

Álgebra Linear e
Geometria Analítica
Módulos 7 a 9
EV's com produto interno
Valores próprios. Teorema espectal
J.N. Tayares

Last Revision Date: 22 de Novembro de 2009

Responda a cada uma das seguintes questões. Objectivo: 100%.

- **1.** (10^{pts}) Considere a matriz $A = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$, e as afirmações seguintes:
 - I. A é diagonalizável sobre \mathbb{C}

II. A é diagonalizável sobre \mathbb{R}

III. um valor próprio de $A \notin i$

IV. os valores próprios de A são ± 1

Então:

I. e IV. são verdadeiras todas são falsas

II. e IV. são verdadeiras

I. e III. são verdadeiras

2. (10^{pts}) Considere a matriz $A = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix}$, e as afirmações seguintes:

Back

- I. A é diagonalizável sobre \mathbb{R}
- II. Os valores próprios de A são -1 e 2
- III. A não tem valores próprios reais
- IV. $\mathbf{v} = (1, 0, -2)$ é vector próprio de A

Então:

I., II. e IV. são verdadeiras todas são verdadeiras

todas são falsas apenas II. é verdadeira

- 3. (10^{pts}) Considere as afirmações seguintes àcerca de um operador linear $\mathbf{L}: \mathcal{V} \to \mathcal{V}$, onde \mathcal{V} é um EV de dimensão finita n:
 - A. L é diagonalizável
 - B. \mathcal{V} tem uma base de vectores próprios de L
 - C. L tem valores próprios distintos
 - D. L tem n valores próprios distintos

Indique qual a afirmação correcta:

$$A \Leftrightarrow B \in D \Rightarrow A$$

$$A \Leftrightarrow B \in C \Leftrightarrow A$$

$$A \Rightarrow C$$

$$A \Rightarrow D$$

Back

4. (10^{pts}) Seja $\mathcal{V} = \mathcal{F}(\mathbb{R}, \mathbb{R})$ o EV das funções reais de variável real. Considere a aplicação $T(f)(x) = (x^2 + 1)f(x)$ (deve verificar que T é linear) e as afirmações seguintes:

A.
$$\ker T = \{0\}$$
 B. $\operatorname{im} T = \{0\}$
C. $\ker T = \{\text{funções constantes}\}$ D. $\operatorname{im} T = \mathcal{V}$

Indique qual a afirmação correcta:

todas são verdadeiras todas são falsas apenas B é verdadeira A e D são verdadeiras

5. (10^{pts}) Considere a aplicação linear $\mathbf{A}: \mathbb{R}^4 \to \mathbb{R}^3$ definida por:

$$\mathbf{A}(x, y, z, w) = (x + y, y - z, x + z)$$

e as afirmações seguintes:

A. dim ker
$$\mathbf{A} = 2$$
 B. ker $\mathbf{A} = \text{span}\{(1, -1, -1, 0), (0, 0, 0, 1)\}$
C. dim im $\mathbf{A} = 2$ D. im $\mathbf{A} = \text{span}\{(1, 0, 1), (1, 1, 0)\}$

Indique qual a afirmação correcta:

todas são falsas apenas A é verdadeira

todas são verdadeiras apenas $B \in D$ são verdadeiras

6. (10^{pts}) Considere os endomorfismos $\mathbf{T}: \mathbb{R}^2 \to \mathbb{R}^2 \in \mathbf{S}: \mathbb{R}^2 \to \mathbb{R}^2$ definidos por:

$$T(x, y) = (x, 0),$$
 $S(x, y) = (x + y, y)$

e as afirmações seguintes:

A.
$$(\mathbf{S} \circ \mathbf{T})(x, y) = (x + y, 0)$$
 B. $\mathbf{T} \in \mathbf{S}$ comutam
C. $(\mathbf{T} \circ \mathbf{S})(x, y) = (x, 0)$ D. $(\mathbf{T} \circ \mathbf{S})(x, y) = (x, x + y)$

Então:

todas são verdadeiras

A e C são verdadeiras

todas são falsas

B e D são verdadeiras

7. (10^{pts}) Considere a aplicação linear $\mathbf{A}: \mathbb{R}_2[X] \to \mathbb{R}_3[X]$ definida por:

$$\mathbf{A}(p) = Xp + X^2p', \quad p \in \mathbb{R}_2[X]$$

Back ■ Doc Doc ▶

onde p'= derivada de p (deve verificar que esta aplicação está bem definida e é linear). Das matrizes seguintes qual é a matriz $(\mathbf{A})_{\mathcal{BC}}$, de \mathbf{A} relativamente às bases:

$$\mathcal{B} = \{1 + X, X + X^2, X^2\}, \text{ para } \mathbb{R}_2[X], \text{ e}$$

 $\mathcal{C} = \{1 + X, X + X^2, X^2 + X^3, X^3\}, \text{ para } \mathbb{R}_3[X]:$

$$A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 2 & 0 \\ -1 & 1 & 3 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 2 & 0 \\ -1 & 1 & 3 \end{pmatrix}, C = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 2 & 0 & 3 \end{pmatrix},$$

$$D = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

8. (10^{pts}) Seja $\mathcal{S} \subset \mathcal{M}_2(\mathbb{R})$ o subespaço do EV $\mathcal{M}_2(\mathbb{R})$, constituído

pelas matrizes quadradas de ordem 2, reais, da forma $\begin{pmatrix} a & b \\ b & c \end{pmatrix}$, e $\mathbf{A}: \mathcal{S} \to \mathcal{S}$, a aplicação definida por:

$$\mathbf{A} \left(\begin{array}{cc} a & b \\ b & c \end{array} \right) = \left(\begin{array}{cc} a+c & b \\ c & a+b+c \end{array} \right)$$

Das afirmações seguintes quais as verdadeiras?

A.
$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 é uma base do ker **A**

B. $\dim \ker \mathbf{A} = 1$

C.
$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \right\}$$
 é uma base da im **A**

D. dim im $\mathbf{A} = 2$

todas são verdadeiras A e C são verdadeiras

todas são falsas B e D são verdadeiras

Back

◀ Doc

Doc ▶

9. (10^{pts}) Seja $\mathcal{M}_2(\mathbb{R})$ o EV das matrizes quadradas de ordem 2, reais, e $\mathbf{T}: \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R})$, o endomorfismo linear definido por:

$$\mathbf{T} \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) = \left(\begin{array}{cc} a - d & -b - c \\ b + c & d - a \end{array} \right)$$

Das afirmações seguintes quais as verdadeiras?

A.
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 é uma base do ker **T**

B.
$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\}$$
 é uma base do ker **T**

C.
$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\}$$
 é uma base da im **T**

D.
$$\begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}$$
 é uma base do $\ker \mathbf{T} \cap \operatorname{im} \mathbf{T}$

todas são verdadeiras B, C e D são verdadeiras todas são falsas A e D são verdadeiras

Back

10. (10^{pts}) Considere o endomorfismo linear $\mathbf{T}: \mathbb{R}_3[X] \to \mathbb{R}_3[X]$ definida por:

$$\mathbf{T}(p) = p + p', \quad p \in \mathbb{R}_3[X]$$

onde p' = derivada de p. Então o determinante de **T** é igual a:

-1

Pontuação:

Percentagem:

Back

