The smallest positive integer that is solution of a proportionally modular Diophantine inequality

P. Vasco

Iberian meeting on numerical semigroups, Porto 2008
AIM

Given two integers m and n with $n
eq 0$, we denote by $m \mod n$ the remainder of the division of m by n. A proportionally modular Diophantine inequality is an expression of the form $ax \mod b \leq cx$, where a, b and c are positive integers.

Our principal aim is

To give an algorithm that allows us to calculate the smallest positive integer that is solution of a proportionally modular Diophantine inequality.
Given the proportionally modular Diophantine inequality \[ax \bmod b \leq cx, \] we denote by \(S(a, b, c) \) the set of integer solutions of this inequality, \(S(a, b, c) = \{ x \in \mathbb{N} \mid ax \bmod b \leq cx \} \). We will refer to these type of semigroups as proportionally modular numerical semigroups.
Proposition 1

1. Let a, b and c be positive integers such that $c < a < b$ and let T be the submonoid of \mathbb{Q}_0^+ generated by $\left[\frac{b}{a}, \frac{b}{a-c} \right]$. Then $T \cap \mathbb{N} = \{ x \in \mathbb{N} \mid ax \mod b \leq cx \}$.

2. Let a_1, b_1, a_2 and b_2 be positive integers such that $\frac{b_1}{a_1} < \frac{b_2}{a_2}$ and let T be the submonoid of \mathbb{Q}_0^+ generated by $\left[\frac{b_1}{a_1}, \frac{b_2}{a_2} \right]$. Then $T \cap \mathbb{N} = \{ x \in \mathbb{N} \mid a_1 b_2 x \mod b_1 b_2 \leq (a_1 b_2 - a_2 b_1) x \}$.
Proposition 1

1. Let a, b and c be positive integers such that $c < a < b$ and let T be the submonoid of \mathbb{Q}_0^+ generated by $\left[\frac{b}{a}, \frac{b}{a-c}\right]$. Then $T \cap \mathbb{N} = \{x \in \mathbb{N} \mid ax \mod b \leq cx\}$.

2. Let a_1, b_1, a_2 and b_2 be positive integers such that $\frac{b_1}{a_1} < \frac{b_2}{a_2}$ and let T be the submonoid of \mathbb{Q}_0^+ generated by $\left[\frac{b_1}{a_1}, \frac{b_2}{a_2}\right]$. Then $T \cap \mathbb{N} = \{x \in \mathbb{N} \mid a_1 b_2 x \mod b_1 b_2 \leq (a_1 b_2 - a_2 b_1) x\}$.

- $T \cap \mathbb{N}$ is the proportionally modular numerical semigroup associated to the interval $\left[\frac{b_1}{a_1}, \frac{b_2}{a_2}\right]$ and we will denote it by $S\left(\left[\frac{b_1}{a_1}, \frac{b_2}{a_2}\right]\right)$.

Lemma 2

Let $\alpha < \beta$ be positive rational numbers. Then a positive integer x belongs to $S([\alpha, \beta])$ if and only if there exists a positive integer y such that $\alpha \leq \frac{x}{y} \leq \beta$.
Lemma 3

If \(S ([\alpha, \beta]) \) has multiplicity \(m \neq 1 \), then there exists a unique positive integer \(t \) such that \(\alpha \leq \frac{m}{t} \leq \beta \).
If \(I \) is a closed interval of \(\mathbb{Q}_0^+ \) such that \(S(I) \neq \mathbb{N} \), then we call the “small point” of \(I \), and denote it by \(P(I) \), the fraction \(\frac{m}{t} \), where \(m \) is the multiplicity of \(S(I) \) and \(t \) is the unique positive integer such that \(\frac{m}{t} \in I \).
If I is a closed interval of \mathbb{Q}_0^+ such that $S(I) \neq \mathbb{N}$, then we call the “small point” of I, and denote it by $P(I)$, the fraction $\frac{m}{t}$, where m is the multiplicity of $S(I)$ and t is the unique positive integer such that $\frac{m}{t} \in I$.

Lemma 4

Assume that $S([\alpha,\beta]) \neq \mathbb{N}$ and $P([\alpha,\beta]) = \frac{m}{t}$. If $\frac{s}{x} \in [\alpha,\beta]$, then $t \leq x$.
If I is a closed interval of \mathbb{Q}_0^+ such that $S(I) \neq \mathbb{N}$, then we call the “small point” of I, and denote it by $P(I)$, the fraction $\frac{m}{t}$, where m is the multiplicity of $S(I)$ and t is the unique positive integer such that $\frac{m}{t} \in I$.

Lemma 4

Assume that $S([\alpha,\beta]) \neq \mathbb{N}$ and $P([\alpha,\beta]) = \frac{m}{t}$. If $\frac{s}{x} \in [\alpha,\beta]$, then $t \leq x$.

Lemma 5

Let us assume that $S([\alpha,\beta]) \neq \mathbb{N}$, $a \in \mathbb{N}$ and $P([\alpha,\beta]) = \frac{m}{t}$. Then $S([a+\alpha,a+\beta]) \neq \mathbb{N}$ and $P([a+\alpha,a+\beta]) = \frac{m+ta}{t}$.
Given a rational number x we denote by $\lfloor x \rfloor$ the integer $\max\{z \in \mathbb{Z} \mid z \leq x\}$ and by $\lceil x \rceil$ the integer $\min\{z \in \mathbb{Z} \mid x \leq z\}$. The following two results follow easily.

Lemma 6

If $S([\alpha, \beta]) \neq \mathbb{N}$ and $[\alpha, \beta]$ contains an integer, then $P([\alpha, \beta]) = \frac{\lceil \alpha \rceil}{1}$.

Lemma 7

If $[\alpha, \beta]$ does not contain an integer, then $\lfloor \alpha \rfloor = \lfloor \beta \rfloor$.
Proposition 8

Let a_1, b_1, a_2 and b_2 be positive integers such that $\frac{b_1}{a_1} < \frac{b_2}{a_2}$, $S\left(\left[\frac{b_1}{a_1}, \frac{b_2}{a_2}\right]\right) \neq \mathbb{N}$ and $\left[\frac{b_1}{a_1}, \frac{b_2}{a_2}\right]$ contains no integers. Then $\frac{a_2}{b_2 \mod a_2} < \frac{a_1}{b_1 \mod a_1}$ and $S\left(\left[\frac{a_2}{b_2 \mod a_2}, \frac{a_1}{b_1 \mod a_1}\right]\right) \neq \mathbb{N}$. Moreover, if $P\left(\left[\frac{a_2}{b_2 \mod a_2}, \frac{a_1}{b_1 \mod a_1}\right]\right) = \frac{m}{t}$, then $P\left(\left[\frac{b_1}{a_1}, \frac{b_2}{a_2}\right]\right) = \frac{t + \left\lfloor \frac{b_1}{a_1} \right\rfloor m}{m}$.
Proposition 8

Let a_1, b_1, a_2 and b_2 be positive integers such that $\frac{b_1}{a_1} < \frac{b_2}{a_2}$, $S\left(\left[\frac{b_1}{a_1}, \frac{b_2}{a_2}\right]\right) \neq \mathbb{N}$ and $\left[\frac{b_1}{a_1}, \frac{b_2}{a_2}\right]$ contains no integers. Then $\frac{a_2}{b_2 \mod a_2} < \frac{a_1}{b_1 \mod a_1}$ and $S\left(\left[\frac{a_2}{b_2 \mod a_2}, \frac{a_1}{b_1 \mod a_1}\right]\right) \neq \mathbb{N}$. Moreover, if $P\left(\left[\frac{a_2}{b_2 \mod a_2}, \frac{a_1}{b_1 \mod a_1}\right]\right) = \frac{m}{t}$, then $P\left(\left[\frac{b_1}{a_1}, \frac{b_2}{a_2}\right]\right) = \frac{t + \left\lfloor \frac{b_1}{a_1} \right\rfloor m}{m}$.

Let I be a closed interval of positive rational numbers not containing any integer. We define its “reduced interval”, and denote it by $R(I)$, in the following way. If $I = \left[\frac{b_1}{a_1}, \frac{b_2}{a_2}\right]$ with a_1, b_1, a_2 and b_2 positive integers, then $R(I) = \left[\frac{a_2}{b_2 \mod a_2}, \frac{a_1}{b_1 \mod a_1}\right]$.
Given a closed interval I of positive rational numbers we define recursively the following sequence of closed intervals:

$$I_1 = I$$
$$I_{n+1} = R(I_n)$$ if I_n contains no integers, otherwise $I_{n+1} = I_n$.

We will refer to $\{I_n\}_{n \in \mathbb{N} \setminus \{0\}}$ as the sequence of intervals associated to I. Observe that if I_k contains an integer, then $I_n = I_k$, for every $n \geq k$.
The Euclides algorithm for calculating the greatest common divisor of two positive integers.
Input: b and a positive integers.
Output: the greatest common divisor of b and a.

Begin
\[(x, y) := (b, a)\]
While $y \neq 0$ do
\[(x, y) := (y, x \mod y)\]
Return x
End.
The Euclides algorithm for calculating the greatest common divisor of two positive integers.
Input: b and a positive integers.
Output: the greatest common divisor of b and a.

Begin
 $(x, y) := (b, a)$
 While $y \neq 0$ do $(x, y) := (y, x \mod y)$
 Return x

End.

If $I = \left[\frac{b_1}{a_1}, \frac{b_2}{a_2} \right]$ with a_1, b_1, a_2 and b_2 positive integers, then
$R(I) = \left[\frac{a_2}{b_2 \mod a_2}, \frac{a_1}{b_1 \mod a_1} \right]$.
Lemma 9

Let I be a closed interval and let $\{I_n\}_{n \in \mathbb{N}\setminus\{0\}}$ be the sequence of intervals associated to I. Then there exists a positive integer k such that I_k contains an integer.
Example 10

Let \(I = \left[\frac{33}{13}, \frac{66}{25} \right] \). Let us construct the sequence of intervals associated to \(I \).

\[
I_1 = \left[\frac{33}{13}, \frac{66}{25} \right], \quad I_2 = \left[\frac{25}{16}, \frac{13}{7} \right], \quad I_3 = \left[\frac{7}{6}, \frac{16}{9} \right], \quad I_4 = \left[\frac{9}{7}, \frac{6}{1} \right].
\]

Observe that \(I_4 \) already contains an integer. Therefore \(I_n = I_4 \) for all \(n \geq 4 \).
Example 10

Let \(I = \left[\frac{33}{13}, \frac{66}{25} \right] \). Let us construct the sequence of intervals associated to \(I \).

\[
I_1 = \left[\frac{33}{13}, \frac{66}{25} \right], \quad I_2 = \left[\frac{25}{16}, \frac{13}{7} \right], \quad I_3 = \left[\frac{7}{6}, \frac{16}{9} \right], \quad I_4 = \left[\frac{9}{7}, \frac{6}{1} \right].
\]

Observe that \(I_4 \) already contains an integer. Therefore \(I_n = I_4 \) for all \(n \geq 4 \).

(33,13), (13,7), (7,6), (6,1), (1,0)

(66,25), (25,16), (16,9), (9,7), (7,2), (2,1), (1,0)

If \(I = \left[\frac{b_1}{a_1}, \frac{b_2}{a_2} \right] \) with \(a_1, b_1, a_2 \) and \(b_2 \) positive integers, then

\[
R(I) = \left[\frac{a_2}{b_2 \mod a_2}, \frac{a_1}{b_1 \mod a_1} \right].
\]
If I is a closed interval with no integers in it, then as a consequence of Lemma 7, we have that $\lfloor x \rfloor = \lfloor y \rfloor$, for all $x, y \in I$. This integer is denoted by $\lfloor I \rfloor$.

Lemma 11

Let I be a closed interval such that $S(I) \neq \mathbb{N}$ and let $\{I_n\}_{n \in \mathbb{N} \setminus \{0\}}$ be the sequence of intervals associated to I. Let l be the smallest positive integer such that I_l contains an integer. For $k \in \{2, \ldots, l\}$, $P(I_{k-1}) = \frac{1}{P(I_k)} + \lfloor I_{k-1} \rfloor$.
Algorithm 12

Input: I a closed interval of positive rational numbers such that $S(I) \neq \mathbb{N}$.

Output: The multiplicity of the semigroup $S(I)$.

1. Compute the sequence of intervals associated to I until we find the first interval of the sequence that contains an integer. Let us denote such intervals by I_1, I_2, \ldots, I_l.
2. If $I_l = [\alpha, \beta]$, then $P(I_l) = \left\lceil \frac{\alpha}{1} \right\rceil$.
3. Calculate $P(I_1)$ by applying successively that $P(I_{n-1}) = \frac{1}{P(I_n)} + \lfloor I_{n-1} \rfloor$.
4. The multiplicity of $S(I)$ is the numerator of $P(I_1)$.
Example 13

Let us calculate the multiplicity of the semigroup $S\left(\left[\frac{33}{13}, \frac{66}{25}\right]\right)$. We already made the computation the sequence of intervals associated to $I = \left[\frac{33}{13}, \frac{66}{25}\right]$ until we find the first term of the sequence that contains an integer in the Example 10:

$$I_1 = \left[\frac{33}{13}, \frac{66}{25}\right], \quad I_2 = \left[\frac{25}{16}, \frac{13}{7}\right], \quad I_3 = \left[\frac{7}{6}, \frac{16}{9}\right], \quad I_4 = \left[\frac{9}{7}, \frac{6}{1}\right].$$

By applying Lemma 6, we know that $P(I_4) = \frac{2}{1}$. Now successively applying Lemma 11 we have:

$$P(I_3) = \frac{1}{2} + 1 = \frac{3}{2}, \quad P(I_2) = \frac{2}{3} + 1 = \frac{5}{3}, \quad P(I_1) = \frac{3}{5} + 2 = \frac{13}{5}.$$

Therefore, 13 is the multiplicity of $S\left(\left[\frac{33}{13}, \frac{66}{25}\right]\right)$.
Proposition 1

1. Let \(a, b \) and \(c \) be positive integers such that \(c < a < b \) and let \(T \) be the submonoid of \(\mathbb{Q}_0^+ \) generated by \(\left[\frac{b}{a}, \frac{b}{a-c} \right] \). Then \(T \cap \mathbb{N} = \{ x \in \mathbb{N} \mid ax \mod b \leq cx \} \).

Example 15

We find the smallest positive integer that satisfies the inequality \(231x \mod 938 \leq 3x \). To this end, by using Proposition 1, it suffices to calculate the multiplicity of \(S\left(\left[\frac{938}{231}, \frac{938}{228} \right]\right) \).

1. \(I_1 = \left[\frac{938}{231}, \frac{938}{228} \right], \quad I_2 = \left[\frac{228}{26}, \frac{231}{14} \right] \).
2. As \(I_2 \) contains an integer, \(P(I_2) = \frac{9}{1} \).
3. \(P(I_1) = \frac{1}{9} + 4 = \frac{37}{9} \).
4. 37 is the multiplicity of \(S\left(\left[\frac{938}{231}, \frac{938}{228} \right]\right) \).

Therefore 37 is the smallest positive integer that is solution of the inequality \(231x \mod 938 \leq 3x \).
Proposition 19

Let \(n_1, n_2 \) and \(n_3 \) be positive integers such that \(\gcd\{n_1, n_2\} = 1 \) and let \(u \) be a positive integer such that \(un_2 \equiv 1 \pmod{n_1} \). If \(m \) is the multiplicity of the semigroup \(S\left(un_2n_3, n_1n_2, n_3\right) \), then \(mn_3 \) is the smallest positive multiple of \(n_3 \) that belongs to \(\langle n_1, n_2 \rangle \).
Algorithm 20

Input: n_1, n_2 and n_3 positive integers such that $\gcd(n_1, n_2) = 1$.
Output: $\xi = \min\{k \in \mathbb{N} \setminus \{0\} | kn_3 \in \langle n_1, n_2 \rangle\}$.

1. Calculate, using the extended Euclidean algorithm, a positive integer u such that $un_2 \equiv 1 \pmod{n_1}$.

2. Calculate by applying Algorithm 12 the multiplicity m of

$$S(un_2n_3, n_1n_2, n_3) = S(un_2n_3 \mod n_1n_2, n_1n_2, n_3).$$

3. Return m.
Example 21

Let us calculate the smallest positive multiple of 37 that belongs to $\langle 68, 79 \rangle$.

1. By applying the extended Euclides algorithm we calculate $u \in \mathbb{N}$ such that $79 \cdot u \equiv 1 \pmod{68}$. Consider $u = 31$.

2. Let us calculate the multiplicity of $S(31 \cdot 79 \cdot 37, 68 \cdot 79, 37) = S(90613, 5372, 37) = S(4661, 5372, 37)$. The sequence of intervals associated to $I = \left[\frac{5372}{4661}, \frac{5372}{4624}\right]$ is

 \[I_1 = \left[\frac{5372}{4661}, \frac{5372}{4624}\right], \quad I_2 = \left[\frac{4624}{748}, \frac{4661}{711}\right], \quad I_3 = \left[\frac{711}{395}, \frac{748}{136}\right]. \]

 As I_3 contains an integer, $P(I_3) = \frac{2}{1}$. Then $P(I_2) = \frac{1}{2} + 6 = \frac{13}{2}$ and $P(I_1) = \frac{2}{13} + 1 = \frac{15}{13}$. Therefore the multiplicity of $S(4661, 5372, 37)$ is 15.

3. Thus $15 \cdot 37$ is the smallest positive multiple of 37 that belongs to $\langle 68, 79 \rangle$.
The Frobenius number and the number of gaps of a numerical semigroup generated by three positive integers

J. C. Rosales, M. Bullejos, Proportionally modular Diophantine inequalities and Stern-Brocot tree.