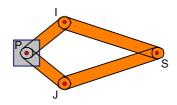

Objectivo:

Mecanismos articulados que originam um movimento rectilíneo através de duas barras que rodam com igual velocidade em direcções opostas.


Relatório:

- 1. Dados dois pontos fixos $P \in Q$, e um comprimento r.
- 2. Construir circunferências de centros **P** e **Q** e raio **r**: **c1** e **c2**.
- 3. Seja M o ponto médio de [PQ]. Construir perpendicular a [PQ] por M: p.
- 4. Seja s = PM..
- 5. Construir circunferência de centro P e raio 2r + s: c3.
- 6. Seja $p \ni c3 = N$.
- 7. Construir [MN] e considerar um ponto livre neste segmento: $\mathbf{0}$.
- 8. Traçar circunferência de centro $\mathbf{0}$ e raio $\mathbf{r} + \mathbf{s}$: $\mathbf{c4}$.
- 9. Considerem-se as intersecções $c4 \ni c1 = I$, $c4 \ni c2 = J$ de tal modo que IJ é máxima.
- 10. Construir segmentos [PI], [IO], [QJ] e [JO].
- 11. O movimento livre de *O* em [*MN*] origina o movimento do mecanismo pretendido.

Prova:

 ${\it O}$, ao mover-se em $[{\it MN}]$ e devido às barras $[{\it OI}]$ e $[{\it OJ}]$ serem rígidas e indeformáveis, "empurra" os pivots ${\it I}$ e ${\it J}$ movendo-os à mesma velocidade e em direcções opostas.

Ao movermos os pivots $I \in J$ o ponto O origina um segmento de recta pois, a cada momento IJ < PQ e como IO = OJ tem-se que O é ponto da mediatriz de [IJ], que coincide com a de [PQ]. Portanto, como a cada instante O pertence a uma recta o seu movimento é rectilíneo.

Relatório:

- i. Considere-se uma recta *t* e um ponto *P* nessa recta.
- ii. Sejam u e v comprimentos dados para as barras, pequenas e grandes respectivamente.
- iii. Traçar circunferência de centro P e raio u: c1.
- iv. Traçar circunferência de centro P e raio u + v: c2.
- v. Considerar uma das intersecções de t com c2 (toda a construção será desse lado): Q.
- vi. Traçar circunferência de centro P e raio v u: c3.
- vii. Seja $c3 \ni t = R$.
- viii. Construir segmento [RQ] e escolher um ponto livre aí: S.
 - ix. Construir circunferência de centro S e raio v: c4.
 - x. Sejam I e J as intersecções de c4 com c1.
- xi. Construir segmentos [PI], [PJ], [IS] e [JS].
- xii. Tem-se o movimento pretendido fazendo S mover-se em [RQ].

Prova:

Este mecanismo só difere do anterior no facto de as barras pequenas estarem fixas a um mesmo pivot e não a dois distintos. De modo análogo ao ponto \boldsymbol{O} anterior o ponto \boldsymbol{S} movimenta-se numa recta.