Módulo 1

Um curso rápido de ALGA apenas em \mathbb{R}^2

Neste primeiro módulo vamos retomar alguns conceitos ensinados no ensino secundário, e fazer uma ponte para os assuntos mais sofisticados que precisamos de aprender na disciplina de ALGA. Tentamos por agora usar as notações que são mais familiares ao leitor.

Contents

1.1	Álgebra Linear em \mathbb{R}^2	3
1.2	Aplicações à geometria	23

▶ Palavras chave

Vectores. \mathbb{R}^2 como espaço vectorial real. Subespaços . Dependência e indepêndencia linear. Base canónica. Bases, coordenadas e dimensão. Aplicações Lineares. Matriz de uma aplicação linear. Determinantes. Valores e vectores próprios.

Geometria Euclideana em \mathbb{R}^2 . Produto interno (euclideano). Norma (euclideana). Ângulo. Ortogonalidade. Rectas vectoriais e afins. Projecção ortogonal. Interpretação geométrica de det e de det A. Reflexões numa recta. Transformações ortogonais em \mathbb{R}^2 . Os grupos O(2) e SO(2).

▶ Notações

```
\mathbf{x}, \mathbf{y}, \mathbf{u}, \mathbf{v}, \mathbf{w}... vectores, em vez de \vec{\mathbf{x}}, \vec{\mathbf{y}}, \vec{\mathbf{u}}, \vec{\mathbf{v}}, ... a, b, c, ..., \lambda, \eta, \mu, \xi, ... escalares, isto é, números reais (para já).
```

▶ Número de aulas

2teóricas e 2teórico-práticas.

▶ Objectivos

Um forte intuição geométrica sobre os principais conceitos da ALGA. Resolver os sistemas que aparecem obrigatoriamente pelo **método de eliminação de Gauss**.

▶ Site de apoio à disciplina

http://www.fc.up.pt/cmup/alga

▶ Site de apoio em temas de Matemática elementar

http://www.fc.up.pt/cmup/apoiomat

3

1.1 Álgebra Linear em \mathbb{R}^2

Vectores

▶ 1.1 Um vector \mathbf{x} em \mathbb{R}^2 é por definição um par ordenado de números reais, representado, ou na forma $\mathbf{x} = (x_1, x_2)$, ou dispostos segundo uma matrizcoluna de duas linhas:

$$\mathbf{x} = \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right)$$

Os números reais x_i , i=1,2, dizem-se as **componentes** do vector $\mathbf{x} \in \mathbb{R}^2$. Geomètricamente $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ será representado como na figura seguinte:

\mathbb{R}^2 como espaço vectorial real

▶ 1.2 Dados dois vectores $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ e $\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$, em \mathbb{R}^2 , define-se a respectiva soma vectorial, como sendo o vector $\mathbf{x} + \mathbf{y}$, dado por:

$$\mathbf{x} + \mathbf{y} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \end{pmatrix}$$

Geomètricamente $\mathbf{x} + \mathbf{y}$ é obtido através da seguinte **regra do paralelogramo**:

▶ 1.3 Dado um vector $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ em \mathbb{R}^2 , e um escalar (i.e., um número real) $\lambda \in \mathbb{R}$, define-se a multiplicação do escalar λ pelo vector \mathbf{x} , como sendo o vector $\lambda \mathbf{x}$ dado por:

$$\lambda \mathbf{x} = \left(\begin{array}{c} \lambda \, x^1 \\ \lambda \, x^2 \end{array}\right)$$

▶ 1.4 É fácil provar que as duas operações definidas anteriormente, satisfazem as propriedades seguintes:

$$[EV1]. \qquad \mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x} \tag{1.1.1}$$

[EV2].
$$(\mathbf{x} + \mathbf{y}) + \mathbf{z} = \mathbf{x} + (\mathbf{y} + \mathbf{z})$$
 (1.1.2)

[EV3].
$$\mathbf{0} + \mathbf{x} = \mathbf{x} + \mathbf{0} = \mathbf{x} \qquad \forall \mathbf{x} \in \mathbb{R}^2$$
 (1.1.3)

[EV4].
$$\forall \mathbf{x}, \exists (-\mathbf{x}) : \mathbf{x} + (-\mathbf{x}) = \mathbf{0}$$
 (1.1.4)

[EV5].
$$\lambda(\mathbf{x} + \mathbf{y}) = \lambda \mathbf{x} + \lambda \mathbf{y}$$
 (1.1.5)

[EV6].
$$(\lambda + \eta)\mathbf{x} = \lambda \mathbf{x} + \eta \mathbf{x}$$
 (1.1.6)

[EV7].
$$\lambda(\eta \mathbf{x}) = (\lambda \eta) \mathbf{x}$$
 (1.1.7)

$$[EV8]. 1\mathbf{x} = \mathbf{x} (1.1.8)$$

onde $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^2$, $\lambda, \eta \in \mathbb{R}$, $\mathbf{0} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ é o **vector nulo** de \mathbb{R}^2 , e $-\mathbf{x} = (-1)\mathbf{x}$.

Por isso, diz-se que \mathbb{R}^2 é um espaço vectorial real.

Exercício 1.1 ... Demonstre as 8 propriedades (2.1.1) a (1.1.8).

Subespaços

▶ 1.5 Um subconjunto não vazio $\mathbb{S} \subseteq \mathbb{R}^2$ diz-se um subespaço vectorial de \mathbb{R}^2 , se \mathbb{S} é fechado relativamente às operações de soma de vectores e de multiplicação de escalares por vectores, i.e.:

• Se
$$\mathbf{x}, \mathbf{y} \in \mathbb{S}$$
 também $\mathbf{x} + \mathbf{y} \in \mathbb{S}$ (1.1.9)

• Se
$$\lambda \in \mathbb{R}$$
, e $\mathbf{x} \in \mathbb{S}$ também $\lambda \mathbf{x} \in \mathbb{S}$ (1.1.10)

Em \mathbb{R}^2 os subespaços são de dois tipos:

- triviais: $\mathbb{S} = \{\mathbf{0}\} \in \mathbb{S} = \mathbb{R}^2$
- não triviais: $\mathbb{S} = \{\lambda \mathbf{v} : \lambda \in \mathbb{R}\}$, onde $\mathbf{v} \neq \mathbf{0}$, que representa uma recta que passa na origem, gerada por $\mathbf{v} \neq \mathbf{0}$.
- **Exercício 1.2** ... Diga quais dos seguintes conjuntos são subespaços vectoriais de \mathbb{R}^2 :

```
\begin{array}{ll} {\rm a)} \ \mathbb{A} = \left\{ (x,y) \in \mathbb{R}^2 : x = y \right\}; & {\rm e)} \ \mathbb{E} = \left\{ (x,y) \in \mathbb{R}^2 : 3x - y = 1 \right\}; \\ {\rm b)} \ \mathbb{B} = \left\{ (a,-a) \in \mathbb{R}^2 : a \in \mathbb{R} \right\}; & {\rm f)} \ \mathbb{F} = \left\{ (x,y) \in \mathbb{R}^2 : |x+2y| = 3 \right\}; \\ {\rm c)} \ \mathbb{C} = \left\{ (x,y) \in \mathbb{R}^2 : x + y \neq 2 \right\}; & {\rm g)} \ \mathbb{G} = \left\{ (b,2a+b) : a,b \in \mathbb{R} \right\}. \\ {\rm d)} \ \mathbb{D} = \left\{ (x,y) \in \mathbb{R}^2 : x + 5y = 0 \right\}; & {\rm g)} \ \mathbb{H} = \left\{ (b,2a+1) : a,b \in \mathbb{R} \right\}. \end{array}
```

Combinação linear

▶ 1.6 Um vector $\mathbf{x} \in \mathbb{R}^2$ diz-se uma combinação linear dos vectores \mathbf{a} e \mathbf{b} de \mathbb{R}^2 se existirem escalares $\lambda, \eta \in \mathbb{R}$ tais que:

$$\mathbf{x} = \lambda \,\mathbf{a} + \eta \,\mathbf{b} \tag{1.1.11}$$

O conjunto de todas as combinações lineares dos vectores \mathbf{a} e \mathbf{b} , isto é, de todos os vectores da forma $\lambda \mathbf{a} + \eta \mathbf{b}$, onde os escalares $\lambda, \eta \in \mathbb{R}$ são arbitrários, chama-se o espaço gerado por \mathbf{a} e \mathbf{b} e representa-se por span $\{\mathbf{a}, \mathbf{b}\}$:

$$\operatorname{span}\{\mathbf{a}, \mathbf{b}\} = \{\lambda \, \mathbf{a} + \eta \, \mathbf{b} : \lambda, \eta \in \mathbb{R}\}$$
(1.1.12)

 \triangleright Exercício 1.3 ... Em cada uma das alíneas que se seguem, verifique se $\mathbf{x} \in$ span $\{a, b\}$:

- $\begin{array}{lll} \mathbf{a}) & \mathbf{x} = (1,0), \, \mathbf{a} = (1,1), \, \mathbf{e} \, \, \mathbf{b} = (0,1); \\ \mathbf{c}) & \mathbf{x} = (1,0), \, \mathbf{a} = (1,1), \, \mathbf{e} \, \, \mathbf{b} = (2,2); \\ \mathbf{e}) & \mathbf{x} = (4,3), \, \mathbf{a} = (1,-1), \, \mathbf{e} \, \, \mathbf{b} = (-2,2). \end{array} \quad \begin{array}{ll} \mathbf{b}) & \mathbf{x} = (2,1), \, \mathbf{a} = (1,-1), \, \mathbf{e} \, \, \mathbf{b} = (1,1); \\ \mathbf{x} = (1,1), \, \mathbf{a} = (2,1), \, \mathbf{e} \, \, \mathbf{b} = (-1,0); \\ \mathbf{x} = (4,3), \, \mathbf{a} = (1,-1), \, \mathbf{e} \, \, \mathbf{b} = (-2,2). \end{array} \quad \begin{array}{ll} \mathbf{b}) & \mathbf{x} = (2,1), \, \mathbf{a} = (1,-1), \, \mathbf{e} \, \, \mathbf{b} = (-1,0); \\ \mathbf{b} = (-1,0), \, \mathbf{c} = (1,1), \, \mathbf{c}$
- **Exercício 1.4** ... Em cada um dos casos, calcule o subespaço gerado por a e b, onde
 - a) $\mathbf{a} = (1, 1), \mathbf{b} = (2, 2), \text{ em } \mathbb{R}^2;$ b) $\mathbf{a} = ((1,0), \mathbf{b} = (5,0), \text{ em } \mathbb{R}^2;$
 - c) $\mathbf{a} = (2, -1), \mathbf{b} = (1, 0), \text{ em } \mathbb{R}^2;$ d) $\mathbf{a} = (2, 1), \mathbf{b} = (0, 0), \text{ em } \mathbb{R}^2;$

Dependência e independência linear

- ightharpoonup 1.7 Dois vectores \mathbf{x} e \mathbf{y} em \mathbb{R}^2 , dizem-se linearmente dependentes, se um deles é múltiplo escalar do outro. Se $\mathbf{x} = \mathbf{0}$ (ou $\mathbf{y} = \mathbf{0}$) então \mathbf{x} e \mathbf{y} são linearmente dependentes. Geomètricamente x e y são linearmente dependentes, sse eles são colineares.
- ▶ 1.8 Dois vectores \mathbf{x} e \mathbf{y} em \mathbb{R}^2 , dizem-se linearmente independentes, se não são linearmente dependentes (o que implica que $x \neq 0$ e $y \neq 0$). Geomètricamente \mathbf{x} e \mathbf{y} são linearmente independentes, sse eles são não colineares.

Simbolicamente:

(x e y são linearmente independentes) \iff $(\lambda x + \eta y = 0)$ $\lambda = \eta = 0$

- **Exercício 1.5** ... Verifique se os vectores que se seguem são linearmente dependentes ou independentes:
- a) (1,0), (2,-1) em \mathbb{R}^2 ; b) (1,1), (2,2) em \mathbb{R}^2 ;
- c) $(\pi, 0)$, (0, 1) em \mathbb{R}^2 ; d) (1, 2), (2, 3), (1, 1) em \mathbb{R}^2 ;

Base canónica

▶ 1.9 Os vectores de \mathbb{R}^2 :

$$\mathbf{e}_1 = \mathbf{i} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \mathbf{e} \quad \mathbf{e}_2 = \mathbf{j} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

são linearmente independentes, e têm a propriedade de que qualquer vector $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, se pode escrever como **combinação linear** de \mathbf{e}_1 e \mathbf{e}_2 . De facto:

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = x_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
$$= x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 \tag{1.1.13}$$

Diz-se então que $\mathscr{C} = \{\mathbf{e}_1, \mathbf{e}_2\}$ é uma base (ordenada) - a base canónica de \mathbb{R}^2 .

Bases, coordenadas, dimensão

▶ 1.10 Qualquer conjunto $\mathscr{B} = \{\mathbf{u}_1, \mathbf{u}_2\}$ constituído por dois vectores linearmente independentes, e que têm a propriedade de que qualquer vector $\mathbf{x} \in \mathbb{R}$, se pode escrever como combinação linear de \mathbf{u}_1 e \mathbf{u}_2 :

$$\mathbf{x} = x_1 \mathbf{u}_1 + x_2 \mathbf{u}_2 \tag{1.1.14}$$

para certos escalares (únicos) $x_1, x_2 \in \mathbb{R}$, diz-se uma base de \mathbb{R}^2 .

▶ 1.11 Todas as bases de \mathbb{R}^2 têm sempre dois elementos, e, por isso, diz-se que a dimensão (real) de \mathbb{R}^2 é 2:

Os escalares $x_1, x_2 \in \mathbb{R}$, que surgem em (1.1.14), dizem-se as **componentes** (ou as coordenadas) do vector \mathbf{x} , na base $\mathscr{B} = \{\mathbf{u}_1, \mathbf{u}_2\}$. Neste caso escrevemos:

$$\mathbf{x} = (\mathbf{x})_{\mathscr{B}} \equiv \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}_{\mathscr{B}} \tag{1.1.15}$$

Exercício 1.6 ... Verifique se os conjuntos que se seguem, são ou não bases de cada um dos espaços vectoriais indicados em cada alínea. Calcule as coordenadas de $\mathbf{x} = (1, -1)$ relativamente aos que são bases:

```
a) \{(1,1),(3,1)\} em \mathbb{R}^2; b) \{(0,1),(0,-3)\} em \mathbb{R}^2; c) \{(2,1),(1,-1),(0,2)\} em \mathbb{R}^2; d) \{(2,1),(0,0),(0,1)\} em \mathbb{R}^2;
```

ightharpoonup Exercício 1.7 ... Calcule uma base de cada um dos subespaços que se seguem, e depois as coordenadas do vector u em cada uma das bases:

```
a) S = \{(x,y) \in \mathbb{R}^2 : x+y=0\}, u = (3,-3);
b) S = \{(x,y) \in \mathbb{R}^2 : 2x = -y\}, u = (4,-8);
```

Aplicações Lineares

▶ 1.12 Uma aplicação $\mathbf{A} : \mathbb{R}^2 \to \mathbb{R}^2$ diz-se uma aplicação linear, se \mathbf{A} preserva as operações que definem a estrutura vectorial de \mathbb{R}^2 , i.e.:

$$\mathbf{A}(\mathbf{x} + \mathbf{y}) = \mathbf{A}(\mathbf{x}) + \mathbf{A}(y) \tag{1.1.16}$$

$$\mathbf{A}(\lambda \mathbf{x}) = \lambda \mathbf{A}(\mathbf{x}) \tag{1.1.17}$$

 $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^2$, e $\forall \lambda \in \mathbb{R}$.

- ▶ 1.13 Dada uma aplicação linear $\mathbf{A} : \mathbb{R}^2 \to \mathbb{R}^2$ define-se:
 - o núcleo de A:

$$\ker \mathbf{A} = \{ \mathbf{x} \in \mathbb{R}^2 : \mathbf{A}(\mathbf{x}) = \mathbf{0} \}$$
 (1.1.18)

• a imagem de A:

$$\operatorname{im} \mathbf{A} = \{ \mathbf{y} : \mathbf{A}(\mathbf{x}) = \mathbf{y} \in \mathbb{R}^2, \operatorname{para algum} \mathbf{x} \in \mathbb{R}^2 \}$$
 (1.1.19)

- **Exercício 1.8** ... Mostre que ker \mathbf{A} e im \mathbf{A} são subespaços de \mathbb{R}^2 .
- **Exercício 1.9** ... Das aplicações $\mathbf{A}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ que se seguem, indique aquelas que são lineares. Relativamente a essas, calcule o respectivo núcleo e diga quais as que são injectivas.
 - a) $\mathbf{A}:(x,y)\longmapsto(x+y,x-y)$ b) $\mathbf{A}:(x,y)\longmapsto(|x|,|y|)$ c) $\mathbf{A}:(x,y)\longmapsto(0,x+y)$
- **Exercício 1.10** ... Mostre que uma aplicação linear $\mathbf{A}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ fica completamente determinada pelos valores que assume numa base. Mais concretamente, se $\{\mathbf{e}_1, \mathbf{e}_2\}$ é uma base e se $\mathbf{A}(\mathbf{e}_1) = \mathbf{f}_1, \mathbf{A}(\mathbf{e}_2) = \mathbf{f}_2$, onde $\mathbf{f}_1, \mathbf{f}_2$ são fixos de forma arbitrária, então estes dados determinam de forma única a imagem $\mathbf{A}(\mathbf{x})$ de um vector arbitrário.
- ▶ Exercício 1.11 ... Sabendo que A é uma aplicação linear, calcule em cada caso a imagem de um vector genérico:

- a) Sendo $\mathbf{A}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ e $\mathbf{A}(1,0) = (1,1)$ e $\mathbf{A}(0,1) = (1,-2)$; b) Sendo $\mathbf{A}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ e $\mathbf{A}(1,-1) = (1,2)$ e $\mathbf{A}(0,3) = (2,-2)$; c) Sendo $\mathbf{A}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ e $\mathbf{A}(2,1) = (-1,0)$ e $\mathbf{A}(-1,1) = (3,-2)$;

Matriz de uma aplicação linear

 \blacktriangleright 1.14 Se $\mathscr{B}=\{\mathbf{u}_1,\mathbf{u}_2\}$ é uma base fixa de $\mathbb{R}^2,$ podemos escrever que:

$$\mathbf{A}(\mathbf{u}_1) = a \mathbf{u}_1 + b \mathbf{u}_2 \tag{1.1.20}$$

$$\mathbf{A}(\mathbf{u}_2) = c \mathbf{u}_1 + d \mathbf{u}_2 \tag{1.1.21}$$

A matriz:

$$A = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \tag{1.1.22}$$

diz-se a matriz de A na base \mathcal{B} , e nota-se por:

$$A = (\mathbf{A})_{\mathscr{B}}$$

Se as coordenadas de um vector $\mathbf{x} \in \mathbb{R}^2$, na base $\mathscr{B} = \{\mathbf{u}_1, \mathbf{u}_2\}$, são $\mathbf{x} =$ $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}_{\overline{\omega}}$, i.e., se:

$$\mathbf{x} = x_1 \, \mathbf{u}_1 + x_2 \, \mathbf{u}_2$$

então as coordenadas de A(x) na base \mathcal{B} obtêm-se da seguinte forma:

$$\mathbf{A}(\mathbf{x}) = \mathbf{A}(x_1 \mathbf{u}_1 + x_2 \mathbf{u}_2)$$

$$= x_1 \mathbf{A}(\mathbf{u}_1) + x_2 \mathbf{A}(\mathbf{u}_2)$$

$$= x_1 (a \mathbf{u}_1 + b \mathbf{u}_2) + x_2 (c \mathbf{u}_1 + d \mathbf{u}_2)$$

$$= (ax_1 + cx_2) \mathbf{u}_1 + (bx_1 + dx_2) \mathbf{u}_2$$
(1.1.23)

o que significa que as coordenadas de A(x) na base \mathcal{B} :

$$(\mathbf{A}(\mathbf{x}))_{\mathscr{B}} = \left(\begin{array}{c} y_1 \\ y_2 \end{array}\right)_{\mathscr{B}}$$

obtêm-se matricialmente através de:

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix}_{\mathscr{B}} = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}_{\mathscr{B}}$$
 (1.1.24)

ou mais sucintamente:

$$(\mathbf{A}(\mathbf{x}))_{\mathscr{B}} = (\mathbf{A})_{\mathscr{B}}(\mathbf{x})_{\mathscr{B}} \tag{1.1.25}$$

▶ Exercício 1.12 ... Em cada um dos seguintes casos determine a matriz da aplicação linear A na base indicada e calcule ker A e im A:

$$\begin{array}{llll} a). & \mathbf{A}: & \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\ & & (x,y) & \longmapsto & (3x-y,x+5y) \end{array}, & \text{na base } \mathscr{C} = \{(1,0),(0,1)\} \\ b). & \mathbf{A}: & \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\ & & (x,y) & \longmapsto & (3x-y,x+5y) \end{array}, & \text{na base } \mathscr{B} = \{(1,1),(1,-1)\} \\ c). & \mathbf{A}: & \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\ & & (x,y) & \longmapsto & (3x,x+y) \end{array}, & \text{na base } \mathscr{B} = \{(2,-1),(1,1)\} \end{array}$$

b).
$$\mathbf{A}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 na base $\mathscr{B} = \{(1,1), (1,-1)\}$

c). A:
$$\mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 na base $\mathscr{B} = \{(2, -1), (1, 1)\}$

Composta de aplicações lineares. Matriz da composta. Produto de matrizes.

▶ 1.15 Sejam

$$\mathbf{A}: \mathbb{R}^2 \to \mathbb{R}^2$$
 e $\mathbf{B}: \mathbb{R}^2 \to \mathbb{R}^2$ (1.1.26)

duas aplicações lineares.

A composta $\mathbf{A} \circ \mathbf{B} : \mathbb{R}^2 \to \mathbb{R}^2$ (lê-se **A** composta com **B**, ou **A** após **B**) é a aplicação definida por:

$$\mathbf{A} \circ \mathbf{B} : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$\mathbf{x} \longmapsto (\mathbf{A} \circ \mathbf{B})(x) = \mathbf{A}(\mathbf{B}(\mathbf{x}))$$

$$(1.1.27)$$

Esquematicamente:

$$\mathbf{x} \stackrel{\mathbf{B}}{\longmapsto} \mathbf{B}(\mathbf{x}) \stackrel{\mathbf{A}}{\longmapsto} \mathbf{A}(\mathbf{B}(\mathbf{x}))$$

- ightharpoonup Exercício 1.13 ... Mostre que $\mathbf{A} \circ \mathbf{B}$ é linear.
- ▶ 1.16 Se $\mathscr{B} = \{\mathbf{u}_1, \mathbf{u}_2\}$ é uma base fixa de \mathbb{R}^2 , podemos escrever que:

$$\mathbf{A}(\mathbf{u}_1) = a \mathbf{u}_1 + b \mathbf{u}_2 \tag{1.1.28}$$

$$\mathbf{A}(\mathbf{u}_2) = c \,\mathbf{u}_1 + d \,\mathbf{u}_2 \tag{1.1.29}$$

construindo assim a matriz de ${\bf A}$ na base ${\mathcal B}:$

$$A = (\mathbf{A})_{\mathscr{B}} = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \tag{1.1.30}$$

Analogamente, podemos escrever que:

$$\mathbf{B}(\mathbf{u}_1) = e \mathbf{u}_1 + f \mathbf{u}_2 \tag{1.1.31}$$

$$\mathbf{B}(\mathbf{u}_2) = g \, \mathbf{u}_1 + h \, \mathbf{u}_2 \tag{1.1.32}$$

construindo assim a matriz de ${\bf B}$ na base ${\mathscr B}$:

$$B = (\mathbf{B})_{\mathscr{B}} = \begin{pmatrix} e & g \\ f & h \end{pmatrix} \tag{1.1.33}$$

Se as coordenadas de um vector $\mathbf{x} \in \mathbb{R}^2$, na base $\mathcal{B} = \{\mathbf{u}_1, \mathbf{u}_2\}$, são $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}_{\mathcal{B}}$, i.e., se:

$$\mathbf{x} = x_1 \, \mathbf{u}_1 + x_2 \, \mathbf{u}_2$$

então $\mathbf{B}(\mathbf{x})$ é igual a (verificar):

$$\mathbf{B}(\mathbf{x}) = (ex_1 + gx_2)\mathbf{u}_1 + (fx_1 + hx_2)\mathbf{u}_2$$

e portanto as coordenadas de $\mathbf{A}(\mathbf{B}(\mathbf{x}))$ na base $\mathcal B$ obtêm-se da seguinte forma:

$$\mathbf{A}(\mathbf{B}(\mathbf{x})) = \mathbf{A}((ex_1 + gx_2) \mathbf{u}_1 + (fx_1 + hx_2) \mathbf{u}_2)$$

$$= (ex_1 + gx_2) \mathbf{A}(\mathbf{u}_1) + (fx_1 + hx_2) \mathbf{A}(\mathbf{u}_2)$$

$$= (ex_1 + gx_2) (a \mathbf{u}_1 + b \mathbf{u}_2) + (fx_1 + hx_2) (c \mathbf{u}_1 + d \mathbf{u}_2)$$

$$= ((ae + cf)x_1 + (ag + ch)x_2) \mathbf{u}_1 + ((be + df)x_1 + (bg + dh)x_2) \mathbf{u}_2$$
(1.1.34)

o que significa que as coordenadas de A(B(x)) na base \mathcal{B} :

$$(\mathbf{A}(\mathbf{B}(\mathbf{x})))_{\mathscr{B}} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}_{\mathscr{B}}$$

obtêm-se matricialmente através de:

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix}_{\mathscr{B}} = \begin{pmatrix} ae + cf & ag + ch \\ be + df & bg + dh \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}_{\mathscr{B}}$$
(1.1.35)

o que é de facto uma fórmula complicada. Para simplificar os cálculos introduzimos o conceito de **produto de matrizes** - o produto das matrizes A e B (por esta ordem) define-se através de:

$$AB = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} e & g \\ f & h \end{pmatrix} = \begin{pmatrix} ae + cf & ag + ch \\ be + df & bg + dh \end{pmatrix}$$
(1.1.36)

o que nos permite escrever (1.1.35) na forma:

$$((\mathbf{A} \circ \mathbf{B})(\mathbf{x}))_{\mathscr{B}} = (\mathbf{A})_{\mathscr{B}}(\mathbf{B})_{\mathscr{B}}(\mathbf{x})_{\mathscr{B}}$$
(1.1.37)

- ► Exercício 1.14 ...
- 1. Mostrar que $(\mathbf{A} \circ \mathbf{B})_{\mathscr{B}} = (\mathbf{A})_{\mathscr{B}}(\mathbf{B})_{\mathscr{B}}$
- 2. Mostrar que o produto de matrizes não é, em geral, comutativo, i.e., em geral $AB \neq BA$.
- 3. Mostrar que o produto de matrizes é associativo A(BC) = (AB)C.
- 4. Qual a matriz da aplicação identidade Id : $\mathbb{R}^2 \to \mathbb{R}^2$, relativamente a uma qualquer base de \mathbb{R}^2 ?

O conjunto de todas as matrizes quadradas 2×2 , de entradas reais, representase por $\mathcal{M}_2(\mathbb{R})$.

▶ Exercício 1.15 ... Uma matriz $A \in \mathcal{M}_2(\mathbb{R})$, diz-se inversível se existir uma matriz $B \in \mathcal{M}_2(\mathbb{R})$ tal que:

$$AB = BA = Id$$

Onde Id = $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ é a matriz identidade. Neste caso escreve-se $B=A^{-1}$ para a inversa de A.

- 1. Calcule explicitamente a inversa da matriz $A=\begin{pmatrix} a & c \\ b & d \end{pmatrix}$, supondo que ela existe. Qual a condição para que exista A^{-1} ?
- 2. Mostre que $(A^{-1})^{-1} = A$
- 3. Mostre que se $\mathbf{A}:\mathbb{R}^2\to\mathbb{R}^2$ é um isomorfismo e se \mathscr{B} é uma base de \mathbb{R}^2 , então:

$$(\mathbf{A}^{-1})_{\mathscr{B}} = ((\mathbf{A})_{\mathscr{B}})^{-1} \tag{1.1.38}$$

▶ Exercício 1.16 ... A transposta de uma matriz $A=\begin{pmatrix}a&c\\b&d\end{pmatrix}$ é a matriz $A^t=\begin{pmatrix}a&b\\c&d\end{pmatrix}$

- 1. Mostrar que $(A4)^t = A$
- 2. Mostrar que $(AB)^t = B^t A^t$
- \blacktriangleright 1.17 Um grupo é um conjunto não vazio Gmunido de uma operação binária:

$$\begin{array}{ccc} G \times G & \longrightarrow & G \\ (g,h) & \longmapsto & g \cdot h \end{array}$$

que verifica as propriedades seguintes:

- 1. associatividade $(g \cdot h) \cdot k = g \cdot (h \cdot k), \forall g, h, k \in G$
- 2. existe um elemento neutro $e \in G$ tal que $e \cdot g = g \cdot e = g, \forall g \in G$
- 3. cada elemento g tem um inverso , isto é, $\forall g \in G$ existe $h \in G$ tal que $g \cdot h = h \cdot g = e$. Este inverso nota-se por g^{-1} (em notação multiplicativa).
- **Exercício 1.17** ... Mostre que o conjunto das matrizes inversíveis:

$$GL(2) = \{ A \in \mathcal{M}_2(\mathbb{R}) : A \text{ \'e inversivel} \}$$

munido da operação de produto de matrizes, é um grupo.

Determinantes

▶ 1.18 Dada uma matriz $A = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$, definimos o seu **determinante** det A, como sendo o número real:

$$\det A = \det \begin{pmatrix} a & c \\ b & d \end{pmatrix} = ad - bc \tag{1.1.39}$$

Representemos por $\mathbf{c}_1=\left(\begin{array}{c}a\\b\end{array}\right)$ e $\mathbf{c}_2=\left(\begin{array}{c}c\\d\end{array}\right)$ as colunas da matriz A, de tal forma que:

$$\det A = \det \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 \end{bmatrix} = ad - bc \tag{1.1.40}$$

Um cálculo directo mostra que:

 $\det \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 \end{bmatrix} \ \neq \ 0 \ \mathrm{sse} \ \mathbf{c}_1, \mathbf{c}_2 \ \mathrm{s\~{a}o} \ \mathrm{linearmente} \ \mathrm{independentes}$

$$\det \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 \end{bmatrix} = -\det \begin{bmatrix} \mathbf{c}_2 & \mathbf{c}_1 \end{bmatrix} \tag{1.1.42}$$

$$\det \begin{bmatrix} \mathbf{c}_1 + \mathbf{c}_1' & \mathbf{c}_2 \end{bmatrix} = \det \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 \end{bmatrix} + \det \begin{bmatrix} \mathbf{c}_1' & \mathbf{c}_2 \end{bmatrix}$$
 (1.1.43)

$$\det \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 + \mathbf{c}_2' \end{bmatrix} = \det \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 \end{bmatrix} + \det \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2' \end{bmatrix}$$
 (1.1.44)

$$\det \begin{bmatrix} \lambda \mathbf{c}_1 & \mathbf{c}_2 \end{bmatrix} = \lambda \det \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 \end{bmatrix}$$
$$= \det \begin{bmatrix} \mathbf{c}_1 & \lambda \mathbf{c}_2 \end{bmatrix} \qquad \lambda \in \mathbb{R}$$
(1.1.45)

e ainda que:

$$\det \mathbf{I} = 1 \tag{1.1.46}$$

$$\det(AB) = \det A \det B \tag{1.1.47}$$

$$\det(A^{-1}) = (\det A)^{-1} \qquad \forall A \text{ inversível} \qquad (1.1.48)$$

$$\det(P^{-1}AP) = \det A \qquad \forall P \text{ inversivel} \qquad (1.1.49)$$

$$det(A) = \det(A^t) \tag{1.1.50}$$

onde A^t é a **transposta** de A e $\mathbf{I}=\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$ é a **matriz identidade**.

Além disso é possível provar que para uma matriz A:

A é inversível se e só se
$$\det A \neq 0$$
 (1.1.51)

- ▶ Exercício 1.18 ... Demonstre todas as propriedades acima referidas.
- ▶ 1.19 Se $\mathbf{A}: \mathbb{R}^2 \to \mathbb{R}^2$ é uma aplicação linear, define-se o respectivo determinante det \mathbf{A} , como sendo o determinante da matriz de \mathbf{A} , relativamente a uma qualquer base de \mathbb{R}^2 . Por (1.1.49) e (1.1.48), esta definição não depende da base escolhida.
- \blacktriangleright Exercício 1.19 ... Calcule o determinante das aplicações lineares descritas no exercício 1.13.

Em breve veremos uma interpretação geométrica da noção de determinante.

Produto interno (euclideano)

▶ 1.20 Dados dois vectores $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ e $\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$, em \mathbb{R}^2 , define-se o respectivo **produto interno (Euclideano)**, como sendo o escalar $\mathbf{x} \cdot \mathbf{y} \in \mathbb{R}$, dado por:

$$\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2$$

$$= (x_1 \quad x_2) \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

$$= \mathbf{x}^t \mathbf{y}$$
(1.1.52)

ightharpoonup 1.21 O produto interno (euclideano), que acabámos de definir, verifica as propriedades seguintes:

• é bilinear:

$$(\mathbf{x} + \mathbf{y}) \cdot \mathbf{z} = \mathbf{x} \cdot \mathbf{z} + \mathbf{y} \cdot \mathbf{z}$$

$$\mathbf{x} \cdot (\mathbf{y} + \mathbf{z}) = \mathbf{x} \cdot \mathbf{y} + \mathbf{x} \cdot \mathbf{z}$$

$$\lambda \mathbf{x} \cdot \mathbf{y} = \mathbf{x} \cdot \lambda \mathbf{y} = \lambda (\mathbf{x} \cdot \mathbf{y})$$
(1.1.53)

• é simétrica:

$$\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x} \tag{1.1.54}$$

• é não degenerada:

$$\mathbf{x} \cdot \mathbf{y} = 0 \quad \forall \mathbf{y} \in \mathbb{R}^2 \quad \Rightarrow \quad \mathbf{x} = \mathbf{0}$$
 (1.1.55)

• é definida positiva:

$$\mathbf{x} \cdot \mathbf{x} \ge 0 \quad \mathbf{e} \quad \mathbf{x} \cdot \mathbf{x} = 0 \Longleftrightarrow \mathbf{x} = \mathbf{0}$$
 (1.1.56)

 $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^2, \forall \lambda \in \mathbb{R}.$

 \blacktriangleright Exercício 1.20 ... Verifique que o produto interno (1.1.52) satisfaz as propriedades acima referidas.

Norma (euclideana)

▶ 1.22 Define-se a norma euclideana $\|\mathbf{x}\|$, de um vector $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2$, através da fórmula:

$$\|\mathbf{x}\| \equiv \sqrt{\mathbf{x} \cdot \mathbf{x}}$$

$$= \sqrt{\mathbf{x}^t \mathbf{x}}$$

$$= \sqrt{(x_1)^2 + (x_2)^2}$$
(1.1.57)

- ▶ 1.23 A norma euclideana verifica as propriedades seguintes:
 - é positiva e não degenerada:

$$\|\mathbf{x}\| \ge 0 \quad e \quad \|\mathbf{x}\| = 0 \quad sse \quad \mathbf{x} = \mathbf{0} \tag{1.1.58}$$

• é homogénea (positiva):

$$\|\lambda \mathbf{x}\| = |\lambda| \|\mathbf{x}\| \tag{1.1.59}$$

• verifica a desigualdade triangular:

$$\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\| \tag{1.1.60}$$

 $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^2, \forall \lambda \in \mathbb{R}.$

- ▶ 1.24 Todas as propriedades são de demonstração imediata com excepção da desigualdade triangular, que resulta imediatamente de uma outra importante desigualdade que passamos a enunciar:
 - Desigualdade de Cauchy-Schwarz:

$$|\mathbf{x} \cdot \mathbf{y}| \le ||\mathbf{x}|| ||\mathbf{y}|| \tag{1.1.61}$$

 $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^2$.

Demonstração...

Se $\mathbf{y} = \mathbf{0}$ a desigualdade é trivial. Se $\mathbf{y} \neq \mathbf{0}$ consideremos o vector:

$$\mathbf{u} = \mathbf{x} - \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{y}\|^2} \, \mathbf{y}$$

de tal forma que $\mathbf{u} \cdot \mathbf{y} = 0$. temos então que:

$$0 \le \|\mathbf{u}\|^{2} = \left(\mathbf{x} - \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{y}\|^{2}} \mathbf{y}\right) \cdot \left(\mathbf{x} - \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{y}\|^{2}} \mathbf{y}\right)$$

$$= \mathbf{x} \cdot \mathbf{x} - \frac{(\mathbf{x} \cdot \mathbf{y})(\mathbf{y} \cdot \mathbf{x})}{\|\mathbf{y}\|^{2}}$$

$$= \|\mathbf{x}\|^{2} - \frac{(\mathbf{x} \cdot \mathbf{y})^{2}}{\|\mathbf{y}\|^{2}}$$
(1.1.62)

o que portanto demonstra a desigualdade, CQD.

Demonstremos agora a desigualdade triangular (7.3.4):

$$\|\mathbf{x} + \mathbf{y}\|^{2} = (\mathbf{x} + \mathbf{y}) \cdot (\mathbf{x} + \mathbf{y})$$

$$= \mathbf{x} \cdot \mathbf{x} + \mathbf{x} \cdot \mathbf{y} + \mathbf{y} \cdot \mathbf{x} + \mathbf{y} \cdot \mathbf{y}$$

$$= \|\mathbf{x}\|^{2} + 2(\mathbf{x} \cdot \mathbf{y}) + \|\mathbf{y}\|^{2}$$

$$\leq \|\mathbf{x}\|^{2} + 2\|\mathbf{x}\|\|\mathbf{y}\| + \|\mathbf{y}\|^{2}$$

$$\leq \|\mathbf{x}\|^{2} + 2\|\mathbf{x}\|\|\mathbf{y}\| + \|\mathbf{y}\|^{2}, \text{ pela designaldade de Cauchy-Schwarz (2.1.48)}$$

$$= (\|\mathbf{x}\| + \|\mathbf{y}\|)^{2}$$

e portanto $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$, como se pretendia.

Ângulo, ortogonalidade

▶ 1.25 Dados dois vectores <u>não nulos</u> $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$, deduzimos da desigualdade de Cauchy-Schwarz que:

$$-1 \le \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|} \le 1 \tag{1.1.63}$$

o que permite definir o ângulo (não orientado) $\theta \in [0, \pi]$, entre os referidos vectores não nulos $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$, como sendo o único $\theta \in [0, \pi]$, tal que:

$$\cos \theta = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|} \in [-1, 1] \tag{1.1.64}$$

Portanto:

$$\mathbf{x} \cdot \mathbf{y} = \|\mathbf{x}\| \|\mathbf{y}\| \cos \theta \tag{1.1.65}$$

Dois vectores $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$ dizem-se **ortogonais** se $\mathbf{x} \cdot \mathbf{y} = 0$.

Rectas vectoriais e afins

ightharpoonup 1.26 Dado um vector não nulo $\mathbf{a} \neq \mathbf{0}$, o conjunto dos vectores \mathbf{x} que são da forma:

$$\mathbf{x} = t \, \mathbf{a}, \qquad t \in \mathbb{R} \tag{1.1.66}$$

diz-se a **recta** (vectorial) gerada por **a**. Se $\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$, então (1.1.66) é equivalente ao sistema de equações:

$$\left\{ \begin{array}{l} x_1 = t \, a_1 \\ x_2 = t \, a_2 \end{array} \right., \qquad t \in \mathbb{R}$$

que se dizem as equações paramétricas da referida recta. Eliminando t nestas equações, obtemos a chamada equação cartesiana dessa mesma recta:

$$a_2 x_1 - a_1 x_2 = 0 (1.1.67)$$

o que exibe a recta como o conjunto dos vectores $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ que são ortogonais ao vector $\mathbf{n} = \begin{bmatrix} a_2 \\ -a_1 \end{bmatrix}$, isto é, tais que:

$$\mathbf{x} \cdot \mathbf{n} = 0$$

ightharpoonup 1.27 Dado um ponto $A \in \mathbb{R}^2$ e um vector não nulo $\mathbf{v} \neq \mathbf{0}$, o conjunto dos pontos P que são da forma:

$$P = A + t \mathbf{v}, \qquad t \in \mathbb{R} \tag{1.1.68}$$

diz-se a recta afim que passa em A e é gerada por $\mathbf{v} \neq \mathbf{0}$.

Se $P=\left(\begin{array}{c}x_1\\x_2\end{array}\right), A=\left(\begin{array}{c}a_1\\a_2\end{array}\right)$, e $\mathbf{v}=\left[\begin{array}{c}v_1\\v_2\end{array}\right]$, então (1.1.68) é equivalente ao sistema de equações:

$$\begin{cases} x_1 = a_1 + t v_1 \\ x_2 = a_2 + t v_2 \end{cases}, \qquad t \in \mathbb{R}$$

que se dizem as equações paramétricas da referida recta. Eliminando t nestas equações, obtemos a chamada equação cartesiana dessa mesma recta:

$$v_2(x_1 - a_1) - v_1(x_2 - a_2) = 0 (1.1.69)$$

o que exibe a recta como o conjunto dos pontos $P=\begin{pmatrix}x_1\\x_2\end{pmatrix}$ que são ortogonais ao vector $\mathbf{n}=\begin{bmatrix}v_2\\-v_1\end{bmatrix}$, e que passa em A, i.e., tais que:

$$(P - A) \cdot \mathbf{n} = 0$$

- **Exercício 1.21** ... Calcule a imagem do reticulado formado pelas rectas x=n e $y=m,\,m,n\in\mathbb{Z},$ sob:
- (i). a aplicação linear $\mathbf{A}(x,y) = (2x, x+y)$.
- (ii). a aplicação linear $\mathbf{B}(x,y) = (x-y,x+y)$.

Valores e vectores próprios

▶ 1.28 Seja $\mathbf{A}: \mathbb{R}^2 \to \mathbb{R}^2$ uma aplicação linear. Um escalar $\lambda \in \mathbb{R}$ diz-se um valor próprio de \mathbf{A} se existir um vector não nulo $\mathbf{v} \in \mathbb{R}^2 - \{\mathbf{0}\}$ tal que:

$$\mathbf{A}(\mathbf{v}) = \lambda \,\mathbf{v} \tag{1.1.70}$$

Neste caso, o vector não nulo \mathbf{v} , diz-se um **vector próprio** associado (ou pertencente) ao valor próprio λ .

▶ 1.29 O conjunto constituído pelo vector nulo 0 e por todos os **vectores próprios** pertencentes a um certo valor próprio λ , de **A**, é um subespaço de \mathbb{R}^2 , chamado o **subespaço próprio** de **A**, pertencente ao valor próprio λ , e nota-se por:

$$\mathbb{E}(\lambda) = \mathbb{E}_{\mathbf{A}}(\lambda) = \{ \mathbf{v} : \mathbf{A}(\mathbf{v}) = \lambda \, \mathbf{v} \}$$
 (1.1.71)

A restrição de \mathbf{A} a $\mathbb{E}_{\mathbf{A}}(\lambda)$ é pois uma homotetia de razão λ (eventualmente λ pode ser 0), i.e.:

$$\mathbf{A}(\mathbf{u}) = \lambda \mathbf{u} \qquad \forall \mathbf{u} \in \mathbb{E}_{\mathbf{A}}(\lambda)$$

Em particular, a recta gerada pelo vector próprio $\mathbf{v} \neq \mathbf{0}$ fica invariante por \mathbf{A} , isto é, a sua imagem por \mathbf{A} está contida nela própria.

▶ 1.30 Em particular, se $\lambda = 0$ é valor próprio de **A**, isto significa que o núcleo de **A**;

$$\ker \mathbf{A} = \mathbb{E}_{\mathbf{A}}(0)$$

não se reduz ao vector nulo $\mathbf{0}$, e portanto \mathbf{A} é não inversível (ou **singular**), ou de forma equivalente, det $\mathbf{A}=0$.

Quando $\lambda \neq 0$, dizer que λ é valor próprio de \mathbf{A} , é equivalente a dizer que 0 é valor próprio de $\mathbf{A} - \lambda \operatorname{Id}$, o que, pelo parágrafo anterior, é equivalente a dizer que $\mathbf{A} - \lambda \operatorname{Id}$ é não inversível (ou **singular**), ou ainda que:

$$\det\left(\mathbf{A} - \lambda \operatorname{Id}\right) = 0 \tag{1.1.72}$$

O polinómio $p(\lambda) = \det(\mathbf{A} - \lambda \operatorname{Id})$ diz-se o **polinómio característico** de **A**. Portanto as raízes reais da chamada **equação característica** de **A**:

$$p(\lambda) = \det\left(\mathbf{A} - \lambda \operatorname{Id}\right) = 0 \tag{1.1.73}$$

(se existirem), são exactamente os valores próprios (reais) de A.

Exemplo...

Calcule os valores e vectores próprios (reais) da aplicação linear $\mathbf{A}: \mathbb{R}^2 \to \mathbb{R}^2$, cuja matriz na base canónica de \mathbb{R}^2 é:

$$A = \left(\begin{array}{cc} 3 & 4 \\ 4 & -3 \end{array}\right)$$

A equação característica de A é:

$$p(\lambda) = \det(A - \lambda \operatorname{Id})$$

$$= \det\begin{pmatrix} 3 - \lambda & 4\\ 4 & -3 - \lambda \end{pmatrix}$$

$$= \lambda^2 - 25 = 0 \tag{1.1.74}$$

cujas raízes reais (os valores próprios de **A**) são $\lambda_1 = 5$ e $\lambda_2 = -5$.

Para calcular os vectores póprios ${\bf v}=\left(\begin{array}{c}x_1\\x_2\end{array}\right)$, pertencentes ao valor próprio $\lambda=5,$ devemos resolver o sistema:

$$\left(\begin{array}{cc} 3-5 & 4 \\ 4 & -3-5 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \end{array}\right)$$

isto é:

$$\begin{cases}
-2x_1 + 4x_2 &= 0 \\
4x_1 - 8x_2 &= 0
\end{cases}$$

cuja solução geral é:

$$\begin{cases} x_1 &=& 2t \\ x_2 &=& t \end{cases} \qquad t \in \mathbb{R}$$

Portanto os vectores póprios de ${\bf A},$ pertencentes ao valor próprio $\lambda_1=5,$ são da forma:

$$t \begin{pmatrix} 2 \\ 1 \end{pmatrix} \qquad t \in \mathbb{R} - \{0\}$$

Procedendo da mesma forma relativamente ao outro valor próprio $\lambda_2=-5$, podemos calcular que os vectores póprios de **A**, pertencentes ao valor próprio $\lambda_2=-5$, são da forma:

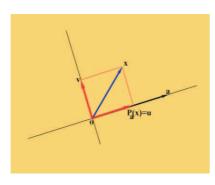
$$s \begin{pmatrix} 1 \\ -2 \end{pmatrix} \qquad s \in \mathbb{R} - \{0\}$$

Note que neste exemplo os vectores próprios $\mathbf{u}_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ e $\mathbf{u}_2 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$ formam uma base $\mathscr{B} = \{\mathbf{u}_1, \mathbf{u}_2\}$ de \mathbb{R}^2 relativamente à qual a matriz de \mathbf{A} é diagonal:

$$(\mathbf{A})_{\mathscr{B}} = \left(\begin{array}{cc} 5 & 0\\ 0 & -5 \end{array}\right)$$

ightharpoonup Exercício 1.22 ... Em cada um dos seguintes casos, determine, se existirem, os valores próprios de A, os subespaços próprios associados e as respectivas dimensões e diga se A é diagonalizável; no caso de o ser, indique uma base do domínio de A composta por vectores próprios e indique a matriz de A relativamente a essa base.

Projecção ortogonal



Sejam $\mathbf{a} \neq \mathbf{0}$ e \mathbf{x} dois vectores em \mathbb{R}^2 . Então existe um único vector \mathbf{u} , na recta gerada por \mathbf{a} , e um único vector \mathbf{v} , ortogonal a \mathbf{a} , tais que $\mathbf{x} = \mathbf{u} + \mathbf{v}$. O vector \mathbf{u} , notado por $\mathbf{P}_{\mathbf{a}}(\mathbf{x})$, diz-se a **projecção ortogonal** de \mathbf{x} sobre a recta gerada por \mathbf{a} , e é calculado da seguinte forma.

Uma vez que $\mathbf{u} = \mathbf{P_a}(\mathbf{x})$ pertence à recta gerada por \mathbf{a} , \mathbf{u} é da forma $\mathbf{u} = \lambda \mathbf{a}$ para um certo $\lambda \in \mathbb{R}$, caracterizado pela condição de que:

$$(\mathbf{x} - \lambda \, \mathbf{a}) \cdot \mathbf{a} = 0$$

Obtemos então que $t = \frac{\mathbf{x} \cdot \mathbf{a}}{\|\mathbf{a}\|^2}$ e portanto:

$$\mathbf{P_a}(\mathbf{x}) = \frac{\mathbf{x} \cdot \mathbf{a}}{\|\mathbf{a}\|^2} \mathbf{a} \tag{1.1.75}$$

▶ 1.31 A aplicação $\mathbf{P_a}: \mathbb{R}^2 \to \mathbb{R}^2$ definida por (1.1.75), é linear e satisfaz a condição $\mathbf{P_a^2} = \mathbf{P_a}$.

É claro que $\mathbf{P_a}(\mathbf{a}) = \mathbf{a}$. Vemos pois que \mathbf{a} é vector próprio de $\mathbf{P_a}$, pertencente ao valor próprio 1. Por outro lado, se considerarmos um qualquer vector $\mathbf{b} \neq \mathbf{0}$ ortogonal a \mathbf{a} (i.e.: $\mathbf{a} \cdot \mathbf{b} = 0$), vemos que $\mathbf{P_a}(\mathbf{b}) = \mathbf{0}$ e portanto:

$$\ker \mathbf{P_a} = \{t \, \mathbf{b} : \, t \in \mathbb{R}\}$$

A matriz de P_a na base $\{a, b\}$ é pois:

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right)$$

Interpretação geométrica de det e de det A

▶ 1.32 A distância d de um ponto $B \in \mathbb{R}^2$, com vector de posição $\mathbf{b} = \overrightarrow{OP}$, à recta vectorial gerada por $\mathbf{a} \neq \mathbf{0}$, é igual à norma do vector $\mathbf{b} - \mathbf{P_a}(\mathbf{b})$:

Pelo teorema de Pitágoras, e uma vez que $\mathbf{P_a}(\mathbf{x}) = \frac{\mathbf{x} \cdot \mathbf{a}}{\|\mathbf{a}\|^2}\mathbf{a},$ tem-se que:

$$d^2 = \|\mathbf{b}\|^2 - \frac{(\mathbf{b} \cdot \mathbf{a})^2}{\|\mathbf{a}\|^2}$$

e atendendo a (1.1.65):

$$d = \|\mathbf{b}\|\sin\theta$$

onde $\theta \in [0, \pi]$ é o ângulo entre \mathbf{a} e \mathbf{b} . A área do paralelogramo $\mathcal{P}(\mathbf{a}, \mathbf{b})$, gerado por \mathbf{a} e \mathbf{b} é portanto igual a:

$$\operatorname{área}(\mathcal{P}(\mathbf{a}, \mathbf{b})) = \|\mathbf{a}\| \cdot d = \|\mathbf{a}\| \|\mathbf{b}\| \sin \theta \tag{1.1.76}$$

Por outro lado um cálculo simples mostra que o quadrado desta área (que é sempre ≥ 0 , já que $\sin \theta \geq 0$) é igual ao quadrado do determinante det (**a b**), donde se deduz que:

$$|\det(\mathbf{a} \ \mathbf{b})| = \operatorname{área}(\mathcal{P}(\mathbf{a}, \mathbf{b})) \tag{1.1.77}$$

▶ 1.33 Quando \mathbf{a} e \mathbf{b} são linearmente independentes, de tal forma que det $[\mathbf{a} \ \mathbf{b}] \neq 0$, dizemos que a base ordenada $\{\mathbf{a}, \mathbf{b}\}$ é:

$$\left\{ \begin{array}{lll} \textbf{positiva} & \text{se} & \det{(\mathbf{a} \ \mathbf{b})} > 0 \\ \textbf{negativa} & \text{se} & \det{(\mathbf{a} \ \mathbf{b})} < 0 \end{array} \right.$$

▶ 1.34 Consideremos agora uma aplicação linear $\mathbf{A} : \mathbb{R}^2 \to \mathbb{R}^2$. A imagem do quadrado \mathcal{Q} , gerado pelos vectores da base canónica (que é positiva) $\{\mathbf{e}_1, \mathbf{e}_2\}$:

$$Q = \{\lambda \mathbf{e}_1 + \eta \mathbf{e}_2 : 0 \le \lambda, \eta \le 1\}$$

é o paralelogramo $\mathbf{A}(\mathcal{Q})$, de lados adjacentes $\mathbf{A}(\mathbf{e}_1)$ e $\mathbf{A}(\mathbf{e}_2)$.

Pondo $\mathbf{A}(\mathbf{e}_1) = a \, \mathbf{e}_1 + b \, \mathbf{e}_2 = \begin{bmatrix} a \\ b \end{bmatrix} \, \mathbf{e} \, \mathbf{A}(\mathbf{e}_2) = c \, \mathbf{e}_1 + d \, \mathbf{e}_2 = \begin{bmatrix} c \\ d \end{bmatrix}$, sabemos que a área deste paralelogramo é igual a:

$$\text{área}(\mathbf{A}(\mathcal{Q})) = |\det(\mathbf{A}(\mathbf{e}_1) \ \mathbf{A}(\mathbf{e}_2)|
= |\det\begin{pmatrix} a & c \\ b & d \end{pmatrix}|
= |\det\mathbf{A}|
 (1.1.78)$$

Portanto:

$$\operatorname{área}(\mathbf{A}(\mathcal{Q})) = |\det \mathbf{A}| \tag{1.1.79}$$

Mais geralmente, se \mathcal{R} é o paralelogramo gerado pelos vectores linearmente independentes \mathbf{u} e \mathbf{v} , então a imagem $\mathbf{A}(\mathcal{R})$ é o paralelogramo gerado por $\mathbf{A}(\mathbf{u})$ e $\mathbf{A}(\mathbf{v})$, e é fácil provar que a área desta imagem é igual a:

$$\operatorname{área}(\mathbf{A}(\mathcal{R})) = |\det[\mathbf{A}(\mathbf{u}) \ \mathbf{A}(\mathbf{v})]|
= |\det \mathbf{A}| \operatorname{área}(\mathcal{R})$$
(1.1.80)

isto é:

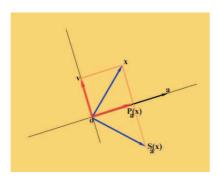
$$|\det \mathbf{A}| = \frac{\operatorname{área}(\mathbf{A}(\mathcal{R}))}{\operatorname{área}(\mathcal{R})}$$
(1.1.81)

▶ 1.35 Diz-se que a aplicação linear $\mathbf{A}: \mathbb{R}^2 \to \mathbb{R}^2$:

```
 \left\{ \begin{array}{ll} \textbf{preserva a orientação (ou \'e positiva)} & \text{se} & \det \mathbf{A} > 0 \\ \textbf{inverte a orientação (ou \'e negativa)} & \text{se} & \det \mathbf{A} < 0 \end{array} \right.
```

▶ Exercício 1.23 ... Calcule o determinante das aplicações lineares descritas no exercício 1.13, usando a fórmula (1.1.81).

Reflexão numa recta



Seja **a** um vector <u>não nulo</u> em \mathbb{R}^2 . A **simetria** relativamente à recta gerada por **a**, ou **reflexão** nessa recta, é a aplicação linear $\mathbf{S_a}: \mathbb{R}^2 \to \mathbb{R}^2$, definida pela condição:

$$\frac{1}{2}(\mathbf{S_a}(\mathbf{x}) + \mathbf{x}) = \mathbf{P_a}(\mathbf{x}) \qquad \forall \mathbf{x} \in \mathbb{R}^2$$
(1.1.82)

isto é, o ponto médio do segmento que une \mathbf{x} a $\mathbf{S}_{\mathbf{a}}(\mathbf{x})$ deve ser igual à projecção de \mathbf{x} sobre a recta gerada por \mathbf{a} .

▶ **1.36** Atendendo a (1.1.75), vemos que:

$$\mathbf{S}_{\mathbf{a}}(x) = 2\mathbf{P}_{\mathbf{a}}(\mathbf{x}) - \mathbf{x} = 2\frac{\mathbf{x} \cdot \mathbf{a}}{\|\mathbf{a}\|^2}\mathbf{a} - \mathbf{x}, \ \forall \mathbf{x} \in \mathbb{R}^2$$

isto é:

$$\mathbf{S_a}(x) = 2 \frac{\mathbf{x} \cdot \mathbf{a}}{\|\mathbf{a}\|^2} \mathbf{a} - \mathbf{x}, \quad \forall \mathbf{x} \in \mathbb{R}^2$$
 (1.1.83)

Note que $\mathbf{S_a^2} = \mathrm{Id}$. Uma vez que $\mathbf{P_a(a)} = \mathbf{a}$ vemos que $\mathbf{S_a} = \mathbf{a}$, e portanto \mathbf{a} é vector próprio de $\mathbf{S_a}$, pertencente ao valor próprio 1. Se considerarmos um qualquer vector $\mathbf{b} \neq \mathbf{0}$ ortogonal a \mathbf{a} (i.e.: $\mathbf{a} \cdot \mathbf{b} = 0$), vemos que $\mathbf{P_a(b)} = \mathbf{0}$ e portanto $\mathbf{S_a(b)} = -\mathbf{b}$.

A matriz de $\mathbf{S_a}$ na base $\{\mathbf{a},\mathbf{b}\}$ é portanto:

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

o que mostra que det $\mathbf{S_a} = -1 < 0$, i.e., $\mathbf{S_a}$ inverte orientação (embora preserve o módulo da área de paralelogramos)

Transformações ortogonais em \mathbb{R}^2

▶ 1.37 Uma aplicação linear $\mathbf{A} : \mathbb{R}^2 \to \mathbb{R}^2$ diz-se uma transformação ortogonal ou uma isometria de \mathbb{R}^2 , se \mathbf{A} preserva o produto interno (Euclideano) usual de \mathbb{R}^2 , i.e.:

$$\mathbf{A}(\mathbf{x}) \cdot \mathbf{A}(\mathbf{y}) = \mathbf{x} \cdot \mathbf{y} \qquad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^2$$
 (1.1.84)

Esta condição é equivalente a:

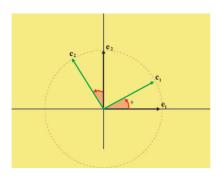
$$\|\mathbf{A}(\mathbf{x})\| = \|\mathbf{x}\| \qquad \forall \mathbf{x} \in \mathbb{R}^2$$
 (1.1.85)

i.e., **A** preserva os comprimentos dos vectores. Se A é a matriz de uma tal transformação ortogonal, relativamente a uma qualquer base ortonormada $\{\mathbf{e}_1, \mathbf{e}_2\}$ de \mathbb{R}^2 (por exemplo, a base canónica), A é uma matriz ortogonal, isto é, $A^tA = \mathbf{I}$. Portanto $A \in \mathcal{O}(2)$. Vejamos como é a forma geral de uma tal matriz.

▶ 1.38 Se $\mathbf{c}_1 = \mathbf{A}(\mathbf{e}_1), \mathbf{c}_2 = \mathbf{A}(\mathbf{e}_2)$ são as colunas de A, então:

$$\mathbf{c}_i \cdot \mathbf{c}_j = \delta_{ij}$$

o que significa que \mathbf{c}_1 e \mathbf{c}_2 são ortonormais. Portanto \mathbf{A} transforma bases ortonormadas em bases ortonormadas, preservando ou invertendo orientação, conforme det $\mathbf{A} = +1$ ou det $\mathbf{A} = -1$, respectivamente. Por exemplo, a simetria $\mathbf{S}_{\mathbf{a}}$, descrita em (1.1.83), é uma transformação ortogonal com det igual a -1.



Como $\mathbf{c}_1 = \mathbf{A}(\mathbf{e}_1) \equiv \begin{pmatrix} a \\ b \end{pmatrix}$ é um vector de norma 1, sabemos que $a^2 + b^2 = 1$ e portanto existe um único $\varphi \in [0, 2\pi[$ tal que $a = \cos \varphi$ e $b = \sin \varphi$ ($\varphi \in [0, 2\pi[$ é o ângulo polar de \mathbf{c}_1 , i.e., o ângulo orientado que \mathbf{c}_1 faz com a parte positiva do eixo dos xx):

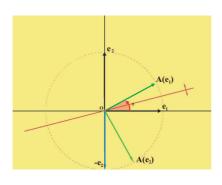
Portanto $\mathbf{c}_1 = \begin{bmatrix} \cos \varphi \\ \sin \varphi \end{bmatrix}$, e como $\mathbf{c}_2 = \mathbf{A}(\mathbf{e}_2)$ é também um vector unitário e ortogonal a \mathbf{c}_1 , dois casos podem ocorrer:

(i).
$$\mathbf{c}_2 = \begin{bmatrix} -\sin\varphi \\ \cos\varphi \end{bmatrix}$$
, ou (ii). $\mathbf{c}_2 = \begin{bmatrix} \sin\varphi \\ -\cos\varphi \end{bmatrix}$

No primeiro caso, a matriz A tem a forma:

$$A = \begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix} \tag{1.1.86}$$

cujo determinante é 1. Neste caso **A** diz-se uma **rotação de ângulo** φ (no sentido positivo), em torno da origem, e nota-se por \mathbf{R}_{φ} :



No segundo caso, a matriz A tem a forma:

$$A = \begin{bmatrix} \cos \varphi & \sin \varphi \\ \sin \varphi & -\cos \varphi \end{bmatrix}$$
$$= \begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
$$= \mathbf{R}_{\varphi} \mathbf{S}_{\mathbf{e}_{1}}$$
 (1.1.87)

cujo determinante é -1. Neste caso **A** pode ser interpretada como uma reflexão relativamente ao eixo dos xx seguida de uma rotação \mathbf{R}_{φ} .

Essa reflexão fixa ${\bf e}_1$ e transforma ${\bf e}_2$ em $-{\bf e}_2$. Se então rodamos de ângulo φ , temos que:

$$\begin{aligned}
\mathbf{e}_1 &\to \mathbf{e}_1 \to \cos \varphi \mathbf{e}_1 + \sin \varphi \mathbf{e}_2 \\
\mathbf{e}_2 &\to -\mathbf{e}_2 \to -(-\sin \varphi \mathbf{e}_1 + \cos \varphi \mathbf{e}_2)
\end{aligned} (1.1.88)$$

De facto, neste caso **A** representa uma simetria relativamenta à recta que faz um ângulo $\frac{\varphi}{2}$ com a parte positiva do eixo dos xx.

Exercício 1.24 ... Classifique as seguintes isometrias de \mathbb{R}^2 :

```
a) \mathbf{A}(x,y) = (\frac{1}{2}x + \frac{\sqrt{3}}{2}y, \frac{\sqrt{3}}{2}x - \frac{1}{2}y).
```

- b) $\mathbf{A}(x,y) = (\frac{1}{2}x + \frac{\sqrt{3}}{2}y, -\frac{\sqrt{3}}{2}x + \frac{1}{2}y).$ c) $\mathbf{A}(x,y) = (-\frac{4}{5}x + \frac{3}{5}y, -\frac{3}{5}x \frac{4}{5}y).$
- d) $\mathbf{A}(x,y) = (x,y)$.
- e) $\mathbf{A}(x,y) = (-y,x)$.
- ▶ Exercício 1.25 ... Em cada um dos casos que se seguem, determine a simetria ${f S}$ relativamente à recta indicada, a matriz de ${f S}$ relativamente à base canónica de ${\Bbb R}^2$ e uma base \mathscr{B} de \mathbb{R}^2 relativamente à qual a matriz de \mathbf{S} seja do tipo $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.
- a) r é a recta de equação y = 2x;
- b) r é a recta de equação 3x y = 0;
- c) r é a recta de equação $y = (tg\frac{\pi}{5})x$;
- ▶ Exercício 1.26 ... Em cada um dos seguintes casos, mostre que a transformação linear A de \mathbb{R}^2 é uma isometria linear e descreva A geomètricamente (isto é, diga se A é uma simetria ou uma rotação; no caso de ser uma simetria, diga relativamente a que recta, no caso de ser uma rotação determine o ângulo).
- a) $\mathbf{A}(x, y) = (y, x);$

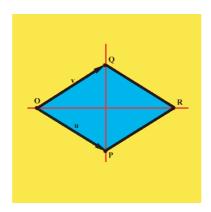
- b) $\mathbf{A}(x,y) = (y,-x);$ c) $\mathbf{A}(x,y) = (\frac{\sqrt{2}x \sqrt{2}y}{2}, \frac{\sqrt{2}x + \sqrt{2}y}{2});$ d) $\mathbf{A}(x,y) = ((-\cos\frac{\pi}{8})x + (\sin\frac{\pi}{8})y, (\sin\frac{\pi}{8})x + (\cos\frac{\pi}{8})y);$

Os grupos O(2) e SO(2)

- ▶ 1.39 O conjunto de todas as transformações ortogonais de \mathbb{R}^2 , constituem um grupo que se diz o **grupo ortogonal** O(2). Este grupo é isomorfo ao grupo das matrizes ortogonais, também notado por O(2).
- O subgrupo de O(2) constituído por todas as transformações ortogonais de \mathbb{R}^2 , que têm determinante 1 (isto é, constituído por todas as rotações \mathbf{R}_{θ} , $\theta \in$ $[0, 2\pi[$, em $\mathbb{R}^2)$ diz-se o grupo ortogonal especial e nota-se por SO(2). Este grupo é isomorfo ao grupo das matrizes ortogonais de determinante 1, também notado por SO(2).
- ightharpoonup Exercício 1.27 ... Demonstre estas afirmações, isto é, verifique que O(2) e SO(2) são grupos (ambos subgrupos de GL(2)).

1.2 Aplicações à geometria

▶ 1.40 Exemplo ... As diagonais de um losango intersectam-se perpendicularmente.

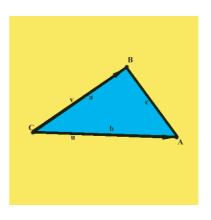


Dem.: Como OQRP é um losango, $\|\mathbf{u}\| = \|\mathbf{v}\|$. Pretende-se provar que $\overrightarrow{QP} \perp \overrightarrow{OR}$, isto é que, $(\mathbf{u} - \mathbf{v}) \cdot (\mathbf{u} + \mathbf{v}) = 0$. Mas:

$$(\mathbf{u} - \mathbf{v}) \cdot (\mathbf{u} + \mathbf{v}) = \|\mathbf{u}\|^2 - \|\mathbf{v}\|^2 = 0$$

▶ 1.41 <u>Exemplo</u> [Lei dos cossenos] ... Num triângulo plano $\triangle(ABC)$, onde $a = \overline{BC}$, etc. tem-se que:

$$c^2 = a^2 + b^2 - 2ab\cos C$$



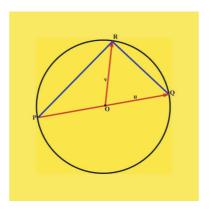
Dem.: Escolhamos um referencial com origem em C, e ponhamos $\mathbf{u} = \overrightarrow{CA}$ e $\mathbf{v} = \overrightarrow{CB}$. Então $\overrightarrow{AB} = \mathbf{v} - \mathbf{u}$, e daí que:

$$\|\overrightarrow{AB}\|^2 = \|\mathbf{v} - \mathbf{u}\|^2 = \|\mathbf{v}\|^2 - 2\mathbf{u} \cdot \mathbf{v} + \|\mathbf{u}\|^2$$

ou, com as notações referidas:

$$c^2 = a^2 + b^2 - 2ab\cos C$$

▶ 1.42 <u>Exemplo</u> ... Se R é um ponto sobre um círculo de diâmetro POQ, mostre que $PR \perp QR$.



Dem.: Seja $\mathbf{u} = \overrightarrow{OQ}, \mathbf{v} = \overrightarrow{OR}$. Então

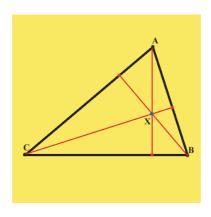
$$\overrightarrow{PR} = \overrightarrow{OR} - \overrightarrow{OP} = \mathbf{u} + \mathbf{v}$$

$$\overrightarrow{QR} = \overrightarrow{OR} - \overrightarrow{OQ} = \mathbf{v} - \mathbf{u}$$

Sabe-se que $\|\mathbf{u}\| = \|\mathbf{v}\|$ e portanto:

$$\overrightarrow{PR} \cdot \overrightarrow{QR} = (\mathbf{u} + \mathbf{v}) \cdot (\mathbf{v} - \mathbf{u}) = \|\mathbf{v}\|^2 - \|\mathbf{u}\|^2 = 0$$

▶ 1.43 Exemplo ... As alturas de um triângulo intersectam-se num único ponto (chamado o ortocentro do triângulo).



 $\mathbf{Dem.:}\;$ Pretende-se encontrar um ponto X tal que:

$$\overrightarrow{AX} \cdot \overrightarrow{BC} = 0$$
, $\overrightarrow{BX} \cdot \overrightarrow{CA} = 0$, $\overrightarrow{CX} \cdot \overrightarrow{AB} = 0$

Identificando um ponto P com o seu vector de posição \overrightarrow{OP} , relativamente a uma origem fixa O no plano, é fácil verificar a identidade seguinte:

$$(X - A) \cdot (C - B) + (X - B) \cdot (A - C) + (X - C) \cdot (B - A) = 0$$
 (1.2.1)

Seja X o ponto de intersecção de duas das alturas, digamos, das alturas partindo de A e de B. Temos então que, lembrando que $\overrightarrow{AX} = X - A$, etc:

$$(X-A)\cdot(C-B) = 0 (1.2.2)$$

$$(X - B) \cdot (A - C) = 0$$
 (1.2.3)

Subtraindo (1.2.2) e (1.2.3) de (1.2.1), obtemos:

$$(X - C) \cdot (B - A) = 0$$

como se pretendia.

▶ 1.44 <u>Exemplo</u> ... Dados dois pontos distintos $A \neq B$ no plano, mostrar que o lugar geométrico dos pontos P cuja distância a A é o dobro da distância a B é um círculo.