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Abstract. We study functions defined in (n + 1)-dimensional domains that

are invariant under the action of a crystallographic group. We give a com-

plete description of the symmetries that remain after projection into an n-
dimensional subspace and compare it to similar results for the restriction to a

subspace. We use the Fourier expansion of invariant functions and the action

of the crystallographic group on the space of Fourier coefficients. Intermediate
results relate symmetry groups to the dual of the lattice of periods.
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1. Introduction

We study real functions with domain Rn+1 that are invariant under the action
of a crystallographic group Γ, a group with a subgroup of translations that is a
lattice L containing n+ 1 linearly independent elements.

A crystallographic group Γ is a special type of subgroup of the Euclidean group
E(n + 1), the semi-direct product E(n + 1) ∼= Rn+1 n O(n + 1). We denote its
elements γ = (v, δ), where v ∈ Rn+1 and δ ∈ O(n+ 1).

Let Γ be a crystallographic group and let XΓ be the space of all Γ-invariant
functions of class C1 on Rn+1, that in particular are L-periodic. Using coordinates
(x, y) in Rn+1 with x ∈ Rn, y ∈ R and for y0 > 0, the projection operator Πy0

integrates a function f along the width y0, yielding a new function with domain
Rn:

Πy0(f)(x) =

∫ y0

0

f(x, y)dy.

Our main result, Theorem 1.1, relates the symmetry of the functions f ∈ XΓ to the
the group Σy0 of symmetries of the projected functions Πy0(XΓ), i.e., the largest
subgroup of E(n) ∼= Rn nO(n) that fixes all the elements in Πy0(XΓ).

The elements of O(n+ 1) that map Rn × {0} into itself are, for α ∈ O(n):

σ =

(
Idn 0
0 −1

)
, α+ =

(
α 0
0 1

)
and α− = σα+ =

(
α 0
0 −1

)
.

Consider the subgroup Γ̂ of elements of Γ with orthogonal part α± for some α ∈
O(n) of the form(

(v, y),

(
α 0
0 β

))
with β = ±1 v ∈ Rn y ∈ R .

In particular, Γ̂ contains all the vertical translations ((0, y), Idn+1) and vertical

reflections ((0, y), σ) of Γ. Let h : Γ̂ −→ E(n) ∼= Rn nO(n) be the projection

h

(
(v, y),

(
α 0
0 β

))
= (v, α) .

Theorem 1.1 states that the elements in Γ that effectively contribute to the symme-

try of Πy0(XΓ) are those in the subgroup Γy0 of Γ̂ with the following description:

• If (0, y0) ∈ L then Γy0 = Γ̂.

• If (0, y0) 6∈ L then Γy0 contains those elements of Γ̂ that are either of the
form ((v, 0), α+) or of the form ((v, y0), α−).

Theorem 1.1. The group Σy0 of symmetries of the projected functions Πy0(XΓ) is

the image of Γy0 by the projection h : Γ̂ −→ E(n), a group homomorphism whose
kernel is given by the vertical translations and vertical reflections lying in Γy0 .

Theorem 1.1 is obtained as a corollary to the following criterion that describes
how elements of Γy0 are transformed by the projection:

Theorem 1.2. All functions in Πy0(XΓ) are invariant under the action of (vα, α) ∈
Rn nO(n) if and only if one of the following conditions holds:

(I) ((vα, 0), α+) ∈ Γ,
(II) ((vα, y0), α−) ∈ Γ,

(III) (0, y0) ∈ L, and either ((vα, y1), α+) ∈ Γ or ((vα, y1), α−) ∈ Γ, for some
y1 ∈ R .

For the proof of Theorem 1.2 we work with the induced action of Γ on the Fourier
expansion of functions in XΓ in terms of the waves ωk(x, y) = e2πi<k,(x,y)>, with
x ∈ Rn and y ∈ R, k ∈ Rn+1. The result only depends on the formal expansion,
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and also holds under less restrictive hypotheses on XΓ, given in Section 2 below.
The particular case of a projection from the plane into a line has been treated in
[12], where a different proof of Theorem 1.2 is given for the case n = 1. In this
dimension, the only symmetries that remain after projection are translations and
reflections, which simplifies the analysis. The results in the present article may also
be found in the thesis of Pinho [16], sometimes in a different form.

We are interested in comparing the symmetries of projected functions to those
of their restriction to a hyperplane. For r ∈ R, let Φr be the operator that
maps f(x, y) to its restriction to the affine subspace {(x, r) : x ∈ Rn}, given
by Φr(f)(x) = f(x, r). Let Gr be the largest subgroup of E(n) ∼= Rn nO(n) that

fixes all the elements in Φr(XΓ), and let Γ̃2r be the subgroup of Γ̂ of elements that
are either of the form ((v, 0), α+) or of the form ((v, 2r), α−).

Theorem 1.3. The group Gr of symmetries of the restriction Φr(XΓ) of functions

in XΓ to a hyperplane is the image of Γ̃2r by the group homomorphism h : Γ̂ −→
E(n) of Theorem 1.1.

1.1. Motivation. The main idea of this article is to track the symmetries of func-
tions when they undergo transformations, as projections and restrictions. Some of
the symmetries may get mixed in the transformed functions, others may disappear,
sometimes leaving hidden traces.

In experiments, the characteristics of objects may not allow direct observation
of their properties, but enable access to their projections or restrictions. In this
situation there is a loss of data, and the observed properties are to be interpreted
as traces of the actual features of higher dimension solutions. Our results clarify
this interpretation in what concerns symmetry.

The results in this article were motivated by the study of patterns in reaction-
diffusion experiments on thin layers, where the observation method carries infor-
mation from the depth of a layer and thus corresponds to a projection whose role
in the formation of a pattern is not always clear (see Gomes [10] , De Kepper et al.
[6], Borckmans et al. [2] and other articles by the same authors). Our results are
a first step in an attempt to clarify this issue.

Models for patterns in thin three-dimensional layers often make the simplifying
assumption that the domain is two-dimensional (see, for instance Gunaratne et al.
[11]). In many cases the simplified model gives a good reproduction of experimental
results, as in those discussed by Golubitsky and Stewart [9, Chapter 5]. There
are situations, however, when not all experimentally observed patterns may be
obtained from this analysis, as indicated by Gomes [10] who proposes that some of
these patterns may arise as the projection of a three-dimensional periodic structure.
Knowledge of projected patterns is useful when deciding whether this is the case, as
in Zhou et al. [20]. When the thickness of the layer acts as a bifurcation parameter,
as observed by De Kepper et al. [6], then the symmetries of the pattern may be
subject to change as thickness varies. This may be of particular importance in the
study of patterns in growing domains.

In this context, the standard method for analysing patterns is to describe them as
solutions of partial differential equations. The general problem is too complicated
to solve (for a discussion, see Dione and Golubitsky [7]) so one looks for solutions
that are periodic in the spatial variables with periods in a lattice L. Under gen-
eral assumptions, this reduces the problem to an ordinary differential equation in a
finite-dimensional space. The L-periodic solutions of partial differential equations
arise in many problems, either as solutions on their own right or by the decompo-
sition of other solutions.
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The explicit reduction of the problem to a finite-dimensional space may be dif-
ficult to compute. Instead, one uses the general form of ordinary differential equa-
tions with the prescribed symmetry. This general form may then be analysed to
decide whether there is, generically, a bifurcation to a certain pattern. Knowledge
of the symmetries is thus an essential step in dealing with this problem. For a
more detailed treatment we refer the reader to [9, Chapter 5] and [11] where the
2-dimensional case is discussed, to [7] and, for issues arising from a projection, to
[10].

When dealing with the problem of deciding whether a pattern in a thin domain
may be explained by a 2-dimensional model, it is possible, in theory, to carry out the
analysis in 3 spatial dimensions, project the results to 2 spatial dimensions and then
compare it to generic models formulated directly in the lower-dimensional space.
However, it is a lot easier to compare systems formulated in the same dimension,
having different symmetries. Moreover, problems formulated in higher dimension
are more difficult. The purpose of this article is to provide the tools for performing
this type of analysis directly in the lower dimension. Theorem 1.1 ensures that
none of the symmetries are left out.

Symmetries that do not remain after projection may give rise to properties of
the projected functions that cannot be described as the invariance under a crys-
tallographic group. An illustrative example is the quasiperiodic structure obtained
by the canonical projection of a periodic one (see example 2 of section 9 at the
end of this article and, more generally, Senechal [17, section 2.6]). The canonical
projection ensures a quasiperiodical result and stands on strict conditions: one has
to start from an integral lattice and project into a hyperplane that only meets the
lattice at the origin. The subset of the lattice that is projected is also fixed. For
an integral lattice, if the restriction Φr with r = 0 is only the origin, then it is not
possible to have a codimension one periodic projection. However, we show that this
may happen for more general lattices if (0, y0) ∈ L as in example 4 of section 9. Our
results may frame the canonical projection, and thus the quasiperiodical structures,
through the variation of parameters on the definition of the lattice and also of the
projection.

1.2. Structure of the article. Section 2 contains definitions, notation and some
preliminary results. In particular, we formulate minimal assumptions on the space
XΓ for Theorems 1.1 and 1.2. The formulation of the results for sufficiently large
spaces of Γ-invariant functions highlights their common characteristic, the symme-
try.

Each one of the conditions (I), (II) and (III) of Theorem 1.2 is sufficient by basic
properties of integrals, as shown in section 3.

The bulk of the paper contains the proof that the conditions of Theorem 1.2 are
necessary. As usual, it is harder to prove that a list is complete than to show that
some elements are on a list. We state first, in section 4, a formulation of the symme-
tries in Σy0 in terms of restrictions on Γ and on the dual lattice L∗, Proposition 4.1.
Then, after establishing some technical results in section 5, we show in section 6
that these properties impose restrictions on Γ and on L by implying the presence
of some particular elements in Γ, establishing Theorem 1.2 as a consequence of
Proposition 4.1. The second result is proved in section 7 using the induced action
of Γ in the space of Fourier coefficients of Γ-invariant functions, that appears as
relations on the coefficients that may be traced after projection.

Finally, in section 8 a similar study is carried out for the symmetries of the
restriction of invariant functions to a hyperplane. This is useful in comparing
the restriction and projection of a pattern. The main result of this section is
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Theorem 1.3, and this follows from Theorem 8.1, an analogue to Theorem 1.2, that
is proved using simpler versions of the arguments developed for the projection.

Examples of the effect of projection and restriction for some crystallographic
groups are given in section 9.

2. Notation and Preliminary Results

The reader is referred to Armstrong [1] for results on Euclidean and plane crys-
tallographic groups, to Senechal [17] and Miller [14] for results on lattices and
crystallographic groups. A detailed description may be found in Pinho [16].

The action of an element (v, δ) of the Euclidean group E(n+1) on (x, y), x ∈ Rn,
y ∈ R is given by (v, δ) · (x, y) = v + δ(x, y) with the group operation (v1, δ1) ·
(v2, δ2) = (v1 + δ1v2, δ1δ2), for (v1, δ1), (v2, δ2) ∈ E(n+ 1).

A crystallographic group Γ with lattice L is a subgroup Γ ≤ E(n+ 1) such that
the orbit of the origin by translations {v : (v, Idn+1) ∈ Γ} is a Z-module generated
by n + 1 linearly independent vectors l1, . . . , ln+1 ∈ Rn+1: L = {l1, . . . , ln+1}Z ={∑n+1

i=1 mili : mi ∈ Z
}
. We also use the symbol L for the normal subgroup of trans-

lations of Γ isomorphic to (L,+).
The projection (v, δ) 7−→ δ, of Γ into O(n + 1), has kernel L. Its image, J =

{δ : (v, δ) ∈ Γ for some v ∈ Rn+1}, called the point group of Γ, is isomorphic to the
finite quotient Γ/L and is a subgroup of the holohedry of L, the largest subgroup
of O(n+ 1) that leaves L invariant. Thus, JL = {δl : δ ∈ J, l ∈ L} = L.

The set of all the elements in Γ with orthogonal component δ ∈ J is the coset
L · (v, δ) = {(l + v, δ) : l ∈ L} for any v ∈ Rn+1 such that (v, δ) ∈ Γ. The group
Γ is characterized by the n + 1 generators of L, plus a finite number of elements
(vδ, δ), with δ ∈ J.

The action of Γ in Rn+1 induces the scalar action on functions: (γ · f)(x, y) =
f(γ−1 · (x, y)) for γ ∈ Γ and (x, y) ∈ Rn+1, see Melbourne [13]. A function f is
Γ-invariant if (γ · f)(x, y) = f(x, y), for all γ ∈ Γ and all (x, y) ∈ Rn+1.

The dual lattice of L is the set of all the elements k ∈ Rn+1 such that the waves
ωk(x, y) = e2πi<k,(x,y)> are L-periodic. It is given by L∗ = {k ∈ Rn+1 :< k, li >∈
Z, i = 1, . . . , n + 1}, where < ·, · > denotes the usual inner product in Rn+1. It
may be written as L∗ = {l∗1, . . . , l∗n+1}Z, where the dual basis l∗i ∈ Rn+1 satisfies
< l∗i , lj >= δij for all i, j ∈ {1, . . . , n + 1}. This representation as inner product
depends on the choice of basis in L. The lattices L and L∗ have the same holohedry.

For our purposes, the relevant property of functions f ∈ XΓ is the existence of
a Fourier expansion in terms of the waves ωk(x, y)

f(x, y) =
∑
k∈L∗

ωk(x, y)C(k)

where C : L∗ −→ C are the Fourier coefficients. For a real function f we have
C(k) = C(−k). From the action of Γ on XΓ we get:

(v, δ) · f(x, y) =
∑
k∈L∗ ωδk(x, y)ωδk(−v)C(k), by orthogonality of δ,

=
∑
k∈L∗ ωk(x, y)ωk(−v)C(δ−1k), because δL∗ = L∗.

This induces, on the space of Fourier coefficients, an action of Γ with centraliser
L, given by (v, δ) · C(k) = ωk(−v)C(δ−1k). The (v, δ)-invariance of f implies
C(k) = ωk(−v)C(δ−1k) for all its Fourier coefficients.

The simplest Γ-invariant functions are the real and imaginary components of
Ik(x, y) =

∑
δ∈J ωδk(x, y)ωδk(−vδ), for k ∈ L∗, (vδ, δ) ∈ Γ, and we will assume

that they lie in XΓ. Each function Ik, for k ∈ L∗, is the sum of the elements in the
J-orbit of ωk. Note that the expression of Ik does not depend on the choice of vδ.
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For f ∈ XΓ we get Πy0(f)(x) =
∫ y0

0

∑
k∈L∗ ωk(x, y)C(k)dy. When the integral

and the summation commute, then

Πy0(f)(x) =
∑
k∈L∗

∫ y0
0
ωk(x, y)C(k)dy

=
∑
k∈L∗ ωk1(x)C(k1, k2)

∫ y0
0
ωk2(y)dy,

where k = (k1, k2), with k1 ∈ Rn and k2 ∈ R. Grouping terms with common n
first components in L∗, we obtain

Πy0(f)(x) =
∑
k1∈L∗

1
ωk1(x)

∑
k2:(k1,k2)∈L∗ C(k1, k2)

∫ y0
0
ωk2(y)dy

=
∑
k1∈L∗

1
ωk1(x)D(k1),

where L∗1 = {k1 : (k1, k2) ∈ L∗} and D(k1) =
∑
k2:(k1,k2)∈L∗ C(k1, k2)

∫ y0
0
ωk2(y)dy.

Note that the coefficients D(k1) depend on y0.
The functions Πy0(f) may be invariant under the action of some element (vα, α)

of E(n) ∼= Rn nO(n). For f ∈ XΓ this is equivalent to∑
k1∈L∗

1

ωk1(x)D(k1) =
∑
k1∈L∗

1

ωk1(α−1x)ωk1(−α−1vα)D(k1).

This equation imposes restrictions on the coefficients D(k1), see Lemma 7.1 below.

Summarising, the minimal requirements are thatXΓ is a vector space of functions
and that:

(1) Γ is a (n+1)-dimensional crystallographic group with lattice L, dual lattice
L∗ and point group J,

(2) if f ∈ XΓ then:
(i) f : Rn+1 −→ R is Γ-invariant,
(ii) f has a Fourier expansion in waves ωk(x, y), k ∈ L∗,

(iii) the integral and the summation commute in the projection of f ,
(3) Re(Ik), Im(Ik) ∈ XΓ for all k ∈ L∗ with Ik(x, y) =

∑
δ∈J ωδk(x, y)ωδk(−vδ).

As stated in the Introduction, these minimal requirements are satisfied, for in-
stance, if XΓ is the space of all Γ-invariant functions of class C1: the Fourier
expansion of a C1 function f converges absolutely to f (see for instance Section 11
of Chapter 3 of Tolstov [19]), and therefore (2i)–(2iii) hold.

3. Sufficiency of conditions in Theorem 1.2

Each one of the conditions (I), (II) and (III) of Theorem 1.2 is sufficient by basic
properties of integrals:

Lemma 3.1. All functions in Πy0(XΓ) are invariant under the action of (vα, α) ∈
Rn nO(n) if one of the following conditions holds:

(I) ((vα, 0), α+) ∈ Γ,
(II) ((vα, y0), α−) ∈ Γ,

(III) (0, y0) ∈ L and either ((vα, y1), α+) ∈ Γ or ((vα, y1), α−) ∈ Γ, for some
y1 ∈ R .

Proof. Let f be any function inXΓ. If condition (I) holds then f(x, y) = ((vα, 0), α+)·
f(x, y) = f(α−1x− α−1vα, y) and so Πy0(f)(x) =

∫ y0
0
f(x, y)dy equals∫ y0

0

f(α−1x− α−1vα, y)dy = Πy0(f)(α−1x− α−1vα) = (vα, α) ·Πy0(f)(x).

Similarly, if condition (II) holds then

Πy0(f)(x) =

∫ y0

0

f(α−1x− α−1vα, y0 − y)dy
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which, for z = y0 − y, equals∫ y0

0

f(α−1x− α−1vα, z)dz = (vα, α) ·Πy0(f)(x).

If (III) holds then

Πy0(f)(x) =

∫ y0

0

f(α−1x− α−1vα,±(y − y1))dy

which equals either
∫ y0−y1
−y1 f(α−1x − α−1vα, z)dz or

∫ y1
y1−y0 f(α−1x − α−1vα, z)dz.

Since f has period (0, y0), both integrals are equal to∫ y0

0

f(α−1x− α−1vα, z)dz = (vα, α) ·Πy0(f)(x).

�

4. Symmetry of Πy0(XΓ) Related to Γ and L∗

The proof that the conditions (I), (II) and (III) of Theorem 1.2 are necessary
explores the restrictions on L∗ imposed by the presence of (vα, α) in the group of
symmetries of Πy0(XΓ). The restrictions will be characterised by subsets of L∗.

Given y0 > 0 ∈ R and α ∈ O(n), if either (v+, α+) or (v−, α−) lies in Γ, letM∗,
M∗+ and M∗− be the modules

M∗ = {k ∈ L∗ :< k, σv+ − v+ >∈ Z}

M∗+ = {k ∈ L∗ :< k, v+ − (vα, 0) >∈ Z} M∗− = {k ∈ L∗ :< k, v− − (vα, y0) >∈ Z} .
If α+ /∈ J then M∗ =M∗+ = {0} and if α− /∈ J then M∗− = {0}. Similarly, if any
of (v+, α+), (v−, α−) or (vσ, σ) lies in Γ, let

N ∗ =

{
k ∈ L∗ :< k, σv+ − v+ > +

1

2
∈ Z

}
N ∗y0 = {k ∈ L∗ :< k, (0, y0) >∈ Z− {0}}

N ∗σ =

{
k ∈ L∗ :< k, vσ − (0, y0) > +

1

2
∈ Z

}
N ∗σ̃ =

{
k ∈ L∗ :< k, vσ − (0, y0) > ±1

4
∈ Z

}
.

If the defining element is not in Γ we take the subset to be empty. The last four
sets are not modules. The smallest modules containing them are

N ∗ = N ∗ ∪M∗ N ∗y0 = N ∗y0 ∪M
∗
y0 N ∗σ = N ∗σ ∪M∗σ N ∗σ̃ = N ∗σ̃ ∪N ∗σ ,

where all the unions are disjoint, and M∗y0 and M∗σ are the modules

M∗y0 = {k ∈ L∗ :< k, (0, y0) >= 0} and M∗σ = {k ∈ L∗ :< k, vσ − (0, y0) >∈ Z} .
These subsets do not depend on the choice of non-orthogonal components v+,

v− and vσ: any element in the cosets v+ + L, v− + L and vσ + L defines the same
subsets.

Properties of N ∗σ and N ∗σ̃ . Let m1,m2 ∈ Z.

(1) If g1, g2 ∈ N ∗σ then m1g1 +m2g2 ∈
{
M∗σ if m1 +m2 even
N ∗σ if m1 +m2 odd.

(2) If g1, g2 ∈ N ∗σ̃ then m1g1 +m2g2 ∈
{
N ∗σ if m1 +m2 even
N ∗σ̃ if m1 +m2 odd.

With this notation, the analogue of Theorem 1.2 for L∗ takes the form:

Proposition 4.1. All functions in Πy0(XΓ) are invariant under the action of
(vα, α) ∈ Rn nO(n) if and only if one of the following conditions holds:

(A) (v+, α+) ∈ Γ for some v+ ∈ Rn+1 and L∗ = N ∗y0 ∪M
∗
+,

(B) (v−, α−) ∈ Γ for some v− ∈ Rn+1 and L∗ = N ∗y0 ∪M
∗
−,
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(C) both (vσ, σ) and (v+, α+) ∈ Γ for some vσ, v+ ∈ Rn+1 and, moreover,
M∗ ⊂

(
N ∗y0 ∪M

∗
+ ∪N ∗σ

)
and N ∗ ⊂

(
N ∗y0 ∪

(
M∗− ∩N ∗σ̃

))
.

The proof that the conditions of Proposition 4.1 are necessary is postponed to
Section 7. In Section 6 below we show that the conditions (A), (B) and (C) of
Proposition 4.1 imply the cases (I), (II) and (III) of Theorem 1.2. Together with
Lemma 3.1 this also establishes the sufficiency in the Proposition.

5. Properties of Γ, L and L∗

In this section we establish some basic results that will be used in the sequel.
The simultaneous presence of the reflection (vσ, σ) and of (v+, α+) in a group Γ
imposes strong restrictions on L∗. One of these restrictions is the subject of the
next Lemma.

Lemma 5.1. If both (vσ, σ) ∈ Γ and (v+, α+) ∈ Γ then 2(σv+ − v+) ∈ L and
N ∗ = L∗.

Proof. Since (vσ, σ) · (v+, α+) = (vσ + σv+, α−) and (v+, α+) · (vσ, σ) = (v+ +
α+vσ, α−), then v = vσ +σv+−v+−α+vσ ∈ L. As σL = L then v−σv = 2(σv+−
v+)+(Idn+1−α+−σ+α−)vσ also belongs to L. Using −α+−σ+α− = −Idn+1 we
get v−σv = 2(σv+−v+) or, equivalently, 2 < k, σv+−v+ >∈ Z, for all k ∈ L∗. �

Lemma 5.2 (Properties of the bases for L and L∗ and notation). Let {l1, . . . , ln+1}
be a basis for L and

{
l∗1, . . . , l

∗
n+1

}
be its dual basis. The matrices M with rows

l1, . . . , ln+1 and M∗ with rows l∗1, . . . , l
∗
n+1, are related by M∗ =

(
M−1

)T
, and

satisfy:

(1) If (vδ, δ) ∈ Γ then, given the real numbers r1, . . . , rn+1, there exists l ∈ L
such that vδ + l =

∑n+1
i=1 sili with (si− ri) ∈ [0, 1[ for all i ∈ {1, . . . , n+ 1}.

(2) If (0, a) ∈ L for some a 6= 0 then we may choose the basis {l1, . . . , ln+1} for
L such that

(i) M =

(
A B
0 b

)
where A is an n×n matrix with rows a1, . . . , an ∈ Rn

and B = (b1, . . . , bn)
T

, with b = a
m for some m ∈ Z and bi ∈ R.

(ii) M∗ =

(
A∗ 0

− 1
bB

TA∗ 1
b

)
, where A∗ =

(
A−1

)T
has rows a∗1, . . . , a

∗
n

with < a∗i , aj >= δij for i, j ∈ {1, . . . , n}.
(iii) The set {a1, . . . , an} is a basis for a lattice in Rn and {a∗1, . . . , a∗n} is

a basis for its dual.
(iv) l∗i = (a∗i , 0) for i ∈ {1, . . . , n} and M∗y0 = {l∗1, . . . , l∗n}Z .

(3) If σ lies in the holohedry of L then L contains an element of the form (0, a),
a 6= 0. Moreover, each entry bi of B may be taken to be either zero or b/2.

Proof. (1) The set {l1, . . . , ln+1} is a basis for Rn+1 and so vδ =
∑n+1
i=1 ŝili with

ŝi ∈ R for all i ∈ {1, . . . , n + 1}. Denoting the integer part of ŝi − ri as [ŝi − ri],
we may take si = ŝi − [ŝi − ri] and l =

∑n+1
i=1 [ŝi − ri] li ∈ L.

(2) Given (0, a) ∈ L, a 6= 0, then (0, b), b 6= 0, the smallest element of L in the
direction of (0, a), is a generator, and (0, a) = m(0, b) for some m ∈ Z. Thus, there
are elements l1, . . . , ln in L such that L = {l1, . . . , ln, (0, b)}Z. For li = (ai, bi), with
i ∈ {1, . . . , n}, and (0, b) = ln+1, we obtain the matrix M , and M∗ has the form
given in (2ii). Property (2iv) follows from the definition of M∗y0 .

(3) For (c, d) in L with d 6= 0, since σL = L then (c, d)−σ(c, d) = (0, 2d) ∈ L and
property (2) is valid. For li = (ai, bi), with i ∈ {1, . . . , n}, the elements li − σli =
(0, 2bi) lie in L and so (0, 2bi) = m(0, b) for some m ∈ Z. Therefore li =

(
ai,

mb
2

)
,

and either li = (ai, 0) or li =
(
ai,

b
2

)
up to multiples of (0, b) = ln+1. �
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6. Proposition 4.1 implies Theorem 1.2

Proposition 4.1 states that elements of Γ ensuring symmetry after projection have
orthogonal components α+ or α−. Information on the non-orthogonal components
v+, v− ∈ Rn+1 appears as constraints on the structure of L∗.

In this section we translate restrictions on Γ and L∗ into restrictions on Γ and
L. The main tool will be to obtain information about a basis of L∗ and use this to
find a suitable basis for L. Each condition of Proposition 4.1 is now treated in a
separate lemma. We assume throughout that (vα, α) ∈ Σy0 .

Lemma 6.1. If (v+, α+) ∈ Γ and L∗ = N ∗y0∪M
∗
+ then one of the conditions holds:

I. ((vα, 0), α+) ∈ Γ,
III. (0, y0) ∈ L and ((vα, y1), α+) ∈ Γ for some y1 ∈ R .

Proof. Since N ∗y0 ⊂ N
∗
y0 ∪M

∗
+ = L∗ and since both N ∗y0 and M∗+ are modules,

then either L∗ = N ∗y0 or L∗ =M∗+. In the second case < k, v+ − (vα, 0) >∈ Z for
all k ∈ L∗, i.e. , v+ − (vα, 0) ∈ L, and so (I) follows, because

(−v+ + (vα, 0), I) · (v+, α+) = ((vα, 0), α+) ∈ Γ.

If L∗ = N ∗y0 then (0, y0) ∈ L. We may use the basis
{
l∗1, . . . , l

∗
n+1

}
for L∗ with the

properties (2) in Lemma 5.2. As l∗n+1 ∈ N ∗y0 , it follows that 1
b = m

y0
, m ∈ Z− {0}.

Also l∗i ∈M∗y0 ⊂M
∗
+ for i ∈ {1, . . . n}, hence < l∗i , v+ − (vα, 0) >∈ Z. Any k ∈ L∗

may be written as k = k1 +m2l
∗
n+1 with k1 ∈M∗y0 , m2 ∈ Z. For any y1 ∈ R,

< k, v+ − (vα, y1) > = < k, v+ − (vα, 0) > − < k, (0, y1) >
= m1 +m2 < l∗n+1, v+ − (vα, 0) > −m2

m
y0
y1,

with m1,m2 ∈ Z. Taking y1 =< l∗n+1, v+−(vα, 0) > y0
m we get < k, v+−(vα, y1) >∈

Z. Thus, v+ − (vα, y1) ∈ L for some y1 ∈ R and (−v+ + (vα, y1), I) · (v+, α+) =
((vα, y1), α+) ∈ Γ, hence (III) holds. �

Lemma 6.2. If (v−, α−) ∈ Γ and L∗ = N ∗y0∪M
∗
− then one of the conditions holds:

II. ((vα, y0), α−) ∈ Γ,
III. (0, y0) ∈ L and ((vα, y1), α−) ∈ Γ for some y1 ∈ R .

Proof. The proof is analogous to that of Lemma 6.1 with v− − (vα, y0) instead of
v+ − (vα, 0) and y1 =< l∗n+1, v− − (vα, y0) > y0

m + y0. �

Lemma 6.3. If both (vσ, σ) and (v+, α+) belong to Γ, and if both

M∗ ⊂
(
N ∗y0 ∪M

∗
+ ∪N ∗σ

)
and N ∗ ⊂

(
N ∗y0 ∪

(
M∗− ∩N ∗σ̃

))
,

then one of the following conditions of Theorem 1.2 holds:
I. ((vα, 0), α+) ∈ Γ,
II. ((vα, y0), α−) ∈ Γ,
III. (0, y0) ∈ L and either ((vα, y1), α+) ∈ Γ or ((vα, y1), α−) ∈ Γ, for some y1 ∈ R.

The proof of Lemma 6.3 has three main steps. First, in Lemma 6.4 we obtain
some properties of (vσ, σ) and (v+, α+) and of the bases of L and L∗. Writing
v+ = (v1, v2) with v1 ∈ Rn and v2 ∈ R, we show that there are two possibilities
for v1, each one treated in a separate lemma.

Lemma 6.4. Under the conditions of Lemma 6.3, since σ ∈ J, we may choose
bases for L and L∗ satisfying properties (1) to (3) in Lemma 5.2. In particular
(0, b) ∈ L for some b > 0. Moreover,

(a) vσ + σvσ ∈ L.
(b) σv+ − v+ = −(0, 2v2), hence l∗i ∈M∗ for i ∈ {1, . . . , n}. Therefore

(i) (0, 4v2) ∈ L and
(ii) if (0, 2v2) ∈ L then N ∗ = ∅.
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(c) l∗1, . . . , l
∗
n ∈M∗y0 ⊂

(
M∗+ ∪N ∗σ

)
.

(d) We may choose v+ so that either v1 = vα or we may take l1 = (a1, b1) with
a1 = 2 (v1 − vα).

(e) In both cases of property (d), l∗i ∈M∗+ for all i ∈ {2, . . . , n}.

Proof. For (a), if (vσ, σ) ∈ Γ then (vσ, σ) · (vσ, σ) = (vσ + σvσ, I) ∈ Γ. For (b)
we use Lemma 5.1. Then Lemma 5.2 implies that for all i ∈ {1, . . . , n} we have
l∗i = (a∗i , 0) ∈ M∗y0 ⊂ M

∗ and (bi) and (bii) follow. Since M∗y0 ⊂ M
∗ and

M∗y0 ∩N
∗
y0 = ∅, the hypothesis of Lemma 6.3 implies (c).

It follows that for all i ∈ {1, . . . , n}, either < (a∗i , 0), v+ − (vα, 0) >∈ Z or
< (a∗i , 0), vσ − (0, y0) > + 1

2 ∈ Z. If l∗i ∈ N ∗σ then 2l∗i /∈ N ∗σ and so,

2 < (a∗i , 0), v+ − (vα, 0) >=< a∗i , 2(v1 − vα) >∈ Z, i ∈ {1, . . . , n},

therefore, 2(v1 − vα) =
∑n
i=1miai with mi ∈ Z for i ∈ {1, . . . , n}. If v1 6= vα, we

may choose a1 = 2(v1−vα)
m for some m ∈ Z, by the property (2iii) in Lemma 5.2. If

vα =
∑n
i=1 riai, with ri ∈ R, by property (1) in Lemma 5.2, there exists (c, d) ∈ L

such that (v1+c, v2+d) =
∑n+1
i=1 sili with 2 (ri − si) ∈ [0, 2[ for i ∈ {1, . . . , n}. Note

that N ∗σ does not depend on v+ and that (v1, v2) and (v1 +c, v2 +d) define the same
setM∗+, thus 2(v1 + c− vα) =

∑n
i=1 m̂iai with m̂i ∈ Z. Since 2(s1 − r1) = m̂1 ∈ Z

then m̂1 is either 0 or 1 and (d) follows, replacing v+ by v+ + (c, d). From now on
we take this choice of v+.

For (e) notice that v1 − vα is either zero or a1/2. Therefore, for i ∈ {2, . . . , n}
we have < l∗i , v+ − (vα, 0) >=< a∗i , v1 − vα >= 0. �

The two cases of Property (d) above are now treated in separate Lemmas.

Lemma 6.5. Under the conditions of Lemma 6.3 if v1 = vα then one of the
conditions of Theorem 1.2 holds.

Proof. If v1 = vα, then (vσ, σ) · (v+, α+) = (v−, α−) ∈ Γ for v− = vσ + σv+, hence

(1) v− − (vα, y0) = vσ − (0, v2 + y0)

Also v+ − (vα, 0) = (0, v2) and l∗1, . . . , l
∗
n lie in M∗.

From Lemma 5.2 (2iv) and Lemma 6.4 it follows that for i ∈ {1, . . . , n} we have
< l∗i + l∗n+1, v >=< l∗n+1, v > for v ∈ {v+ − (vα, 0), (0, y0), σv+ − v+}, hence

(2) l∗i + l∗n+1 ∈ Q∗ ⇔ l∗n+1 ∈ Q∗ i ∈ {1, . . . , n}

where Q∗ stands for any one of M∗+, N ∗y0 , N ∗ or M∗.
From property (b) in Lemma 6.4, ln+1 = (0, b) with b = 4v2

m for some m ∈ Z.
Therefore, l∗n+1 ∈ M∗+ if and only if m = 0 (mod 4). In this case L∗ = M∗+ and
hence (0, v2) ∈ L and ((vα, 0), α+) ∈ Γ as in Lemma 6.1, i.e., condition (I) holds.

If m = 2 (mod 4) then l∗n+1 ∈ M∗. Since l∗n+1 /∈ M∗+, the hypothesis of
Lemma 6.3 implies that l∗n+1 lies either in N ∗y0 or in N ∗σ .

If l∗n+1 ∈ N ∗y0 then, by (2) L∗ = N ∗y0 and this implies (0, y0) ∈ L. Condition (III)
follows since ((vα, v2), α+) ∈ Γ.

Now suppose that l∗n+1 /∈
(
M∗+ ∪N ∗y0

)
, then by (2) l∗i + l∗n+1 /∈

(
M∗+ ∪N ∗y0

)
for

i ∈ {1, . . . , n} and thus l∗i + l∗n+1 ∈ N ∗σ . Let k be either k = l∗n+1 or k = l∗i + l∗n+1,
then since k ∈ N ∗σ , using (1) it follows that k ∈M∗− because

< k, v− − (vα, y0) >=< k, vσ − (0, y0) > − < l∗n+1, (0, v2) >∈ Z.

Thus L∗ = M∗− implying v− − (vα, y0) ∈ L and (v− − (v− − (vα, y0)) , α−) =
((vα, y0), α−) ∈ Γ, i.e. condition (II).
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If m = ±1 (mod 4) then l∗n+1 ∈ N ∗ ⊂ N ∗y0 ∪
(
M∗− ∩N ∗σ

)
and, using (2), l∗i +

l∗n+1 ∈ N ∗ for i ∈ {1, . . . , n}. If l∗n+1 ∈ N ∗y0 then condition (III) follows, as above.
Suppose l∗n+1 /∈ N ∗y0 and hence, by (2), l∗i + l∗n+1 /∈ N ∗y0 for i ∈ {1, . . . , n}. Thus

l∗i + l∗n+1 and l∗n+1 lie in M∗− and hence M∗− = L∗ implying condition (II). �

Lemma 6.6. Under the conditions of Lemma 6.3 if l1 = (2(v1 − vα), b1) then one
of the conditions of Theorem 1.2 holds.

Proof. When v1 6= vα, assertion (2) in the proof of Lemma 6.5 holds when Q∗ is
any one of N ∗y0 , N ∗ orM∗. Since l∗1 /∈M∗+, from (c) in Lemma 6.4 we get l∗1 ∈ N ∗σ .

Without loss of generality we may assume that l∗i ∈ M∗σ for i ∈ {2, . . . , n}.
To see this, note that vσ + σvσ ∈ L, hence < l∗i , vσ + σvσ >∈ Z. Using (2ii) in
Lemma 5.2 it follows that 2 < l∗i , vσ >∈ Z for i ∈ {2, . . . , n}. If l∗i ∈ N ∗σ for

i ∈ {2, . . . , n1}, then l̃∗i = l∗i − l∗1 ∈ M∗σ. Let l̃∗i = l∗i for i = 1 and i > n1, and

l̃1 = l1−
∑n1

i=2 li, then {l̃∗i } is a basis for L∗, the dual of the basis {l̃1, l2, . . . , ln+1}.
The construction of v+ in the proof of (d) in Lemma 6.4 may be repeated for this

basis, to get l̃1 = (ã1, b̃1) with ã1 = 2(v1 − vα), establishing the claim.

Therefore vσ + l =
∑n+1
i=1 sili for some l ∈ L, with s1 = 1/2 and si = 0 for

i ∈ {2, . . . , n}, so we may replace vσ by vσ + l. Then vσ = (a1/2, b1/2) + sn+1(0, b)
and hence vσ + σvσ = (a1, 0) ∈ L implies (0, b1) ∈ L. Using the construction of
Lemma 5.2 (3) we get b1 = 0 and

(3) vσ =
1

2
(a1, 0) + sn+1(0, b) = v+ − (vα, 0) + (0, sn+1b− v2).

If l∗n+1 ∈ N ∗y0 then (0, y0) ∈ L. Then (3) implies that vσ − (a1, 0) = −σv+ +
(vα, sn+1b− v2). Condition (III) follows from

(4) (−σv+ + (vα, sn+1b− v2), σ) · (v+, α+) = ((vα, sn+1b− v2), α−) ∈ Γ.

Now suppose that l∗n+1 /∈ N ∗y0 . For b = 4v2
m we get < l∗n+1, σv+ − v+ >= − 2v2

b =
−m2 . If m = 2 (mod 4) then l∗n+1 ∈ M∗ and l∗n+1 /∈ M∗+. Since we are assuming
l∗n+1 /∈ N ∗y0 , then l∗n+1 ∈ N ∗σ , where sn+1 + y0/b+ 1/2 ∈ Z and, up to multiples of
(0, b), sn+1b− v2 = y0. Condition (II) follows from (4).

For m 6= 2 (mod 4) with l∗n+1 /∈ N ∗y0 the proof of the corresponding cases in
Lemma 6.5 applies without any changes. �

7. Proof of necessity in Proposition 4.1

We will show that if the hypothesis of Proposition 4.1 holds for the projection of
the real and imaginary parts of Ik(x, y), then one of the three conditions (A), (B)
or (C) must hold. In this section we identify all elements of the form (v+ l, δ) ∈ Γ,
l ∈ L, and denote them all by (vδ, δ), since vδ and vδ + l give rise to the same
subsets of L∗ defined in Section 4 and wk(v) = wk(v + l) for k ∈ L∗ and l ∈ L.

For δ ∈ O(n+1) and k ∈ L∗, let δk = (k̃1, k̃2), where k̃1 ∈ Rn and k̃2 ∈ R. With

the notation δk|1 = k̃1 and δk|2 = k̃2, let JId(k) be the subset of J that preserves
k1 given by

(5) JId(k) = {δ ∈ J : δk|1 = k1} = {δ ∈ J : δk = k ∨ δk = σk}

where the second equality follows by orthogonality of J, since any element of the
orbit J(k1, k2) whose n first components equal k1 is of the form (k1,±k2). Let

(6) Jα(k) =
{
δ ∈ J : δk|1 = α−1k1

}
=
{
δ ∈ J : δk = α−1

+ k ∨ δk = α−1
− k

}
where the two expressions for Jα(k) are equivalent because the elements on J(k1, k2)
with n first components α−1k1 are of the form (α−1k1,±k2), by orthogonality of J
and of α. Let αL∗1 = {αk1 : k1 ∈ L∗1}.
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Lemma 7.1. If (vα, α) ∈ Σy0 then for all k = (k1, k2) ∈ L∗, the following invari-
ance conditions hold:

(a) if k1 ∈ L∗1 ∩ αL∗1 then
∑
δ∈JId(k)D

′(δ, k)− ωk1(−vα)
∑
δ∈Jα(k)D

′(δ, k) = 0

(b) if k1 /∈ L∗1 ∩ αL∗1 then
∑
δ∈JId(k)D

′(δ, k) = 0

where D′(δ, k) = ωδk(−vδ)
∫ y0

0

ωδk|2(y)dy.

Proof. Notice first that for any f ∈ XΓ the equality

Πy0(f)(x) = (vα, α) ·Πy0(f)(x) = Πy0(f)(α−1x− α−1vα)

is equivalent to

(7)
∑
k1∈L∗

1

ωk1(x)D(k1) =
∑
k1∈L∗

1

ωk1(α−1x)ωk1(−α−1vα)D(k1),

where, by orthogonality, the right hand side equals
∑
k1∈L∗

1
ωαk1(x)ωαk1(−vα)D(k1)

and, for k̃1 = αk1, is given by
∑
k̃1∈αL∗

1
ωk̃1(x)ωk̃1(−vα)D(α−1k̃1). Thus, from

(vα, α) ∈ Σy0 it follows that if k1 /∈ L∗1 ∩ αL∗1 then D(k1) = 0 and if k1 ∈ L∗1 ∩ αL∗1
then D(k1) = ωk1(−vα)D(α−1k1).

Each one of the functions Ik is given by a summation over a J-orbit on L∗. Writ-
ing its projection in the form Πy0(Ik)(x) =

∑
k̃1∈L∗

1
ωk̃1(x)D(k̃1) we have D(k̃1) = 0

except for k̃1 = δk|1 when it is

D(k̃1) =
∑

δ∈J:δk|1=k̃1

ωδk(vδ)

∫ y0

0

ωδk|2(y)dy.

In particular, for k̃1 = k1 the coefficient is D(k1) =
∑
δ∈JId(k)D

′(δ, k). If k1 /∈
L∗1 ∩ αL∗1 this establishes condition (b).

If k1 ∈ L∗1 ∩ αL∗1 we use D(α−1k1) =
∑
δ∈Jα(k) ωδk(vδ)

∫ y0
0
ωδk|2(y)dy, and con-

dition (a) follows. �

Although the invariance conditions in Lemma 7.1 involve the sets JId(k) and
Jα(k) for all k ∈ L∗, we will show that for this proof we will only need to consider
the sets:

JId = {Idn+1, σ} ∩ J and Jα =
{
α−1

+ , α−1
−
}
∩ J.

The rest of the proof is divided in three Lemmas. In Lemma 7.2 we describe all
the possibilities for JId and Jα and obtain in each case some consequences for L∗ in
terms of the subsets defined before the statement of Proposition 4.1. In Lemma 7.3
we study the set of all k ∈ L∗ such that either JId(k) 6= JId or Jα(k) 6= Jα. Finally,
conditions (A), (B) and (C) are obtained in Lemma 7.4.

The next lemma describes, under the hypothesis of Proposition 4.1, the set

O∗ =
{
k ∈ L∗ : JId(k) = JId ∧ Jα(k) = Jα

}
according to each of the cases for JId and Jα. This allows us to restate the invariance
conditions (a) and (b) in simpler form in terms of subsets of L∗.

Lemma 7.2. Suppose that the invariance conditions (a) and (b) hold for all k =
(k1, k2) ∈ L∗. Then we have one of the following cases:

(1) JId = {Idn+1}, Jα = ∅ and O∗ ⊂ N ∗y0 ,

(2) JId = {Idn+1, σ}, Jα = ∅ and O∗ ⊂
(
N ∗y0 ∪N

∗
σ

)
,

(3) JId = {Idn+1}, Jα = {α−1
+ } and O∗ ⊂

(
N ∗y0 ∪M

∗
+

)
,

(4) JId = {Idn+1}, Jα = {α−1
− } and O∗ ⊂

(
N ∗y0 ∪M

∗
−
)
,

(5) JId = {Idn+1, σ}, Jα = {α−1
+ , α−1

− },
(O∗ ∩M∗) ⊂

(
N ∗y0 ∪M

∗
+ ∪N ∗σ

)
and (O∗ ∩N ∗) ⊂

(
N ∗y0 ∪

(
M∗− ∩N ∗σ̃

))
.
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Proof. Cases (1–5) enumerate all the possibilities for JId and Jα. This happens
because JId is a group; if α−1

+ , α−1
− ∈ J then α+α

−1
− = σ ∈ J and if σ ∈ J then

either Jα = ∅ or Jα has two elements.
If (vσ, σ) ∈ Γ then vσ + σvσ ∈ L as in Lemma 6.4 (a) and therefore we have

(8) ωk(−σvσ) = ωk(vσ) if k ∈ L∗ and (vσ, σ) ∈ Γ.

If Jα = ∅ then, for all k = (k1, k2) ∈ O∗, the conditions in the hypothesis of the
lemma become

∑
δ∈JId D

′(δ, k) = 0. In case (1) this means that
∫ y0

0
ωk2(y)dy = 0

and hence k ∈ N ∗y0 . In case (2) we have
∫ y0

0
ωk2(y)dy+ωσk(−vσ)

∫ y0
0
ω−k2(y)dy = 0.

Using

(9)

∫ y0

0

ω−k2(y)dy = ωk2(−y0)

∫ y0

0

ωk2(y)dy,

this is equivalent to (1 + ωk(vσ − (0, y0)))
∫ y0

0
ωk2(y)dy = 0, by property (8) and

the result follows because 1 + ωk(vσ − (0, y0)) = 0 implies k ∈ N ∗σ .
In the remaining cases either (v+, α+) or (v−, α−) belongs to Γ. Thus, αL∗1 = L∗1

and the first condition in the hypothesis of the lemma must be verified for all
k1 ∈ L∗1. For k ∈ O∗ this condition becomes

(10)
∑
δ∈JId

D′(δ, k)− ωk1(−vα)
∑
δ∈Jα

D′(δ, k) = 0.

The proof for these cases consists of using properties (8) and (9) to rewrite con-
dition (10) in the form G(k1, k2)

∫ y0
0
ωk2(y)dy = 0 for k ∈ O∗. This implies that

either k ∈ N ∗y0 as in case (1), or G(k1, k2) = 0.
In case (3), this condition is G(k1, k2) = (1− ωk1(−vα)ωk(v+)) = 0 implying k ∈

M∗+. For case (4) it takes the formG(k1, k2) = (1− ωk1(−vα)ωk(v−)ωk2(−y0)) = 0,
which implies k ∈M∗−. In case (5) we get

2G(k1, k2) = 1 + ωk(vσ)ωk2(−y0)− ωk1(−vα) (ωk(v+) + ωk(v−)ωk2(−y0)) = 0.

Using Lemma 5.1 we get O∗ ⊂ (M∗ ∪N ∗) and

(11) ωk(v−) = ωk(vσ)ωk(σv+).

If k = (k1, k2) ∈M∗ then G(k1, k2) = 0 is equivalent to

1 + ωk(vσ)ωk2(−y0)− ωk1(−vα)ωk(v+) (1 + ωk(σv+ − v+)ωk(vσ)ωk2(−y0))

= (1− ωk(v+ − (vα, 0))) (1 + ωk(vσ − (0, y0))) = 0

and the result follows. For k = (k1, k2) ∈ N ∗, then ωk(σv+)ωk(−v+) = −1 and

ωk1(−vα)ωk(v+) = −ωk1(−vα)ωk(σv+)
= −ωk1(−vα)ωk(v−)ωk(−vσ), by (11)
= −ωk(v− − (vα, y0))ωk(−vσ + (0, y0))

hence 2G(k1, k2) = 1 + ωk(vσ − (0, y0)) + ωk(v− − (vα, y0))
(
ωk(vσ − (0, y0))− 1

)
.

For ωk(vσ − (0, y0)) = z1 and ωk(v− − (vα, y0)) = z2, the equation G(k1, k2) = 0 is
equivalent to (1+z1)/(1−z1) = z2 because z1 = 1 is not a solution of G(k1, k2) = 0.
Therefore, |(1 + z1)/(1− z1)| = 1 which implies Re(z1) = 0⇔ ωk(vσ−(0, y0)) = ±i
and z2 = ωk(v− − (vα, y0)) = 1, leading to k ∈

(
M∗− ∩N ∗σ̃

)
. �

Let P∗ be the complement of O∗ in L∗:

P∗ =
{
k ∈ L∗ : JId(k) 6= JId ∨ Jα(k) 6= Jα

}
.

In Lemma 7.4 we reformulate the cases of Lemma 7.2 in terms of L∗ instead of
O∗. The first two cases of Lemma 7.2 cannot occur since P∗ is too small. In
the remaining cases we show that P∗ may be ignored and, therefore, that L∗ can
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replace O∗ in the expressions given. Thus, the estimate of the size of P∗ in the
next lemma is an essential step.

Lemma 7.3. P∗ is the intersection of L∗ with the union of a finite number of
vector subspaces of Rn+1 with codimension at least one.

Proof. P∗ is the union of the submodules⋃
δ∈J−JId

M∗δ,Id ∪
⋃

δ∈J−Jα
M∗δ,α

whereM∗δ,Id =
{
k ∈ L∗ : δ ∈ JId(k)

}
and M∗δ,α = {k ∈ L∗ : δ ∈ Jα(k)} . This union

is finite because J is finite. Moreover, for all ξ 6= Idn+1 ∈ O(n + 1), Fix(ξ) ={
(x, y) ∈ Rn+1 : ξ(x, y) = (x, y)

}
is a proper vector subspace of Rn+1.

Let δ ∈ J − JId. If k ∈ M∗δ,Id then either δk = k or δk = σk ⇔ σδk = k,

which implies M∗δ,Id = L∗ ∩ (Fix(δ) ∪ Fix(σδ)) . Moreover, neither δ = Idn+1 nor

σδ = Idn+1, by the hypothesis δ ∈ J−JId. Thus, the codimensions of the subspaces
Fix(δ) and Fix(σδ) are at least one.

Analogously, if δ ∈ J− Jα and k ∈M∗δ,α then either δk = α−1
+ k ⇔ α+δk = k or

δk = α−1
− k ⇔ α−δk = k. Therefore, M∗δ,α = L∗ ∩ (Fix(α+δ) ∪ Fix(α−δ)) , where

both Fix(α+δ) and Fix(α−δ) have codimensions at least one due to the hypothesis
δ ∈ J− Jα. �

Lemma 7.4. Suppose that the invariance conditions (a) and (b) of Lemma 7.1
hold for all k = (k1, k2) ∈ L∗. Then we have one of the following cases:

(A) Jα = {α−1
+ } and L∗ = N ∗y0 ∪M

∗
+,

(B) Jα = {α−1
− } and L∗ = N ∗y0 ∪M

∗
−,

(C) Jα = {α−1
+ , α−1

− },
M∗ ⊂

(
N ∗y0 ∪M

∗
+ ∪N ∗σ

)
and N ∗ ⊂

(
N ∗y0 ∪

(
M∗− ∩N ∗σ̃

))
.

Proof. At first, we prove the statement:

(12) If (0, a) ∈ L for some a 6= 0 then M∗y0 6⊂ P
∗.

If (0, a) ∈ L for some a 6= 0 then property (2) of the bases, in Lemma 5.2, ensures
that M∗y0 has n linearly independent generators, l∗i = (a∗i , 0) for i ∈ {1, . . . , n},
where {a∗1, . . . , a∗n}R = Rn. If M∗y0 ⊂ P

∗ then, by Lemma 7.3, the module M∗y0 is
a subset of one of the subspaces forming P∗. Therefore, there is either an element
δ ∈ J − JId such that δ(k1, 0) = (k1, 0) for all (k1, 0) ∈ M∗y0 , or some δ ∈ J − Jα

such that δ(k1, 0) = (α−1k1, 0) for all (k1, 0) ∈M∗y0 . By orthogonality of δ the first

case implies either δ = I or δ = σ, which is equivalent to δ ∈ JId. Similarly, in the
second case δ ∈ Jα, by orthogonality of δ and α, and the statement is proved.

For any k ∈ L∗, k 6= (0, 0), let g 6= (0, 0) be the smallest element of L∗ in
the direction of k. Thus, there are elements g1, . . . , gn ∈ L∗ such that L∗ =
{g, g1, . . . , gn}Z . Let M∗k be the submodule M∗k = {g1, g2, . . . , gn}Z ⊂ L∗ and,
given h ∈M∗k, let Q∗k,h be the set Q∗k,h = {k +mh : m ∈ Z} .

We claim that there is some h ∈M∗k such thatQ∗k,h∩P∗ is a finite set. Lemma 7.3

asserts that P∗ ⊂
⋃m
i=1Hi, where each Hi is a subspace of Rn+1 of codimension

one. Let p ∈ N and consider the subset of k +M∗k with pn elements:

Wp = {k +m1g1 + · · ·+mngn : mi ∈ Z, 1 ≤ mi ≤ p} .

Each Hi has at most pn−1 elements in Wp and so Wp∩
⋃m
i=1Hi has, at most, mpn−1

elements. For p > m we have pn > mpn−1 and there is some h ∈ M∗ such that
k+h /∈

⋃m
i=1Hi. For this h, let r be a line containing Q∗k,h. Since for each i, r∩Hi

is either r or a finite set, and r contains at least the element k + h /∈ Hi, it follows



PROJECTION OF INVARIANT FUNCTIONS 15

that
⋃m
i=1 (r ∩Hi) is a finite set. The claim is proved because Q∗k,h∩P∗ is a subset

of
⋃m
i=1 (r ∩Hi).

Let k be any element of L∗−{(0, 0)} and choose some h ∈M∗k such thatQ∗k,h∩P∗
is a finite set. For simplicity of notation we write Q∗ instead of Q∗k,h.

Since N ∗y0 is a module, the intersection Q∗ ∩N ∗y0 is either the empty set or a set
with only a point or an infinite set of equally spaced points with a characteristic
period, τy0 . For the set Q∗ ∩N ∗σ there are also the three possible results. Although
N ∗σ is not a module, the smallest difference between two elements of Q∗∩N ∗σ defines
a period τσ ∈M∗σ, by the properties of N ∗σ stated before Lemma 4.1. An analogous
construction may be done for the sets Q∗ ∩M∗+, Q∗ ∩M∗− and Q∗ ∩

(
M∗− ∩N ∗σ̃

)
.

Thus, if these sets have more than one element we may define characteristic periods
τ+, τ− and τσ̃, respectively.

Under the hypothesis of the Lemma, one of the cases (1) to (5) of Lemma 7.2
must happen.

If case (1) happens then L∗ = N ∗y0 ∪ P
∗, which implies M∗y0 ⊂ P

∗. Moreover,
Q∗ ∩N ∗y0 must be an infinite set because Q∗ ∩P∗ is, by construction, finite. Thus,

there exists the period τy0 implying that Q∗ − N ∗y0 is either the empty set or an

infinite set. Since
(
Q∗ −N ∗y0

)
⊂ (Q∗ ∩ P∗) is finite, it follows that L∗ = N ∗y0 , which

implies that (0, y0) ∈ L. However, by the statement (12), under this condition,M∗y0
cannot be a subset of P∗ and so case (1) cannot occur.

In case (2), L∗ = N ∗y0∪N
∗
σ∪P∗ which impliesM∗y0 ⊂ (N ∗σ ∪ P∗). Moreover, there

is an element (0, a) ∈ L, with a 6= 0, due to the existence of σ in J, (see properties (2)

and (3) of Lemma 5.2), and thus M∗y0 ∩ N
∗
σ 6= ∅. Suppose k̃ ∈ M∗y0 − P

∗ and

k̃ 6= (0, 0). Thus, k̃ ∈ N ∗σ and 2k̃ ∈ M∗y0 . However, by the properties of N ∗σ ,

2k̃ /∈ N ∗σ and, by Lemma 7.3, 2k̃ /∈ P∗. Therefore, case (2) is also impossible.
For case (3) we follow the arguments of case (1). As L∗ = N ∗y0 ∪ M

∗
+ ∪ P∗

then Q∗ ∩
(
N ∗y0 ∪M

∗
+

)
is an infinite set and at least one of the periods τy0 or

τ+ must exist. The least common multiple of the existing periods is a period of
Q∗∩

(
N ∗y0 ∪M

∗
+

)
which implies that Q∗−

(
N ∗y0 ∪M

∗
+

)
is the empty set. Therefore

k ∈
(
N ∗y0 ∪M

∗
+

)
and condition (A) follows by definition of k and because (0, 0) ∈

M∗+.
In a similar way, withM∗− and τ− instead ofM∗+ and τ+, we prove that case (4)

of Lemma 7.2 leads to condition (B).
In case (5) (Q∗ ∩M∗) −

(
N ∗y0 ∪M

∗
+ ∪N ∗σ

)
must be the empty set by the nec-

essary existence of, at least, one of the periods τy0 , τ+ or τσ and, analogously,
(Q∗ ∩N ∗) −

(
N ∗y0 ∪

(
M∗− ∩N ∗σ̃

))
is empty due to the least common multiple of

the periods τy0 and τσ̃. Besides, either k ∈ (Q∗ ∩M∗) or k ∈ (Q∗ ∩N ∗) and, as
(0, 0) /∈ N ∗, condition (C) follows. �

This completes the proof of Proposition 4.1.

8. Restriction

In this section we present results for the restriction of functions in XΓ analogous
to those obtained for the projection.

Recall that for r ∈ R, the operator Φr maps f(x, y) to its restriction to the
affine subspace {(x, r) : x ∈ Rn} given by Φr(f)(x) = f(x, r). If f ∈ XΓ then, the
restriction of f is

Φr(f)(x) =
∑
k∈L∗

ωk(x, r)C(k) =
∑
k1∈L∗

1

ωk1(x)D(k1)

where L∗1 = {k1 : (k1, k2) ∈ L∗} and D(k1) =
∑
k2:(k1,k2)∈L∗ C(k1, k2)ωk2(r).
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Theorem 8.1. All functions in Φr(XΓ) are invariant under the action of (vα, α) ∈
Rn nO(n) if and only if one of the following conditions holds:

(I) ((vα, 0), α+) ∈ Γ,
(II) ((vα, 2r), α−) ∈ Γ.

Given f ∈ XΓ, the Fourier series for Φr(f) is similar to that of Πy0(f), with
ωk2(r) in the restriction corresponding to

∫ y0
0
ωk2(y)dy in the projection. Thus,

results concerning Φr are similar to those proved in the previous sections for Πy0 .
In particular, the proof of Theorem 8.1 is analogous to that of Theorem 1.2. The
condition ωk2(r) = 0 is never verified and so the sets N ∗y0 and M∗y0 disappear and
we don’t have an analogue to the condition (0, y0) ∈ L. Moreover, the expression∫ y0

0

ωk2(y)dy − ωk2(y0)

∫ y0

0

ω−k2(y)dy = 0

has the analogue ωk2(r)− ωk2(2r)ω−k2(r) = 0.
The following analogue of Proposition 4.1 is used to prove Theorem 8.1.

Proposition 8.1. All functions in Φr(XΓ) are invariant under the action of (vα, α) ∈
Rn nO(n) if and only if one of the following conditions holds:

(A) (v+, α+) ∈ Γ and L∗ =M∗+,
(B) (v−, α−) ∈ Γ and L∗ =M∗−,
(C) both (vσ, σ) and (v+, α+) belong to Γ, M∗ ⊂

(
M∗+ ∪N ∗σ

)
and N ∗ ⊂(

M∗− ∩N ∗σ̃
)
.

The analogue of Lemma 7.2 is, for D′(δ, k) = ωδk(−vδ)ωδk|2(r):

Lemma 8.1. Suppose that

(a) if k1 ∈ L∗1 ∩ αL∗1 then
∑
δ∈JId(k)D

′(δ, k) = ωk1(−vα)
∑
δ∈Jα(k)D

′(δ, k) and

(b) if k1 /∈ L∗1 ∩ αL∗1 then
∑
δ∈JId(k)D

′(δ, k) = 0,

for all k = (k1, k2) ∈ L∗. Then one of the following cases holds:

(1) JId = {Idn+1, σ}, Jα = ∅ and O∗ ⊂ N ∗σ ,
(2) JId = {Idn+1}, Jα = {α−1

+ } and O∗ ⊂M∗+,

(3) JId = {Idn+1}, Jα = {α−1
− } and O∗ ⊂M∗−,

(4) JId = {Idn+1, σ}, Jα = {α−1
+ , α−1

− }, (O∗ ∩M∗) ⊂
(
M∗+ ∪N ∗σ

)
and (O∗ ∩N ∗) ⊂(

M∗− ∩N ∗σ̃
)
.

The proof of Proposition 8.1 also uses the analogue of Lemma 7.4. Under the
conditions for the restriction, property (12) in the proof of Lemma 7.4, concerning
the set M∗y0 , does not hold. By Lemma 8.1 the case (1) of Lemma 7.4 disappears.
For case (2) of Lemma 7.4 the dual lattice is L∗ = N ∗σ ∪ P∗ and the arguments

concerning M∗y0 and N ∗y0 must be replaced by: if k̃ /∈ P∗ then k̃ ∈ N ∗σ . However

both 2k̃ /∈ P∗ and 2k̃ /∈ N ∗σ , by definition of P∗ and the properties of N ∗σ , and so
this case is not possible.

9. Examples

We conclude the article with some simple examples to illustrate the dependence
on Γ of the group Σy0 of symmetries of the projected functions Πy0(XΓ) and of
the group Gr of symmetries of the restriction Φr(XΓ) of functions in XΓ to a
hyperplane. We use the notation [γ1, . . . , γk] for the subgroup of the Euclidean
group generated by γ1, . . . , γk.

Example 1. Let A,B ∈ R2 be A =
(√

3/2, 1/2
)
, B = (0, 1), generators of a

hexagonal lattice L0 in the plane. Take Γ to have L0 as its translation subgroup,
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with trivial point group J = {Id2}, hence Γ̂ = Γ. If y0 6∈ Z, then (0, y0) 6∈ L0.
Conditions (I) of Theorems 1.2 and 8.1 imply that

Σy0 = Gr =
[(√

3, Id1

)]
∀y0 > 0, y0 6∈ N and ∀r ∈ R

obtained from (2A−B, Id2) ∈ Γ. Applying to (A, Id2) ∈ Γ the condition (III) of
Theorem 1.2 we obtain

Σy0 =
[(√

3/2, Id1

)]
∀y0 ∈ N.

Thus, the projection and restriction of Γ-invariant functions are always periodic,
but for y0 ∈ N, projected functions have half the usual period. Restricted functions
do not have the smaller period.

The lattice L0 is an integral lattice: the square of the norm of all its generators is
an integer. Tilting the lattice slightly keeps this property and produces a dramatic
change in Σy0 , and Gr, as shown in the next example.

Example 2. Let Rθ : R2 −→ R2 be the counterclockwise rotation of an angle
θ around the origin with

√
3 tan θ 6∈ Q, and let Lθ = Rθ(L0). The restriction√

3 tan θ 6∈ Q ensures that Lθ contains no element of the form (v, 0) with v 6= 0,
nor an element of the form (0, y0), with y0 > 0. For Γ = Lθ n {Id2} we have
Σy0 = Gr = {(0, Id1)} for all y0 > 0 and all r ∈ R. The projection and restriction
of Γ-invariant functions are not periodic.

Since Lθ ∩R×{0} = {(0, 0)} and Lθ is an integral lattice, then for small θ > 0,
the projection P : R2 −→ R2, P (x, y) = x maps

Lθ ∩R× [−h, h] with h =

√
3

6
sin θ +

1

2
cos θ

into a quasi-periodic set (see Senechal [17, Ch. 2]). This is the canonical projection
that was mentioned at the end of section 1.1.

The holohedry of the lattice L0 of example 1 is the group D6 generated by the
reflection on the horizontal axis σ and by the rotation of π/3 around the origin.

Example 3. Here Γ is given by Γ = Lθ n D6 (called p6mm in Armstrong [1,
Ch.26]) where D6 is generated by the rotation of π/3 around the origin and the
reflection on the line through the origin that makes an angle θ with the horizontal

axis. Then Γ̂ = Lθn{±Id2} and for most values of y0 and r we still get Σy0 = Gr =
{(0, Id1)}, from condition (I) of Theorem 1.2 and condition (I) of Theorem 8.1. For
some special values of y0, Σy0 contains a reflection (a,−Id1) for some a 6= 0 from
condition (II) of Theorem 1.2 applied to (l,−Id2), l ∈ Lθ. Similarly, Gr contains
a reflection for some special values of r, by condition (II) of Theorem 8.1.

The next example uses a small perturbation of the lattice L0. It is no longer an
integral lattice, and has a smaller holohedry. It illustrates the way small modifica-
tions in the lattice entail different symmetries in the projection.

Example 4. Let Γ = Lα n {±Id2} where Lα = {B,C}Z for B = (0, 1) and

C =
(√

3/2, α+ 1/2
)
. Note that {±Id2} is the holohedry of Lα. If 0 < |α| < 1/2

then Lα is not an integral lattice, and if α 6∈ Q then Lα∩{(x, 0) x ∈ R} = {(0, 0)}.
In this case:

• if y0 ∈ N, then Σy0 =
[
(0,−Id1), (

√
3/2, Id1)

]
by condition (III) of Theorem 1.2;

• if y0 = m(α+ 1/2) + n, m,n ∈ N, then Σy0 =
[
(m
√

3/2,−Id1)
]

by condition (II) of Theorem 1.2;

• if 2r = m(α+ 1/2) + n, m,n ∈ Z, then Gr =
[
(m
√

3/2,−Id1)
]

by condition (II) of Theorem 8.1;
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• for all other values of y0 and of r, we get Σy0 = {(0, Id1)} = Gr.

Therefore, for most choices of y0 and of r, the projection and the restriction of all
functions in XΓ do not have any symmetries, but projection from a band of integer
thickness produces periodic functions, in contrast to example 3.

Crystallographic groups acting on R3 have a richer structure, as the next exam-
ples show.

Example 5. Let Lf be the face centered cubic lattice (fcc) with generators D =

(0, 1, 0), E =
(√

3/2, 1/2, 0
)

and F =
(√

3/6, 1/2,
√

6/3
)
. The vertical elements of

Lf are of the form
(
0, 0, n

√
6
)
, with n ∈ Z. Take Γ to have Lf as its translation

subgroup, with trivial point group J = {Id3}, hence Γ̂ = Γ and

• for all values of r, we have Gr =
[(

(
√

3/2, 1/2), Id2

)
, ((0, 1), Id2)

]
;

• if y0 6= n
√

6, with n ∈ N, then Σy0 =
[(

(
√

3/2, 1/2), Id2

)
, ((0, 1), Id2)

]
;

• if y0 = n
√

6, with n ∈ N, then Σy0 =
[(

(
√

3/6, 1/2), Id2)
)
, ((0, 1), Id2))

]
by condition (III) of Theorem 1.2.

The symmetry group of the restriction of Γ-invariant functions is that of example 1,
with lattice L0, coinciding with the symmetries of most projections. However, for
some values of y0, the projections of all Γ-invariant functions have smaller periods.

The holohedry of the lattice Lf in example 5 is the group of symmetries of
the cube, that does not contain any rotation of order 6. Hence, if we take Γ with
translation subgroup Lf and with the rotational symmetries of the cube as its point
group, then, for most values of y0, the translation subgroup of Σy0 is L0 but with
point group that is not its full holohedry.

Example 6. Consider a group Γ = Lf n J with the lattice Lf of example 5 and
point group J generated by α− and β− where α and β are the elements of O(2):

α =

(
1/2 −

√
3/2√

3/2 1/2

)
and β =

(
−1 0
0 1

)
.

In this case Γ̂ = Γ and we claim that, using the terminology of Armstrong [1, Ch.26]:

• if y0 6= n
√

6/3, with n ∈ N, then Σy0 is the group p31m;

• if r 6= n
√

6/6, with n ∈ Z, then Gr is the group p31m;

• if y0 = n
√

6/3, with n ∈ N, then Σy0 is the group p6mm;

• if r = n
√

6/6, with n ∈ Z, then Gr is the group p6mm.

To establish the claims in example 6, note that if y0 6= n
√

6/3, with n ∈ N,
then the only applicable condition in Theorem 1.2 is condition (I), since there are
no elements in Γ with translation part of the form (a, b, y0), a, b ∈ R. The lattice
of Σy0 is L0, as in example 5. The point group of Γy0 contains the 2π/3 rotations
around the vertical axis, (α−)2 and (α−)4, and the reflections on vertical planes
(β−)(α−), (β−)(α−)3, (β−)(α−)5. The point group of Σy0 is

[
α2, βα

]
. All these

orthogonal maps occur in Σy0 with translation part (0, 0). The same applies to Γ̃2r

if r 6= n
√

6/6, with n ∈ Z.

For y0 = n
√

6, with n ∈ N, all the conditions of Theorem 1.2 are applicable
and the group Σy0 is p6mm, with lattice generated by (

√
3/6, 1/2) and (0, 1), as in

example 5, and point group generated by α and β, with ((0, 0), α) and ((0, 0), β) ∈ Γ.

If y0 = n
√

6/3, with n ∈ N, n 6≡ 0 (mod 3) then (0, 0, y0) 6∈ Lf , so condition (III)

of Theorem 1.2 is not applicable, but condition (II) is. Then
(
n(
√

3/6, 1/2), α
)
∈

Σy0 by condition (II) applied to (nF, α−) ∈ Γ. Similarly,
(
n(
√

3/6, 1/2), β
)
∈ Σy0 .

Since the translation subgroup of Σy0 is the hexagonal lattice L0 and since Σy0
contains a rotation of order 6, then it is p6mm. The group Gr is the same for
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r = n
√

6/6, with n ∈ Z. Note that this is a different representation of p6mm, here
the translation subgroup is L0 and the rotation of order 6 does not fix the origin.
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