

(f) Calcutta 24° 18’

Minimum altitude

30° 407
40° 20"
24° 10/
38° 227
20° 307
20° 48

North latitude

Ans. 40°43

42° 217
41°17”
51029
37° 48’
22° 38’

2. In the following examples the altitude of some heavenly body has been
measured at the instant when it crossed the observer’s celestial meridian. What
is the latitude of the observer in each case, the declination being found from

the Nautical Almanac ?

Hemisphere Meridian altitude

(a) Northern 60°
(b) Northern 750 407
(c) Northern 43° 27"
(d) Northern 38° 67
(e) Northern 50°
(f) Northern 28° 46
(g) Southern 67°
(h) Southern 45° 267
(i) Southern 72°
(j) Southern 22° 18

Declination
. 20°

. 32018
. 10° 527
44° 267
62°

. 13° 167
S. 59°

S. 81°48"
S. 8°

. 46° 257

Body is Latitude
S. of zenith Ans. 50°N.
S. of zenith 46° 33" N.
S. of zenith 35°41’ N.
S. of zenith 7° 28" N.
N. of zenith 22° N,
N. of zenith 12° 27 N.
S. of zenith 36°S.
S. of zenith 37° 147 S.
N. of zenith 26° 8.
N. of zenith 21° 177 S.

3. In the following examples the altitude of some heavenly body not on the
observer’s celestial meridian has been measured. The hour angle and declination
is known for the same instant. Find the latitude of the observer in each case.

Hemisphere Altitude
(a) Northern 40°
(b) Northern 15°
(¢} Northern 52°
(d) Northern 64° 42/
(e) Northern 0°

(f) Northern 25°

(g) Northern 0°

(h) Northern 9° 26
(i) Southern 38°

(j) Southern 19°
(k) Southern 46° 187
(1) Southern 0°
(m) Southern 57° 36"

Declination
N. 10°

S. 8°

N. 19°

N. 24° 20"

S. 5°

0°.

11° 14/
00

S. 12°

N.

.70
S. 15° 28
. 14°

OO

Hour angle
50°
65°
2 hr.
345°

5 hr.
21 hr.
68° 547
720 227
520

3 hr.
326°
38°

2 hr.

Ans.

Latitude
27° 2/ N.
35° 38" N.
48° 16" N.
3° 34/ N.
or 46° 36" N,
77° 37" N.
53° 18" N.
No solution
57° 14 N.
33° 56" S.
or 4°8" S.
52° 567 8.
49° 14’ S.
72° 26" S.
12°50” S.
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34. To determine the time of day. A very simple relation exists
between the hour angle of the sun and the time of day at any place.
The sun appears to move from east to west at the uniform rate of
15° per hour, and when the sun is on the meridian of a place it is
apparent noon at that place. Comparing,

Hour angle of sun Time of day

0° Noon
15° 1 p.m.
30° 2 p.M.
45° 3 P.M.
90° 6 P.M.

180° Midnight
195° 1 A
210° 2 A.M.
270° 6 A.M.
300° 8 A.m.
360° Noon

The hour angle of the sun M is the angle at P in the astronomical
(spherical) triangle PZM. . We may find this hour angle (time of

( Zenith)

day) by solving the astronomical triangle for the angle at P, provided
we know three other elements of the triangle.
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DM = declination of sun, and is found from the Nautical Almanac.

.. Side PM = 90° — DM = co-declination of sun.

HM = altitude of sun, and is found by measuring the angular dis-
tance of the sun above the horizon with a sextant or transit.

. stde MZ = 90° — HM = co-altitude of sun.

NP = altitude of the celestial pole
= latitude of the observer (p. 243).

.. Side PZ = 90° — NP = co-latitude of observer.

Hence we have

Rule for determining the time of day at a place whose latitude is
known, when the declination and altitude of the sun at that time and
place are known.

First step. Take for the three sides of a spherical triangle

the co-altitude of the sun,
the co-declination of the sun,
the co-latitude of the place.

Second step. Solve this spherical triangle for the angle opposite the
Jirst-mentioned side. This will give the hour angle in degrees of the
sun, if the observation s made in the afternoon. If the observation is
made in the forenoon, the hour angle will be 360° — the angle found.

Third step. When the observation is made in the afternoon the time

of day will be hour angle

15

When the observation is made in the forenoon the time of day will be

P.M.

<hour angle

— 12)A.mM.
)

Ex. 1. In New York (lat. 40° 43" N.) the sun’s altitude is observed to be
30°40’. Having given that the sun’s declination is 10° N. and that the observa-
Zenith tion is made in the afternoon, what is the time

of day?

Solution. First step. Draw the triangle.
Side @ = co-alt. = 90° — 30° 40’ = 59° 20",
Side b = co-dec. = 90° — 10° = 80°,

Side ¢ = co-lat. = 90° — 40°43" = 49° 17",

Second step. As we have three sides given, the solution of this triangle comes
under Case I, (@), p. 217. But as we only want the angle 4 (hour angle), some
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labor may be saved by using one of the formulas (18), (19), (20), pp. 211, 212,
Let us use (18),

a= 59°20
b= 80° - sin s sin (s — a)
c= 49°17| Sliga= \/W’
2 = 1887 37 logsin L @ = L[log sin s 4 log sin (s — a) — {log sin b + log si
s — g0 1, | 08SMga=yllog g sin (s — a) — {log sin b + log sinc}].
s—a = 34°59.
log sins = 9.9988 logsind = 9.9934
logsin(s — a) = 9.7584 logsinc = 9.8797
log numerator = 19.7572 log denominator = 19.8731
log denominator = 19.8731
9.8841
2[19.8841
logsinfa = 9.9421
Ta=61°4.
a=122°8.

o A = 180° — a = 57° 52’ = hour angle of sun.
hour angle

p.M. = 3 hr, 51 min. p.M. Ans.
15

Third step. Time of day =

EXAMPLES

1. In Milan (lat. 45°30’ N.) the sun’s altitude at an afternoon observation
is 26° 30°. The sun’s declination being 8° S., what is the time of day ?
Ans. 2 hr. 33 min, p.m.
2. In New York (lat. 40° 43" N.) a forenoon observation on the sun gives
30° 40’ as the altitude. What is the time of day, the sun’s declination being
10° 8.? Ans. 9 hr, 46 min. a.m.
3. A mariner observes the altitude of the sun to be 60°, its declination at the
time of observation being 6° N. If the latitude of the vessel is 12°S., and the ob-
servation is made in the morning, find the time of day. A4ns. 10 hr. 24 min, a.m.
4. A navigator observes the altitude of the sun to be 35° 237, its declination
being 10°48’ S. If the latitude of the ship is 26° 13" N., and the observation is
made in the afternoon, find the time of day. Ans. 2 hr. 45 min. p.m.
5. At a certain place in latitude 40° N. the altitude of the sun was found to
be 41°, If its declination at the time of observation was 20° N., and the obser-
vation was made in the morning, how long did it take the sun to reach the
meridian ? Ans. 3 hr. 31 min.
6. In London (lat. 51° 31’ N.) at an afternoon observation the sun’s altitude
is 15° 40’. Find the time of day, given that the sun’s declination is 12° S.
Ans. 2 hr. 59 min. p.m.
7. A government surveyor observes the sun’s altitude to be 21°. If the latitude
of his station is 27° N. and the declination of the sun 16° N., what is the time of
day if the observation was made in the afternoon ? Ans. 4 hr, 57 min, p.m.
8. The captain of a steamship observes that the altitude of the sunis 26°30’. If
he is in latitude 45° 80’ N. and the declination of the sun is 18°N., what is the time
of day if the observation was made in the afternoon? A4ns. 4 hr. 41 min. ».m.
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35. To find the time of sunrise or sunset. If the latitude of the place
and the declination of the sun is known, we have a special case of the
preceding problem ; for at sunrise or sunset the sun is on the hori-
zon and its altitude is zero. Hence the co-altitude, which is one side
of the astronomical triangle, will be 90° and the triangle will be a
quadrantal triangle (p. 204). The triangle may then be solved by the
method of the last section or as a quadrantal triangle.

EXAMPLES
1. At what hour will the sun set in Montreal (1at. 45°30” N.), if its declina-
tion at sunset is 18° N.? Ans. 7 hr. 17 min. p.m.

2. At what hour will the sun rise in Panama (lat. 8 57/ N.), if its declination
at sunrise is 23°2” S.? Ans. 6 hr. 15 min. A.m.

3. About the first of April of each year the declination of the sun is 4° 30" N.
Find the time of sunrise on that date at the following places:

(a) New York (lat. 40° 43" N.). Ans. 5 hr. 45 min. A.m.
(b) London (lat. 51° 31" N.). 5 hr. 87 min. A.m.
(c) St. Petersburg (lat. 60° N.). 5 hr. 29 min. A.m.
(d) New Orleans (lat. 29° 58" N.). 5 hr. 50 min. A.m.
(e) Sydney (lat. 33°52" S.). 5 hr. 48 min. A.m.

36. To determine the longitude of a place on the earth. From the
definition of terrestrial longitude given on p. 231 it is evident that
the meridians on the
earth are projected into
hour circles on the
celestial sphere. Hence
the same angle (or arc)
which measures the
angle between the celes-
tial meridians (hour
circles) of the place
of observation and of
Greenwich may be
taken as a measure of
the longitude of the
place. Thus, in the fig-
ure, if PQP' is the me-
ridian (hour ecircle) of
Greenwich and PDP' the meridian (hour circle) of the place of
observation, then the angle QPD (or arc QD) measures the west
longitude of the place. If PMP'is the hour circle of the sun, it is
evident that '
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angle QPM = hour angle of sun for Greenwich
= local time at Greenwich ;

angle DPM = hour angle of sun for observer
= local time at place of observation.

Also, angle QPM — angle DPM = angle QPD = longitude of place.

Hence the longitude of the place of observation equals the differ-
ence * of local times between the standard meridian and the place in
question. Or, in general, we have the following

Rule for finding longitude: 7%e observer’s longitude is the amount
by which noon at Greenwich is earlier or later than noon at the place
of observation. If Greemwich has the earlier time, the longitude of the
observer is east ; if it has the later time, then the longitude is west.

We have already shown (p. 248) how the observer may find his
own local time. It then remains fo determine the Greemwich time
without going there. The two methods which follow are those in
general use.

First method. Find Greenwich time by telegraph (wire or wireless).
By far the best method, whenever it is available, is to make a direct
telegraphic comparison between the clock of the observer and that
of some station the longitude of which is known. The difference
between the two clocks will be the difference in longitude of the
two places.

Ex. 1. The navigator on a battleship has determined his local time to be
2 hr. 25 min. p.m. By wireless he finds the mean solar time at Greenwich to
be 4 hr. 30 min, p.m. What is the longitude of the ship ?

Solution. Greenwich having the later time,

4 hr. 30 min.

2 hr. 25 min,
Subtracting, 2 hr. 5 min. = west longitude of the ship.
Reducing this to degrees and minutes of are,

2 hr. 5 min,
15
Multiplying, 31° 15 = west longitude of ship.

Second method. Find Greenwich time from o Greenwich chronom-
eter. The chronometer is merely a very accurate watch. It has been
set to Greenwich time at some place whose longitude is known, and
thereafter keeps that time wherever carried.

* This difference in time isnot taken greater than 12 hours. If a difference in time be-

tween the two places is calculated to be more than 12 hours, we subtract it from 24 hours
and use the remainder instead as the ditference.
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Ex. 2 An exploring party have calculated their local time to be 10 hr. a.n1.
The Greenwich chronometer which they carry gives the time as 8 hr. 80 min. A.m.
What is their longitude ?

Solution. Greenwich has here the earlier time,
10 hr.

8 hr. 30 min.
Subtracting, 1 hr. 80 min. = 22° 30’ = east longitude.

EXAMPLES

1. In the following examples we have given the local time of the observer
and the Greenwich time at the same instant. Find the longitude of the observer
in each case.

Observer’s Corresponding Longitude
local time Greenwich time of observer
() Noon. 3 hr. 80 min. r.m. Ans. 52°30° W.
(b) Noon. 7 hr. 20 min. A.Mm. 70° E.
(¢) Midnight. 10 hr. 15 min. p.m. 26° 15" E.
(d) 4 hr. 10 min. p.M, Noon. 62° 30" E.
(e) 8 hr. 26 min. A.m. Noon. 53° 45" W,
(f) 9 hr. 40 min. p.m. Midnight. 35°W,
(g) 2 hr. 15 min. p.m. 11 hr. 20 min. A.m. 43° 45" E.
(h) 10 hr. 26 min. A.m. 5 hr. 16 min. A.n. 77° 30" .
(i) 1 hr. 30 min. ».m. 7 hr. 45 min. .M. 93° 45’ W.
(j) Noon. Midnight. 180° W. or E.
(k) 6 hr. p.m. 6 hr. a.m. 180° E. or W,
(1) 5 hr. 45 min, A.m. 7 hr. 30 min. p.a1. 153° 45’ E.
(m) 10 hr. 55 min. p.m. 8 hr. 35 min. A.M. 145°'W,

2. If the Greenwich time is 9 hr. 20 min. p.nm., January 24, at the same instant
that the time is 3 hr. 40 min. A.m., January 25, at the place of observation, what
is the observer’s longitude ? Ans. 95° K.

3. The local time is 4 hr. 40 min. a.m., March 4, and the corresponding Green-
wich time is 8 hr. .M., March 8. What is the longitude of the place ?
Ans. 130° E.
4. In the following examples we have given the local time of the observer
and the local time at the same instant of some other place whose longitude is
known. Find the longitude of the observer in each case.

Observer's Corresponding time and Longitude
local time longitude of the other place of observer
(2) 2 hr. p.u. 5hr. p.m. at Havana (long. 82°23’ W.) Ans. 127°23’ W.
(b) 10 hr. A.m. 3 hr. r.m. at Yokohama (long. 139° 41" E.) 64° 41" L.

(c) 5hr. 20 min, .M. 11 hr. 30 min. p.m. at Glasgow (long. 4°16"W.) 96°46" W,
(d) 8hr.25min, A.m. 6hr, 36 min. A.m. at Vera Cruz (long. 96°9’ W.) 68°39" W.
(e) 9hr. 45min. ».m. Midnight at Batavia (long. 106° 52’ E.) 73°7 E.
(f) 7hr. 40 min. p.m. Noon at Gibraltar (long. 5°21' W.) 109° 39’ E.
(g) 4hr. 50 min. .M. Noon at Auckland (long. 174° 50" Ii..) 112°40°' W,
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5. What is the longitude of each place mentioned in the examples on p. 249,
the Greenwich time for the same instant being given below ?

Ezxample, p. 249 Greenwich time Longitude of place
(a) Ex. 3 2 hr. 12 min. p.m. Ans. 57°W. long. (vessel)
(b) Ex. 4 4 hr. 52 min. ».M. 81°45” W. long. (vessel)
(c) Ex. & 5 hr. 9 min. A.n 50° E. long. (observer)
(d) Ex. 7 10 hr. 33 min. .M. 84° W. long. (surveyor)
(e) Ex. 8 6 hr. 25 min. ».m. 26° W. long. (ship)

37. The ecliptic and the equinoxes. The earth makes a complete
circuit around the sun in one year. To us, however, it appears as if
the sun moved and the earth stood still, the (apparent) yearly path
of the sun among the stars being a great circle of the celestial sphere
which we call the ecliptic. IEvidently the plane of the earth’s orbit

Earth

cuts the celestial sphere in the ecliptic. The plane of the equator and
the plane of the ecliptic are inclined to each other at an angle of about
231° (=), called the obliquity of the ecliptic (angle LVQ in figure).

The points where the ecliptic intersects the celestial equator are
called the equinoxes. The point where the sun crosses the celestial
equator when moving northward (in the spring, about March 21) is
called the vernal equinox, and the point where it crosses the celestial
equator when moving southward (in the fall, about September 21)
is called the autumnal equinox.

If we project the points V and 4 in our figure on the celestial
sphere, the point ¥ will be projected in the vernal equinox and the
point 4 in the autumnal equinox.

38. The equator and hour circle of vernal equinox system.* The two
fixed and mutually perpendicular great circles of reference are in

* Sometimes called the equaior system.
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this case the celestial equator (Q7Q') and the hour circle of the ver-
nal equinox (PVP'"), also called the equinoctial colure ; and the spher-

(North celestial pole)

ical coordinates of a
heavenly body are its
declination and right
ascension.

The declination of a
heavenly body has al-
ready been defined on
p. 240 as its angular
distance north or south
of the celestial equator
measured on the hour
circle of the body from
0° to 90° positive if
north and negative if
south. In the figure
DM is the north decli-
nation of the star i.

The right ascension of a heavenly body is the angle between the
hour circle of the body and the hour circle of the vernal equinox
measured eastward from the latter circle from 0° to 360° or in hours
from 0 to 24. In the figure, the angle VPD (or the arc VD) is the
right ascension of the star M. The right ascensions of the sun,
moon, and planets are continually changing.* The angle LVQ (= e)

is the obliquity of the ecliptic (= 23}°).

Ex. 1. Ineach of the following examples draw a figure of the celestial sphere
and locate the body from the given spherical codrdinates.

Right ascension

(a) 0°

(b) 180°

(c) 90°

(Q) 45°

(e) 60°

(f) 120°

(g) 800°

(h) 12 hr.

(i) 20 hr.

* The right ascensions of the sun, moon, and planets may be found in the Nautical

Declination
00
OO
N. 90°
N. 45°
N. 60°
+ 30°
— 60°
+ 45°
00

Almanac for any time of the year.

Right ascension Declination

) 90° 0°
(k) 270° 0°

(1) 90° S. 90°
(m) 45° S. 45°
(n) 90° S. 80°
(o) 240° + 60°
(p) 330° — 45°
(q) 6 hr. + 15°
(r) 9 hr. — 75°
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Ex. 2. The right ascension of a planet is 10 hr. 40 min. and its declination
S. 6°. Find the angular distance from this planet to a fixed star whose right
ascension is 8 hr. 20 min. and declination N, 48°,

Solution. Locate the planet and the star on the celestial sphere. Draw the
spherical triangle whose vertices are at the north
pole, the planet, and the fixed star. Then

Angle A = difference of right ascensions
= 10 hr. 40 min. — 3 hr. 20 min.
=17 hr. 20 min. = 110°.
Side b = co-declination of star
= 90° — 48° = 42°,
Side ¢ = co-declination of planet
= 90° — (— 6°) = 96°. To find side a.

As we have two sides and the included angle
given, the solution of this triangle comes under Case II, (a), p. 219. Since a only
is required, the shortest method isthat illustrated on p. 220, the solution depending
on the solution of right spherical triangles: On solving, we get a=107°48". Ans.

39. The system having for reference circles the ecliptic and the great
circle KVK' passing through the pole of the ecliptic and the vernal

(North celestial pole)

(Poleof the
ecliptic)

equinox.* The spherical coordinates of a heavenly body in this case
are its latitude and longitude.t

The latitude of a heavenly body is its angular distance north or
south of the ecliptic, measured on the great circle passing through

* Sometimes called the ecliptic system.

+ Sometimes called celestial latitude and longitude in contradistinction to the latitude

and longitude of places on the earth’s surface (terrestrial latitude and longitude), which were
defined on p. 231, and which have different meanings.
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the body and the pole of the ecliptiec. Thus, in the figure, the arc 7'M
measures the north latitude of the star M.

The longitude of a heavenly body is the angle between the great
circle passing through the body and the pole of the ecliptic, and the
great circle passing through the vernal equinox and the pole of the
ecliptic, measured eastward from the latter circle from 0° to 360°.
In the figure, the angle VKT (or the arc V'T) is the longitude of the
star M. The latitudes and longitudes of the sun, moon, and planets
are continually changing. The angle LVQ (= e) is the obliquity of
the ecliptic (= 23}° = arc KP).

Since the ecliptic is the apparent yearly path of the sun, the celes-
tial latitude of the sun is always zero. The declination of the sun,
however, varies from N. 231° (= arc QL) on the longest day of the
year in the northern hemisphere (June 21), the sun being then the
highest in the sky (at L), to S. 23}° (arc Q'L') on the shortest day
of the year (December 22), the sun being then the lowest in the sky
(at L'). The declination of the sun is zero at the equinoxes (March
21 and September 21).

Ex. 1. Ineach of the following examples draw a figure of the celestial sphere
and locate the body from the given spherical codrdinates.

Celestial longitude  Celestial latitude  Celestial longitude  Celestial latitude

(a) 0° 0° (j) 90° 0°
(b) 90° N. 90° (k) 180° 0°
(c) 180° N. 45° (1) o° S. 60°
(d) 270° 0° (m) 60° N. 30°
(e) 45° S. 80° (n) 120° N. 45°
(f) 185° + 15° (0) 270° —75°
(g) 315° + 60° (p) 30° — 60°
(h) 6 hr. — 45° (9) 9hr. 0°
(i) 15 hr. + 45° (r) 18 hr. + 30°

Ex. 2. Given the right ascension of a star 2 hr. 40 min. and its declination
24° 20’ N., find its celestial latitude and longitude.

Solution. Locate the star on the celestial sphere. Consider the spherical
triangle KPM on the next page.

Angle KPM = Z Q’PV + £LVPD
= 90° 4 right ascension
= 90° + 2 hr. 40 min.
= 90° + 40° = 130°.

Side PM = co-declension
= 90° — 24° 20/
= 65° 40",
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Side KP = LQ = e = 23°30".
To find side KM = co-latitude of the star,
and angle PKM = co-longitude of the star.

(North pole)

As we have two sides and the included angle given, the solution of this tri-
angle comes under Case II, (@), p. 219. Solving, we get

Side KM = 81°52” and £ PKM = 44° 52,
o 90° — KM = 90° — 81° 52" = 8° 8 = T'M = latitude of star,
and 90° — £ PKM = 90° — 44° 52’ = 45° 8’ = V' T = longitude of star.

EXAMPLES

1. Find the distance in degrees between the sun and the moon when their
right ascensions are respectively 12 hr. 89 min., 6 hr. 56 min., and their declina-
tions are 9° 23" S., 22° 50" N. Ans. 90°.

2. Find the distance between Regulus and Antares, the right ascensions
being 10 hr. and 16 hr. 20 min., and the polar distances 77° 19" and 116° 6",
Ans. 99° b6,

3. Find the distance in degrees between the sun and the moon when their
right ascensions are respectively 15 hr. 12 min., 4 hr. 45 min., and their decli-
nations are 21° 30" 8., 5° 30" N, Ans. 154° 19",

4. The right ascension of Sirius is 6 hr. 39 min., and his declination is
16°31”8S.; the right ascension of Aldebaran is 4 hr. 27 min., and his declination
is 16° 12’ N. Find the angular distance between the stars. Ans. 46° 2,

5. Given the right ascension of a star 10 hr. 50 min., and its declination
12° 30’ N., find its latitude and longitude. Take e = 28° 30".
Amns. Latitude = 18° 24’ N., longitude = 281° 7”.

6. If the moon’s right ascension is 4 hr. 15 min, and its declination 6° 20’ N.,
what is its latitude and longitude ?
Ans. Latitude = 14° 43’ N., longitude = 62° 58",
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7. The sun’s longitude was 59°40’. What was its right ascension and decli-
nation ? Take e = 23° 27",
Ans. Right ascension = 3 hr. 50 min., declination == 20° 38" N.

Hint. The latitude of the sun is always zero, since it moves in the ecliptic. Hence in the
triangle KPM (figure, p. 257), KM = 90°, and it is a quadrantal triangle. This triangle may
then be solved by the method explained on p. 204. .

8. Given the sun’s declination 16° 1 N., find the sun’s right ascension and
longitude. Take e = 23° 27",
Amns. Right ascension = 9 hr, 14 min., longitude = 136° 6"

9. The sun’s right ascension is 14 hr. 8 min.; find its longitude and declina-
tion. Take e = 23° 27" Ans. Longitude = 214° 16, declination = 12° 56" S.

10. Find the length of the longest day of the year in latitude 42° 17/ N.
Ans. 15 hr. 6 min.

Hint. This will be the time from sunrise to sunset when the sun is the highest in the sky,
that is, when its declination is 23° 27’ N.

11. Find the length of the shortest day in lat. 42° 17" N. Amns. 8 hr. 54 min.
Hint. The sun will then be the lowest in the sky, that is, its declination will be 23° 27’ S.

12. Find the length of the longest day in New Haven (lat. 41° 19" N.). Take
e = 23° 27. Ans. 15 hr.

13. Find the length of the shortest day in New Haven. Ans. 9hr.

14. Find the length of the longest day in Stockholm (lat. 59° 21 N.). Take
e = 23° 27" Ans. 18 hr. 16 min.

15. Find the length of the shortest day in Stockholm.  Ans. 5 hr. 48 min.

40. The astronomical triangle. We have seen that many of our
most important astronomical problems depend on the solution of

( Zenith)

7[

the astronomical triangle PZA. In any such problem the first
thing to do is to ascertain which parts of the astronomical triangle
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are given or can be obtained directly from the given data, and which
are required. The different magnitudes which may enter into such

problems are HM = altitude of the heavenly body,

DM = declination of the heavenly body,
angle ZPM = hour angle of the heavenly body,
angle SZM = azimuth of the heavenly body,

NP = altitude of the celestial pole

= latitude of the observer.

As parts of the astronomical triangle PZM we then have

side MZ = 90° — HM = co-altitude,
side PM = 90° — DM = co-declination,
side PZ = 90° — NP = co-latitude,

angle ZPM = hour angle,

angle PZM =180° — azimuth (angle SZM).*

The student should be given practice in picking out the known
and unknown parts in examples involving the astronomical tri-
angle, and in indicating the case under which the solution of the
triangle comes.

For instance, let us take Ex. 15, p. 261.

( Latitude = 51°32' N.
.. side PZ =90°— 51° 32'= 38° 28/,
Altitude  =35° 15"
‘. side MZ = 90°— 35° 15'= 54° 45,
Declination = 21° 27" N.
- side MP =90°— 21° 27'=68° 33".
Required : Local time = hour angle = angle ZPM.

Given parts <

Since we have three sides given to find an angle, the solution of
the triangle comes under Case I, (), p. 217. This gives angle ZPM
= 59° 45'=3 hr. 59 min. r.m.

41. Errors arising in the measurement of physical quantities.t Errors
of some sort will enter into all data obtained by measurement. For
instance, if the length of a line is measured by a steel tape, account
must be taken of the expansion due to heat as well as the sagging of
the tape under various tensions. Or, suppose the navigator of a ship

* When the heavenly body is situated as in the figure. If the body is east of the ob-
server’s meridian, we would have angle PZM = azimuth — 180°.
+ In this connection the student is advised to read § 93 in Granville’s Plane Trigonometry.
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at-sea is measuring the altitude of the sun by means of a sextant. The
observed altitude should be corrected for errors due to the following
causes :

1. Dip. Owing to the observer’s elevation above the sea level
(on the deck or bridge of the ship), the observed altitude will be too
great on account of the dip (or lowering) of the horizon.

2. Index error of sextant. As no instrument is perfect in con-
struction, each one is subject to a certain constant error which is
determined by experiment. |

3. Refraction of light. Celestial bodies appear higher than they
really are because of the refraction of light by the earth’s atmos-
phere. This refraction will depend on the height of the celestial
body above the horizon, and also on the state of the barometer and
thermometer, since changes in the pressure and temperature of the
air affect its density.

4. Semidiameter of the sun. As the observer cannot be sure where
the center of the sun is, the altitude of (say) the lower edge of the
sun is observed and to that is added the known semidiameter of the
sun for that day found from the Nautical Almanac.

5. Parallax. The parallax of a celestial body is the angle sub-
tended by the radius of the earth passing through the observer, as
seen from the body. As viewed from the earth’s surface, a celestial
body appears lower than it would be if viewed from the center, and
this may be shown to depend on the parallax of the body.

‘We shall not enter into the detail connected with these correc-
tions, as that had better be left to works on Field Astronomy ; our
purpose here is merely to call the attention of the student to the
necessity of eliminating as far as possible the errors that arise when
measuring physical quantities.

For the sake of simplicity we have assumed that the necessary cor-
rections have been applied to the data given in the examples found
in this book.

MISCELLANEOUS EXAMPLES

1. The continent of Asia has nearly the shape of an equilateral triangle.
Assuming each side to be 4800 geographical miles and the radius of the earth
to be 3440 geographical miles, find the area of Asia.

Ans. About 13,333,000 sq. mi.

2. The distance between Paris (lat. 48° 50" N.) and Berlin (lat. 52° 30" N.) is
472 geographical miles, measured on the arc of a great circle. What time is it
at Berlin when it is noon at Paris ? Amns. 44 min, past noon.

3. The altitude of the north pole is 45°, and the azimuth of a star on the
horizon is 135° Find the polar distance of the star. Ans. 60°,
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4. Whatwill be the altitude of the sun at 9a.m. in Mexico City (lat. 19°25’N.),

if its declination at that time is 8° 23" N.? Ans. 37°4Y.
5. Find the altitude of the sun at 6 hr. a.m. at Munich (lat. 48° 9" N.) on the
longest day of the year. Ans. Altitude = 17° 15",

6. Find the time of day when the sun bears due east and due west on the
longest day of the year at St. Petersburg (lat. 59° 56" N.).
Ans. 6 hr. 58 min. a.m., 5 hr, 2 min. p.n.
7. What is the direction of a wall in lat. 52° 80" N, which casts no shadow at
6 a.mM. on the longest day of the year ?
Ans. 75° 11’, reckoned from the north point of the horizon.

8. Find the latitude of the place at which the sun rises exactly in the north-

east on the longest day of the year. Ans. 55° 45" N.
9. Find the latitude of the place at which the sun sets at 10 hr, p.m. on the
longest day. Ans. 63° 23 N, or S.

10. Given the latitude of the place of observation 52° 80" N., the declination
of a star 88°, its hour angle 28° 17/. Find the altitude of the star.

Ans. Altitude = 65° 33",
11. Given the latitude of the place of observation 51° 19’ N., the polar dis-
tance of a star 67° 59/, its hour angle 15° 8. TFind the altitude and azimuth of’
the star. Ans. Altitude = 58° 227, azimuth = 27° 48",
12. Given the declination of a star 7° 54 N., its altitude 22° 45’, its azimuth

50° 14’. Find the hour angle of the star and the latitude of the observer.
Ans. Hour angle = 45° 41”, latitude = 67° 59" N.
13. The latitude of a star is 51° N., and its longitude 316°. Find its declina-

tion. Take e = 23° 27", Ans. Declination = 32° 28" N.
14. Given the latitude of the observer 44° 50" N., the azimuth of a star 41° 2/,
its hour angle 20°. Find its declination. Ans. Declination = 20° 49" N.

15. Given the latitude of the place of observation 51° 82" N., the altitude of
the sun west of the meridian 85° 15/, its declination 21° 27 N. Find the local
time, Ans. 8 hr. 59 min. p.y.



CHAPTER IV

RECAPITULATION OF FORMULAS
SPHERICAL TRIGONOMETRY

42. Right spherical triangles, pp. 196—197.

1) COS ¢ = COS @ COS b,

(2) sin @ = sin ¢ sin 4,

B (3) sin b = sin ¢ sin B,

(4) cos 4 = cos a sin B,

y a () cos B=cos b sin 4,

4 6) cos A = tan b cot c,
= O (M cos B = tan a cot ¢,
(8) sin b = tan @ cot 4,

9) sin @ = tan b cot B,

10) cos ¢ = cot 4 cot B.

General directions for solving right spherical triangles by Napier’s
rules of circular parts are given on p. 200.
Spherical isosceles and quadrantal triangles are discussed on p. 204.

43. Relations between the sides and angles of oblique spherical tri-
angles, pp. 206—216.

@ =180°— 4, B =180°—B, y =180°—C.
s=3(a+b+0), o=a+B+y)

d = diameter of inscribed-circle.
8 = 180° — diameter of circumscribed circle.

Law of sines, p. 207.

sine sind sin ¢
11 ; = — = —
( ) sm A smB sinC ’

sine sinbd
sine¢ sinf siny

sin ¢
or, .

Law of cosines for the sides, p. 209.

(12) €os @ = €08 b cos ¢ — sin b sin ¢ cos .
262
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Law of cosines for the angles, p. 209.
(15) cos @ = ¢os 3 cos y — sin (3 sin y cos a.

Functions of } a, 1 B8, } y in terms of the sides, pp. 211-213.
(18) sin} e = \]Slns.sm (3 —a)

sin b sin ¢

(19) cos } o = \j Sin (s — b)sin (s — o)

sin b sin ¢

(20) tan ) o = J sin s sin (s — &)

sin (s — b)sin (s — ¢)

(27) tan 3 d = \jsin (s —a)sin(s — b)sin (s — ¢).

sin s
(28) fanla = %2%;%)_
(29) tan } B = %a%;—d@'
(30) tan Ly = %(ﬁ_%_—;lﬂ

Functions of the half sides in terms of «, 8, y, p. 214.

(31) sinla= \jsm o 8in (o — @)

sin 3 sin y

___[sin(c — B)sin(ec —y) .

(32) cos ya = i fsiny
1, — sinosin (¢ —a)

(33) tan g \/sin (o- — :8) sin (0_ _ 7)
(40) tan 1 § = \jsin'(g —a)sin (o — fB)sin(c —y)
| | : sino

_sin(e—a),
(41) tan Lo = w3

_sinle—§),
(42) tan 1 b = fan g5
(43) tan 3o = S0@ =9,

tan %8
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Napier’s Analogies, p. 215.

(44) tan (¢ — 0) = — Z—E—ig—-__}_%tan Le
(45) tan § (o 4 0) = — %%%tfm Le.
(46) tan %(a~ﬁ)=~%li{2—;%tan%y.
(47) ban g (o + B) =— SO,

44. General directions for the solution of oblique spherical triangles,
pp. 216—227.
Case L. (a) Given the three sides, p. 217.
(b) Given the three angles, p. 218.
Case II. (@) Given two sides and their included angle, p. 219.
(b) Given two angles and their included side, p. 222.
Case III. (@) Gliven two sides and the angle opposite one of them,

p. 224.
(b) Given two angles and the side opposite one of them,
p. 226.

45. Length of an arc of a circle in linear units, p. 228.

TRN
(52 T=Tg0"

N = number of degrees in angle.

46. Area of a spherical triangle, p. 229.
TR2E

180
E=A—|— B + C — 1800.

(54) Area =

55 tanl E =Vtanlstanl(s—a)tan 1 (s — o)tan L(s— ¢)
4 2 2 2 2
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