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Definitions

Let S and T be monoids. A relational morphism of monoids τ : S−→◦ T is a
function from S into P(T ), the power set of T , such that:

for all s ∈ S , τ(s) 6= ∅;
for all s1, s2 ∈ S , τ(s1)τ(s2) ⊆ τ(s1s2);

1 ∈ τ(1).

A relational morphism τ : S−→◦ T is, in particular, a relation in S × T . Thus,
composition of relational morphisms is naturally defined.

Homomorphisms, seen as relations, and inverses of onto homomorphisms are
examples of relational morphisms.
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A pseudovariety H of groups (monoids) is a class of finite groups (monoids)
closed under formation of finite direct products, subgroups (submonoids) and
quotients.

Given a pseudovariety H of groups, the H-kernel of a finite monoid S is the
submonoid

KH(S) =
⋂
τ−1(1),

with the intersection being taken over all groups G ∈ H and all relational
morphisms of monoids τ : S−→◦ G .

Since a relational morphism into a group belonging to a certain pseudovariety
H1 of groups is also a relational morphism into a group belonging to a
pseudovariety H2 containing it, the following fact follows.

Fact 1.1

Let M be a finite monoid and let H1 and H2 be pseudovarieties of groups such
that H1 ⊆ H2. Then KH2 (M) ⊆ KH1 (M).
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Some other easy consequences

Proposition 2.1 (˜ , 98)

Let G be a group and H a pseudovariety of groups. Then KH(G ) is the
smallest normal subgroup of G such that G/KH(G ) ∈ H.

Corollary 2.2

Any relative abelian kernel of a finite group contains its derived subgroup.

As the restriction τ| of a relational morphism τ : S−→◦ G to a subsemigroup T
of S is a relational morphism τ| : T−→◦ G , we have the following:

Fact 2.3

If T is a subsemigroup of a finite semigroup S, then KH(T ) ⊆ KH(S).
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Let e be an idempotent of a finite semigroup S . As for every relational
morphism τ : S−→◦ G into a group G we have τ(e)τ(e) ⊆ τ(e), we get that
τ(e) is a subgroup of G .

It follows that e ∈ τ−1(1). If x , y ∈ τ−1(1), then 1 ∈ τ(x)τ(y) ⊆ τ(xy),
therefore xy ∈ τ−1(1), thus τ−1(1) is a subsemigroup of S containing the
idempotents. As the non-empty intersection of subsemigroups is a
subsemigroup, we have the following fact.

Fact 2.4

Let H be a pseudovariety of groups and let M be a finite monoid. The relative
kernel KH(M) is a submonoid of M containing the idempotents.

Fact 2.3 may be used to determine elements in the H-kernel of a monoid
without its complete determination.
Note that, for example, if we can determine a set X of generators of a monoid
M such that X ⊆ KH(M), then we can conclude by Fact 2.4 that the
M = 〈X 〉 ⊆ KH(M).
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Rhodes Type II conjecture proposed an algorithm to compute KG(S), where G
is the class of all finite groups and S is a given finite monoid.

Solutions were given by Ash and by Ribes and Zalesskĭı in the early nineties.

Pin showed that the problem of computing KG(S) can be reduced to that of
computing the closure (relative to the profinite topology) of a rational subset
of the free group. This approach led to the solution given by Ribes Ribes and
Zalesskĭı.

Algorithms to compute other relative kernels (e.g., kernels relative to
pseudovarieties of p-groups and pseudovarieties of abelian groups) followed
the idea of Pin.

A different algorithm has been given by Steinberg.
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Pin showed that the problem of computing KG(S) can be reduced to that of
computing the closure (relative to the profinite topology) of a rational subset
of the free group. This approach led to the solution given by Ribes Ribes and
Zalesskĭı.
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The Mal’cev product, when the rightmost factor is a pseudovariety of groups,
may be defined as follows: for a pseudovariety V of monoids and a
pseudovariety H of groups, the Mal’cev product of V and H is the
pseudovariety

V©m H = {S | KH(S) ∈ V}.

Algorithms to compute relative kernels may lead to decidability results.
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Let M be a finite n-generated monoid.

There exists a finite ordered set A of
cardinality n and a surjective homomorphism ϕ : A∗ → M from the free
monoid on A onto M.

Proposition 4.1 (Pin, 88)

Let x ∈ M. Then x ∈ KG(M) if and only if 1 ∈ ClG(ϕ−1(x)) (the closure is
taken for the profinite group topology of A∗).

Commutative images of languages in A∗ are used for the abelian kernel case,
that is, the canonical homomorphism γ : A∗ → Zn defined by
γ(ai ) = (0, . . . , 0, 1, 0, . . . , 0) (1 in position i), where ai is the i th element of
A, is considered.

Proposition 4.2 (˜ , 98)

Let x ∈ M. Then x ∈ KAb(M) if and only if 0 ∈ ClAb(γ(ϕ−1(x))).

This proposition, similar to the former one of Pin, leads to an algorithm to
compute the abelian kernel of a finite monoid.
A generalization, to all pseudovarieties of abelian groups, was obtained by
Steinberg.

M. Delgado Computing kernels of finite monoids Lincoln, 20/05/2009 8 / 20



Definitions Consequences Motivation On the algorithms Relative kernels of groups Solvability

Let M be a finite n-generated monoid. There exists a finite ordered set A of
cardinality n and a surjective homomorphism ϕ : A∗ → M from the free
monoid on A onto M.

Proposition 4.1 (Pin, 88)

Let x ∈ M. Then x ∈ KG(M) if and only if 1 ∈ ClG(ϕ−1(x)) (the closure is
taken for the profinite group topology of A∗).

Commutative images of languages in A∗ are used for the abelian kernel case,
that is, the canonical homomorphism γ : A∗ → Zn defined by
γ(ai ) = (0, . . . , 0, 1, 0, . . . , 0) (1 in position i), where ai is the i th element of
A, is considered.

Proposition 4.2 (˜ , 98)

Let x ∈ M. Then x ∈ KAb(M) if and only if 0 ∈ ClAb(γ(ϕ−1(x))).

This proposition, similar to the former one of Pin, leads to an algorithm to
compute the abelian kernel of a finite monoid.
A generalization, to all pseudovarieties of abelian groups, was obtained by
Steinberg.

M. Delgado Computing kernels of finite monoids Lincoln, 20/05/2009 8 / 20



Definitions Consequences Motivation On the algorithms Relative kernels of groups Solvability

Let M be a finite n-generated monoid. There exists a finite ordered set A of
cardinality n and a surjective homomorphism ϕ : A∗ → M from the free
monoid on A onto M.

Proposition 4.1 (Pin, 88)

Let x ∈ M. Then x ∈ KG(M) if and only if 1 ∈ ClG(ϕ−1(x)) (the closure is
taken for the profinite group topology of A∗).

Commutative images of languages in A∗ are used for the abelian kernel case,
that is, the canonical homomorphism γ : A∗ → Zn defined by
γ(ai ) = (0, . . . , 0, 1, 0, . . . , 0) (1 in position i), where ai is the i th element of
A, is considered.

Proposition 4.2 (˜ , 98)

Let x ∈ M. Then x ∈ KAb(M) if and only if 0 ∈ ClAb(γ(ϕ−1(x))).

This proposition, similar to the former one of Pin, leads to an algorithm to
compute the abelian kernel of a finite monoid.
A generalization, to all pseudovarieties of abelian groups, was obtained by
Steinberg.

M. Delgado Computing kernels of finite monoids Lincoln, 20/05/2009 8 / 20



Definitions Consequences Motivation On the algorithms Relative kernels of groups Solvability

Let M be a finite n-generated monoid. There exists a finite ordered set A of
cardinality n and a surjective homomorphism ϕ : A∗ → M from the free
monoid on A onto M.

Proposition 4.1 (Pin, 88)

Let x ∈ M. Then x ∈ KG(M) if and only if 1 ∈ ClG(ϕ−1(x)) (the closure is
taken for the profinite group topology of A∗).

Commutative images of languages in A∗ are used for the abelian kernel case,
that is, the canonical homomorphism γ : A∗ → Zn defined by
γ(ai ) = (0, . . . , 0, 1, 0, . . . , 0) (1 in position i), where ai is the i th element of
A, is considered.

Proposition 4.2 (˜ , 98)

Let x ∈ M. Then x ∈ KAb(M) if and only if 0 ∈ ClAb(γ(ϕ−1(x))).

This proposition, similar to the former one of Pin, leads to an algorithm to
compute the abelian kernel of a finite monoid.
A generalization, to all pseudovarieties of abelian groups, was obtained by
Steinberg.

M. Delgado Computing kernels of finite monoids Lincoln, 20/05/2009 8 / 20



Definitions Consequences Motivation On the algorithms Relative kernels of groups Solvability

Let M be a finite n-generated monoid. There exists a finite ordered set A of
cardinality n and a surjective homomorphism ϕ : A∗ → M from the free
monoid on A onto M.

Proposition 4.1 (Pin, 88)

Let x ∈ M. Then x ∈ KG(M) if and only if 1 ∈ ClG(ϕ−1(x)) (the closure is
taken for the profinite group topology of A∗).

Commutative images of languages in A∗ are used for the abelian kernel case,
that is, the canonical homomorphism γ : A∗ → Zn defined by
γ(ai ) = (0, . . . , 0, 1, 0, . . . , 0) (1 in position i), where ai is the i th element of
A, is considered.

Proposition 4.2 (˜ , 98)

Let x ∈ M. Then x ∈ KAb(M) if and only if 0 ∈ ClAb(γ(ϕ−1(x))).

This proposition, similar to the former one of Pin, leads to an algorithm to
compute the abelian kernel of a finite monoid.
A generalization, to all pseudovarieties of abelian groups, was obtained by
Steinberg.

M. Delgado Computing kernels of finite monoids Lincoln, 20/05/2009 8 / 20



Definitions Consequences Motivation On the algorithms Relative kernels of groups Solvability

Let M be a finite n-generated monoid. There exists a finite ordered set A of
cardinality n and a surjective homomorphism ϕ : A∗ → M from the free
monoid on A onto M.

Proposition 4.1 (Pin, 88)

Let x ∈ M. Then x ∈ KG(M) if and only if 1 ∈ ClG(ϕ−1(x)) (the closure is
taken for the profinite group topology of A∗).

Commutative images of languages in A∗ are used for the abelian kernel case,
that is, the canonical homomorphism γ : A∗ → Zn defined by
γ(ai ) = (0, . . . , 0, 1, 0, . . . , 0) (1 in position i), where ai is the i th element of
A, is considered.

Proposition 4.2 (˜ , 98)

Let x ∈ M. Then x ∈ KAb(M) if and only if 0 ∈ ClAb(γ(ϕ−1(x))).

This proposition, similar to the former one of Pin, leads to an algorithm to
compute the abelian kernel of a finite monoid.

A generalization, to all pseudovarieties of abelian groups, was obtained by
Steinberg.

M. Delgado Computing kernels of finite monoids Lincoln, 20/05/2009 8 / 20



Definitions Consequences Motivation On the algorithms Relative kernels of groups Solvability

Let M be a finite n-generated monoid. There exists a finite ordered set A of
cardinality n and a surjective homomorphism ϕ : A∗ → M from the free
monoid on A onto M.

Proposition 4.1 (Pin, 88)

Let x ∈ M. Then x ∈ KG(M) if and only if 1 ∈ ClG(ϕ−1(x)) (the closure is
taken for the profinite group topology of A∗).

Commutative images of languages in A∗ are used for the abelian kernel case,
that is, the canonical homomorphism γ : A∗ → Zn defined by
γ(ai ) = (0, . . . , 0, 1, 0, . . . , 0) (1 in position i), where ai is the i th element of
A, is considered.

Proposition 4.2 (˜ , 98)

Let x ∈ M. Then x ∈ KAb(M) if and only if 0 ∈ ClAb(γ(ϕ−1(x))).

This proposition, similar to the former one of Pin, leads to an algorithm to
compute the abelian kernel of a finite monoid.
A generalization, to all pseudovarieties of abelian groups, was obtained by
Steinberg.

M. Delgado Computing kernels of finite monoids Lincoln, 20/05/2009 8 / 20



Definitions Consequences Motivation On the algorithms Relative kernels of groups Solvability

A supernatural number is a formal product of the form∏
pnp

where p runs over all positive prime numbers and 0 ≤ np ≤ +∞.

To a supernatural number π one associates the pseudovariety Hπ generated
by the cyclic groups {Z/nZ | n divides π}.

H2+∞ is the pseudovariety of all 2-groups which are abelian;

to the supernatural number
∏

p+∞, where p runs over all positive prime
numbers, is associated the pseudovariety Ab of all finite abelian groups.

Proposition 4.3 (Steinberg, 99)

Let π be an infinite supernatural number and let x ∈ M. Then x ∈ KHπ (M) if
and only if 0 ∈ ClHπ (γ(ϕ−1(x))).
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As a way to compute (a rational expression for) ϕ−1(x) one can consider the
automaton Γ(M, x) obtained from the right Cayley graph of M by taking the
neutral element as the initial state and x as final state. Note that the
language of Γ(M, x) is precisely ϕ−1(x).

This motivated the appearance of the GAP package “automata”, a GAP
package to deal with finite state automata.

There exist implementations in GAP of the mentioned algorithms to compute
kernels of finite monoids relative to G, Ab, Hπ and Gp.

The first ones follow the above strategy, while the implemented algorithm to
compute kernels relative to Gp is due to Steinberg. It has been achieved with
the collaboration of J. Morais and benefits also of the existence of the
package “automata”.

The need to visualize the results motivated the GAP package “sgpviz”.
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Given a finite group G and a positive integer k , denote by G [k] the subgroup
of G generated by the commutators of G and by the the elements of the form
xk , x ∈ G .

In other words, let G [k] be the smallest subgroup of G containing
the derived subgroup G ′ and the k-powers.

Jointly with Cordeiro and Fernandes for finite superatural numbers and with
Cordeiro for the general case, we obtained:

Proposition 5.1

Let π be a supernatural number, G a finite group and le k = gcd(|G |, π).
Then we have: KHπ

(G ) = G [k].
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Let G be a finite group. Denote by Np the normal subgroup of G generated
by {x ∈ G : p - ord x}.

Lemma 5.2
Let f : G → H be a homomorphism from G into a finite p-group H and let
x ∈ G . If p - ord x, then f (x) = 1.

Proof.

Let n = ord f (x). Since f is a homomorphism, we have that n | ord x , and
therefore p - n. But, as f (x) belongs to a p-group, p must divide n, unless
n = 1. Thus ord f (x) = 1, which implies f (x) = 1.
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Theorem 5.3

KGp (G ) = Np.

Proof.

Let x ∈ G and suppose that p - ord x . Since to compute a relative kernel of a
group it suffices to consider homomorphisms, it follows from the above lemma
that x ∈ KGp (G ). Therefore, KGp (G ) ⊇ Np.
For the converse, it suffices to note that the quotient G/Np is a p-group and
to use Proposition 2.1. Let x ∈ G/Np. If p - ord x , then xNp = Np. Suppose
that ord x = pαk , where α is the greatest power of p such that pα | ord x . By
observing that xpα ∈ Np, we conclude that the order of xNp divides pα, thus
is a power of p.
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We define recursively Kn
H(S) as follows:

K0
H(S) = S ;

Kn
H(S) = KH(Kn−1

H (S)), for n ≥ 1.

Since S is finite and the operator KH is non-increasing, it follows that the
sequence Kn

H(S) is eventually constant; we denote this constant value by

KωH(S).

Observe that KωH(S) is the largest subsemigroup of S fixed by KH.

For a pseudovariety V and n ≥ 0, we define the operator (−)n©m H recursively
as follows:

V 0©m H = V;

V n+1©m H = (V n©m H)©m H;

V ω©mH = ∪n≥0V n©m H.
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It is easy to see

V n©m H = {S | Kn
H(S) ∈ V} and V ω©mH = {S | KωH(S) ∈ V}.

In a joint work with Fernandes (2005), a semigroup was defined to be
H-solvable if iterating the H-kernel operator eventually arrives at the
subsemigroup generated by the idempotents.

A semigroup with commuting idempotents has been proved to be Ab-solvable
if and only if its subgroups are solvable groups.

A much more general result has then been obtained in a joint work with
Fernandes, Margolis and Steinberg (2004). It states that:

for a non-trivial pseudovariety H of groups, a semigroup with an aperiodic
idempotent-generated subsemigroup is H-solvable if and only if it subgroups
are H-solvable.
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We proved, in particular, that

EA = A ω©mG

where we denote by EA the pseudovariety consisting of all monoids whose
idempotents generate an aperiodic submonoid

By using a modification of the technique, it has been shown in a joint work
with Steinberg that:

a semigroup S is H-solvable if and only if, for each idempotent e ∈ S , there is
a subnormal series with smallest element the maximal subgroup at e of the
idempotent-generated subsemigroup of S and largest element the maximal
subgroup of S at e such that the successive quotients belong to H.

M. Delgado Computing kernels of finite monoids Lincoln, 20/05/2009 20 / 20



Definitions Consequences Motivation On the algorithms Relative kernels of groups Solvability

We proved, in particular, that

EA = A ω©mG

where we denote by EA the pseudovariety consisting of all monoids whose
idempotents generate an aperiodic submonoid

By using a modification of the technique, it has been shown in a joint work
with Steinberg that:

a semigroup S is H-solvable if and only if, for each idempotent e ∈ S , there is
a subnormal series with smallest element the maximal subgroup at e of the
idempotent-generated subsemigroup of S and largest element the maximal
subgroup of S at e such that the successive quotients belong to H.

M. Delgado Computing kernels of finite monoids Lincoln, 20/05/2009 20 / 20


	Definitions
	

	Consequences
	

	Motivation
	

	On the algorithms
	

	Relative kernels of groups
	

	Solvability
	


