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Introduction

Differential Graded Algebra

DGA over A

o Q(A) := D, 2"(A) such that QO(A) = A,

o d: QK(A) — QK1(A) linear map of degree one, which
satisfies

(i) d*> =0,
(i) d(wv) = d(w)v + (-1)kwd(v), Yw € QK(A), v € Q(A).

FODC
The pair (Q(A), d) is referred to as a first order differential
calculus on A.
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Introduction

Non-commutative Connection

Connection

Given an FODC (Q(A), d) over A and a right A-module M, a
linear map VO : M — M ®4 Q1(A) satisfying

VO(ma) = VO(m)a+ m®,4 d(a)

is called a connection in M.
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Introduction

Non-commutative Hom-connection

Hom-connection(T.Brzezinski)

A right hom-connection w.r.t. a dga (Q2(A), d) over A, is a pair
(M, Vo), where M is a right A-module and

Vo : Homa(Q'(A), M) = M
is a linear mapping s.t.

Vo(fa) = Vo(f)a+ f(d(a))  Vae A, f e Homa(Q(A), M)
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Introduction

Non-commutative Hom-connection

Hom-connection

Any hom-connection (M, V) can be extended to maps
Vm : Homa(QmTL(A), M) — Homa(Q2™(A), M) by
Vin(f)(w) = Vo(fw) + (~1)™f(dw),

Vf € Homa(Qm1(A), M) , w € Qm(A).

The vector space D,,5q Homa(2"(A), M) is a right Q(A)-module
by the action

fw(v) = f(wr)
where w € QM(A), f € Homa(QmT"(A), M), v € Q"(A).
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Non-commutative Hom-connection

Curvature

@ The right A-module homomorphism F := Vg o V7 is called
the curvature of the hom-connection (M, Vg)
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Introduction

Non-commutative Hom-connection

Curvature

@ The right A-module homomorphism F := Vg o V7 is called
the curvature of the hom-connection (M, V)

@ (M, V) is said to be flat provided that F = 0. We can
associate a chain complex (€D~ Homa(Q27(A), M), V) to a
flat hom-connection (M, Vo).
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Introduction

Non-commutative Hom-connection

Curvature

@ The right A-module homomorphism F := Vg o V7 is called
the curvature of the hom-connection (M, V)

@ (M, V) is said to be flat provided that F = 0. We can
associate a chain complex (€D~ Homa(Q27(A), M), V) to a
flat hom-connection (M, Vo).

o We set M = A and Q}, = Homa(Q2™(A), A) to get the
following complex of integral forms on A

V3 Vi Vo

Q2 Q3 Q s A
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Twisted Multi-Derivations and
Hom-Connections
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Twisted Multi-Derivations and Hom-Connections

Twisted Multi-Derivation

Right Twisted Multi-Derivation

e By a right twisted multi-derivation in an algebra A we mean a
pair (0,0), where o : A — M,(A) is an algebra
homomorphism and 9 : A — A" is a k-linear map such that,
for all a,b € A,

d(ab) = d(a)a(b) + ad(b).
@ A" is understood as an (A-M,(A))-bimodule. If we write

o(a) = (0j(a))} ;=1 and O(a) = (9i(a))/_; for an element
a € A, then we obtain the following n equations

Za a)oji(b) + ad;(b),i =1,2,....n.
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Twisted Multi-Derivation

Right Twisted Multi-Derivation

Given a right twisted multi-derivation (0, 0) on A we construct a
FODC on the free left A-module

Ql=A"= @ Aw;
i=1

with basis wy, ..., w, which becomes an A-bimodule by
wia= > oj(a)wj forall 1 <i < n. The map

n
d:A—)Ql, anﬁzai(a)w;
i=1

is a derivation and makes (Q!,d) a FODC on A.
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Twisted Multi-Derivation

Free Right Twisted Multi-Derivation

@ A map o : A— M,(A) can be equivalently understood as an
element of M,(Endk(A)). We write o for the product in
M, (Endy(A)), T for the unit in M,(Endx(A)) and o for the
transpose of o.

S.Karacuha Integral Calculus On Quantum Exterior Algebras



Twisted Multi-Derivations and Hom-Connections

Twisted Multi-Derivation

Free Right Twisted Multi-Derivation

@ A map o : A— M,(A) can be equivalently understood as an
element of M,(Endk(A)). We write o for the product in
M, (Endy(A)), T for the unit in M,(Endx(A)) and o for the
transpose of o.

e We call a right twisted multi-derivation (0, o) free, provided
there exist algebra maps 3 : A — M,(A) and 6 : A — M,(A)

such that
Geo! =1, ol o5 =1,
Ge5! =1, 5 e =1

We denote it by (0, 0;5,5).
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Twisted Multi-Derivation

Proposition (Brzezinski,El Kaoutit, Lomp)

An upper-triangular right twisted multi-derivation (9, o) is free if
and only if 011,...,0,, are automorphisms of A.

Theorem (Brzezinski,El Kaoutit, Lomp)

For any free right twisted multi-derivation (9, 0;5,5) on A with
the induced FODC (Q!(A), d) with generators w;, the map

V : Homa(QY(A), A) » A, f > 07 (f(wy))

. 8 @ o— - 0 OL:
is a hom-connection, where 07 :=} | G4; 0 9; 0 G, for each
i=1,2,...,n.
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Differential Calculi on Quantum
Exterior Algebras
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Differential Calculi on Quantum Exterior Algebras

DC On Quantum Exterior Algebras

Quantum Exterior Algebras

@ We call an n x n-matrix Q = (qjj) over K a multiplicatively
antisymmetric matrix if q;j;q; = qj; = 1 for all /, ;.
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DC On Quantum Exterior Algebras

Quantum Exterior Algebras

@ We call an n x n-matrix Q = (qjj) over K a multiplicatively
antisymmetric matrix if q;j;q; = qj; = 1 for all /, ;.

@ Let M be an A-bimodule which is free as left and right
A-module with basis {w1,...,wp}. The quantum exterior
algebra of M over A w.r.t. a multiplicatively antisymmetric
matrix Q is defined as

/\Q(M) = TA(M)/(wi®wj+qjwjQui, wi®uwi | i,j =1,...,n).
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DC On Quantum Exterior Algebras

Quantum Exterior Algebras

@ The quantum exterior algebra is a free left and right
A-module of rank 2" with basis

{1}U{w,-1/\w,-2--~/\w,-k|i1<i2<---<ik,1§k§n}.

Question

When a bimodule derivation d : A — M can be extended to an
exterior derivation d : A®(M) — A®(M) of the quantum exterior
algebra?
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DC On Quantum Exterior Algebras

Proposition

Let (0, 0) be a right twisted multi-derivation of rank n on a
k-algebra A with associated FODC (Q!(A), d). Let @ be an nx n
multiplicatively antisymmetric matrix over k. Then d : A — Q(A)
can be extended to make © = A?(Q!(A)) an n-dimensional
differential calculus on A with d(w;) =0 forall i=1,...,nif and
only if

8,-8j = qj,'aja,' and 3,‘0/(_,' — qj,'ajdk,' = qj,'Ukja,' — Uk,'aj, Vi <j, Vk.
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DC On Quantum Exterior Algebras

Theorem(Karaguha, Lomp)

Let (0,0) be a free upper triangular twisted multi-derivation on A
with associated FODC (Q%, d). Suppose that d : A — Q! can be
extended to an n-dimensional differential calculus (2, d) where
Q = A(Q?) is the quantum exterior algebra of Q! for some
matrix Q. Then the following hold:
Q wa = det(o)w,for all a € A, where deto = 01100 0pp.
@ The maps ©,, : Q™ — Homa(2"~™(A), A) given by
Om(v) = (=1)™=1 3y for all v € Q™ are isomorphisms of
right A-modules.

© Moreover if
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DC On Quantum Exterior Algebras

Theorem(Karaguha, Lomp)
87 = Hq,-j det(o)"'0;det(c)  Vi=1,...,n
J

holds, then © = (©,)" _, is a chain map, that is, the following
diagram commutes:

d d d d

A— Qf y Q-1 5

of ol SN

Qs O, s s A
V,,_l Vn_2 VI v0
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Multivariate Quantum Polynomials

Skew Derivations

@ We have a diagonal bimodule structure on Q! = A" if
ojj = djo; for all i,j where 01, ...,0, are endomorphisms of
A. Moreover if o is diagonal and (0, 0) is a right twisted
multi-derivation on A, then the maps 9;, for all a,b € A and /,
satisfy
3,-(ab) = 8,-(a)a,-(b) T a8,-(b)

which are then called right o;-skew derivations.
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Multivariate Quantum Polynomials

Skew Derivations

o Conversely, given any right oj-derivations 0; on A, for
i=1,...,n one can form a corresponding diagonal twisted
multi-derivation (9, 0) on A. Such diagonal twisted
multi-derivation (0, o) is free if and only if the maps
01,...,0p are automorphisms. The associated A-bimodule
structure on Q! = A" with left A-basis wi,...,w, is given by

wia = a;(a)w;

for all i and a € A.
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Multivariate Quantum Polynomials

Corollary

Let A be an algebra over a field K, o; automorphisms and 9; right
o;-skew derivations on A, for i = 1,...,n and let (Q!, d) be the
associated FODC on A.

@ The derivation d : A — Q! extends to an n-dimensional
differential calculus (€, d) where Q = A9(Q1) is the quantum
exterior algebra with respect to some Q such that d(w;) =0
forall i=1,...,nif and only if

a;Jj = qj,'UJ'a,' and 6,-8j = qJ','aja,' Vi <j.

Q If a,'Uj = qj,'UJ'a,' for all i,_j and 8,-81- = qj','aja,' for all i <j,
then the de Rham and the integral complexes on A are
isomorphic relative to (£, d).
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Multivariate Quantum Polynomials

Quantum Polynomial Algebra

e Q = (qjj) is a n x n multiplicatively antisymmetric matrix over
a field k. The multivariate quantum polynomial algebra with
respect to Q is defined as:

A= 0q(k") = k(x1,...,xn)/(xixj — qiixjx;i |1 < i,j < n).

@ For two generic monomials x® and x? with a, 3 € N” one has

;- H qoc iBi | yatB — (e, B)Xa+B7
<j<i<n

iBj
where p(a, ) = [l1<jci<n q:j ’
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Multivariate Quantum Polynomials

Quantum Polynomial Algebra

@ We define automorphisms o1, ...,0, and right o;-derivations
of A as follows: For a generic monomial x® with o € N” one
sets

oi(xY) == Ai(a)x® and 0i(x%) == a;é,-(oz)xo‘_ei

where Ai(e) = [[7_; g;, di(a) = [1;; q; and € € N” such
that €} = ;.
Then by the previous Corollary we get
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Multivariate Quantum Polynomials

Corollary

Let A= Og(K") be the multivariate quantum polynomial algebra
and let Q = /\Q(Ql) be the associated quantum exterior algebra.
Then the derivation d : A — Q! with d(x®) = Y7 0;(x*)w;
makes €2 into a differential calculus such that the de Rham
complex and the integral complex are isomorphic.
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Coordinate Ring of Quantum n-space

Manin’'s Quantum n-space

Let g € k\ {0}. For the matrix Q = (qj;) with g;; = g and

qjii = q *forall i <jand g; =1, the algebra Oq(k") is called the
coordinate ring of quantum n-space or Manin’s quantum n-space
and will be denoted by A = kq[xi, ..., Xs]. We have the following
defining relations of the algebra A

XiXj = qXjXi, 1<J.
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Coordinate Ring of Quantum n-space

Manin's Quantum n-space

For « € N" and 1 < i < n we have:

Ai(a)x“x; = xote — Xi(@)xix?,
where

Ai(a) = H q% and Ai(a) = H q Y.

i<j j<i
More generally
n—1
xotB — H )\j(a)ﬁf x%xB = H anfoaxB
j=1 1<s<j<n
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Coordinate Ring of Quantum n-space

An FODC On Manin’'s Quantum n-space

We take the following two-parameter first order differential calculus
Q! which is freely generated by {ws,...w,} over A subject to the

relations
wixj = qxjwi + (p — 1)xwj, i <J,
WiXj = pXjwi,
WjXj = pq_lx,-wj, i <j.
Set mi(a) = [[s; P, i = 1,..., n for the following lemma.
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Coordinate Ring of Quantum n-space

Lemma

For a € N" the entries of the matrix o(x®) are as follows
ojj(x*) =0 for i > j and

o (x") = m(a)x*

e _{ Ti(a)Ai(@)Aj(a)(p% 1) for i<,
U mi(@)Ai(a)Ai(a)p™ for i=j.
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Coordinate Ring of Quantum n-space

We have a derivation d : Ky[x1, ..., x,] — Q! such that d(x;) = w;
for all i. For any v € N" we set d(x*) = >_7_; 9i(x*)w; where

ay _ 5. a—€ . ¢ . ) pr—1
0i(x*) = 6i(a)x*™; di(a) = mi(a)Ai(@) b1

forall i=1,...,n. Also for i, k we have:

Si(@) = qFloi(at ), if i< k; 6j(a) = pTioi(a£e), ifi> k.
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Coordinate Ring of Quantum n-space

Lemma

The pair (0, 0) is a right twisted multi-derivation of Kg[x1, ..., xx]
satisfying the equations ensuring the extension of the FODC to
make Q = A®(Q!) an n—dimensional DC with respect to the
multiplicatively antisymmetric matrix @' whose entries are

Q,fj =plgfori<j.
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Coordinate Ring of Quantum n-space

Lemma cont.

In particular
8,'8j = qulc‘)ja,-, Vi<j

holds as well as for all i, k, j:

Oioyy = pq_lakja,', i< k<j

8;0‘;(1' = pq_lﬁjak,-, k<i<j

O'k,'aj = pq_lakja;, k<i<j
diojj — pq Qo = pq lojdi—oid;, i<
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Coordinate Ring of Quantum n-space

Theorem(Karaguha,Lomp)

The derivation d : Kg[xi, ..., xs] — Q! extends to a differential

-1
calculus AP "9(Q) on Ky[xa, ..., xn]. Furthermore the de Rham
and the integral complex associated to the differential calculus

(AP 9(Q), d) are isomorphic.
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THANKS!
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