Módulo 7

ALGA I. Espaços vectoriais com produto interno

Contents	
7.1	Espaços Euclideanos reais 92
7.2	Espaços Hermitianos (ou Unitários) complexos 95
7.3	Norma
7.4	Ortogonalidade
7.5	Bases ortonormadas num espaço vectorial com produto interno
7.6	Método de ortogonalização de Gram-Schmidt 100
7.7	Decomposição ortogonal. Teorema da aproximação óptima
7.8	Aplicações. Mínimos quadrados 108
7.9	Método dos mínimos quadrados. Aproximação de dados por uma recta
7.10	Transformações ortogonais e unitárias. Exemplos 112
7.11	Transformações unitárias em \mathbb{C}^2 . Os grupos $\mathcal{U}(2)$ e $\mathcal{SU}(2)$
7.12	Exercícios

7.1 Espaços Euclideanos reais

▶ 7.1 <u>Definição</u> ... Seja \mathcal{V} um espaço vectorial <u>real</u>. Um **produto interno** em \mathcal{V} é, por definição, uma aplicação:

$$\begin{array}{cccc}
\langle \,|\,\rangle : & \mathcal{V} \times \mathcal{V} & \longrightarrow & \mathbb{R} \\
& (\mathbf{u}, \mathbf{v}) & \longmapsto & \langle \mathbf{u} | \mathbf{v} \rangle
\end{array} (7.1.1)$$

que satisfaz as três propriedades seguintes:

[PI1]. é uma forma bilinear:

$$\langle (\mathbf{u} + \mathbf{v}) | \mathbf{w} \rangle = \langle \mathbf{u} | \mathbf{w} \rangle + \langle \mathbf{v} | \mathbf{w} \rangle$$

$$\langle \mathbf{u} | (\mathbf{v} + \mathbf{w}) \rangle = \langle \mathbf{u} | \mathbf{w} \rangle + \langle \mathbf{u} | \mathbf{w} \rangle$$

$$\langle \lambda \mathbf{u} | \mathbf{v} \rangle = \langle \mathbf{u} | \lambda \mathbf{v} \rangle = \lambda \langle \mathbf{u} | \mathbf{v} \rangle$$
(7.1.2)

[PI2]. é uma forma simétrica:

$$\langle \mathbf{u} | \mathbf{v} \rangle = \langle \mathbf{v} | \mathbf{u} \rangle \tag{7.1.3}$$

[PI3]. é não degenerada:

$$\langle \mathbf{u} | \mathbf{v} \rangle = 0 \quad \forall \mathbf{v} \in \mathcal{V} \quad \Rightarrow \quad \mathbf{u} = \mathbf{0}$$
 (7.1.4)

 $\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathcal{V}, \forall \lambda \in \mathbb{R}$. Um produto interno diz-se um **produto interno Euclideano**, se satisfaz além disso a seguinte propriedade:

[PI4]. é uma forma definida positiva:

$$\langle \mathbf{u} | \mathbf{u} \rangle \ge 0, \quad \forall \mathbf{u} \in \mathcal{V}$$
 (7.1.5)

Um espaço vectorial real, munido de um produto interno Euclideano chama-se um **espaço Euclideano**. Outras notações muito comuns para $\langle \mathbf{u} | \mathbf{v} \rangle$ são por exemplo $\langle \mathbf{u}, \mathbf{v} \rangle$, $\beta(\mathbf{u}, \mathbf{v})$, $g(\mathbf{u}, v)$, $\mathbf{u} \cdot \mathbf{v}$ ou ainda $\mathbf{u} | \mathbf{v}$.

▶ 7.2 Exemplo [Produto interno Euclideano usual em \mathbb{R}^n] ... Dados dois vectores $\mathbf{x} = [x_i]$ e $\mathbf{y} = [y_i]$, em \mathbb{R}^n , define-se o respectivo produto interno (Euclideano), como sendo o escalar $\mathbf{x} \cdot \mathbf{y} \in \mathbb{R}$, dado por:

$$\mathbf{x} \cdot \mathbf{y} \stackrel{\text{def}}{=} \sum_{i=1}^{n} x_i y_i = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$$

$$= \mathbf{x}^t \mathbf{y} \qquad \text{em notação matricial} \qquad (7.1.6)$$

O espaço vectorial \mathbb{R}^n , munido deste produto interno Euclideano, diz-se o **espaço Euclideano** usual e nota-se por \mathbb{E}^n .

▶ 7.3 Exemplo [Produto interno L^2 em $C^o([a,b],\mathbb{R})$] ... Consideremos o espaço vectorial real constituído pelas funções contínuas reais, definidas no intervalo $[a,b] \subset \mathbb{R}$. Dadas duas funções $f,g \in C^o([a,b],\mathbb{R})$, define-se o respectivo produto interno L^2 , como sendo o escalar $\langle f|g \rangle \in \mathbb{R}$, dado por:

$$\langle f|g\rangle \stackrel{\text{def}}{=} \int_{a}^{b} f(t)g(t) dt$$
 (7.1.7)

▶ 7.4 Exemplo [Produto interno de Minkowski em \mathbb{R}^4] ... Dados dois

vectores
$$\mathbf{x} = \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
 e $\mathbf{y} = \begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \end{pmatrix}$, em \mathbb{R}^4 , define-se o respectivo **produto**

interno de Minkowski, como sendo o escalar $\mathbf{x} \cdot \mathbf{y} \in \mathbb{R}$, dado por:

$$\mathbf{x} \cdot \mathbf{y} = -x_0 y_0 + x_1 y_1 + x_2 y_2 + x_3 y_3$$

$$= [-x_0 \quad x_1 \quad x_2 \quad x_3] \begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

$$= \mathbf{x}^t \eta \mathbf{y} \tag{7.1.8}$$

onde η representa a matriz simétrica:

$$\begin{pmatrix}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$
(7.1.9)

O produto interno de Minkowski não é definido positivo, isto é, não é verdade que $\mathbf{x} \cdot \mathbf{x} \ge 0$, $\forall \mathbf{x} \in \mathbb{R}^4$. Com efeito, por exemplo o vector $\mathbf{e}_0 = (1, 0, 0, 0)$, satisfaz $\mathbf{e}_0 \cdot \mathbf{e}_0 = -1$. Note no entanto que a restrição do produto escalar de Minkowski ao hiperplano $\{0\} \times \mathbb{R}^3 = \{\mathbf{x} = (x^\alpha) \in \mathbb{R}^4 : x^0 = 0\} \cong \mathbb{R}^3$, é um produto interno euclideano, portanto em particular definido positivo.

 \triangleright 7.5 Expressões matriciais ... Seja $(\mathcal{V}, \langle | \rangle)$ um espaço vectorial real, de dimensão n, com um produto interno Euclideano.

Seja $\mathscr{C} = (\mathbf{e}_1 \ \mathbf{e}_2 \ \cdots \ \mathbf{e}_n)$ uma base qualquer para \mathcal{V} , escrita como um vector-linha com entradas vectoriais \mathbf{e}_i . Se $\mathbf{u}, \mathbf{v} \in \mathcal{V}$ podemos escrever:

$$\mathbf{v} = \sum_{i} v^{i} \mathbf{e}_{i}$$

$$= \left(\mathbf{e}_{1} \quad \mathbf{e}_{2} \quad \cdots \quad \mathbf{e}_{n} \right) \begin{pmatrix} v^{1} \\ v^{2} \\ \vdots \\ v^{n} \end{pmatrix}$$

$$= \mathscr{C}[\mathbf{v}]_{\mathscr{C}} \tag{7.1.10}$$

onde $[\mathbf{v}]_{\mathscr{C}} = \begin{pmatrix} v^1 \\ \vdots \\ v^n \end{pmatrix}$ é o vector-coluna das componentes do vector \mathbf{v} na base \mathscr{C} .

Analogamente:

$$\mathbf{u} = \sum_{i} u^{i} \mathbf{e}_{i} = \mathscr{C}[\mathbf{u}]_{\mathscr{C}}$$

Calculemos agora o produto interno $\langle \mathbf{u} | \mathbf{v} \rangle$:

$$\langle \mathbf{u} | \mathbf{v} \rangle = \langle \sum_{i} u^{i} \mathbf{e}_{i} | \sum_{j} v^{j} \mathbf{e}_{j} \rangle$$

$$= \sum_{i,j} u^{i} v^{j} \langle \mathbf{e}_{i} | \mathbf{e}_{j} \rangle$$

$$= \sum_{i,j} g_{ij} u^{i} v^{j}$$

$$= [\mathbf{u}]_{\mathscr{C}}^{t} G_{\mathscr{C}} [\mathbf{v}]_{\mathscr{C}}$$

$$(7.1.11)$$

onde definimos a chamada **matriz de Gram**, $G_{\mathscr{C}} = [g_{ij}]$, do produto interno $\langle | \rangle$, na base $\mathscr C$ através de:

$$g_{ij} \stackrel{\text{def}}{=} \langle \mathbf{e}_i | \mathbf{e}_j \rangle$$
 (7.1.12)

Como $\langle \mathbf{u} | \mathbf{v} \rangle = \langle \mathbf{v} | \mathbf{u} \rangle$, deduzimos que a matriz de Gram $G_{\mathscr{C}}$ é simétrica, isto é:

$$G_{\mathscr{C}}^T = G_{\mathscr{C}}$$

Como $\langle \mathbf{v} | \mathbf{v} \rangle > 0, \forall \mathbf{v} \neq \mathbf{0} \in \mathcal{V}$ deduzimos que a matriz de Gram $G_{\mathscr{C}}$ é definida positiva, isto é:

$$[\mathbf{v}]_{\mathscr{C}}^T G_{\mathscr{C}}[\mathbf{v}]_{\mathscr{C}} = \sum_{i,j} g_{ij} v^i v^j > 0, \qquad \forall v^i \quad \text{n\~ao simult\^aneamente nulos}$$

É possível provar os critérios seguintes (necessários e suficientes) para decidir quando uma matriz simétrica $G = [g_{ij}]$ é definida positiva:

n = 2

$$g_{ij} > 0, \quad \begin{vmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{vmatrix} > 0$$

n = 3

$$g_{ij} > 0, \quad \begin{vmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{vmatrix} > 0, \quad \begin{vmatrix} g_{11} & g_{12} & g_{13} \\ g_{21} & g_{22} & g_{23} \\ g_{31} & g_{32} & g_{33} \end{vmatrix} > 0$$

7.2 Espaços Hermitianos (ou Unitários) complexos

▶ 7.6 <u>Definição</u> ... Seja \mathcal{V} um espaço vectorial complexo. Um **produto interno** Hermitiano em \mathcal{V} é, por definição, uma aplicação:

$$\langle \, | \, \rangle : \quad \mathcal{V} \times \mathcal{V} \quad \longrightarrow \quad \mathbb{C}$$

$$(\mathbf{u}, \mathbf{v}) \quad \longmapsto \quad \langle \mathbf{u} | \mathbf{v} \rangle$$

$$(7.2.1)$$

que satisfaz as propriedades seguintes:

[PH1]. **é uma forma sesquilinear**, isto é, é linear na primeira variável e semi-linear na segunda variável 1 :

$$\langle (\mathbf{u} + \mathbf{v}) | \mathbf{w} \rangle = \langle \mathbf{u} | \mathbf{w} \rangle + \langle \mathbf{v} | \mathbf{w} \rangle$$

$$\langle \mathbf{u} | (\mathbf{v} + \mathbf{w}) \rangle = \langle \mathbf{u} | \mathbf{w} \rangle + \langle \mathbf{u} | \mathbf{w} \rangle$$

$$\langle \lambda \mathbf{u} | \mathbf{v} \rangle = \lambda \langle \mathbf{u} | \mathbf{v} \rangle$$

$$\langle \mathbf{u} | \lambda \mathbf{v} \rangle = \overline{\lambda} \langle \mathbf{u} | \mathbf{v} \rangle$$

$$(7.2.2)$$

[PH2]. é uma forma Hermitiana:

$$\langle \mathbf{u} | \mathbf{v} \rangle = \overline{\langle \mathbf{v} | \mathbf{u} \rangle} \tag{7.2.4}$$

[PH3]. é não degenerada:

$$\langle \mathbf{u} | \mathbf{v} \rangle = 0 \quad \forall \mathbf{v} \in \mathcal{V} \quad \Rightarrow \quad \mathbf{u} = \mathbf{0}$$
 (7.2.5)

[PH4]. é definida positiva:

$$\langle \mathbf{u} | \mathbf{u} \rangle \ge 0 \tag{7.2.6}$$

 $\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathcal{V}, \forall \lambda \in \mathbb{C}.$

Um espaço vectorial complexo, munido de um produto interno Hermitiano chama-se um **espaço Hermitiano** ou um **espaço unitário**.

¹em Física, nomeadamente em Mecânica Quântica, é usual considerar outra convenção - linearidade na segunda variável e semi-linearidade na primeira variável!

▶ 7.7 Exemplo [Produto interno Hermitiano usual em \mathbb{C}^n] ... Dados dois vectores $\mathbf{z} = [z_i]$ e $\mathbf{w} = [w_i]$, em \mathbb{C}^n , define-se o respectivo produto interno (Hermitiano), como sendo o escalar $\langle \mathbf{x} | \mathbf{y} \rangle \in \mathbb{C}$, dado por:

$$\langle \mathbf{z} | \mathbf{w} \rangle \stackrel{\text{def}}{=} \sum_{i=1}^{n} z_{i} \overline{w}_{i} = z_{1} \overline{w}_{1} + z_{2} \overline{w}_{2} + \dots + z_{n} \overline{w}_{n}$$

$$= [z_{1} \ z_{2} \ \dots \ z_{n}] \begin{pmatrix} \overline{w}_{1} \\ \overline{w}_{2} \\ \vdots \\ \overline{w}_{n} \end{pmatrix}$$

$$= \mathbf{z}^{t} \overline{\mathbf{w}} \qquad \text{em notação matricial} \qquad (7.2.7)$$

O espaço vectorial \mathbb{C}^n , munido deste produto interno Euclideano, diz-se o **espaço** unitário usual e nota-se por \mathbf{U}^n .

▶ 7.8 Exemplo [Produto interno L^2 em $C^o([a,b],\mathbb{C})$] ... Consideremos o espaço vectorial real constituído pelas funções contínuas complexas, definidas no intervalo $[a,b] \subset \mathbb{R}$. Dadas duas funções $f,g \in C^o([a,b],\mathbb{C})$, define-se o respectivo produto interno L^2 , como sendo o escalar $\langle f|g \rangle \in \mathbb{C}$, dado por:

$$\langle f|g\rangle \stackrel{\text{def}}{=} \int_{a}^{b} f(t)\overline{g(t)} dt$$
 (7.2.8)

7.3 Norma

▶ 7.9 <u>Definição</u> [Norma] ... Seja $(\mathcal{V}, \langle | \rangle)$ um espaço com um produto interno (Euclideano se \mathcal{V} é real ou Hermitiano se \mathcal{V} é complexo). Define-se a **norma** $\|\mathbf{v}\|$, de um vector $\mathbf{v} \in \mathcal{V}$, através da fórmula:

$$\|\mathbf{v}\| \stackrel{\text{def}}{=} \sqrt{\langle \mathbf{v} | \mathbf{v} \rangle} \tag{7.3.1}$$

▶ 7.10 A norma verifica as propriedades seguintes:

[N1]. é positiva e não degenerada:

$$\|\mathbf{v}\| \ge 0$$
 e $\|\mathbf{v}\| = 0$ sse $\mathbf{v} = \mathbf{0}$ (7.3.2)

[N2]. é homogénea (positiva):

$$\|\lambda \mathbf{v}\| = |\lambda| \|\mathbf{v}\| \tag{7.3.3}$$

[N3]. satisfaz a "desigualdade triangular" seguinte:

$$\|\mathbf{v} + \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\| \tag{7.3.4}$$

 $\forall \mathbf{v}, \mathbf{w} \in \mathcal{V}, \forall \lambda \in \mathbb{k} = \mathbb{R} \text{ ou } \mathbb{C}.$

Todas as propriedades são de demonstração imediata com excepção da desigualdade triangular, que resulta da seguinte proposição:

▶ 7.11 Proposição [Desigualdade de Cauchy-Schwarz] ...

$$|\langle \mathbf{v} | \mathbf{w} \rangle| \le \|\mathbf{v}\| \|\mathbf{w}\|, \quad \forall \mathbf{v}, \mathbf{w} \in \mathcal{V}$$
 (7.3.5)

Dem.: Se $\mathbf{w} = \mathbf{0}$ a desigualdade é trivial. Se $\mathbf{w} \neq \mathbf{0}$ consideremos o vector:

$$\mathbf{u} = \mathbf{v} - \frac{\langle \mathbf{v} | \mathbf{w} \rangle}{\|\mathbf{w}\|^2} \, \mathbf{w}$$

de tal forma que $\langle \mathbf{u} | \mathbf{w} \rangle = 0$. Temos então que:

$$0 \le \|\mathbf{u}\|^{2} = \left\langle \left(\mathbf{v} - \frac{\langle \mathbf{v} | \mathbf{w} \rangle}{\|\mathbf{w}\|^{2}} \mathbf{w}\right) | \left(\mathbf{v} - \frac{\langle \mathbf{v} | \mathbf{w} \rangle}{\|\mathbf{w}\|^{2}} \mathbf{w}\right) \right\rangle$$

$$= \left\langle \mathbf{v} | \mathbf{v} \right\rangle - \frac{\left\langle \mathbf{v} | \mathbf{w} \right\rangle \langle \mathbf{w} | \mathbf{v} \right\rangle}{\|\mathbf{w}\|^{2}}$$

$$= \|\mathbf{v}\|^{2} - \frac{|\langle \mathbf{v} | \mathbf{w} \rangle|^{2}}{\|\mathbf{w}\|^{2}}$$
(7.3.6)

o que demonstra a desigualdade.

▶ 7.12 Demonstremos agora a desigualdade triangular (7.3.4):

$$\|\mathbf{u} + \mathbf{v}\|^{2} = \langle \mathbf{u} + \mathbf{v} | \mathbf{u} + \mathbf{v} \rangle$$

$$= \langle \mathbf{u} | \mathbf{u} \rangle + \langle \mathbf{u} | \mathbf{v} \rangle + \langle \mathbf{v} | \mathbf{u} \rangle + \langle \mathbf{v} | \mathbf{v} \rangle$$

$$= \|\mathbf{u}\|^{2} + \langle \mathbf{u} | \mathbf{v} \rangle + \overline{\langle \mathbf{u} | \mathbf{v} \rangle} + \|\mathbf{v}\|^{2}$$

$$= \|\mathbf{u}\|^{2} + 2\operatorname{Re} \langle \mathbf{u} | \mathbf{v} \rangle + \|\mathbf{v}\|^{2}$$

$$\leq \|\mathbf{u}\|^{2} + 2|\langle \mathbf{u} | \mathbf{v} \rangle| + \|\mathbf{v}\|^{2}$$

$$\leq \|\mathbf{u}\|^{2} + 2\|\mathbf{u} \| \|\mathbf{v}\| + \|\mathbf{v}\|^{2}, \text{ por Cauchy-Schwarz (7.3.5)}$$

$$= (\|\mathbf{u}\| + \|\mathbf{v}\|)^{2}$$

e portanto $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$, como se pretendia.

▶ 7.13 Exemplos ... (i) . No espaço Euclideano \mathbb{E}^n , a norma de um vector $\mathbf{x} = (x_i) \in \mathbb{R}^n$ é dada pelo teorema de Pitágoras:

$$\|\mathbf{x}\| = \sqrt{\mathbf{x}^t \mathbf{x}} = \left(\sum_{i=1}^n (x_i)^2\right)^{1/2}$$
 (7.3.7)

(ii). No espaço Unitário \mathbf{U}^n , a norma de um vector $\mathbf{z}=(z_i)\in\mathbb{C}^n$ é dada por:

$$\|\mathbf{z}\| = \sqrt{\mathbf{z}^t \overline{\mathbf{z}}} = \left(\sum_{i=1}^n |z_i|^2\right)^{1/2} \tag{7.3.8}$$

(iii). No espaço Unitário $C^o([a,b],\mathbb{C})$, munido do produto interno L^2 , dado por (7.2.8): $\langle f|g\rangle \stackrel{\mathrm{def}}{=} \int_a^b f(t)\overline{g(t)}\,dt$, a norma de uma função $f\in C^o([a,b],\mathbb{C})$ é dada por:

$$||f|| = \sqrt{\langle f|f\rangle} = \left(\int_a^b |f(t)|^2 dt\right)^{1/2}$$
 (7.3.9)

Neste exemplo, a desigualdade de Cauchy-Schwarz toma o aspecto:

$$\left| \int_{a}^{b} f(t)\overline{g(t)} \, dt \right| \le \left(\int_{a}^{b} |f(t)|^{2} \, dt \right)^{1/2} \left(\int_{a}^{b} |g(t)|^{2} \, dt \right)^{1/2} \tag{7.3.10}$$

enquanto que a desigualdade triangular tem o aspecto seguinte:

$$\left(\int_{a}^{b} |f(t) + g(t)|^{2} dt\right)^{1/2} \le \left(\int_{a}^{b} |f(t)|^{2} dt\right)^{1/2} + \left(\int_{a}^{b} |g(t)|^{2} dt\right)^{1/2}$$
(7.3.11)

7.4 Ortogonalidade

▶ 7.14 <u>Definição</u> ... Seja $(\mathcal{V}, \langle | \rangle)$ um espaço com um produto interno (Euclideano se \mathcal{V} é real ou Hermitiano se \mathcal{V} é complexo). Dois vectores $\mathbf{u}, \mathbf{v} \in \mathcal{V}$ dizem-se **ortogonais** se:

$$\langle \mathbf{u} | \mathbf{v} \rangle = 0 \tag{7.4.1}$$

▶ 7.15 Ângulo não orientado ... Suponhamos agora que $(\mathcal{V}, \langle \, | \, \rangle)$ é um espaço real Euclideano. Dados dois vectores não nulos $\mathbf{u}, \mathbf{v} \in \mathcal{V}$, deduzimos da desigualdade de Cauchy-Schwarz que:

$$-1 \le \frac{\langle \mathbf{u} | \mathbf{v} \rangle}{\|\mathbf{u} \| \|\mathbf{v} \|} \le 1 \tag{7.4.2}$$

o que permite definir o **ângulo (não orientado)** $\theta = \theta(\mathbf{u}, \mathbf{v}) \in [0, \pi]$, entre os referidos vectores não nulos $\mathbf{u}, \mathbf{v} \in \mathcal{V}$, como sendo o único $\theta \in [0, \pi]$, tal que:

$$\cos \theta = \frac{\langle \mathbf{u} | \mathbf{v} \rangle}{\|\mathbf{u}\| \|\mathbf{v}\|} \in [-1, 1]$$
 (7.4.3)

Portanto:

$$\langle \mathbf{u} | \mathbf{v} \rangle = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta(\mathbf{u}, \mathbf{v})$$
 (7.4.4)

Como vimos antes, dois vectores $\mathbf{u}, \mathbf{v} \in \mathcal{V}$ dizem-se **ortogonais** se $\langle \mathbf{u} | \mathbf{v} \rangle = 0$. Se ambos são não nulos isto significa que o ângulo $\theta(\mathbf{u}, \mathbf{v})$ é igual a $\pi/2$.

▶ 7.16 <u>Definição</u> [Ortogonal de um subconjunto] ... Seja $(\mathcal{V}, \langle | \rangle)$ um espaço com um produto interno (Euclideano se \mathcal{V} é real ou Hermitiano se \mathcal{V} é complexo). Se S é um subconjunto não vazio de \mathcal{V} , define-se o ortogonal de S como sendo o subconjunto S^{\perp} de \mathcal{V} constituído por todos os vectores que são ortogonais a todos os vectores de S:

$$S^{\perp} \stackrel{\text{def}}{=} \{ \mathbf{u} \in \mathcal{V} : \langle \mathbf{u} | \mathbf{s} \rangle = 0, \ \forall \mathbf{s} \in S \}$$
 (7.4.5)

Vamos verificar que S^{\perp} é um subespaço de \mathcal{V} . De facto, se $\mathbf{u}, \mathbf{v} \in S^{\perp}$, então $\langle \mathbf{u} | \mathbf{s} \rangle = 0$ e $\langle \mathbf{v} | \mathbf{s} \rangle = 0$, $\forall \mathbf{s} \in S$ e portanto $\langle \mathbf{u} + \mathbf{v} | \mathbf{s} \rangle = \langle \mathbf{u} | \mathbf{s} \rangle + \langle \mathbf{v} | \mathbf{s} \rangle = 0$, $\forall \mathbf{s} \in S$, i.e., $\mathbf{u} + \mathbf{v} \in S^{\perp}$. Anàlogamente $\lambda \mathbf{u} \in S^{\perp}$, $\forall \lambda \in \mathbb{k}$, se $u \in S^{\perp}$.

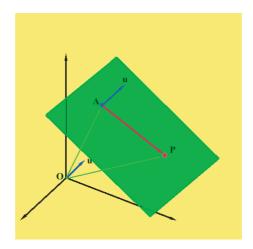
▶ 7.17 <u>Hiperplanos vectoriais</u> ... No espaço Euclideano \mathbb{E}^n , dado um vector não nulo $\mathbf{u} \in \mathbb{R}^n - \{\mathbf{0}\}$, o conjunto dos vectores $\mathbf{x} \in \mathbb{E}^n$ que são ortogonais a \mathbf{u} :

$$\{\mathbf{x} \in \mathbb{E}^n : \mathbf{x} \cdot \mathbf{u} = 0\} \tag{7.4.6}$$

formam um subespaço em \mathbb{E}^n , que se diz o **hiperplano (vectorial) ortogonal** a **u**. Se $\mathbf{x} = (x_i)$ é um ponto genérico desse hiperplano, e se $\mathbf{u} = (u_i)$, a equação $\mathbf{x} \cdot \mathbf{u} = 0$, é equivalente à seguinte **equação cartesiana**:

$$\sum_{i} u_i x_i = u_1 x_1 + u_2 x_2 + \dots + u_n x_n = 0$$
 (7.4.7)

▶ 7.18 Hiperplanos afins em \mathbb{E}^n ...



No espaço Euclideano \mathbb{E}^n , com a estrutura afim canónica, dado um ponto A e um vector não nulo $\mathbf{u} \in \mathbb{R}^n - \{\mathbf{0}\}$, o conjunto dos pontos $P \in \mathbb{E}^n$ tais que $\overrightarrow{AP} = P - A$ é ortogonal a \mathbf{u} :

$$\{P \in \mathbb{E}^n : \overrightarrow{AP} \cdot \mathbf{u} = 0\}$$
 (7.4.8)

diz o **hiperplano (afim) ortogonal** a **u**, que passa em A. Se $\overrightarrow{OA} = (a_i)$, $\mathbf{u} = (u_i)$ e se $\overrightarrow{OP} = (x_i)$ é um ponto genérico desse hiperplano, a equação $\overrightarrow{AP} \cdot \mathbf{u} = 0$, é equivalente a:

$$0 = (\overrightarrow{OP} - \overrightarrow{OA}) \cdot \mathbf{u} = \overrightarrow{OP} \cdot \mathbf{u} - \overrightarrow{OA} \cdot \mathbf{u} = \sum_{i} u_i x_i - \sum_{i} a_i u_i$$

e portanto à seguinte equação cartesiana:

$$\sum_{i} u_{i}x_{i} = u_{1}x_{1} + u_{2}x_{2} + \dots + u_{n}x_{n} = c$$
 (7.4.9)

onde $c = \overrightarrow{OA} \cdot \mathbf{u} = \sum_i a_i u_i$.

▶ 7.19 <u>Teorema [Pitágoras]</u> ... Seja $(\mathcal{V}, \langle | \rangle)$ um espaço com um produto interno (Euclideano se \mathcal{V} é real ou Hermitiano se \mathcal{V} é complexo), e $\mathbf{u}, \mathbf{v} \in \mathcal{V}$ dois vectores ortogonais. Então:

$$\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$$
 (7.4.10)

Dem.:

$$\|\mathbf{u} + \mathbf{v}\|^{2} = \langle \mathbf{u} + \mathbf{v} | \mathbf{u} + \mathbf{v} \rangle$$

$$= \|\mathbf{u}\|^{2} + \|\mathbf{v}\|^{2} + \langle \mathbf{u} | \mathbf{v} \rangle + \langle \mathbf{v} | \mathbf{u} \rangle$$

$$= \|\mathbf{u}\|^{2} + \|\mathbf{v}\|^{2}$$
(7.4.11)

7.5 Bases ortonormadas num espaço vectorial com produto interno

▶ 7.20 <u>Definição</u> [Base ortonormada] ... Seja $(\mathcal{V}, \langle \, | \, \rangle)$ um espaço vectorial de dimensão n com um produto interno (Euclideano se \mathcal{V} é real ou Hermitiano se \mathcal{V} é complexo).

Uma base $\{\mathbf{e}_1, \cdots, \mathbf{e}_n\}$ diz-se uma base ortonormada para \mathcal{V} se:

$$\langle \mathbf{e}_i | \mathbf{e}_j \rangle = \delta_{ij} \stackrel{\text{def}}{=} \begin{cases} 1 & \text{se } i = j \\ 0 & \text{se } i \neq j \end{cases}$$
 (7.5.1)

▶ 7.21 Proposição ... Seja $(\mathcal{V}, \langle \, | \, \rangle)$ um espaço vectorial de dimensão n com um produto interno (Euclideano se \mathcal{V} é real ou Hermitiano se \mathcal{V} é complexo) e $\{\mathbf{e}_1, \cdots, \mathbf{e}_n\}$ uma base ortonormada para \mathcal{V} . Então $\mathbf{v} \in \mathcal{V}$:

$$\mathbf{v} = \sum_{i=1}^{n} \langle \mathbf{v} | \mathbf{e}_i \rangle \, \mathbf{e}_i \tag{7.5.2}$$

e:

$$\|\mathbf{v}\|^2 = \sum_{i=1}^n |\langle \mathbf{v} | \mathbf{e}_i \rangle|^2$$
 (7.5.3)

Dem.: Cálculo directo.

7.6 Método de ortogonalização de Gram-Schmidt

▶ 7.22 Ortogonalização de Gram-Schmidt ...

Dada uma base qualquer $\{\mathbf{f}_1, \dots, \mathbf{f}_n\}$, para \mathcal{V} , é possível construir, a partir dela, uma base ortogonal $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$, para \mathcal{V} :

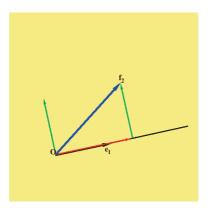
$$\langle \mathbf{e}_i | \mathbf{e}_i \rangle = 0, \quad i \neq j$$

através do chamado **processo de ortogonalização de Gram-Schmidt**, que passamos a descrever:

[1.] Em primeiro lugar pômos:

$$\mathbf{e}_1 = \mathbf{f}_1 \tag{7.6.1}$$

[2.]



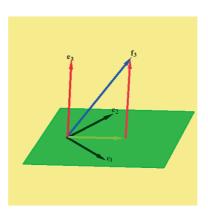
Em segundo lugar, começamos por calcular a chamada **projecção ortogonal de** \mathbf{f}_2 sobre a recta gerada por $\mathbf{f}_1 = \mathbf{e}_1$. Esta projecção ortogonal, por estar na recta gerada por $\mathbf{f}_1 = \mathbf{e}_1$, vai ser um vector do tipo $\lambda \mathbf{e}_1$, onde $\lambda \in \mathbb{k}$ é calculado pela condição de que $\langle \mathbf{f}_2 - \lambda \mathbf{e}_1 | \mathbf{e}_1 \rangle = 0$. Obtemos então:

$$\lambda = \frac{\langle \mathbf{f}_2 | \mathbf{e}_1 \rangle}{\|\mathbf{e}_1\|^2}$$

Pômos agora e_2 igual a:

$$\mathbf{e}_2 = \mathbf{f}_2 - \frac{\langle \mathbf{f}_2 | \mathbf{e}_1 \rangle}{\|\mathbf{e}_1\|^2} \, \mathbf{e}_1 \tag{7.6.2}$$

[3.]



Em terceiro lugar, começamos por calcular a chamada **projecção ortogonal de** \mathbf{f}_3 sobre o plano gerado por $\{\mathbf{f}_1, \mathbf{f}_2\}$, que é também o plano gerado por $\{\mathbf{e}_1, \mathbf{e}_2\}$. Esta projecção ortogonal, por estar no plano gerado por $\{\mathbf{e}_1, \mathbf{e}_2\}$, vai ser um vector do tipo $\lambda \mathbf{e}_1 + \eta \mathbf{e}_2$, onde $\lambda, \eta \in \mathbb{R}$ são calculados pela condição de que $\langle \mathbf{f}_3 - (\lambda \mathbf{e}_1 + \eta \mathbf{e}_2)|\mathbf{e}_1\rangle = 0$ e $\langle \mathbf{f}_3 - (\lambda \mathbf{e}_1 + \eta \mathbf{e}_2)|\mathbf{e}_2\rangle = 0$. Fazendo os cálculos, atendendo a que $\mathbf{e}_1 \perp \mathbf{e}_2$, obtemos:

$$\lambda = \frac{\langle \mathbf{f}_3 | \mathbf{e}_1 \rangle}{\|\mathbf{e}_1\|^2}, \qquad \eta = \frac{\langle \mathbf{f}_3 | \mathbf{e}_2 \rangle}{\|\mathbf{e}_2\|^2}$$

Portanto a projecção ortogonal de \mathbf{f}_3 sobre o plano gerado por $\{\mathbf{e}_1,\mathbf{e}_2\}$ é dada por:

$$\frac{\langle \mathbf{f}_3 | \mathbf{e}_1 \rangle}{\|\mathbf{e}_1\|^2} \, \mathbf{e}_1 + \frac{\langle \mathbf{f}_3 | \mathbf{e}_2 \rangle}{\|\mathbf{e}_2\|^2} \, \mathbf{e}_2$$

Pômos agora e_3 igual a:

$$\mathbf{e}_3 = \mathbf{f}_3 - \frac{\langle \mathbf{f}_3 | \mathbf{e}_1 \rangle}{\|\mathbf{e}_1\|^2} \, \mathbf{e}_1 - \frac{\langle \mathbf{f}_3 | \mathbf{e}_2 \rangle}{\|\mathbf{e}_2\|^2} \, \mathbf{e}_2 \tag{7.6.3}$$

 $[\mathbf{k}.]$ o processo decorre agora indutivamente: se supômos já construídos os vectores ortogonais $\{\mathbf{e}_1,\ldots,\mathbf{e}_k\}$, de tal forma que:

$$\operatorname{span}\{\mathbf{e}_1,\ldots,\mathbf{e}_k\}=\operatorname{span}\{\mathbf{f}_1,\ldots,\mathbf{f}_k\}$$

o vector \mathbf{e}_{k+1} será construído da seguinte forma - começamos por calcular a chamada **projecção ortogonal de f**_{k+1} sobre o subespaço gerado por $\{\mathbf{e}_1,\ldots,\mathbf{e}_k\}$. Esta projecção ortogonal é dada por:

$$\sum_{i=1}^k \frac{\langle \mathbf{f}_{k+1} | \mathbf{e}_i \rangle}{\|\mathbf{e}_i\|^2} \, \mathbf{e}_i$$

Pômos agora \mathbf{e}_{k+1} igual a:

$$\mathbf{e}_{k+1} = \mathbf{f}_{k+1} - \sum_{i=1}^{k} \frac{\langle \mathbf{f}_{k+1} | \mathbf{e}_i \rangle}{\|\mathbf{e}_i\|^2} \, \mathbf{e}_i$$
 (7.6.4)

É claro que a base ortogonal assim obtida, pode ser transformada numa base ortonormada, normalizando os vectores \mathbf{e}_i , isto é, dividindo cada um deles pela respectiva norma.

▶ 7.23 Polinómios de Legendre ... Consideremos o espaço vectorial \mathcal{V} constituído por todas as funções polinomiais de grau $\leq n$, definidas no intervalo [-1,1], munido do produto interno L^2 :

$$\langle p|q\rangle = \int_{-1}^{1} p(t)q(t) dt$$

Uma base para \mathcal{V} é $\{1, t, t^2, \dots, t^n\}$. Quando aplicamos o processo de ortogonalização de Gram-Schmidt a esta base obtemos os chamados **polinómios de Legendre** $\{\psi_0, \psi_1, \psi_2, \dots, \psi_n\}$. Vejamos como. Em primeiro lugar pômos:

$$\psi_0(t) = 1$$

Depois pômos:

$$\psi_1 = t - \frac{\langle t|1\rangle}{\|1\|^2}
= t - \frac{\int_{-1}^1 t \, dt}{\|\int_{-1}^1 1^2 \, dt\|^2} 1
= t$$
(7.6.5)

Em seguida:

$$\psi_{2} = t^{2} - \frac{\langle t^{2} | 1 \rangle}{\|1\|^{2}} 1 - \frac{\langle t^{2} | t \rangle}{\|t\|^{2}} t$$

$$= t - \frac{\int_{-1}^{1} t^{2} dt}{\|\int_{-1}^{1} 1^{2} dt\|^{2}} 1 - \frac{\int_{-1}^{1} t^{3} dt}{\|\int_{-1}^{1} t^{2} dt\|^{2}} t$$

$$= t^{2} - \frac{1}{3}$$
(7.6.6)

e procedendo da mesma forma:

$$\psi_{3} = t^{3} - \frac{3}{5}t$$

$$\psi_{4} = t^{4} - \frac{6}{7}t^{2} + \frac{3}{35}$$

$$\vdots$$
(7.6.7)

Quando normalizamos estes polinómios obtemos os chamados **polinómios de** Legendre normalizados $\{\varphi_0, \varphi_1, \varphi_2, \cdots, \varphi_n\}$:

$$\varphi_0 = \sqrt{\frac{1}{2}}$$

$$\varphi_1 = \sqrt{\frac{3}{2}}t$$

$$\varphi_2 = \frac{1}{2}\sqrt{\frac{5}{2}}(3t^2 - 1)$$

$$\varphi_3 = \frac{1}{2}\sqrt{\frac{7}{2}}(5t^3 - 3t)$$

$$\vdots \qquad (7.6.8)$$

7.7 Decomposição ortogonal. Teorema da aproximação óptima

▶ 7.24 <u>Teorema</u> [Decomposição ortogonal] ... Consideremos um espaço vectorial com um produto interno $(\mathcal{V}, \langle \, | \, \rangle)$ (Euclideano se \mathcal{V} é real ou Hermitiano se \mathcal{V} é complexo), e seja \mathcal{S} um subespaço de dimensão finita. Então:

$$\mathcal{V} = \mathcal{S} \oplus \mathcal{S}^{\perp} \tag{7.7.1}$$

isto é, qualquer vector $\mathbf{v} \in \mathcal{V}$ pode ser representado de maneira única como uma soma de dois vectores:

$$\mathbf{v} = \mathbf{s} + (\mathbf{v} - \mathbf{s}), \quad onde \ \mathbf{s} \in \mathcal{S} \ e \ \mathbf{v} - \mathbf{s} \in \mathcal{S}^{\perp}$$
 (7.7.2)

Além disso:

$$\|\mathbf{v}\|^2 = \|\mathbf{s}\|^2 + \|\mathbf{v} - \mathbf{s}\|^2$$
 (7.7.3)

Dem.: Como S tem dimensão finita, existe uma base ortonormada $\{\mathbf{e}_1, \dots, \mathbf{e}_m\}$ para S, onde $m = \dim S$. Dado um vector qualquer $\mathbf{v} \in V$, definamos:

$$\mathbf{s} \stackrel{\text{def}}{=} \sum_{i=1}^{m} \langle \mathbf{v} | \mathbf{e}_i \rangle \mathbf{e}_i \tag{7.7.4}$$

É claro que $s \in \mathcal{S}$. Por outro lado, como:

$$\langle \mathbf{v} - \mathbf{s} | \mathbf{e}_i \rangle = \langle \mathbf{v} | \mathbf{e}_i \rangle - \langle \mathbf{s} | \mathbf{e}_i \rangle = \langle \mathbf{v} | \mathbf{e}_i \rangle - \langle \mathbf{v} | \mathbf{e}_i \rangle = 0, \quad j = 1, \dots, m$$

o que significa que $\mathbf{v} - \mathbf{s}$ está em \mathcal{S}^{\perp} . Obtemos portanto a decomposição (7.7.2).

Mostremos agora que esta decomposição é única. Isto é equivalente a provar, como já sabemos, que $\mathcal{S} \cap \mathcal{S}^{\perp} = \{\mathbf{0}\}$. Suponhamos então que $\mathbf{0} \neq \mathbf{u} \in \mathcal{S} \cap \mathcal{S}^{\perp}$. Então, por definição de \mathcal{S}^{\perp} , e como $\mathbf{u} \in \mathcal{S}^{\perp}$, \mathbf{u} é ortogonal a todo o vector de \mathcal{S} . Em particular é ortogonal a si próprio, isto é, $0 = \langle \mathbf{u} | \mathbf{u} \rangle = \|\mathbf{u}\|^2$, o que implica que $\mathbf{u} = \mathbf{0}$.

Finalmente (7.7.3) deduz-se do Teorema de Pitágoras (ver o teorema 7.19).

▶ 7.25 Projectores ... Consideremos de novo um espaço vectorial com um produto interno $(\mathcal{V}, \langle | \rangle)$ (Euclideano se \mathcal{V} é real ou Hermitiano se \mathcal{V} é complexo), e suponhamos que \mathcal{S} é um subespaço de dimensão finita em \mathcal{V} . Então, como $\mathcal{V} = \mathcal{S} \oplus \mathcal{S}^{\perp}$, podemos ainda definir uma aplicação linear:

$$\mathbf{P}_{\mathcal{S}}: \mathcal{V} \longrightarrow \mathcal{V} \tag{7.7.5}$$

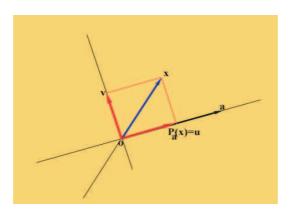
chamada a **projecção ortogonal sobre** \mathcal{S} da seguinte forma. Por definição de soma directa, todo o vector $\mathbf{v} \in \mathcal{V}$ admite uma decomposição única da forma: $\mathbf{v} = \mathbf{s} + (\mathbf{v} - \mathbf{s})$, onde $\mathbf{s} \in \mathcal{S}$ e $\mathbf{v} - \mathbf{s} \in \mathcal{S}^{\perp}$. Pômos então $\mathbf{P}_{\mathcal{S}}(\mathbf{v}) = \mathbf{s}$. É fácil ver que $\mathbf{P}_{\mathcal{S}}$ verifica as propriedades seguintes:

- $\operatorname{im} \mathbf{P}_{\mathcal{S}} = \mathcal{S}$
- $\ker \mathbf{P}_{\mathcal{S}} = \mathcal{S}^{\perp}$
- $\mathbf{P}_{\mathcal{S}}^2 = \mathbf{P}_{\mathcal{S}}$

- $\|\mathbf{P}_{\mathcal{S}}(\mathbf{v})\| \le \|\mathbf{v}\|, \quad \forall \mathbf{v} \in \mathcal{V}$
- Se $\{\mathbf{e}_1, \cdots, \mathbf{e}_m\}$ é uma base ortonormada para \mathcal{S} , então:

$$\mathbf{P}_{\mathcal{S}}(\mathbf{v}) = \sum_{i=1}^{m} \langle \mathbf{v} | \mathbf{e}_i \rangle \mathbf{e}_i$$
 (7.7.6)

 \blacktriangleright 7.26 Exemplo [Projecção ortogonal sobre uma recta, em $\operatorname{\mathbb{E}}^3]$...



Sejam $\mathbf{a} \neq \mathbf{0}$ e \mathbf{x} dois vectores em \mathbb{R}^3 , com <u>a não nulo</u>. Então existe um único vector \mathbf{u} , na recta gerada por \mathbf{a} , e um único vector \mathbf{v} , ortogonal a \mathbf{a} , tais que $\mathbf{x} = \mathbf{u} + \mathbf{v}$. O vector \mathbf{u} , notado por $\mathbf{P_a}(\mathbf{x})$, diz-se a **projecção ortogonal** de \mathbf{x} sobre a recta gerada por \mathbf{a} , e é dado por:

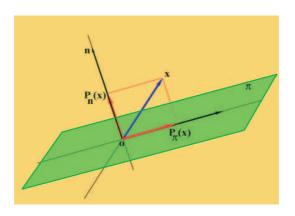
$$\boxed{\mathbf{P_a}(\mathbf{x}) = \frac{\mathbf{x} \cdot \mathbf{a}}{\|\mathbf{a}\|^2} \mathbf{a}}$$
 (7.7.7)

A aplicação $\mathbf{P_a}: \mathbb{R}^3 \to \mathbb{R}^3$ definida por (7.7.7), é linear. Note que $\mathbf{P_a^2} = \mathbf{P_a}$. Por outro lado, se considerarmos um qualquer vector $\mathbf{b} \neq \mathbf{0}$ ortogonal a \mathbf{a} (i.e.: $\mathbf{a} \cdot \mathbf{b} = 0$), vemos que $\mathbf{P_a}(\mathbf{b}) = \mathbf{0}$ e portanto:

$$\ker \mathbf{P_a} = \operatorname{span}\{\mathbf{b}\} = \{\mathbf{b} \in \mathbb{R}^3 : \mathbf{b} \cdot \mathbf{a} = 0\} = \mathbf{a}^{\perp}$$

é o plano vectorial ortogonal a a.

▶ 7.27 Exemplo [Projecção ortogonal sobre um plano vectorial, em E³]



Consideremos um plano vectorial ortogonal a um vector $\mathbf{n} \in \mathbb{R}^3 - \{\mathbf{0}\}$ (se esse plano é gerado por dois vectores \mathbf{u}, \mathbf{v} linearmente independentes, podemos tomar $\mathbf{n} = \mathbf{u} \times \mathbf{v}$). Notemos esse plano por $\pi = \mathbf{n}^{\perp}$. Dado um vector $\mathbf{x} \in \mathbb{R}^3$, ao vector:

$$\mathbf{P_{n^\perp}} \equiv \mathbf{x} - \mathbf{P_n}(\mathbf{x})$$

chamamos a projecção ortogonal de x sobre o plano vectorial ortogonal a n.

De acordo com (7.7.7), temos que:

$$\mathbf{P_{n^{\perp}}} \stackrel{\text{def}}{=} \mathbf{x} - \mathbf{P_{n}}(\mathbf{x}) = \mathbf{x} - \frac{\mathbf{x} \cdot \mathbf{n}}{\|\mathbf{n}\|^{2}} \mathbf{n}$$
(7.7.8)

A aplicação $\mathbf{P_{n^{\perp}}}: \mathbb{R}^3 \to \mathbb{R}^3$ definida por (7.7.8), é linear. Note que $\mathbf{P_{n^{\perp}}^2} = \mathbf{P_{n^{\perp}}}$. Se $\mathbf{x} \cdot \mathbf{n} = 0$, i.e., se \mathbf{x} é ortogonal a \mathbf{n} , então $\mathbf{P_{n^{\perp}}}(\mathbf{x}) = \mathbf{x}$, enquanto que, por outro lado, $\mathbf{P_{n^{\perp}}}(\mathbf{n}) = \mathbf{0}$. Portanto vemos que:

$$\ker \mathbf{P}_{\mathbf{n}^{\perp}} = \operatorname{span}\{\mathbf{n}\}$$

e:

$$\mathbf{P}_{\mathbf{n}^{\perp}}(\mathbf{x}) = \mathbf{x}$$
 $\forall \mathbf{x} \in \mathbf{n}^{\perp}$

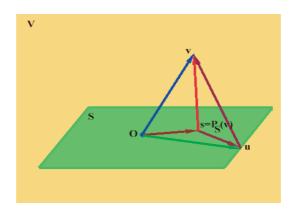
▶ 7.28 <u>Teorema</u> [da aproximação óptima] ... Consideremos um espaço vectorial com um produto interno $(\mathcal{V}, \langle \, | \, \rangle)$ (Euclideano se \mathcal{V} é real ou Hermitiano se \mathcal{V} é complexo), e seja \mathcal{S} um subespaço de <u>dimensão finita</u>. Dado um vector $\mathbf{v} \in \mathcal{V}$, a projecção ortogonal de \mathbf{v} sobre \mathcal{S} :

$$\mathbf{s} = \mathbf{P}_{\mathcal{S}}(\mathbf{v}) \in \mathcal{S}$$

é o vector de S que está mais perto de v, isto é:

$$\|\mathbf{v} - \mathbf{P}_{\mathcal{S}}(\mathbf{v})\| \le \|\mathbf{v} - \mathbf{u}\|, \quad \forall \mathbf{u} \in \mathcal{S}$$
 (7.7.9)

 $e \|\mathbf{v} - \mathbf{P}_{\mathcal{S}}(\mathbf{v})\| = \|\mathbf{v} - \mathbf{u}\|, com \ \mathbf{u} \in \mathcal{S} \ se \ e \ so \ se \ \mathbf{u} = \mathbf{P}_{\mathcal{S}}(\mathbf{v}).$



Dem.: Por (7.7.2), temos que $\mathbf{v} = \mathbf{s} + (\mathbf{v} - \mathbf{s})$, onde $\mathbf{s} = \mathbf{P}_{\mathcal{S}}(\mathbf{v}) \in \mathcal{S}$ e $\mathbf{v} - \mathbf{s} \in \mathcal{S}^{\perp}$. Como $\forall \mathbf{u} \in \mathcal{S}$ se tem:

$$\mathbf{v} - \mathbf{u} = \underbrace{(\mathbf{s} - \mathbf{u})}_{\in \mathcal{S}} + \underbrace{(\mathbf{v} - \mathbf{s})}_{\in \mathcal{S}^{\perp}}$$

esta é a decomposição ortogonal de $\mathbf{v} - \mathbf{u}$. Pelo teorema de Pitágoras:

$$\|\mathbf{v} - \mathbf{u}\|^2 = \|\mathbf{s} - \mathbf{u}\|^2 + \|\mathbf{v} - \mathbf{s}\|^2 \ge \|\mathbf{v} - \mathbf{s}\|^2$$

sendo a igualdade válida sse $\|\mathbf{s} - \mathbf{u}\|^2 = 0$, isto é, sse $\mathbf{s} = \mathbf{u}$.

▶ 7.29 Exemplo (Aproximação de funções contínuas em $[0, 2\pi]$ por polinómios trigonométricos) ... Seja $\mathcal{V} = C^o([0, 2\pi]; \mathbb{R})$ o espaço das funções reais contínuas definidas em $[0, 2\pi]$, munido do produto L^2 :

$$\langle f|g\rangle = \int_0^{2\pi} f(t)g(t) dt$$

e S_n o subespaço de dimensão 2n+1 seguinte:

$$S_n = \operatorname{span}_{\mathbb{R}} \left\{ \varphi_0(t) = \frac{1}{\sqrt{2}}, \, \varphi_{2k-1}(t) = \frac{\cos kt}{\sqrt{\pi}}, \, \varphi_{2k}(t) = \frac{\sin kt}{\sqrt{\pi}} : \quad k = 1, \dots, n \right\}$$

$$(7.7.10)$$

As 2n + 1 funções $\{\varphi_0, \varphi_1, \dots, \varphi_{2n-1}, \varphi_{2n}\}$, chamadas **polinómios trigonométricos**, formam uma base ortonormada para \mathcal{S} (mostrar isto²).

Se $f \in C^o([0, 2\pi]; \mathbb{R})$, representemos por $\mathcal{F}_n(f)$ a projecção ortogonal de f sobre \mathcal{S}_n . De acordo com a fórmula da projecção ortogonal (7.7.6), temos que:

$$\mathcal{F}_n(f) = \sum_{k=0}^{2n} \langle f | \varphi_k \rangle \varphi_k \tag{7.7.11}$$

onde:

$$\langle f|\varphi_k\rangle = \int_0^{2\pi} f(t)\varphi_k(t) dt$$
 (7.7.12)

são os chamados **coeficientes de Fourier** de f. Usando a definição das funções φ_k , podemos escrever as fórmulas anteriores na forma:

$$\mathcal{F}_n(f) = \frac{1}{2}a_0 + \sum_{k=1}^n \left(a_k \cos kt + b_k \sin kt \right)$$
 (7.7.13)

onde os coeficientes de Fourier são dados por:

$$a_{k} = \frac{1}{\pi} \int_{0}^{2\pi} f(t) \cos kt \, dt$$

$$b_{k} = \frac{1}{\pi} \int_{0}^{2\pi} f(t) \sin kt \, dt$$
(7.7.14)

para k = 0, 1, 2, ..., n. O teorema da aproximação óptima diz-nos que o polinómio trigonométrico $\mathcal{F}_n(f) \in \mathcal{S}_n$, dado por (7.7.13), aproxima f melhor que qualquer outro polinómio trigonométrico em \mathcal{S}_n , no sentido em que $||f - \mathcal{F}_n(f)||$ é o menor possível.

▶ 7.30 Exemplo Seja $\mathcal{V} = C^o([-1,1];\mathbb{R})$ o espaço das funções reais contínuas definidas em [-1,1], munido do produto L^2 :

$$\langle f|g\rangle = \int_{-1}^{1} f(t)g(t) dt$$

$$\cos A \cos B = \frac{1}{2} \left\{ \cos(A - B) + \cos(A + B) \right\}$$

$$\sin A \sin B = \frac{1}{2} \left\{ \cos(A - B) - \cos(A + B) \right\}$$

$$\sin A \cos B = \frac{1}{2} \left\{ \sin(A - B) + \sin(A + B) \right\}$$

 $^{^2 \}mathrm{Usar}$ as relações trigonométricas seguintes:

e S_n o subespaço de dimensão n+1 gerado pelos polinómios de Legendre normalizados, introduzidos no exemplo 7.23:

$$S_n = \operatorname{span}_{\mathbb{R}} \left\{ \varphi_o, \varphi_1, \cdots, \varphi_n \right\} \tag{7.7.15}$$

É claro que S é o subespaço constituído por todas as funções polinomiais de grau $\leq n$, definidas no intervalo [-1,1]. $f \in C^o([-1,1];\mathbb{R})$, representemos por $\mathbf{P}_n(f)$ a projecção ortogonal de f sobre S_n . De acordo com a fórmula da projecção ortogonal (7.7.6), temos que:

$$\mathbf{P}_n(f) = \sum_{k=0}^n \langle f | \varphi_k \rangle \, \varphi_k, \quad \text{onde} \quad \langle f | \varphi_k \rangle = \int_{-1}^1 f(t) \varphi_k(t) \, dt \quad (7.7.16)$$

que é o polinómio de grau $\leq n$, para o qual $||f - \mathbf{P}_n(f)||$ é o menor possível. Por exemplo, se $f(t) = \sin \pi t$, os coeficientes $\langle f | \varphi_k \rangle$ são dados por:

$$\langle f|\varphi_k\rangle = \int_{-1}^1 \sin \pi t \varphi_k(t) dt$$

Em particular, $\langle f|\varphi_0\rangle = 0$ E.

$$\langle f|\varphi_1\rangle = \int_{-1}^1 \sqrt{\frac{3}{2}}t \sin \pi t \, dt = \sqrt{\frac{3}{2}} \frac{2}{\pi}$$

▶ 7.31 Exemplo ... Considere o espaço vectorial $\mathbb{R}_3[t]$ das funções polinomiais p(t), de grau ≤ 3 , de coeficientes reais, munido do produto interno:

$$\langle p(t)|q(t)\rangle = \int_0^{+1} p(t)q(t) dt$$

a.) Mostre que:

$$S = \{ p(t) \in \mathbb{R}_3[t] : p(t) = p(-t) \}$$

é um subespaço vectorial. Calcule $\dim S$ e determine uma base ortonormada para S

- **b.**) Calcule o polinómio de S que está mais próximo do polinómio p(t) = t.
- **c.)** Calcule o ortogonal de $\mathcal{T} = \text{span}\{1\}$ em $\mathbb{R}_3[t]$.
- $\operatorname{\bf d.)}$ Calcule o núcleo e a imagem da aplicação linear:

$$\begin{array}{ccc} \mathbf{T}: & \mathbb{R}_3[t] & \longrightarrow & \mathbb{R}_3[t] \\ & p(t) & \longmapsto & \mathbf{T}[p(t)] = p''(t) - 2tp'(t) \end{array}$$

Resolução ...

a.) Se $p,q \in S$ então (p+q)(t) = p(t) + q(t) = p(-t) + q(-t) = (p+q)(-t) e portanto $p+q \in S$. Se $p \in S$ e $\lambda \in \mathbb{R}$ então $(\lambda p)(t) = \lambda p(t) = \lambda p(-t) = \lambda p(-t)$ e portanto $\lambda p \in S$.

Se $p(t)=a+bt+ct^2+dt^3\in S$ então $a+bt+ct^2+dt^3=p(t)=p(-t)=a-bt+ct^2-dt^3$, isto é, $2bt+2dt^3=0$ e portanto b=d=0. Logo:

$$S = \{p(t) = a + bt + ct^2 + dt^3 \in \mathbb{R}_3[t]: b = d = 0\}$$

= \{p(t) = a + ct^2 \in \mathbb{R}_3[t]: a, c \in \mathbb{R}\}
= \text{span}\{1, t^2\}

e dim S=2. Os polinómios $p(t)\equiv 1$ e $q(t)=t^2$ constituem uma base para S.

Uma base ortonormada obtem-se pelo processo de Gram-Schmidt. $||1||^2 = \int_0^1 1 \, dt = 1$ e $t^2 - \frac{\langle t^2 | 1 \rangle}{\|1\|^2} 1 = t^2 - \int_0^1 t^2 \, dt = t^2 - 1/3$. Além disso $||t^2 - 1/3||^2 = \int_0^1 (t^2 - 1/3)^2 \, dt = 4/45$. Logo os polinómios 1 e $(3\sqrt{5}/2)(t^2 - 1/3)$ constituem uma base ortonormada para S.

b.) Pelo teorema da aproximação óptima esse polinómio é dado pela projecção ortogonal de t sobre S:

$$\mathbf{P}_{S}(t) = \langle t|1\rangle 1 + \langle t|(3\sqrt{5}/2)(t^{2} - 1/3)\rangle (3\sqrt{5}/2)(t^{2} - 1/3)$$

$$= \int_{0}^{1} t \, dt + (45/4) \left(\int_{0}^{1} t(t^{2} - 1/3) \, dt\right) (t^{2} - 1/3)$$

$$= 1/2 + (45/48)(t^{2} - 1/3)$$

c.) Um polinómio $p(t)=a+bt+ct^2+dt^3\in\mathbb{R}_3[t]$ estará em \mathcal{T}^\perp sse $\langle (a+bt+ct^2+dt^3)|1\rangle=0$ isto é, sse a+b/2+c/3+d/4=0. Portanto:

$$\mathcal{T}^{\perp} = \{ p(t) = a + bt + ct^2 + dt^3 \in \mathbb{R}_3[t] : a + b/2 + c/3 + d/4 = 0 \}$$

que é um hiperplano em $\mathbb{R}_3[t]$.

d.) Um polinómio $p(t) = a + bt + ct^2 + dt^3 \in \mathbb{R}_3[t]$ estará em ker **T** sse:

$$0 = \mathbf{T}[p(t)] = p''(t) - 2tp'(t)$$

$$= (a + bt + ct^2 + dt^3)'' - 2t(a + bt + ct^2 + dt^3)'$$

$$= (2c + 6dt) - 2t(b + 2ct + 3dt^2)$$

$$= 2c + (6d - 2b)t - 4ct^2 - 6dt^3$$

donde 2c=0, 6d-2b=0, 4c=0, 6d=0, isto é, b=c=d=0. Portanto o ker **T** é constituídio pelos polinómios $p(t)=a+bt+ct^2+dt^3\in\mathbb{R}_3[t]$ tais que b=c=d=0, isto é, ker $\mathbf{T}=\{a:a\in\mathbb{R}\}=\mathrm{span}\{1\}$.

im **T** é constituídia pelos polinómios $P(t) = A + Bt + Ct^2 + Dt^3 \in \mathbb{R}_3[t]$ tais que:

$$\mathbf{T}(a + bt + ct^2 + dt^3) = A + Bt + Ct^2 + Dt^2$$
3

para algum polinómio $p(t)=a+bt+ct^2+dt^3\in\mathbb{R}_3[t]$. Como $\mathbf{T}[p(t)]=2c+(6d-2b)t-4ct^2-6dt^3$, vem que:

$$2c + (6d - 2b)t - 4ct^{2} - 6dt^{3} = A + Bt + Ct^{2} + Dt^{3}$$

isto é:

$$\begin{cases}
-2b & = A \\
-2b & +6d = B \\
-4c & = C \\
-6d = D
\end{cases}
\Rightarrow
\begin{cases}
-2b & +6d = B \\
2c & = A \\
-6d = D \\
0 = 2A + C
\end{cases}
\Rightarrow$$

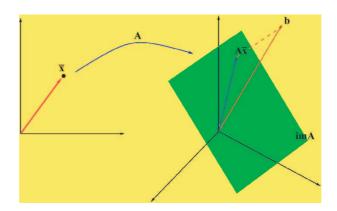
e portanto im $\mathbf{T} = \{ P(t) = A + Bt + Ct^2 + Dt^3 \in \mathbb{R}_3[t] : 2A + C = 0 \}.$

7.8 Aplicações. Mínimos quadrados

▶ 7.32 Solução dos mínimos quadrados ... Seja:

$$\mathbf{A}\mathbf{x} = \mathbf{b} \tag{7.8.1}$$

um sistema de equações lineares, não homogéneo, escrito em forma matricial. **A** é uma matriz $m \times n$, $\mathbf{x} \in \mathbb{R}^n$ e $\mathbf{b} \in \mathbb{R}^m$ é um vector fixo.



Uma "solução" dos mínimos quadrados do sistema (7.8.1) é, por definição, um vector $\hat{\mathbf{x}}$, que satisfaz:

$$\|\mathbf{A}\widehat{\mathbf{x}} - \mathbf{b}\|$$
 é mínimo (7.8.2)

Interpretando **A** como a matriz de uma aplicação linear $A: \mathbb{R}^n \to \mathbb{R}^m$, relativamente às bases canónicas de cada um destes espaços, vemos que o significado de uma "solução" dos mínimos quadrados é o seguinte:

é um vector $\hat{\mathbf{x}} \in \mathbb{R}^n$ cuja imagem $\mathbf{A}\hat{\mathbf{x}}$ está mais próxima de \mathbf{b} .

▶ 7.33 Quando $\ker A = \{\mathbf{0}\}$ a "solução" $\widehat{\mathbf{x}}$ é única. Quando $\mathbf{b} \in \operatorname{im} A$, $\widehat{\mathbf{x}}$ é uma solução exacta do sistema. Quando $\mathbf{b} \notin \operatorname{im} A$, e $\ker A = \{\mathbf{0}\}$ a "solução" $\widehat{\mathbf{x}}$ é dada por:

$$\widehat{\hat{\mathbf{x}}} = \mathbf{A}^{-1} \mathbf{P}_{\text{im } A}(\mathbf{b})$$
 (7.8.3)

Isto é, para calcular a "solução" dos mínimos quadrados do sistema (7.8.1) procedese da seguinte forma:

- 1. Calcula-se a projecção ortogonal $\widehat{\mathbf{y}} = \mathbf{P}_{\operatorname{im} A}(\mathbf{b}) \in \operatorname{im} A$, de \mathbf{b} sobre a imagem de A. Pelo teorema da aproximação óptima, este será o vector da imagem de A, que melhor aproxima \mathbf{b} .
- 2. Calcula-se $\hat{\mathbf{x}}$ tal que:

$$\mathbf{A}\widehat{\mathbf{x}} = \widehat{\mathbf{y}} = \mathbf{P}_{\text{im } A}(\mathbf{b})$$
 (7.8.4)

 \blacktriangleright 7.34 <u>Exemplo</u> ... Considere a aplicação linear ${\bf A}:\mathbb{R}^2\to\mathbb{R}^3$ definida por:

$$\mathbf{A}(x,y) = (x+y, x-y, x)$$

- **a.**) Calcule o ortogonal da imagem de \mathbf{A} em \mathbb{R}^3 , com a estrutura Euclideana usual.
 - b.) Calcule a "solução" dos mínimos quadrados do sistema:

$$\begin{cases} x+y &= 1\\ x-y &= 1\\ x &= 0 \end{cases}$$

Calcule o erro associado a essa solução e explique qual o seu significado geométrico (da solução e do seu erro).

Resolução ...

a.) A imagem de **A** é constituída por todos os vectores $(X,Y,Z) \in \mathbb{R}^3$ tais que:

$$(X, Y, Z) = \mathbf{A}(x, y) = (x + y, x - y, x)$$

para algum vector $(x, y) \in \mathbb{R}^2$. A questão é pois: quais os vectores $(X, Y, Z) \in \mathbb{R}^3$ para os quais existe (x, y) tal que:

$$\begin{cases} x+y &= X \\ x-y &= Y \\ x &= Z \end{cases}$$

Resolvendo o sistema em ordem a x, y (com X, Y, Z como parâmetros), vem que:

$$\begin{cases} x = Z \\ y = X - Z \\ 0 = X + Y - 2Z \end{cases}$$

Portanto a imagem de **A** é o plano X + Y - 2Z = 0 em \mathbb{R}^3 . O seu ortogonal é a recta gerada pelo vector $\mathbf{n} = (1, 1, -2)$.

b.) Por definição (e pelo teorema da aproximação óptima), a "solução" dos mínimos quadrados é a solução do sistema:

$$\mathbf{A}\mathbf{x} = \mathbf{P}_{\mathrm{im} \mathbf{A}}(\mathbf{b})$$

onde $\mathbf{P_{im\,A}}(\mathbf{b})$ é a projecção ortogonal do vector $\mathbf{b}=(1,1,0)$ sobre o plano imagem de $\mathbf{A}\colon X+Y-2Z=0.$

Essa projecção pode ser calculada pela seguinte fórmula:

$$\mathbf{P}_{\text{im }\mathbf{A}}(1,1,0) = (1,1,0) - \frac{(1,1,0) \cdot (1,1,-2)}{\|(1,1,-2)\|^2} (1,1,-2) = \frac{2}{3} (1,1,1)$$

Logo a solução procurada é a solução do sistema:

$$\begin{cases} x+y &= 2/3 \\ x-y &= 2/3 \\ x &= 2/3 \end{cases}$$

que é:

$$x = 2/3, \quad y = 0$$

O erro associado é, por definição, igual à distância entre o ponto (1,1,0) e a $\mathbf{P_{im\,A}(b)}$:

$$e = \|(1, 1, 0) - \frac{2}{3}(1, 1, 1)\| = \sqrt{6}/3$$

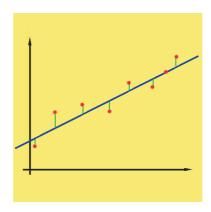
▶ 7.35 Exemplo ... Calcular a "solução" dos mínimos quadrados do sistema:

$$\begin{cases}
 x + 2y & = 1 \\
 3x - y + z & = 0 \\
 -x + 2y + z & = -1 \\
 x - y - 2z & = 2 \\
 2x + y - z & = 2
\end{cases}$$
(7.8.5)

e o erro correspondente.

7.9 Método dos mínimos quadrados. Aproximação de dados por uma recta

 \blacktriangleright 7.36 Aproximação de dados por uma recta pelo método dos mínimos quadrados



Suponhamos que se fazem n medições de uma certa grandeza y, em n instantes t_i , i=1,...,n, obtendo os resultados:

Representemos os n pontos (t_i, y_i) no plano em $\mathbb{R}^2_{t,y}$, e suponhamos que se pretende calcular uma recta do tipo:

$$y = \alpha t + \beta \tag{7.9.2}$$

que melhor ajuste esses dados.

Em que sentido deve ser entendido este "melhor" ajustamento?

Para cada t_i , o erro e_i entre o valor medido y_i e o valor estimado a partir da recta referida (supondo que ela está já calculada) é igual a:

$$\varepsilon_i = y_i - (\alpha t_i + \beta), \qquad i = 1, 2, \dots, n$$

Podemos reunir estas equações numa única em forma matricial:

$$\varepsilon = \mathbf{y} - \mathbf{A}\mathbf{x} \tag{7.9.3}$$

onde:

$$\varepsilon = \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}, \quad \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \quad \mathbf{A} = \begin{pmatrix} t_1 & 1 \\ t_2 & 1 \\ \vdots \\ t_n & 1 \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

 ε é o chamado **vector de erro** e **y** o **vector de dados**. Os coeficientes α e β , as incógnitas do problema, são as componentes do vector **x**.

Se os dados se ajustassem exactamente, $y_i = \alpha t_i + \beta$, os erros seriam todos nulos $\varepsilon_i = 0$, e poderíamos resolver o sistema $\mathbf{A}\mathbf{x} = \mathbf{y}$. Por outras palavras, os

dados estarão todos numa linha recta sse $\mathbf{y} \in \operatorname{im} \mathbf{A}$. Se eles não forem colineares então devemos procurar a recta para a qual o erro total:

$$\|\varepsilon\| = \left(\varepsilon_1^2 + \dots + \varepsilon_n^2\right)^{1/2}$$

seja mínimo.

Em linguagem vectorial, procuramos pois o vector $\mathbf{x}=\begin{pmatrix}\alpha\\\beta\end{pmatrix}$ que minimiza a norma Euclideana do vector erro:

$$\|\varepsilon\| = \|\mathbf{A}\mathbf{x} - \mathbf{y}\|$$

que é exactamente a situação que caracteriza a procura da solução dos mínimos quadrados para o sistema $\mathbf{A}\mathbf{x} = \mathbf{y}$, que foi explicada no ponto anterior.

▶ 7.37 Exemplo ... Calcular a recta de aproximação dos mínimos quadrados para os dados seguintes:

Solução: y = 12/7(1+t).

7.10 Transformações ortogonais e unitárias. Exemplos

▶ 7.38 <u>Definição</u> ... [Transformações ortogonais] ... Seja $(\mathcal{V}, \langle | \rangle)$ um espaço Euclideano de dimensão n, isto é, um espaço vectorial real com um produto interno Euclideano. Um operador linear $\mathbf{A}: \mathcal{V} \to \mathcal{V}$ diz-se uma transformação ortogonal de \mathcal{V} , se \mathbf{A} preserva o produto interno $\langle | \rangle$, i.e.:

$$\langle \mathbf{A}(\mathbf{v})|\mathbf{A}(\mathbf{w})\rangle = \langle \mathbf{v}|\mathbf{w}\rangle \qquad \forall \mathbf{v}, \mathbf{w} \in \mathcal{V}$$
 (7.10.1)

Se A é a matriz de uma tal transformação ortogonal, **relativamente a uma** base ortonormada de V, então (7.10.1) escreve-se na seguinte forma matricial:

$$(A\mathbf{v})^t A\mathbf{w} = \mathbf{v}^t \mathbf{w} \qquad \forall \mathbf{v}, \mathbf{w} \in \mathcal{V}$$

ou ainda:

$$\mathbf{v}^t A^t A \mathbf{w} = \mathbf{v}^t \mathbf{w} = \mathbf{v}^t \mathbf{I} \mathbf{w} \qquad \forall \mathbf{v}, \mathbf{w} \in \mathcal{V}$$

o que significa que a matriz A é uma matriz ortogonal, isto é:

$$A^t A = \mathbf{I} \tag{7.10.2}$$

Note ainda que se A é uma matriz ortogonal então, uma vez que:

$$1 = \det \mathbf{I} = \det (AA^t) = \det A \det (A^t) = (\det A)^2, \quad e \quad \det A \in \mathbb{R}$$

concluímos que det $A=\pm 1$ e, em particular A é inversível com:

$$A^{-1} = A^t$$

O conjunto de todas as matrizes ortogonais $n \times n$ reais formam um subgrupo de $G\ell(n) = G\ell(n; \mathbb{R})$, que se diz o **grupo ortogonal** em dimensão n e nota-se por

 $\mathcal{O}(n)$. O conjunto de todas as matrizes ortogonais $n \times n$ reais, de determinante 1, formam um subgrupo de $\mathcal{O}(n)$, que se diz o **grupo ortogonal especial** em dimensão n e nota-se por $\mathcal{SO}(n)$:

$$\mathcal{O}(n) = \{ A \in \mathcal{M}_n(\mathbb{R}) : A^t A = \mathbf{I} \}$$

$$\mathcal{SO}(n) = \{ A \in \mathcal{M}_n(\mathbb{R}) : A^t A = \mathbf{I}, \text{ e det } A = 1 \}$$
(7.10.3)

▶ 7.39 <u>Definição</u> ... [Transformações unitárias] ... Seja $(\mathcal{V}, \langle | \rangle)$ um espaço unitário de dimensão n, isto é, um espaço vectorial complexo com um produto interno Hermitiano. Um operador linear $\mathbf{A}: \mathcal{V} \to \mathcal{V}$ diz-se uma transformação unitária de \mathcal{V} , se \mathbf{A} preserva o produto interno hermitiano $\langle | \rangle$, i.e.:

$$\langle \mathbf{A}(\mathbf{v})|\mathbf{A}(\mathbf{w})\rangle = \langle \mathbf{v}|\mathbf{w}\rangle \qquad \forall \mathbf{v}, \mathbf{w} \in \mathcal{V}$$
 (7.10.4)

Se A é a matriz de uma tal transformação unitária, **relativamente a uma** base ortonormada de V, então (7.11.1) escreve-se na seguinte forma matricial:

$$(A\mathbf{v})^t \, \overline{A\mathbf{w}} = \mathbf{v}^t \, \overline{\mathbf{w}} \qquad \forall \mathbf{v}, \mathbf{w} \in \mathcal{V}$$

ou ainda:

$$\mathbf{v}^t A^t \overline{A} \overline{\mathbf{w}} = \mathbf{v}^t \overline{\mathbf{w}} = \mathbf{v}^t \mathbf{I} \overline{\mathbf{w}} \qquad \forall \mathbf{v}, \mathbf{w} \in \mathcal{V}$$

o que significa que a matriz A é uma matriz unitária, isto é:

$$A^t \overline{A} = \mathbf{I} \tag{7.10.5}$$

Dada uma matriz A, define-se a respectiva **matriz adjunta** A^{\dagger} , como sendo a conjugada transposta de A:

$$A^{\dagger} = \overline{A}^t \tag{7.10.6}$$

Portanto A é unitária sse:

$$AA^{\dagger} = \mathbf{I} \tag{7.10.7}$$

Note ainda que, uma vez que:

$$\det{(AA^{\dagger})} = \det{(A\overline{A}^t)} = \det{A}\det{(\overline{A}^t)} = \det{A}\,\overline{\det{A}} = |\det{A}|$$

concluímos que, se A é unitária, então $|\det A|=1$ e, em particular A é inversível com:

$$A^{-1} = A^{\dagger}$$

Note que agora $\det A \in \mathbb{C}$.

O conjunto de todas as matrizes unitárias $n \times n$ complexas formam um subgrupo de $G\ell(n;\mathbb{C})$, que se diz o **grupo unitário** em dimensão n e nota-se por $\mathcal{U}(n)$. O conjunto de todas as matrizes unitárias $n \times n$ complexas, de determinante 1, formam um subgrupo de $\mathcal{U}(n)$, que se diz o **grupo unitário especial** em dimensão n e nota-se por $\mathcal{SU}(n)$:

$$\mathcal{U}(n) = \left\{ A \in \mathcal{M}_n(\mathbb{C}) : A^{\dagger} A = \mathbf{I} \right\}$$

$$\mathcal{S}\mathcal{U}(n) = \left\{ A \in \mathcal{M}_n(\mathbb{C}) : A^{\dagger} A = \mathbf{I}, \text{ e } \det A = 1 \right\}$$
 (7.10.8)

7.11 Transformações unitárias em \mathbb{C}^2 . Os grupos $\mathcal{U}(2)$ e $\mathcal{SU}(2)$

▶ 7.40 Uma aplicação linear $\mathbf{A}: \mathbb{C}^2 \to \mathbb{C}^2$ diz-se uma **transformação unitária** de \mathbb{C}^2 , se \mathbf{A} preserva o produto interno hermitiano usual de \mathbb{C}^2 , i.e.:

$$\langle \mathbf{A}(\mathbf{z}) | \mathbf{A}(\mathbf{w}) \rangle = \langle \mathbf{z} | \mathbf{w} \rangle \qquad \forall \mathbf{z}, \mathbf{w} \in \mathbb{C}^2$$
 (7.11.1)

Se A é a matriz de uma tal transformação unitária, relativamente à base canónica de \mathbb{C}^2 , então (7.11.1) escreve-se na seguinte forma matricial:

$$(A\mathbf{z})^t \, \overline{A\mathbf{w}} = \mathbf{z}^t \overline{\mathbf{w}} \qquad \forall \mathbf{z}, \mathbf{w} \in \mathbb{C}^2$$

ou ainda:

$$\mathbf{z}^t A^t \overline{A} \overline{\mathbf{w}} = \mathbf{z}^t \overline{\mathbf{w}} = \mathbf{z}^t \mathbf{I} \overline{\mathbf{w}}$$
 $\forall \mathbf{z}, \mathbf{w} \in \mathbb{C}^2$

o que significa que a matriz A é uma matriz unitária, i.e.:

$$A^{t}\overline{A} = \mathbf{I} \tag{7.11.2}$$

Recordemos que, dada uma matriz A, define-se a respectiva **matriz adjunta** A^{\dagger} , como sendo a conjugada transposta de A:

$$A^{\dagger} = \overline{A}^t$$

Portanto A é unitária sse:

$$AA^{\dagger} = \mathbf{I} \tag{7.11.3}$$

Note ainda que, uma vez que det $(AA^{\dagger})=\det{(A\overline{A}^t)}=\det{A}\det{(\overline{A}^t)}=\det{A}\det{\overline{A}}=\det{A}$ (det A), concluímos que, se A é unitária, então $|\det{A}|=1$ e, em particular A é inversível com $A^{-1}=A^{\dagger}$.

▶ 7.41 O subgrupo de $\mathcal{U}(2)$ constituído por todas as transformações unitárias de \mathbb{C}^2 , que têm determinante 1 diz-se o **grupo unitário especial** e nota-se por $\mathcal{SU}(2)$. Este grupo é isomorfo ao grupo das matrizes unitárias de determinante 1, também notado por $\mathcal{SU}(2)$.

Suponhamos que $A=\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ é uma matriz em $\mathcal{SU}(2)$, de tal forma que $A^{-1}=A^{\dagger}$ e det $A=\alpha\delta-\beta\gamma=1$. Temos então que:

$$A^{-1} = \begin{pmatrix} \delta & -\beta \\ -\gamma & \alpha \end{pmatrix} = A^{\dagger} = \begin{pmatrix} \overline{\alpha} & \overline{\gamma} \\ \overline{\beta} & \overline{\delta} \end{pmatrix}$$

isto é: $\delta = \overline{\alpha}$ e $\gamma = -\overline{\beta}$. Portanto SU(2) é o grupo das matrizes que são da forma:

$$A = \begin{pmatrix} \frac{\alpha}{-\beta} & \frac{\beta}{\alpha} \end{pmatrix} \qquad e \qquad \det A = |\alpha|^2 + |\beta|^2 = 1 \tag{7.11.4}$$

7.12 Exercícios

▶ Exercício 7.1 ... Verifique quais das seguintes funções são produtos internos Euclidianos em \mathbb{R}^2 ou \mathbb{R}^3 :

a)
$$\langle \mathbf{u}, \mathbf{v} \rangle = x^1 y^1 - x^1 y^2 - x^2 y^1 + 3x^2 y^2$$
, sabendo que $\mathbf{u} = (x^1, x^2)$, e $\mathbf{v} = (y^1, y^2)$.

- b) $\langle \mathbf{u}, \mathbf{v} \rangle = x^1 y^1 + x^1 y^2 2 x^2 y^1 + 3 x^2 y^2$, sabendo que $\mathbf{u} = (x^1, x^2)$, e $\mathbf{v} = (y^1, y^2)$.
 - c) $\langle \mathbf{u}, \mathbf{v} \rangle = 6x^1y^1 + 2x^2y^2$, sabendo que $\mathbf{u} = (x^1, x^2)$, e $\mathbf{v} = (y^1, y^2)$.
- d) $\langle \mathbf{u}, \mathbf{v} \rangle = x^1 y^1 + 3x^2 y^2 + 4x^3 y^3$, sabendo que $\mathbf{u} = (x^1, x^2, x^3)$, e $\mathbf{v} = (y^1, y^2, y^3)$.
- e) $\langle \mathbf{u}, \mathbf{v} \rangle = x^1 y^1 + 3x^2 y^2 + 4x^3 y^3 x^1 y^2 y^1 x^2$, sabendo que $\mathbf{u} = (x^1, x^2, x^3)$, e $\mathbf{v} = (y^1, y^2, y^3)$.
- **Exercício 7.2** ... Calcule em cada caso $\langle \mathbf{u}, \mathbf{v} \rangle$ usando o produto interno Euclidiano usual e o produto interno definido em 7.1-a). Depois, calcule $\|\mathbf{u}\|$ e $\|\mathbf{v}\|$ recorrendo também a cada um desses dois produtos internos.
 - a) $\mathbf{u} = (1,1), \mathbf{v} = (-1,1);$
 - b) $\mathbf{u} = (1,0), \mathbf{v} = (1,2);$
 - c) $\mathbf{u} = (2,1), \mathbf{v} = (4,-1);$
- ▶ Exercício 7.3 ... Calcule em cada caso $\langle \mathbf{u}, \mathbf{v} \rangle$ usando o produto interno euclidiano usual e o produto interno definido em 7.1-d). Depois, calcule $\|\mathbf{u}\|$ e $\|\mathbf{v}\|$ recorrendo também a cada um destes dois produtos internos.
 - a) $\mathbf{u} = (1, 1, 1), \mathbf{v} = (-1, 1, 2);$
 - b) $\mathbf{u} = (1, 0, -1), \mathbf{v} = (3, -1, 2);$
 - c) $\mathbf{u} = (0, 0, 1), \mathbf{v} = (-1, 4, 6);$
- ▶ Exercício 7.4 ... Determine todos os valores reais de k para os quais $\langle \mathbf{u}, \mathbf{v} \rangle$ é um produto interno Euclidiano em \mathbb{R}^2 :

$$\langle \mathbf{u}, \mathbf{v} \rangle = x^1 y^1 - 3x^1 y^2 - 3x^2 y^1 + kx^2 y^2$$

Exercício 7.5 ... Determine todos os valores reais de a, b, c, d para os quais $\langle \mathbf{u}, \mathbf{v} \rangle$ é um produto interno Euclidiano em \mathbb{R}^2 :

$$\langle \mathbf{u}, \mathbf{v} \rangle = ax^1y^1 + bx^1y^2 + cx^2y^1 + dx^2y^2$$

▶ Exercício 7.6 ... Sejam, $\mathbf{u}=(z^1,z^2)$ e $\mathbf{v}=(w^1,w^2)$ elementos de \mathbb{C}^2 . Verifique que a função que se segue é um produto interno Hermitiano em \mathbb{C}^2 :

$$f(\mathbf{u}, \mathbf{v}) = z^1 \overline{w^1} + (1+i)z^1 \overline{w^2} + (1-i)z^2 \overline{w^1} + 3z^2 \overline{w^2}$$

Calcule a norma de $\mathbf{v} = (1 - 2i, 2 + 3i)$ usando o produto interno Hermitiano usual e depois o produto interno definido neste exercício.

- \blacktriangleright Exercício 7.7 ... Em cada caso, determine o cos do ângulo θ entre os vectores ${\bf u}$ e ${\bf v}$:
- a) $\mathbf{u} = (1, -3, 2), \mathbf{v} = (2, 1, 5)$ em \mathbb{R}^3 , usando o produto interno euclidiano usual e o produto interno definido em 7.1-d).
- b) $\mathbf{u} = 2t 1$, $\mathbf{v} = t^2$ em $\mathbb{R}(t)$, usando o produto interno Euclidiano definido no exercício 7.14.

▶ Exercício 7.8 ... No espaço linear $\mathbb{R}(t)$ verifique se $\langle f, g \rangle$ é um produto interno.

a)
$$(f, g) = f(1)g(1)$$

b)
$$\langle f, g \rangle = \left| \int_0^1 f(t)g(t) dt \right|$$

c)
$$\langle f, g \rangle = \int_0^1 f'(t)g'(t) dt$$

d)
$$\langle f, g \rangle = \left(\int_0^1 f(t) dt \right) \left(\int_0^1 g(t) dt \right)$$

▶ Exercício 7.9 ... No espaço vectorial real das funções contínuas em (-1,1), seja $\langle f,g\rangle=\int_{-1}^1 f(t)g(t)\,dt$. Considere as três funções u_1,u_2,u_3 dadas por:

$$u_1(t) = 1,$$
 $u_2(t) = t,$ $u_3(t) = 1 + t.$

Mostre que duas delas são ortogonais, duas fazem um angulo de $\frac{\pi}{3}$ entre si e as outras duas fazem um ângulo de $\frac{\pi}{6}$ entre si.

▶ Exercício 7.10 ... Prove cada uma das afirmações das alíneas seguintes e interprete-as geométricamente no caso do produto interno usual em \mathbb{R}^2 ou \mathbb{R}^3 .

a)
$$\langle \mathbf{x}, \mathbf{y} \rangle = 0 \Leftrightarrow \|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$$
.

b)
$$\langle \mathbf{x}, \mathbf{y} \rangle = 0 \Leftrightarrow \|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x} - \mathbf{y}\|^2$$
.

c)
$$\langle \mathbf{x}, \mathbf{y} \rangle = 0 \Leftrightarrow \|\mathbf{x} + c\mathbf{y}\| \ge \|\mathbf{x}\|$$
 para todo o real c .

d)
$$\langle \mathbf{x} + \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle = 0 \iff ||\mathbf{x}|| = ||\mathbf{y}||$$
.

- ▶ Exercício 7.11 ... Calcule o ângulo que o vector $(1, 1, \dots, 1)$ de \mathbb{R}^n faz com os vectores coordenados unitários de \mathbb{R}^n .
- ▶ Exercício 7.12 ... Como se sabe, num espaço Euclidiano real com produto interno $\langle \mathbf{x}, \mathbf{y} \rangle$ fica definida ume norma por $\|\mathbf{x}\| = \langle \mathbf{x}, \mathbf{x} \rangle^{\frac{1}{2}}$. Dê uma fórmula para obter o produto interno $\langle \mathbf{x}, \mathbf{y} \rangle$ a partir de normas de vectores apropriados.
- ▶ Exercício 7.13 ... Seja V um espaço linear real normado e designe-se a norma de $\mathbf{x} \in V$ por $\|\mathbf{x}\|$. Prove que se a norma se pode obter de um produto interno na forma $\|\mathbf{x}\| = \langle \mathbf{x}, \mathbf{y} \rangle^{\frac{1}{2}}$ então:

$$\|\mathbf{x} - \mathbf{y}\|^2 + \|\mathbf{x} + \mathbf{y}\|^2 = 2\|\mathbf{x}\|^2 + 2\|\mathbf{y}\|^2$$

Esta identidade é conhecida por **lei do paralelogramo**. Verifique que corresponde a afirmar que para um paralelogramo a soma dos quadrados dos comprimentos dos lados é igual à soma dos quadrados dos comprimentos das diagonais.

- **Exercício 7.14** ... Considere o espaço vectorial real $\mathbb{R}(t)$ no qual está definido o seguinte produto interno: $\langle f,g\rangle=\int_0^1 f(t)g(t)\,dt$. Seja f(t)=t+2 e $g(t)=t^2-2t-3$. Determine :
 - a) $\langle f, g \rangle$ b) ||f|| c) Um vector unitário com a direcção de g.

 \blacktriangleright Exercício 7.15 ... Seja E um espaço vectorial no qual está definido um produto escalar. Mostre que :

a)
$$\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} - \mathbf{v}\|^2 = 2\|\mathbf{u}\|^2 + 2\|\mathbf{v}\|^2$$
 b) $\langle \mathbf{u}, \mathbf{v} \rangle = \frac{1}{4}\|\mathbf{u} + \mathbf{v}\|^2 - \frac{1}{4}\|\mathbf{u} - \mathbf{v}\|^2$

ightharpoonup Exercício 7.16 ... Em cada um dos casos, determine uma base ortonormada do subespaço de \mathbb{R}^3 gerado pelos seguintes vectores:

a)
$$\mathbf{x}_1 = (1, 1, 1), \quad \mathbf{x}_2 = (1, 0, 1), \quad \mathbf{x}_3 = (3, 2, 3).$$

b)
$$\mathbf{x}_1 = (1, 1, 1), \quad \mathbf{x}_2 = (-1, 1, -1), \quad \mathbf{x}_3 = (1, 0, 1).$$

ightharpoonup Exercício 7.17 ... Em cada um dos casos, determine uma base ortonormada do subespaço de \mathbb{R}^4 gerado pelos seguintes vectores:

a)
$$\mathbf{x}_1=(1,1,0,0), \quad \mathbf{x}_2=(0,1,1,0), \quad \mathbf{x}_3=(0,0,1,1), \quad \mathbf{x}_4=(1,0,0,1).$$

b)
$$\mathbf{x}_1 = (1, 1, 0, 1), \quad \mathbf{x}_2 = (1, 0, 2, 1), \quad \mathbf{x}_3 = (1, 2, -2, 1).$$

▶ Exercício 7.18 ... No espaço vectorial real $\mathbb{R}(t)$, com o produto interno $\langle x,y\rangle=\int_0^1 x(t)y(t)\ dt$, mostre que as funções que se seguem formam uma base ortonormada do subespaço por elas gerado:

$$y_1(t) = 1,$$
 $y_2(t) = \sqrt{3}(2t - 1),$ $y_3(t) = \sqrt{5}(6t^2 - 6t + 1).$

- \blacktriangleright Exercício 7.19 ... Seja Sum subespaço de um espaço vectorial $V\!.$ Mostre que o S^\perp é o conjunto dos vectores ortogonais a todos os vectores de uma base de S
- ▶ Exercício 7.20 ... Seja W o subespaço de \mathbb{R}^5 gerado pelos vectores $\mathbf{u} = (1,2,3,-1,2)$ e $\mathbf{v} = (2,4,7,2,-1)$. Determine uma base do complemento ortogonal W^{\perp} de W.
 - ► Exercício 7.21 ...
- ▶ Exercício 7.22 ... Considere o espaço vectorial real $\mathbb{R}_2(t)$ no qual está definido o produto interno $\langle f, g \rangle = \int_0^1 f(t)g(t)$ dt.
 - a) Determine uma base do subespaço W ortogonal a h(t) = 2t + 1.
- b) Aplique o método de ortogonalização de Gram-Schmidt à base $(1, t, t^2)$ para obter uma base ortonormada $(u_1(t), u_2(t), u_3(t))$ de $\mathbb{R}_2(X)$.
- ightharpoonup Exercício 7.23 ... Seja V o espaço linear das matrizes 2×2 de componentes reais, com as operações usuais. Prove que fica definido um produto interno em V por:

$$\langle A, B \rangle = a_{11}b_{11} + a_{12}b_{12} + a_{21}b_{21} + a_{22}b_{22}$$
 onde $A = (a_{ij}) \in B = (b_{ij})$.

Calcule a matriz da forma $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$, com $a,b\in\mathbb{R}$, mais próxima da matriz $A=\begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$.

- **Exercício 7.24** ... Considere o subespaço S de \mathbb{R}^3 gerado pelos vectores (1,0,0) e (0,1,0).
 - a) Verifique que fica definido em \mathbb{R}^3 um produto interno por:

```
\langle x,y\rangle = 2x_1y_1 + x_1y_2 + x_2y_1 + x_2y_2 + x_3y_3, onde x=(x_1,x_2,x_3)ey=(y_1,y_2,y_3).
```

- b) Determine uma base ortonormal para o subespaço S, com este produto interno
- c) Determine o elemento de S mais próximo do ponto (0,0,1),
usando o produto interno de a).
- d) Calcule um vector diferente de zero e ortogonal a S usando o produto interno de a).
- ▶ Exercício 7.25 ... No espaço vectorial real das funções contínuas definidas em (0,2), com o produto interno $\langle f,g\rangle=\int_0^2 f(x)g(x)$ dx, seja $f(x)=\exp(x)$. Mostre que, o polinómio constante g, mais próximo de f é $g=\frac{1}{2}(\exp(2)-1)$. Calcule $\|g-f\|^2$.
- ightharpoonup Exercício 7.26 ... Usando os produtos internos usuais em \mathbb{R}^2 e \mathbb{R}^3 , calcule em cada caso a projecção ortogonal $\mathbf{P_u}(\mathbf{v})$, de \mathbf{v} sobre a recta gerada pr \mathbf{u} :
 - a) $\mathbf{u} = (1,1), \mathbf{v} = (2,3);$
 - b) $\mathbf{u} = (4,3), \mathbf{v} = (0,1);$
 - c) $\mathbf{u} = (1,1,1)$, $\mathbf{v} = (1,-1,0)$;
 - d) $\mathbf{u} = (1,0,0), \mathbf{v} = (0,1,2).$
 - ▶ Exercício 7.27 ... Determine as projecções ortogonais seguintes:
 - b) $\mathbf{v} = 2t 1$, $\mathbf{w} = t^2$ sobre $\mathbb{R}_1(t)$ usando o produto interno L^2 .