Frobenius varieties

J. C. Rosales

Porto 2008
• If S and T are numerical semigroups, then so is $S \cap T$
• If S is a numerical semigroup other than \mathbb{N}, then so is $S \cup \{F(S)\}$

Frobenius varieties

Families of numerical semigroups closed under finite intersections and to the adjoin of the Frobenius number

J. C. Rosales, Families of numerical semigroups closed under finite intersections and for the Frobenius number, Houston J. Math.
Graph

A graph is a pair \((V, E)\) with \(V\) a set (vertices) and \(E\) a subset of \(\{(v, w) \in V \times V \mid v \neq w\}\) (edges).

Path

A path connecting vertices \(x\) and \(y\) of \(G\) is a sequence of distinct edges of the form \((v_0, v_1), (v_1, v_2), \ldots, (v_{n-1}, v_n)\) such that \(v_0 = x\) and \(v_n = y\).

Trees

A graph \(G\) is a tree if there exists a vertex \(r\) of \(G\) (the root) such that for any other vertex \(x\) of \(G\), there is a unique path connecting \(x\) with \(r\).

If \((x, y)\) is an edge of a tree, we say that \(x\) is a son of \(y\).
Define

\[S = \{ S \mid S \text{ is a numerical semigroup} \} \]

\[G(S) \] the graph whose set of vertices is \(S \) and set of edges

\[\{ (S, T) \in S \times S \mid T = S \cup \{ F(S) \} \} \]
Given a numerical semigroup \(S \) we define recurrently the sequence of numerical semigroups

- \(S_0 = S \)
- \(S_{i+1} = \begin{cases} S_i \cup \{ F(S_i) \} & \text{if } S_i \neq \mathbb{N} \\ \mathbb{N} & \text{otherwise} \end{cases} \)

\[
S = S_0 \subsetneq S_1 \subsetneq \cdots \subsetneq S_{g(S)} = \mathbb{N}
\]

Chain of semigroups associated to \(S \)

\[
C(S) = \{ S_0, S_1, \ldots, S_{g(S)} \}
\]
Theorem

$G(S)$ is a tree rooted in \mathbb{N}. Moreover, the sons of $S \in S$ are $S \setminus \{x_1\}, \ldots, S \setminus \{x_r\}$ where x_1, \ldots, x_r are the minimal generators of S greater than $F(S)$

This result allows us to construct recurrently the set of all numerical semigroups
\[\mathbb{N} = \langle 1 \rangle \]
\[\langle 2, 3 \rangle \]
\[\langle 3, 4, 5 \rangle \]
\[\langle 4, 5, 6 \rangle \]
\[\langle 3, 5, 7 \rangle \]
\[\langle 3, 4 \rangle \]
\[\langle 2, 7 \rangle \]
\[\langle 2, 5 \rangle \]
• If \((S, T)\) is an edge of \(G(S)\), then \(F(S) > F(T)\) and
\[g(T) = g(S) - 1\]

The preceding result allows us to recurrently apply the construction of \(G(S)\) to construct the set of all numerical semigroups with given Frobenius number or given gender.
Our aim is to generalize the above results for any Frobenius variety

- \(S \) is a Frobenius variety
- If \(S \) is a numerical semigroup, then \(C(S) \) is a Frobenius variety
- For \(A \subseteq \mathbb{N} \), the set

\[
O(A) = \{ S \in S \mid A \subseteq S \}
\]

is a Frobenius variety. In particular, the set of oversemigroups of a numerical semigroup is a Frobenius variety

C. Arf, Une interprétation algébrique de la suite des orders de multiplicité d’une branche algébrique, Proc. London Math. Soc. 20(1949), 256-287

Arf numerical semigroup

A numerical semigroup S has the **Arf property** if for any $x, y, z \in S$ with $x \geq y \geq z$, $x + y - z \in S$

- The family of Arf numerical semigroups is a Frobenius variety
A. Campillo, On saturation of curve singularities (any characteristic), Proc. of Sym. in Pure Math. 40(1983), 211-220

Saturated numerical semigroups

A numerical semigroup S is saturated if for any $s, s_1, \ldots, s_r \in S$ with $s_1, \ldots, s_r \leq s$, and $z_1, \ldots, z_r \in \mathbb{Z}$, $z_1 s_1 + \cdots + z_r s_r \geq 0$ implies that $s + z_1 s_1 + \cdots + z_r s_r \in S$

- The family of saturated numerical semigroups is a Frobenius variety

- The family of numerical semigroups having a Toms decomposition is a Frobenius variety
M. Bras-Amorós, P. A. García-Sánchez, Patterns on numerical semigroups, Linear Algebra Appl. 414(2006), 652-669

Pattern

A *pattern* of length n is an expression of the form $a_1x_1 + \cdots + a_nx_n$, where a_1, \ldots, a_n are nonzero integers.

A numerical semigroup S *admits* the pattern P if for all $s_1, \ldots, s_n \in S$, $s_1 \geq s_2 \geq \cdots \geq s_n$ implies $a_1s_1 + \cdots + a_ns_n \in S$.

Denote by $S(P)$ the set of numerical semigroups admitting the pattern P.

Arf

$S(x_1 + x_2 - x_3)$ is the set of Arf numerical semigroups.
Strongly admissible patterns

A pattern P is admissible if $S(P)$ is not empty

If $P = a_1 x_1 + \cdots + a_n x_n$, define

$$P' = \begin{cases} (a - 1)x_1 + a_2 x_2 + \cdots + a_n x_n & \text{if } a_1 > 1 \\ a_2 x_2 + \cdots + a_n x_n & \text{otherwise} \end{cases}$$

P is strongly admissible if both P and P' are admissible

- If P is a strongly admissible pattern, then $S(P)$ is a Frobenius variety
• The intersection of Frobenius varieties is a Frobenius variety

Hence we can construct new Frobenius varieties from the above examples

Arf and Toms decomposition

The set of Arf numerical semigroups having a Toms decomposition are a Frobenius variety
We can also talk about the Frobenius variety generated by a family X of numerical semigroups.
We denote this variety by $F(X)$.

- $F(X)$ is the smallest (with respect to set inclusion) Frobenius variety containing X.
Given X a nonempty family of numerical semigroups, set

$$C(X) = \bigcup_{S \in X} C(S)$$

Theorem

$\mathcal{F}(X)$ is the set of all finite intersections of elements in $C(X)$

- A Frobenius variety is finitely generated if and only if it is finite
In what follows \mathcal{V} is a Frobenius variety

\mathcal{V}-monoid

A submonoid M of \mathbb{N} is a \mathcal{V}-monoid if it can be expressed as an intersection of elements in \mathcal{V}

- The intersection of \mathcal{V}-monoids is a \mathcal{V}-monoid
Let $A \subseteq \mathbb{N}$

\mathcal{V}-generating system

The *\mathcal{V}-monoid generated* by A is the intersection of all \mathcal{V}-monoids containing A

This monoid is denoted by $\mathcal{V}(A)$

A is a *\mathcal{V}-generating system* of $\mathcal{V}(A)$, and it is *minimal* if none of its proper subsets \mathcal{V}-generates $\mathcal{V}(A)$
• If $x \in \mathcal{V}(A)$, then $x \in \mathcal{V}(\{a \in A \mid a \leq x\})$

Theorem

Every \mathcal{V}-monoid admits a unique minimal \mathcal{V}-generating system

• Let M be a \mathcal{V}-monoid and let $x \in M$. Then $M \setminus \{x\}$ is a \mathcal{V}-monoid if and only if x belongs to the minimal \mathcal{V}-generating system of M
The tree of a Frobenius variety
Define $G(V)$ as the graph with set of vertices V, and (S, T) is an edge if $T = S \cup \{F(S)\}$

Theorem
The graph $G(V)$ is a tree rooted in \mathbb{N}. The sons of a vertex S are $S \setminus \{x_1\}, \ldots, S \setminus \{x_r\}$, where x_1, \ldots, x_r are the elements in the minimal V-generating system of S greater than $F(S)$
The binary tree of Arf semigroups

\[
\begin{align*}
\mathbb{N} &= \text{Arf}(1) \\
F &= -1 \\
\downarrow \\
\text{Arf}(2, 3) \\
F &= 1 \\
\downarrow \\
\text{Arf}(3, 4) \\
F &= 2 \\
\downarrow \\
\text{Arf}(4, 5) \\
F &= 3 \\
\downarrow \\
\text{Arf}(5, 6) \\
F &= 4 \\
\downarrow \\
\text{Arf}(4, 6, 7) \\
F &= 5 \\
\downarrow \\
\text{Arf}(3, 7) \\
F &= 5 \\
\downarrow \\
\text{Arf}(2, 9) \\
F &= 7
\end{align*}
\]

- If \(T \) is a son of \(S \), then \(T = S \ setminus \{F(S) + 1\} \) or \(T = S \ setminus \{F(S) + 2\} \)
The binary tree of saturated numerical semigroups

- **Sat(1)**
 - F = -1
 - \(\downarrow \)
 - **Sat(2, 3)**
 - F = 1
 - \(\Downarrow \)
 - **Sat(3, 4)**
 - F = 2
 - \(\Downarrow \)
 - **Sat(4, 5)**
 - F = 3
 - \(\Downarrow \)
 - **Sat(5, 6)**
 - F = 4
 - \(\Downarrow \)...
 - **Sat(4, 6, 7)**
 - F = 5
 - \(\Downarrow \)...
 - **Sat(3, 5)**
 - F = 4
 - \(\Downarrow \)
 - **Sat(3, 7)**
 - F = 5
 - \(\Downarrow \)...
 - **Sat(2, 7)**
 - F = 5
 - \(\Downarrow \)...
 - **Sat(2, 5)**
 - F = 3
 - \(\Downarrow \)
 - **Sat(2, 9)**
 - F = 7
 - \(\Downarrow \)...

- If \(T \) is a son of \(S \), then \(T = S \setminus \{F(S) + 1\} \) or \(T = S \setminus \{F(S) + 2\} \)
- This tree has no leaves