$\mathcal{V B}$-algebroids and representation theory of Lie algebroids

Alfonso Gracia-Saz
(joint with Rajan Mehta)

to appear in Advances in Mathematics

July 10, 2009

1.- Representations of Lie algebroids

$■$ Let $A \rightarrow M$ be a Lie algebroid (LA) with anchor $\rho_{A}: A \rightarrow T M$. Let $E \rightarrow M$ be a vector bundle (VB).

1.- Representations of Lie algebroids

$■$ Let $A \rightarrow M$ be a Lie algebroid (LA) with anchor $\rho_{A}: A \rightarrow T M$. Let $E \rightarrow M$ be a vector bundle (VB).

- Definitions:
- An A-connection on E is a smooth map ∇ such that:

$$
\begin{aligned}
& \nabla: \Gamma(A) \times \Gamma(E) \rightarrow \Gamma(E) \\
&(X \quad, \quad s) \quad \mapsto \nabla_{X} s
\end{aligned}
$$

■ $\nabla_{X} s$ is $\mathcal{C}^{\infty}(M)$-linear on X,
■ $\nabla_{X}(f s)=f \nabla_{X} s+\rho_{A}(X)(f) s$ for $f \in \mathcal{C}^{\infty}(M)$.

1.- Representations of Lie algebroids

$■$ Let $A \rightarrow M$ be a Lie algebroid (LA) with anchor $\rho_{A}: A \rightarrow T M$. Let $E \rightarrow M$ be a vector bundle (VB).

- Definitions:
- An A-connection on E is a smooth map ∇ such that:
$\nabla: \Gamma(A) \times \Gamma(E) \rightarrow \Gamma(E)$
$(X \quad, \quad s) \mapsto \nabla_{X} s$

■ $\nabla_{X} s$ is $\mathcal{C}^{\infty}(M)$-linear on X,
$\square \nabla_{X}(f s)=f \nabla_{X} s+\rho_{A}(X)(f) s$ for $f \in \mathcal{C}^{\infty}(M)$.

- The curvature of ∇ is the map $F \in \Lambda^{2} \Gamma\left(A^{\star}\right) \otimes \operatorname{End}(E)$ defined by

$$
F_{X, Y}=\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}-\nabla_{[X, Y]}
$$

- An A-representation on E, or a flat A-connection on E, is a connection with zero curvature.

1.- Representations of Lie algebroids

$■$ Let $A \rightarrow M$ be a Lie algebroid (LA) with anchor $\rho_{A}: A \rightarrow T M$. Let $E \rightarrow M$ be a vector bundle (VB).

- Definitions:
- An A-connection on E is a smooth map ∇ such that:
$\nabla: \Gamma(A) \times \Gamma(E) \rightarrow \Gamma(E)$
$(X \quad, \quad s) \mapsto \nabla_{X} s$

■ $\nabla_{X} s$ is $\mathcal{C}^{\infty}(M)$-linear on X,
$\square \nabla_{X}(f s)=f \nabla_{X} s+\rho_{A}(X)(f) s$ for $f \in \mathcal{C}^{\infty}(M)$.

- The curvature of ∇ is the map $F \in \Lambda^{2} \Gamma\left(A^{\star}\right) \otimes \operatorname{End}(E)$ defined by

$$
F_{X, Y}=\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}-\nabla_{[X, Y]}
$$

- An A-representation on E, or a flat A-connection on E, is a connection with zero curvature.

■ Problem: There is no adjoint representation.

Algebroid cohomology

■ Let $A \rightarrow M$ be a LA. Define A-forms: $\Omega^{p}(A)=\Lambda^{p} \Gamma\left(A^{\star}\right)$.

- Define $d_{A}: \Omega^{p}(A) \rightarrow \Omega^{p+1}(A)$ by

$$
\begin{array}{rr}
d_{A} \omega\left(X_{0}, \ldots, X_{p}\right)=\sum_{i}(-1)^{i} \rho_{A}\left(X_{i}\right) \cdot \omega\left(\ldots, \widehat{X}_{i}, \ldots\right) \quad \text { for } X_{i} \in \Gamma(A) \\
+\sum_{i<j}(-1)^{i+j} \omega\left(\left[X_{i}, X_{j}\right], X_{0}, \ldots, \widehat{X}_{i}, \ldots, \widehat{X}_{j}, \ldots\right) \quad \omega \in \Omega^{p}(A)
\end{array}
$$

- When $A=T M$, this is de Rham cohomology,

Algebroid cohomology

■ Let $A \rightarrow M$ be a LA. Define A-forms: $\Omega^{p}(A)=\Lambda^{p} \Gamma\left(A^{\star}\right)$.

- Define $d_{A}: \Omega^{p}(A) \rightarrow \Omega^{p+1}(A)$ by

$$
\begin{array}{rr}
d_{A} \omega\left(X_{0}, \ldots, X_{p}\right)=\sum_{i}(-1)^{i} \rho_{A}\left(X_{i}\right) \cdot \omega\left(\ldots, \widehat{X}_{i}, \ldots\right) \quad \text { for } X_{i} \in \Gamma(A) \\
+\sum_{i<j}(-1)^{i+j} \omega\left(\left[X_{i}, X_{j}\right], X_{0}, \ldots, \widehat{X}_{i}, \ldots, \widehat{X}_{j}, \ldots\right) \quad \omega \in \Omega^{p}(A)
\end{array}
$$

- When $A=T M$, this is de Rham cohomology,
- It satisfies $d_{A}^{2}=0$,
- and a Leibnitz rule; for $\omega_{1}, \omega_{2} \in \Omega(A)$,

$$
\begin{equation*}
d_{A}\left(\omega_{1} \wedge \omega_{2}\right)=d_{A} \omega_{1} \wedge \omega_{2}+(-1)^{\left|\omega_{1}\right|} \omega_{1} \wedge d_{A} \omega_{2} \tag{1}
\end{equation*}
$$

Algebroid cohomology

■ Let $A \rightarrow M$ be a LA. Define A-forms: $\Omega^{p}(A)=\Lambda^{p} \Gamma\left(A^{\star}\right)$.

- Define $d_{A}: \Omega^{p}(A) \rightarrow \Omega^{p+1}(A)$ by

$$
\begin{array}{rr}
d_{A} \omega\left(X_{0}, \ldots, X_{p}\right)=\sum_{i}(-1)^{i} \rho_{A}\left(X_{i}\right) \cdot \omega\left(\ldots, \widehat{X}_{i}, \ldots\right) \quad \text { for } X_{i} \in \Gamma(A) \\
+\sum_{i<j}(-1)^{i+j} \omega\left(\left[X_{i}, X_{j}\right], X_{0}, \ldots, \widehat{X}_{i}, \ldots, \widehat{X}_{j}, \ldots\right) \quad \omega \in \Omega^{p}(A) \tag{p}
\end{array}
$$

- When $A=T M$, this is de Rham cohomology,
- It satisfies $d_{A}^{2}=0$,
- and a Leibnitz rule; for $\omega_{1}, \omega_{2} \in \Omega(A)$,

$$
\begin{equation*}
d_{A}\left(\omega_{1} \wedge \omega_{2}\right)=d_{A} \omega_{1} \wedge \omega_{2}+(-1)^{\left|\omega_{1}\right|} \omega_{1} \wedge d_{A} \omega_{2} . \tag{1}
\end{equation*}
$$

■ Thm: Let $A \rightarrow M$ be a VB.
There is a one-to-one correspondence between:

- Lie algebroid structures on $A \rightarrow M$, and
- degree 1 operators d on $\Omega^{\bullet}(A)$ satisfying (1) and such that $d^{2}=0$.

Algebroid cohomology, with values in a vector bundle

■ Let $A \rightarrow M$ be a LA. Let $E \rightarrow M$ be a VB. Define E-valued A-forms: $\quad \Omega^{p}(A ; E):=\Omega^{p}(A) \otimes_{\mathcal{C}^{\infty}(M)} \Gamma(E)$.

- Let ∇ be an A-connection on E.

Consider it as a map

$$
\nabla: \Omega^{0}(A ; E) \rightarrow \Omega^{1}(A ; E)
$$

Algebroid cohomology, with values in a vector bundle

■ Let $A \rightarrow M$ be a LA. Let $E \rightarrow M$ be a VB. Define E-valued A-forms: $\quad \Omega^{p}(A ; E):=\Omega^{p}(A) \otimes_{\mathcal{C}^{\infty}(M)} \Gamma(E)$.

- Let ∇ be an A-connection on E.

Consider it as a map

$$
\nabla: \Omega^{0}(A ; E) \rightarrow \Omega^{1}(A ; E)
$$

It can be extended to

$$
D: \Omega^{p}(A ; E) \rightarrow \Omega^{p+1}(A ; E) .
$$ satisfying a Leibnitz rule; for $\alpha \in \Omega(A), \omega \in \Omega(A ; E)$:

$$
\begin{equation*}
D(\alpha \wedge \omega)=\left(d_{A} \alpha\right) \wedge \omega+(-1)^{|\alpha|} \alpha \wedge(D \omega) . \tag{2}
\end{equation*}
$$

Algebroid cohomology, with values in a vector bundle

■ Let $A \rightarrow M$ be a LA. Let $E \rightarrow M$ be a VB. Define E-valued A-forms: $\quad \Omega^{p}(A ; E):=\Omega^{p}(A) \otimes_{\mathcal{C}^{\infty}(M)} \Gamma(E)$.

- Let ∇ be an A-connection on E.

Consider it as a map
It can be extended to

$$
\nabla: \Omega^{0}(A ; E) \rightarrow \Omega^{1}(A ; E)
$$ satisfying a Leibnitz rule; for $\alpha \in \Omega(A), \omega \in \Omega(A ; E)$:

$$
\begin{equation*}
D(\alpha \wedge \omega)=\left(d_{A} \alpha\right) \wedge \omega+(-1)^{|\alpha|} \alpha \wedge(D \omega) \tag{2}
\end{equation*}
$$

■ Thm: There is a one-to-one correspondence between:

- A-connections ∇ on E, and
- degree 1 operators D on $\Omega^{\bullet}(A ; E)$ satisfying (2).

Moreover, ∇ is flat iff $D^{2}=0$.

2.- Superrepresentations of Lie algebroids

$■$ Def: Let $A \rightarrow M$ be a LA.
Let $E \rightarrow M$ be a VB.
An A-representation on E is a degree 1 operator D on $\Omega^{\bullet}(A ; E)$ satisfying (2) and such that $D^{2}=0$.

$$
\Omega^{n}(A ; E)=\Omega^{n}(A) \otimes \Gamma(E)
$$

2.- Superrepresentations of Lie algebroids

$■$ Def: Let $A \rightarrow M$ be a LA.
Let $\mathcal{E} \rightarrow M$ be a \mathbb{Z}-graded VB: $\mathcal{E}=\bigoplus_{n \in \mathbb{Z}} E^{n}$.
An A-superrepresentation on \mathcal{E} is a degree 1 operator D on $\Omega^{\bullet}(A ; \mathcal{E})$ satisfying (2) and such that $D^{2}=0$.

$$
\Omega^{n}(A ; \mathcal{E})=\bigoplus_{p+q=n} \Omega^{p}(A) \otimes \Gamma\left(E^{q}\right)
$$

2.- Superrepresentations of Lie algebroids

$■$ Def: Let $A \rightarrow M$ be a LA.
Let $\mathcal{E} \rightarrow M$ be a \mathbb{Z}-graded VB: $\mathcal{E}=\bigoplus_{n \in \mathbb{Z}} E^{n}$.
An A-superrepresentation on \mathcal{E} is a degree 1 operator D on $\Omega^{\bullet}(A ; \mathcal{E})$ satisfying (2) and such that $D^{2}=0$.

$$
\Omega^{n}(A ; \mathcal{E})=\bigoplus_{p+q=n} \Omega^{p}(A) \otimes \Gamma\left(E^{q}\right)
$$

■ Notes:

- When $\mathcal{E}=E^{0}$, we recover representations.
- When $A=T M$, these are Quillen's flat superconnections.
- Superrepresentations are called representations up to homotopy by Arias Abad and Crainic.

Example: case $\mathcal{E}=E^{0} \oplus E^{1}$

A degree 1 operator on $\Omega(A ; \mathcal{E})$ has four homogeneous components:

$$
D=D^{0}+D^{1}+\partial+\Omega
$$

- $D^{0}: \Omega^{p}\left(A, E^{0}\right) \rightarrow \Omega^{p+1}\left(A, E^{0}\right)$
- $\partial: \Omega^{p}\left(A, E^{0}\right) \rightarrow \Omega^{p}\left(A, E^{1}\right)$
- $D^{1}: \Omega^{p}\left(A, E^{1}\right) \rightarrow \Omega^{p+1}\left(A, E^{1}\right)$
- $\Omega: \Omega^{p}\left(A, E^{1}\right) \rightarrow \Omega^{p+2}\left(A, E^{0}\right)$

Example: case $\mathcal{E}=E^{0} \oplus E^{1}$

A degree 1 operator on $\Omega(A ; \mathcal{E})$ has four homogeneous components:

$$
D=D^{0}+D^{1}+\partial+\Omega
$$

- $D^{0}: \Omega^{p}\left(A, E^{0}\right) \rightarrow \Omega^{p+1}\left(A, E^{0}\right)$

■ $\partial: \Omega^{p}\left(A, E^{0}\right) \rightarrow \Omega^{p}\left(A, E^{1}\right)$

- $D^{1}: \Omega^{p}\left(A, E^{1}\right) \rightarrow \Omega^{p+1}\left(A, E^{1}\right)$

■ $\Omega: \Omega^{p}\left(A, E^{1}\right) \rightarrow \Omega^{p+2}\left(A, E^{0}\right)$

Thm: An A-superrepresentation on $E^{0} \oplus E^{1}$ is equivalent to:
■ A-connections ∇^{i} on E^{i}, for $i=0,1$,
■ a morphism of VBs $\partial: E^{0} \rightarrow E^{1}$,
■ a $\mathcal{C}^{\infty}(M)$-linear operator $\Omega \in \Lambda^{2} \Gamma\left(A^{\star}\right) \otimes \operatorname{Hom}\left(E^{1}, E^{0}\right)$ satisfying, for $X, Y \in \Gamma(A)$, and with F^{i} the curvature of ∇^{i} :

$$
\begin{array}{ll}
\partial \circ \nabla_{X}^{0}=\nabla_{X}^{1} \circ \partial & F_{X, Y}^{0}=\Omega_{X, Y} \circ \partial \\
D^{0} \Omega+\Omega D^{1}=0 & F_{X, Y}^{1}=\partial \circ \Omega_{X, Y}
\end{array}
$$

The adjoint superrepresentation
 Let $A \rightarrow M$ be a LA.
 Choose a $T M$-connection on A

$$
\tilde{\nabla}: \Gamma(T M) \times \Gamma(A) \rightarrow \Gamma(A)
$$

Then we can define an A-superrepresentation on $\mathcal{E}=A[0] \oplus T M[1]$:

The adjoint superrepresentation

Let $A \rightarrow M$ be a LA.
Choose a TM-connection on A

$$
\tilde{\nabla}: \Gamma(T M) \times \Gamma(A) \rightarrow \Gamma(A)
$$

Then we can define an A-superrepresentation on $\mathcal{E}=A[0] \oplus T M[1]$:

- $\nabla^{0}: \Gamma(A) \times \Gamma(A) \rightarrow \Gamma(A)$

$$
\begin{aligned}
& \nabla_{X}^{0} Y:=[X, Y]_{A}+\tilde{\nabla}_{\rho_{A}(Y)} X \\
& \nabla_{X}^{1} \phi:=\left[\rho_{A}(X), \phi\right]_{T M}+\rho_{A}\left(\tilde{\nabla}_{\phi} X\right) \\
& \partial=-\rho_{A}
\end{aligned}
$$

- $\nabla^{1}: \Gamma(A) \times \Gamma(T M) \rightarrow \Gamma(T M)$

■ $\partial: A \rightarrow T M$

- $\Omega: \Lambda^{2} \Gamma(A) \times \Gamma(T M) \rightarrow \Gamma(A)$

$$
\begin{gathered}
\Omega_{X, Y} \phi=\left[\tilde{\nabla}_{\phi} X, Y\right]_{A}-\left[X, \tilde{\nabla}_{\phi} Y\right]_{A}-\tilde{\nabla}_{\phi}[X, Y]_{A}-\tilde{\nabla}_{\nabla_{X}^{1} \phi} Y+\tilde{\nabla}_{\nabla_{Y}^{1} \phi} X \\
\text { for } X, Y \in \Gamma(A), \quad \phi \in \Gamma(T M) .
\end{gathered}
$$

The adjoint superrepresentation

Let $A \rightarrow M$ be a LA.
Choose a TM-connection on A

$$
\tilde{\nabla}: \Gamma(T M) \times \Gamma(A) \rightarrow \Gamma(A)
$$

Then we can define an A-superrepresentation on $\mathcal{E}=A[0] \oplus T M[1]$:

- $\nabla^{0}: \Gamma(A) \times \Gamma(A) \rightarrow \Gamma(A)$

$$
\begin{aligned}
& \nabla_{X}^{0} Y:=[X, Y]_{A}+\tilde{\nabla}_{\rho_{A}(Y)} X \\
& \nabla_{X}^{1} \phi:=\left[\rho_{A}(X), \phi\right]_{T M}+\rho_{A}\left(\tilde{\nabla}_{\phi} X\right) \\
& \partial=-\rho_{A}
\end{aligned}
$$

- $\nabla^{1}: \Gamma(A) \times \Gamma(T M) \rightarrow \Gamma(T M)$

■ $\partial: A \rightarrow T M$

- $\Omega: \Lambda^{2} \Gamma(A) \times \Gamma(T M) \rightarrow \Gamma(A)$

$$
\begin{gathered}
\Omega_{X, Y} \phi=\left[\tilde{\nabla}_{\phi} X, Y\right]_{A}-\left[X, \tilde{\nabla}_{\phi} Y\right]_{A}-\tilde{\nabla}_{\phi}[X, Y]_{A}-\tilde{\nabla}_{\nabla_{X}^{1} \phi} Y+\tilde{\nabla}_{\nabla_{Y}^{1} \phi} X \\
\text { for } X, Y \in \Gamma(A), \quad \phi \in \Gamma(T M) .
\end{gathered}
$$

Problem: It depends on the choice of $\tilde{\nabla}$.

3.- Double vector bundles

■ Def 1: A double vector bundle (DVB) is a "vector bundle-object" in the category of vector bundles.

3.- Double vector bundles

■ Def 1: A double vector bundle (DVB) is a "vector bundle-object" in the category of vector bundles.

■ Def 2: A DVB is a commutative diagram like this one, where every edge is a vector bundle, together with compatibility conditions.

3.- Double vector bundles

■ Def 1: A double vector bundle (DVB) is a "vector bundle-object" in the category of vector bundles.

- Def 2: A DVB is a commutative diagram like this one, where every edge is a vector bundle, together with compatibility conditions.

■ Examples: Let $A, E, C \rightarrow M$ be VBs. Then the following are DVBs:

Decompositions of double vector bundles

■ Lemma/Def: Let D be a DVB.

- Define $C:=\operatorname{ker} q_{A}^{D} \cap \operatorname{ker} q_{E}^{D}$.
- $C \rightarrow M$ is naturally a VB , called the core.

Decompositions of double vector bundles

■ Lemma/Def: Let D be a DVB.
■ Define $C:=\operatorname{ker} q_{A}^{D} \cap \operatorname{ker} q_{E}^{D}$.

- $C \rightarrow M$ is naturally a VB , called the core.
- A decomposition of D is an isomorphism of DVBs

$$
D \xrightarrow{\cong} A \times E \times C .
$$

Decompositions of double vector bundles

■ Lemma/Def: Let D be a DVB.
■ Define $C:=\operatorname{ker} q_{A}^{D} \cap \operatorname{ker} q_{E}^{D}$.

- $C \rightarrow M$ is naturally a VB , called the core.
- A decomposition of D is an isomorphism of DVBs

$$
D \xrightarrow{\cong} A \times E \times C .
$$

■ Lemma: Every DVB has a decomposition, but not a canonical one.

Decompositions of double vector bundles

■ Lemma/Def: Let D be a DVB.
■ Define $C:=\operatorname{ker} q_{A}^{D} \cap \operatorname{ker} q_{E}^{D}$.

- $C \rightarrow M$ is naturally a VB , called the core.
- A decomposition of D is an isomorphism of DVBs

$$
D \xrightarrow{\cong} A \times E \times C .
$$

■ Lemma: Every DVB has a decomposition, but not a canonical one.
■ Example: Consider the DVB $T A$, for any VB $A \xrightarrow{q} M$:
There is a one-to-one correspondence between:

- decompositions of $T A$, and
- $T M$-connections on A.

4.- $\mathcal{V B}$-algebroids

■ Def 1: A $\mathcal{V B}$-algebroid is a "vector-bundle-object" in the category of Lie algebroids.

4.- $\mathcal{V B}$-algebroids

■ Def 1: A $\mathcal{V B}$-algebroid is a "vector-bundle-object" in the category of Lie algebroids.
■ Def 2: A $\mathcal{V B}$-algebroid is a commutative diagram like this one, where:

- vertical arrows are VBs,
- horizontal arrows are LAs,
- plus compatibility conditions.

4.- $\mathcal{V B}$-algebroids

■ Def 1: A $\mathcal{V B}$-algebroid is a "vector-bundle-object" in the category of Lie algebroids.
■ Def 2: A $\mathcal{V B}$-algebroid is a commutative diagram like this one, where:

- vertical arrows are VBs,
- horizontal arrows are LAs,
- plus compatibility conditions.

■ Examples: Let $E \rightarrow M$ be a VB, and $A \rightarrow M$ be a LA. Then the following are $\mathcal{V B}$-algebroids:

4.- $\mathcal{V B}$-algebroids

■ Def 1: A $\mathcal{V B}$-algebroid is a "vector-bundle-object" in the category of Lie algebroids.
■ Def 2: A $\mathcal{V B}$-algebroid is a commutative diagram like this one, where:

- vertical arrows are VBs,
- horizontal arrows are LAs,
- plus compatibility conditions.

■ Examples: Let $E \rightarrow M$ be a VB, and $A \rightarrow M$ be a LA. Then the following are $\mathcal{V B}$-algebroids:

4.- $\mathcal{V B}$-algebroids

■ Def 1: A $\mathcal{V B}$-algebroid is a "vector-bundle-object" in the category of Lie algebroids.
■ Def 2: A $\mathcal{V B}$-algebroid is a commutative diagram like this one, where:

- vertical arrows are VBs,
- horizontal arrows are LAs,
- plus compatibility conditions.

■ Examples: Let $E \rightarrow M$ be a VB, and $A \rightarrow M$ be a LA. Then the following are $\mathcal{V B}$-algebroids:

Main results

■ Thm: [GS, MEHTA]
Let $A \rightarrow M$ be a LA. Let $E, C \rightarrow M$ be VBs.
There is a one-to-one correspondence between:
■ $\mathcal{V B}$-algebroid structures on the DVB $A \times E \times C$, and

- A-superrepresentations on $C[0] \oplus E[1]$.

Main results

■ Thm: [GS, MEHTA]
Let $A \rightarrow M$ be a LA. Let $E, C \rightarrow M$ be VBs.
There is a one-to-one correspondence between:
■ $\mathcal{V B}$-algebroid structures on the DVB $A \times E \times C$, and

- A-superrepresentations on $C[0] \oplus E[1]$.

■ Cor: [GS, MEHTA]

- Defining a $\mathcal{V B}$-algebroid structure on the DVB D is, \ldots

Main results

■ Thm: [GS, MEHTA]
Let $A \rightarrow M$ be a LA. Let $E, C \rightarrow M$ be VBs.
There is a one-to-one correspondence between:
■ $\mathcal{V B}$-algebroid structures on the DVB $A \times E \times C$, and

- A-superrepresentations on $C[0] \oplus E[1]$.

■ Cor: [GS, MEHTA]

- Defining a $\mathcal{V B}$-algebroid structure on the DVB D is, \ldots

■ ... after choosing a decomposition of D, \ldots
$D \xrightarrow{\cong} A \times E \times C$

Main results

■ Thm: [GS, MEHTA]
Let $A \rightarrow M$ be a LA. Let $E, C \rightarrow M$ be VBs.
There is a one-to-one correspondence between:

- $\mathcal{V B}$-algebroid structures on the DVB $A \times E \times C$, and
- A-superrepresentations on $C[0] \oplus E[1]$.

■ Cor: [GS, MEHTA]

- Defining a $\mathcal{V B}$-algebroid structure on the DVB D is, \ldots

- ... after choosing a decomposition of D, \ldots

$$
D \xrightarrow{\cong} A \times E \times C
$$

- ... equivalent to defining an A-superrepresentation on $C[0] \oplus E[1]$.

Conclusions

- Analogy:

$\mathcal{V B}$-algebroid choice of decomposition superrepresentation

$\longleftrightarrow \quad$ linear map
\longleftrightarrow choice of basis matrix

Conclusions

■ Analogy:

$\mathcal{V B}$-algebroid	\longleftrightarrow	linear map choice of decomposition choice of basis
superrepresentation	\longleftrightarrow	\longleftrightarrow
matrix		

- Conclusion: $\mathcal{V B}$-algebroids are the intrinsic objects that correspond to superrepresentations of Lie algebroids on two consecutive degrees.

Conclusions

- Analogy:

$\mathcal{V B}$-algebroid		
choice of decomposition superrepresentation	\longleftrightarrow	linear map choice of basis
matrix		

■ Conclusion: $\mathcal{V B}$-algebroids are the intrinsic objects that correspond to superrepresentations of Lie algebroids on two consecutive degrees.

■ The adjoint superrepresentation.
The adjoint superrepresentation of the LA
$A \rightarrow M$ corresponds to the $\mathcal{V} \mathcal{B}$-algebroid $T A$

After choosing a decomposition of $T A$ (or, equivalently, a $T M$-connection on A)
it is described by an A-superrepresentation on $A[0] \oplus T M[1]$.

Thanks.

