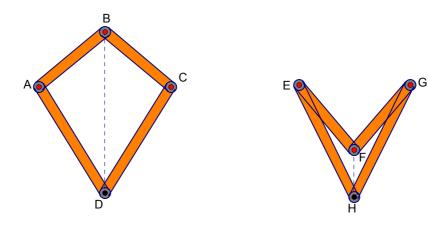
Fig. 8



Rombóide:

Objectivo:

Fazer uma articulação plana cuja representação é um rombóide, de tal forma que a intersecção das barras longas é um ponto fixo e a intersecção das curtas é móvel. A articulação plana traça uma linha recta.

Relatório da construção:

- Tem-se 2 segmentos de rectas ZT e ZH tal que ZT < ZH que representam os comprimentos das barras do rombóide;
- Considerando D ponto fixo. Faz-se uma $C_1 = C(D; ZH)$;
- Considerando $U \in C_1$. Faz-se $C_2 = C(U, ZT)$;
- Toma-se a intersecção de C_1 e C_2 , V, e Constrói-se $C_3 = C(V, ZT)$;
- Toma-se a outra intersecção de C_1 e C_3 , O;
- Faz-se o arco de circunferência *UVO* e toma-se um ponto pertencente a esse arco, *C*, e mais outro, *A*, tal que a distância entre este e *O* seja a mesma entre *C* e *U*;
- Faz-se C_{14} =C(A,ZT) e C_{15} =C(C,ZT) e toma-se a sua intersecção fora de C_1 , B;
- O rombóide pretendido é BCDA.

Prova:

• Sabemos que C_{14} intersecta a recta DVB em B e noutro ponto, W. Logo,

$$DW.DB=DA^2-AW^2$$
.

Mas, do lado direito da igualdade é constante, porque DA é o comprimento da barra longa do rombóide e AW=AB que é a barra curta. E, portanto, W vai descrever uma linha recta, e, como B está na mesma linha recta então também descreverá a linha recta:

• Para verificar que *BCDA* é um rombóide, basta ver que a distância de qualquer ponto pertencente a uma circunferência a seu centro é sempre a mesma e igual ao raio.

➤ Ponta de Lança:

Objectivo:

Fazer uma articulação plana cuja representação é uma ponta de lança, de tal forma que a intersecção das barras longas é um ponto fixo e a intersecção das curtas é móvel. Articulação plana traça uma linha recta.

Relatório da construção:

- Tem-se 2 segmentos de rectas ZT e ZD tal que ZT < ZD que representam os comprimentos das barras do ponta de lança;
- Considerando H ponto fixo. Faz-se uma $C_I = C(H; ZD)$;
- Considerando $B \in C_1$. Faz-se $C_2 = C(B, ZT)$;
- Toma-se a intersecção de C_1 e C_2 , V, e Constrói-se C_3 =C(V,ZT);
- Toma-se a outra intersecção de C_1 e C_3 , O;
- Faz-se o arco de circunferência *BVO* e toma-se um ponto pertencente a esse arco, *G*, e mais outro, *E*, tal que a distância entre este e *O* seja a mesma entre *G* e *B*;
- Faz-se C_{14} =C(E,ZT) e C_{15} =C(G,ZT) e toma-se a sua intersecção dentro de C_1 , F;
- O ponta de lança pretendida é FGHE.

Prova:

• Sabemos que C_{14} intersecta a recta HFW em F e num outro ponto, W. Logo,

$$HF.HW=HE^2-EF^2$$
.

Mas, do lado direito da igualdade é constante, porque são os comprimentos das barras longas do rombóide e do ponta de lança. E, portanto, F vai descrever uma linha recta;

• Para verificar que *FGHE* é um ponta de lança, basta ver que a distância de qualquer ponto pertencente a uma circunferência a seu centro é sempre a mesma e igual ao raio.

Feito por: Paula Mendes