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Definitions
Let S and T be monoids. A relational morphism of monoids 7: S—e— T is a
function from S into P(T), the power set of T, such that:

o forallseS, 7(s) #0;

o for all sy, € S, 7(s1)7(s2) C 7(51%);
o 1e7(1).
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Definitions

Let S and T be monoids. A relational morphism of monoids 7 : S—e— T is a
function from S into P(T), the power set of T, such that:

o forallse S, 7(s) #0;
o for all s1,5 € S, 7(s1)7(s2) C 7(51%);
o 1e7(1).

A relational morphism 7 : S—e— T s, in particular, a relation in S x T. Thus,
composition of relational morphisms is naturally defined.
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Definitions

Let S and T be monoids. A relational morphism of monoids 7 : S—e— T is a
function from S into P(T), the power set of T, such that:

o forallse S, 7(s) #0;
o for all s1,5 € S, 7(s1)7(s2) C 7(51%);
o 1e7(1).

A relational morphism 7 : S—e— T s, in particular, a relation in S x T. Thus,
composition of relational morphisms is naturally defined.

Homomorphisms, seen as relations, and inverses of onto homomorphisms are
examples of relational morphisms.
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A pseudovariety H of groups (monoids) is a class of finite groups (monoids)
quotients.

closed under formation of finite direct products, subgroups (submonoids) and
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A pseudovariety H of groups (monoids) is a class of finite groups (monoids)
closed under formation of finite direct products, subgroups (submonoids) and
quotients.

Given a pseudovariety H of groups, the H-kernel of a finite monoid S is the

submonoid
Ku(S) =[7"1(1),

with the intersection being taken over all groups G € H and all relational
morphisms of monoids 7 : S—— G.
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A pseudovariety H of groups (monoids) is a class of finite groups (monoids)
closed under formation of finite direct products, subgroups (submonoids) and
quotients.

Given a pseudovariety H of groups, the H-kernel of a finite monoid S is the

submonoid
Ku(S) =[7"1(1),

with the intersection being taken over all groups G € H and all relational
morphisms of monoids 7 : S—— G.

Since a relational morphism into a group belonging to a certain pseudovariety
H; of groups is also a relational morphism into a group belonging to a
pseudovariety Ho containing it, the following fact follows.
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A pseudovariety H of groups (monoids) is a class of finite groups (monoids)
closed under formation of finite direct products, subgroups (submonoids) and
quotients.

Given a pseudovariety H of groups, the H-kernel of a finite monoid S is the

submonoid
Ku(S) =[7"1(1),

with the intersection being taken over all groups G € H and all relational
morphisms of monoids 7 : S—— G.

Since a relational morphism into a group belonging to a certain pseudovariety
H; of groups is also a relational morphism into a group belonging to a
pseudovariety Ho containing it, the following fact follows.

Fact 1.1

Let M be a finite monoid and let H; and Hy be pseudovarieties of groups such
that Hy C Hy. Then Ky, (M) C Ky, (M).
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Some other easy consequences
Let G be a group and H a pseudovariety of groups. Then Ky(G) is the
smallest normal subgroup of G such that G/Ku(G) € H.
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Some other easy consequences

Proposition 2.1 (*, 98)

Let G be a group and H a pseudovariety of groups. Then Ky(G) is the
smallest normal subgroup of G such that G/Ku(G) € H.

Corollary 2.2

Any relative abelian kernel of a finite group contains its derived subgroup.

M. Delgado Computing kernels of finite monoids Lincoln, 20/05/2009 4 /20
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Some other easy consequences

Proposition 2.1 (*, 98)

Let G be a group and H a pseudovariety of groups. Then Ky(G) is the
smallest normal subgroup of G such that G/Ku(G) € H.

Corollary 2.2

Any relative abelian kernel of a finite group contains its derived subgroup.

As the restriction 7| of a relational morphism 7: S—e— G to a subsemigroup T
of S is a relational morphism 7: T-e— G, we have the following:

M. Delgado Computing kernels of finite monoids Lincoln, 20/05/2009 4 /20
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Some other easy consequences

Proposition 2.1 (* , 98)

Let G be a group and H a pseudovariety of groups. Then Ky(G) is the
smallest normal subgroup of G such that G/Ku(G) € H.

Corollary 2.2

Any relative abelian kernel of a finite group contains its derived subgroup.

As the restriction 7| of a relational morphism 7: S—e— G to a subsemigroup T
of S is a relational morphism 7: T-e— G, we have the following:

Fact 2.3

If T is a subsemigroup of a finite semigroup S, then Ky(T) C Ku(S).

M. Delgado Computing kernels of finite monoids Lincoln, 20/05/2009 4 /20



7(e) is a subgroup of G.

Let e be an idempotent of a finite semigroup S. As for every relational

morphism 7: S—e— G into a group G we have 7(e)7(e) C 7(e), we get that
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Let e be an idempotent of a finite semigroup S. As for every relational
morphism 7: S—e— G into a group G we have 7(e)7(e) C 7(e), we get that
7(e) is a subgroup of G.

It follows that e € 771(1). If x,y € 771(1), then 1 € 7(x)7(y) C 7(xy),
therefore xy € 771(1), thus 771(1) is a subsemigroup of S containing the
idempotents. As the non-empty intersection of subsemigroups is a
subsemigroup, we have the following fact.

M. Delgado Computing kernels of finite monoids Lincoln, 20/05/2009 5/ 20
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Let e be an idempotent of a finite semigroup S. As for every relational
morphism 7: S—e— G into a group G we have 7(e)7(e) C 7(e), we get that
7(e) is a subgroup of G.

It follows that e € 771(1). If x,y € 771(1), then 1 € 7(x)7(y) C 7(xy),
therefore xy € 771(1), thus 771(1) is a subsemigroup of S containing the
idempotents. As the non-empty intersection of subsemigroups is a
subsemigroup, we have the following fact.

Fact 2.4

Let H be a pseudovariety of groups and let M be a finite monoid. The relative
kernel Ky (M) is a submonoid of M containing the idempotents. O
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Definitions Consequences Motivation On the algorithms Relative kernels of groups Solvability

[e]e] oe [e]e] 0000000 000 000
Let e be an idempotent of a finite semigroup S. As for every relational
morphism 7: S—e— G into a group G we have 7(e)7(e) C 7(e), we get that
7(e) is a subgroup of G.

It follows that e € 771(1). If x,y € 771(1), then 1 € 7(x)7(y) C 7(xy),
therefore xy € 771(1), thus 771(1) is a subsemigroup of S containing the
idempotents. As the non-empty intersection of subsemigroups is a
subsemigroup, we have the following fact.

Fact 2.4

Let H be a pseudovariety of groups and let M be a finite monoid. The relative
kernel Ky (M) is a submonoid of M containing the idempotents. O

Fact 2.3 may be used to determine elements in the H-kernel of a monoid
without its complete determination.
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Let e be an idempotent of a finite semigroup S. As for every relational
morphism 7: S—e— G into a group G we have 7(e)7(e) C 7(e), we get that
7(e) is a subgroup of G.

It follows that e € 771(1). If x,y € 771(1), then 1 € 7(x)7(y) C 7(xy),
therefore xy € 771(1), thus 771(1) is a subsemigroup of S containing the
idempotents. As the non-empty intersection of subsemigroups is a
subsemigroup, we have the following fact.

Fact 2.4

Let H be a pseudovariety of groups and let M be a finite monoid. The relative
kernel Ky (M) is a submonoid of M containing the idempotents. O

Fact 2.3 may be used to determine elements in the H-kernel of a monoid
without its complete determination.
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Let e be an idempotent of a finite semigroup S. As for every relational
morphism 7: S—e— G into a group G we have 7(e)7(e) C 7(e), we get that
7(e) is a subgroup of G.

It follows that e € 771(1). If x,y € 771(1), then 1 € 7(x)7(y) C 7(xy),
therefore xy € 771(1), thus 771(1) is a subsemigroup of S containing the
idempotents. As the non-empty intersection of subsemigroups is a
subsemigroup, we have the following fact.

Fact 2.4

Let H be a pseudovariety of groups and let M be a finite monoid. The relative
kernel Ky (M) is a submonoid of M containing the idempotents. O

Fact 2.3 may be used to determine elements in the H-kernel of a monoid
without its complete determination.

Note that, for example, if we can determine a set X of generators of a monoid
M such that X C Ky (M), then we can conclude by Fact 2.4 that the

M = (X) C Ky(M).
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Rhodes Type Il conjecture proposed an algorithm to compute Kg(S), where G
is the class of all finite groups and S is a given finite monoid.
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Rhodes Type Il conjecture proposed an algorithm to compute Kg(S), where G
is the class of all finite groups and S is a given finite monoid.

Solutions were given by Ash and by Ribes and Zalesskii in the early nineties.
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Rhodes Type Il conjecture proposed an algorithm to compute Kg(S), where G
is the class of all finite groups and S is a given finite monoid.

Solutions were given by Ash and by Ribes and Zalesskii in the early nineties.

Pin showed that the problem of computing K¢(S) can be reduced to that of
computing the closure (relative to the profinite topology) of a rational subset
of the free group. This approach led to the solution given by Ribes Ribes and
Zalesskil.
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Rhodes Type Il conjecture proposed an algorithm to compute Kg(S), where G
is the class of all finite groups and S is a given finite monoid.

Solutions were given by Ash and by Ribes and Zalesskii in the early nineties.

Pin showed that the problem of computing K¢(S) can be reduced to that of
computing the closure (relative to the profinite topology) of a rational subset
of the free group. This approach led to the solution given by Ribes Ribes and
Zalesskil.

Algorithms to compute other relative kernels (e.g., kernels relative to
pseudovarieties of p-groups and pseudovarieties of abelian groups) followed
the idea of Pin.
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Rhodes Type Il conjecture proposed an algorithm to compute Kg(S), where G
is the class of all finite groups and S is a given finite monoid.

Solutions were given by Ash and by Ribes and Zalesskii in the early nineties.

Pin showed that the problem of computing K¢(S) can be reduced to that of
computing the closure (relative to the profinite topology) of a rational subset
of the free group. This approach led to the solution given by Ribes Ribes and
Zalesskil.

Algorithms to compute other relative kernels (e.g., kernels relative to
pseudovarieties of p-groups and pseudovarieties of abelian groups) followed
the idea of Pin.

A different algorithm has been given by Steinberg.
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The Mal'cev product, when the rightmost factor is a pseudovariety of groups,
may be defined as follows: for a pseudovariety V of monoids and a
pseudovariety H of groups, the Mal’cev product of V and H is the
pseudovariety

V@H = {S|Ku(S) e V1.

M. Delgado Computing kernels of finite monoids Lincoln, 20/05/2009 7/20
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The Mal'cev product, when the rightmost factor is a pseudovariety of groups,
may be defined as follows: for a pseudovariety V of monoids and a

pseudovariety H of groups, the Mal’cev product of V and H is the
pseudovariety

V@H={S|Kn(S) € V}.

Algorithms to compute relative kernels may lead to decidability results.
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monoid on A onto M.

Let M be a finite n-generated monoid. There exists a finite ordered set A of
cardinality n and a surjective homomorphism ¢ : A* — M from the free
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Let M be a finite n-generated monoid. There exists a finite ordered set A of
cardinality n and a surjective homomorphism ¢ : A* — M from the free
monoid on A onto M.

Proposition 4.1 (Pin, 88)

Let x € M. Then x € Kg(M) if and only if 1 € Clg(p~1(x)) (the closure is
taken for the profinite group topology of A*).

M. Delgado Computing kernels of finite monoids Lincoln, 20/05/2009 8 /20
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Let M be a finite n-generated monoid. There exists a finite ordered set A of
cardinality n and a surjective homomorphism ¢ : A* — M from the free
monoid on A onto M.

Proposition 4.1 (Pin, 88)

Let x € M. Then x € Kg(M) if and only if 1 € Clg(p~1(x)) (the closure is
taken for the profinite group topology of A*).

Commutative images of languages in A* are used for the abelian kernel case,
that is, the canonical homomorphism ~ : A* — 7Z" defined by

v(a;) = (0,...,0,1,0,...,0) (1 in position i), where a; is the i*" element of
A, is considered.

M. Delgado Computing kernels of finite monoids Lincoln, 20/05/2009 8 /20
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Let M be a finite n-generated monoid. There exists a finite ordered set A of
cardinality n and a surjective homomorphism ¢ : A* — M from the free
monoid on A onto M.

Proposition 4.1 (Pin, 88)

Let x € M. Then x € Kg(M) if and only if 1 € Clg(p~1(x)) (the closure is
taken for the profinite group topology of A*).

Commutative images of languages in A* are used for the abelian kernel case,
that is, the canonical homomorphism ~ : A* — 7Z" defined by

v(a;) = (0,...,0,1,0,...,0) (1 in position i), where a; is the i*" element of
A, is considered.

Proposition 4.2 (7, 98)
Let x € M. Then x € Kap(M) if and only if 0 € Clap(v(p~1(x))).

M. Delgado Computing kernels of finite monoids Lincoln, 20/05/2009 8 /20
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Let M be a finite n-generated monoid. There exists a finite ordered set A of
cardinality n and a surjective homomorphism ¢ : A* — M from the free
monoid on A onto M.

Proposition 4.1 (Pin, 88)

Let x € M. Then x € Kg(M) if and only if 1 € Clg(p~1(x)) (the closure is
taken for the profinite group topology of A*).

Commutative images of languages in A* are used for the abelian kernel case,
that is, the canonical homomorphism ~ : A* — 7Z" defined by

v(a;) = (0,...,0,1,0,...,0) (1 in position i), where a; is the i*" element of
A, is considered.

Proposition 4.2 (7, 98)
Let x € M. Then x € Kap(M) if and only if 0 € Clap(v(p~1(x))).

This proposition, similar to the former one of Pin, leads to an algorithm to
compute the abelian kernel of a finite monoid.
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Let M be a finite n-generated monoid. There exists a finite ordered set A of
cardinality n and a surjective homomorphism ¢ : A* — M from the free
monoid on A onto M.

Proposition 4.1 (Pin, 88)

Let x € M. Then x € Kg(M) if and only if 1 € Clg(p~1(x)) (the closure is
taken for the profinite group topology of A*).

Commutative images of languages in A* are used for the abelian kernel case,
that is, the canonical homomorphism ~ : A* — 7Z" defined by

v(a;) = (0,...,0,1,0,...,0) (1 in position i), where a; is the i*" element of
A, is considered.

Proposition 4.2 (7, 98)

Let x € M. Then x € Kap(M) if and only if 0 € Clap(v(p~1(x))).

This proposition, similar to the former one of Pin, leads to an algorithm to
compute the abelian kernel of a finite monoid.

A generalization, to all pseudovarieties of abelian groups, was obtained by

Steinberg.
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A supernatural number is a formal product of the form
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where p runs over all positive prime numbers and 0 < n, < +o0.
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A supernatural number is a formal product of the form

15

where p runs over all positive prime numbers and 0 < n, < +o0.

To a supernatural number 7 one associates the pseudovariety H, generated
by the cyclic groups {Z/nZ | n divides 7}.

0 Hs+= is the pseudovariety of all 2-groups which are abelian;

o to the supernatural number [] p™>°, where p runs over all positive prime
numbers, is associated the pseudovariety Ab of all finite abelian groups.

M. Delgado Computing kernels of finite monoids Lincoln, 20/05/2009 9/20
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A supernatural number is a formal product of the form

15

where p runs over all positive prime numbers and 0 < n, < +o0.

Solvability
[e]o]e}

To a supernatural number 7 one associates the pseudovariety H, generated

by the cyclic groups {Z/nZ | n divides 7}.

0 Hs+= is the pseudovariety of all 2-groups which are abelian;

o to the supernatural number [] p™>°, where p runs over all positive prime
numbers, is associated the pseudovariety Ab of all finite abelian groups.

Proposition 4.3 (Steinberg, 99)

Let 7 be an infinite supernatural number and let x € M. Then x € Ky_(M) if

and only if 0 € Cly_(v(¢~1(x))).

M. Delgado Computing kernels of finite monoids Lincoln, 20/05/2009
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As a way to compute (a rational expression for) p~!(x) one can consider the
automaton (M, x) obtained from the right Cayley graph of M by taking the
neutral element as the initial state and x as final state. Note that the
language of ['(M, x) is precisely ¢ ~1(x).

o <& = E T 9Dace
N0 o st | el Qe 10 ] 2



Definitions Consequences Motivation On the algorithms Relative kernels of groups Solvability

(e}

(e]e] o]} 00e0000 [e]e]e} e]e]e}

As a way to compute (a rational expression for) ¢ ~!(x) one can consider the
automaton (M, x) obtained from the right Cayley graph of M by taking the
neutral element as the initial state and x as final state. Note that the
language of I'(M, x) is precisely ¢ ~1(x).

This motivated the appearance of the GAP package “automata”, a GAP
package to deal with finite state automata.

M. Delgado Computing kernels of finite monoids Lincoln, 20/05/2009 10 / 20
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As a way to compute (a rational expression for) ¢ ~!(x) one can consider the
automaton (M, x) obtained from the right Cayley graph of M by taking the
neutral element as the initial state and x as final state. Note that the
language of I'(M, x) is precisely ¢ ~1(x).

This motivated the appearance of the GAP package “automata”, a GAP
package to deal with finite state automata.

There exist implementations in GAP of the mentioned algorithms to compute
kernels of finite monoids relative to G, Ab, H; and G,.

M. Delgado Computing kernels of finite monoids Lincoln, 20/05/2009 10 / 20
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As a way to compute (a rational expression for) ¢ ~!(x) one can consider the
automaton (M, x) obtained from the right Cayley graph of M by taking the
neutral element as the initial state and x as final state. Note that the
language of I'(M, x) is precisely ¢ ~1(x).

This motivated the appearance of the GAP package “automata”, a GAP
package to deal with finite state automata.

There exist implementations in GAP of the mentioned algorithms to compute
kernels of finite monoids relative to G, Ab, H; and G,.

The first ones follow the above strategy, while the implemented algorithm to
compute kernels relative to G, is due to Steinberg. It has been achieved with
the collaboration of J. Morais and benefits also of the existence of the
package “automata”.

M. Delgado Computing kernels of finite monoids Lincoln, 20/05/2009 10 / 20
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As a way to compute (a rational expression for) ¢ ~!(x) one can consider the
automaton (M, x) obtained from the right Cayley graph of M by taking the
neutral element as the initial state and x as final state. Note that the
language of I'(M, x) is precisely ¢ ~1(x).

This motivated the appearance of the GAP package “automata”, a GAP
package to deal with finite state automata.

There exist implementations in GAP of the mentioned algorithms to compute
kernels of finite monoids relative to G, Ab, H; and G,.

The first ones follow the above strategy, while the implemented algorithm to
compute kernels relative to G, is due to Steinberg. It has been achieved with
the collaboration of J. Morais and benefits also of the existence of the
package “automata”.

The need to visualize the results motivated the GAP package “sgpviz”.
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system, including source, is distributed freely. You can study and easily modify or extend it for
your special use.

The current release is GAP 4.4.12. The pages of this web site describe this release if not stated [~
@03
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GAP package Automata
A package on automata
[WWW homepage]
Authors

Manuel Delgado, Steve Linton, Jose Morais

Short Description

The Automata package, as its name suggests, is package with algorithms to deal with automata.

Version

Current version number 1.12 (Released 14/11/2008)
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GAP package SgpViz

A package for semigroup visualization

[WWW homepage]

Authors

Manuel Delgado, Jose Morais

Short Description

The SgpViz package, is a package with some visualization functions for semigroups.
Version

Current version number 0.998 (Released 31/05/2008)
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Given a finite group G and a positive integer k, denote by Gl the subgroup
of G generated by the commutators of G and by the the elements of the form
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Given a finite group G and a positive integer k, denote by Gl the subgroup

of G generated by the commutators of G and by the the elements of the form
k

X

, x € G. In other words, let GI¥ be the smallest subgroup of G containing
the derived subgroup G’ and the k-powers.
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Given a finite group G and a positive integer k, denote by G¥l the subgroup
of G generated by the commutators of G and by the the elements of the form
xK, x € G. In other words, let GI¥l be the smallest subgroup of G containing
the derived subgroup G’ and the k-powers.

Jointly with Cordeiro and Fernandes for finite superatural numbers and with
Cordeiro for the general case, we obtained:
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Given a finite group G and a positive integer k, denote by G¥l the subgroup

of G generated by the commutators of G and by the the elements of the form
xK, x € G. In other words, let GI¥l be the smallest subgroup of G containing

the derived subgroup G’ and the k-powers.

Jointly with Cordeiro and Fernandes for finite superatural numbers and with
Cordeiro for the general case, we obtained:

Proposition 5.1

Let m be a supernatural number, G a finite group and le k = gcd(|G]|, ).
Then we have: Ky_(G) = GIA.
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Given a finite group G and a positive integer k, denote by G¥l the subgroup

of G generated by the commutators of G and by the the elements of the form
xK, x € G. In other words, let GI¥l be the smallest subgroup of G containing

the derived subgroup G’ and the k-powers.

Jointly with Cordeiro and Fernandes for finite superatural numbers and with
Cordeiro for the general case, we obtained:

Proposition 5.1

Let m be a supernatural number, G a finite group and le k = gcd(|G]|, ).
Then we have: Ky_(G) = GIA.
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Let G be a finite group. Denote by N5 the normal subgroup of G generated
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Let G be a finite group. Denote by N the normal subgroup of G generated
by {x € G: pfordx}.

Lemma 5.2

Let f : G — H be a homomorphism from G into a finite p-group H and let
x € G. If pfordx, then f(x) = 1.

Proof.

Let n = ord f(x). Since f is a homomorphism, we have that n | ord x, and
therefore p 1 n. But, as f(x) belongs to a p-group, p must divide n, unless
n=1. Thus ord f(x) = 1, which implies f(x) = 1. O
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Theorem 5.3
KG,,(G) = Np.

Proof.

Let x € G and suppose that p { ord x. Since to compute a relative kernel of a
group it suffices to consider homomorphisms, it follows from the above lemma
that x € Kg,(G). Therefore, K¢,(G) 2 Ns.

For the converse, it suffices to note that the quotient G/N5 is a p-group and
to use Proposition 2.1. Let x € G/N5. If p{ordx, then xN5 = Np. Suppose
that ord x = p®k, where « is the greatest power of p such that p® | ord x. By
observing that xP" e N5, we conclude that the order of x5 divides p®, thus
is a power of p. O
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We define recursively K[}(S) as follows:
o K%(S)=S;

o Ki(S) = Ku(Ki(S)), for n > 1.
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We define recursively K[}(S) as follows:
o K%(S)=S;
o Ki(S) = Ku(Ki(S)), for n > 1.

Since S is finite and the operator Ky is non-increasing, it follows that the
sequence KJ}(S) is eventually constant; we denote this constant value by

Ki(S)-
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We define recursively KJ}(S) as follows:
o K}(S)=S;
o KI(S) = Ku (K H(S)), for n > 1.

Since S is finite and the operator Ky is non-increasing, it follows that the
sequence KJ}(S) is eventually constant; we denote this constant value by

K& (S).

Observe that K{j(S) is the largest subsemigroup of S fixed by Kp.
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We define recursively KJ}(S) as follows:
o K}(S)=S;
o KI(S) = Ku (K H(S)), for n > 1.

Since S is finite and the operator Ky is non-increasing, it follows that the
sequence KJ}(S) is eventually constant; we denote this constant value by

K& (S).

Observe that K{j(S) is the largest subsemigroup of S fixed by Kp.

For a pseudovariety V and n > 0, we define the operator (—)" H recursively
as follows:
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We define recursively KJ}(S) as follows:
o K}(S)=S;
o KI(S) = Ku (K H(S)), for n > 1.

Since S is finite and the operator Ky is non-increasing, it follows that the
sequence KJ}(S) is eventually constant; we denote this constant value by

Ky (S).
Observe that K{j(S) is the largest subsemigroup of S fixed by Kp.

For a pseudovariety V and n > 0, we define the operator (—)" H recursively
as follows:

o V@ H=V;
o VHI@H = (V'@ H) @ H;
o VUmH = U,>oV "™ H.
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It is easy to see

Vi@ H = {S | KA(S) € V} and V “@H = {S | K&(S) € V}.
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It is easy to see

V'@ H = {S|KA(S) € V} and V“@H = {S | K&(S) € V}.

In a joint work with Fernandes (2005), a semigroup was defined to be
H-solvable if iterating the H-kernel operator eventually arrives at the
subsemigroup generated by the idempotents.
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It is easy to see
V@ H={S|K}(S) € V} and V“mH = {S | K{j(S) € V}.
In a joint work with Fernandes (2005), a semigroup was defined to be

H-solvable if iterating the H-kernel operator eventually arrives at the
subsemigroup generated by the idempotents.

A semigroup with commuting idempotents has been proved to be Ab-solvable
if and only if its subgroups are solvable groups.
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It is easy to see
V@ H={S|K}(S) € V} and V“mH = {S | K{j(S) € V}.
In a joint work with Fernandes (2005), a semigroup was defined to be

H-solvable if iterating the H-kernel operator eventually arrives at the
subsemigroup generated by the idempotents.

A semigroup with commuting idempotents has been proved to be Ab-solvable
if and only if its subgroups are solvable groups.

A much more general result has then been obtained in a joint work with
Fernandes, Margolis and Steinberg (2004).
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It is easy to see
V@ H={S|K}(S) € V} and V“mH = {S | K{j(S) € V}.

In a joint work with Fernandes (2005), a semigroup was defined to be
H-solvable if iterating the H-kernel operator eventually arrives at the
subsemigroup generated by the idempotents.

A semigroup with commuting idempotents has been proved to be Ab-solvable
if and only if its subgroups are solvable groups.

A much more general result has then been obtained in a joint work with
Fernandes, Margolis and Steinberg (2004). It states that:

for a non-trivial pseudovariety H of groups, a semigroup with an aperiodic

idempotent-generated subsemigroup is H-solvable if and only if it subgroups
are H-solvable.
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EA = A“®G

where we denote by EA the pseudovariety consisting of all monoids whose
idempotents generate an aperiodic submonoid
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We proved, in particular, that

EA = A“@G

where we denote by EA the pseudovariety consisting of all monoids whose
idempotents generate an aperiodic submonoid

By using a modification of the technique, it has been shown in a joint work
with Steinberg that:

a semigroup S is H-solvable if and only if, for each idempotent e € S, there is
a subnormal series with smallest element the maximal subgroup at e of the
idempotent-generated subsemigroup of S and largest element the maximal
subgroup of S at e such that the successive quotients belong to H.

M. Delgado Computing kernels of finite monoids Lincoln, 20/05/2009 20 / 20



	Definitions
	

	Consequences
	

	Motivation
	

	On the algorithms
	

	Relative kernels of groups
	

	Solvability
	


