Publications

2017
Duarte R. Between Shi and Ish. Discrete Mathematics. 2017;341 (2018):388-399.
2015
Duarte R., A. de Oliveira G. The braid and the Shi arrangements and the Pak–Stanley labelling. European Journal of Combinatorics. 2015;50:72-86.
2014
Duarte R, de Oliveira AG. A Famous Identity of Hajós in Terms of Sets. J. Integer Seq.. 2014;17:Article 14.9.1, 10.
2013
Duarte R, de Oliveira AG. Note on the convolution of binomial coefficients. J. Integer Seq.. 2013;16:Article 13.7.6, 9.
Guedes de Oliveira A. Graphs of polyhedra and the Theorem of Steinitz 2013.
Azenhas O, Guedes de Oliveira A. Interview with Francesco Brenti, Christian Krattenthaler and Vic Reiner 2013.
2010
de Oliveira AG, Vergnas ML. Parking functions and labeled trees. Sém. Lothar. Combin.. 2010;65:Art. B65e, 10.
2009
Brunat JM, de Oliveira AG, Noy M. Partitions of a finite Boolean lattice into intervals. European J. Combin.. 2009;30:1801-1809.
2007
de Oliveira AG. On the adjugate of a matrix. Amer. Math. Monthly. 2007;114:923-924.
2005
de Oliveira AG, Silva DO. Note on the integer geometry of bitwise XOR. European J. Combin.. 2005;26:755-763.
2004
Carvalho P, de Oliveira AG. Intersection and linking numbers in oriented matroids. Discrete Comput. Geom.. 2004;31:305-321.
2000
Cordovil R, Fukuda K., A. de Oliveira G. On the cocircuit graph of an oriented matroid. Discrete Comput. Geom.. 2000;24:257-265.
Bokowski J, A. de Oliveira G. On the generation of oriented matroids. Discrete Comput. Geom.. 2000;24:197-208.
1998
de Oliveira AG. An interpretation of the monodromy group of a wiring diagram. In: Proceedings of the 1st International Meeting on Geometry and Topology (Braga, 1997). Cent. Mat. Univ. Minho, Braga; 1998. 1. p. 111-117p. (electronic).
1996
Cordovil R, de Oliveira AG, Vergnas ML. A generalized Desargues configuration and the pure braid group. Discrete Math.. 1996;160:105-113.
Bokowski J, de Oliviera AG, Thiemann U, Costa AV. On the cube problem of Las Vergnas. Geom. Dedicata. 1996;63:25-43.
1995
de Oliveira AG. On the Steinitz exchange lemma. Discrete Math.. 1995;137:367-370.
1994
Bokowski J, de Oliveira AG. Invariant theory-like theorems for matroids and oriented matroids. Adv. Math.. 1994;109:34-44.
1993
de Oliveira AG. Oriented matroids: an essentially topological algebraic model Univ. Coimbra, Coimbra 1993.
1992
Cordovil R, de Oliveira AG. A note on the fundamental group of the Salvetti complex determined by an oriented matroid. European J. Combin.. 1992;13:429-437.
1991
Bokowski J, de Oliveira AG, Richter-Gebert J. Algebraic varieties characterizing matroids and oriented matroids. Adv. Math.. 1991;87:160-185.
1990
Bokowski J, de Oliveira AG. Simplicial convex $4$-polytopes do not have the isotopy property. Portugal. Math.. 1990;47:309-318.
1988
Cordovil R, A. de Oliveira G, M. Moreira L. Parallel projection of matroid spheres. Portugal. Math.. 1988;45:337-346.