Módulo 2

Álgebra Linear e Geometria Analítica em \mathbb{R}^3

Neste segundo módulo vamos generalizar os conceitos aprendidos no módulo 1, e também no ensino secundário, estudando Álgebra Linear e Geometria Analítica no espaço \mathbb{R}^3 . Do ponto de vista coceptual a generalização é imediata - em vez de vectores com duas componentes temos agora vectores com três componentes. Há no entanto maior diversidade de conceitos e os cálculos tornam-se um pouco mais trabalhosos. Mas é apenas isso! No início tentamos usar as notações que são mais familiares, análogas às que usámos no módulo 1, mas, quando introduzimos o cálculo matricial, vamos começar a usar notações mais apropriadas que se revelarão muito úteis de futuro.

Contents

2.1	Álgebra	Linear	$\mathbf{em} \mathbb{R}^3$																			29	
-----	---------	--------	-----------------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-----------	--

Palavras chave

Vectores. \mathbb{R}^3 como espaço vectorial real. Subespaços . Dependência e indepêndencia linear. Base canónica. Bases, coordenadas e dimensão. Mudança de base e de coordenadas. Aplicações Lineares. Matriz de uma aplicação linear. GL(2). Pontos de vista passivo e activo. Conjugação. Determinantes. Valores e vectores próprios.

Geometria Euclideana em \mathbb{R}^3 . Produto interno (euclideano). Norma (euclideana). Ângulo. Ortogonalidade. Rectas vectoriais e afins. Planos vectoriais e afins. Produto vectorial em \mathbb{R}^3 . Produto misto em \mathbb{R}^3 . Projecção ortogonal. Interpretação geométrica de det e de det A. Simetrias relativamente a uma recta e a um plano. Transformações ortogonais em \mathbb{R}^3 . Os grupos O(3) e SO(3).

Notações

 $\mathbf{x}, \mathbf{y}, \mathbf{u}, \mathbf{v}, \mathbf{w}...$ vectores, em vez de $\vec{\mathbf{x}}, \vec{\mathbf{y}}, \vec{\mathbf{u}}, \vec{\mathbf{v}}, ...$ $a, b, c, ..., \lambda, \eta, \mu, \xi, ...$ escalares, isto é, números reais (para já).

▶ Site de apoio à disciplina

 $\rm http://www.fc.up.pt/cmup/alga$

\blacktriangleright Site de apoio em temas de Matemática elementar

http://www.fc.up.pt/cmup/apoiomat

2.1 Álgebra Linear em \mathbb{R}^3

Vectores

▶ 2.1 Um vector em \mathbb{R}^3 é por definição um terno ordenado de números reais, representado na forma $\mathbf{x} = (x_1, x_2, x_3)$, ou dispostos segundo uma matrizcoluna de três linhas:

$$\mathbf{x} = \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right)$$

Os números reais x_i , i = 1, 2, 3, dizem-se as **componentes** do vector $\mathbf{x} \in \mathbb{R}^3$.

\mathbb{R}^3 como espaço vectorial real

▶ 2.2 Dados dois vectores $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ e $\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$, em \mathbb{R}^3 , define-se a respectiva soma vectorial, como sendo o vector $\mathbf{x} + \mathbf{y}$, dado por:

$$\mathbf{x} + \mathbf{y} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ x_3 + y_3 \end{pmatrix}$$

Geomètricamente $\mathbf{x} + \mathbf{y}$ é novamente obtido através da regra do paralelogramo.

▶ 2.3 Dado um vector $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ em \mathbb{R}^3 , e um escalar (i.e., um número real) $\lambda \in \mathbb{R}$, define-se a multiplicação do escalar λ pelo vector \mathbf{x} , como sendo o vector $\lambda \mathbf{x}$ dado por:

$$\lambda \mathbf{x} = \left(\begin{array}{c} \lambda x_1 \\ \lambda x_2 \\ \lambda x_3 \end{array}\right)$$

 \blacktriangleright 2.4 É fácil provar que as duas operações definidas anteriormente, satisfazem

mais uma vez as propriedades seguintes:

$$[EV1]. \mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x} (2.1.1)$$

[EV2].
$$(\mathbf{x} + \mathbf{y}) + \mathbf{z} = \mathbf{x} + (\mathbf{y} + \mathbf{z})$$
 (2.1.2)

[EV3].
$$\mathbf{0} + \mathbf{x} = \mathbf{x} + \mathbf{0} = \mathbf{x} \qquad \forall \mathbf{x} \in \mathbb{R}^3$$
 (2.1.3)

[EV4].
$$\forall \mathbf{x}, \exists (-\mathbf{x}) : \mathbf{x} + (-\mathbf{x}) = \mathbf{0}$$
 (2.1.4)

[EV5].
$$\lambda(\mathbf{x} + \mathbf{y}) = \lambda \mathbf{x} + \lambda \mathbf{y}$$
 (2.1.5)

[EV6].
$$(\lambda + \eta)\mathbf{x} = \lambda\mathbf{x} + \eta\mathbf{x}$$
 (2.1.6)

[EV7].
$$\lambda(\eta \mathbf{x}) = (\lambda \eta) \mathbf{x}$$
 (2.1.7)

$$[EV8]. 1\mathbf{x} = \mathbf{x} (2.1.8)$$

onde
$$\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^3$$
, $\lambda, \eta \in \mathbb{R}$, $\mathbf{0} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ é o **vector nulo** de \mathbb{R}^3 , e $-\mathbf{x} = (-1)\mathbf{x}$.

Por isso, diz-se que \mathbb{R}^3 é um espaço vectorial real.

Subespaços

▶ 2.5 Um subconjunto não vazio $\emptyset \neq \mathbb{S} \subseteq \mathbb{R}^3$ diz-se um subespaço vectorial de \mathbb{R}^3 , se \mathbb{S} é fechado relativamente às operações de soma de vectores e de multiplicação de escalares por vectores, i.e.:

• Se
$$\mathbf{x}, \mathbf{y} \in \mathbb{S}$$
 também $\mathbf{x} + \mathbf{y} \in \mathbb{S}$ (2.1.9)

• Se
$$\lambda \in \mathbb{R}$$
, e $\mathbf{x} \in \mathbb{S}$ também $\lambda \mathbf{x} \in \mathbb{S}$ (2.1.10)

- ▶ 2.6 Em \mathbb{R}^3 os subespacos são de três tipos:
 - triviais: $\mathbb{S} = \{\mathbf{0}\} \in \mathbb{S} = \mathbb{R}^3$
 - rectas vectoriais: $\mathbb{S} = \{\lambda \mathbf{v} : \lambda \in \mathbb{R}\}$, onde $\mathbf{v} \neq \mathbf{0}$, que representa uma recta que passa na origem, gerada por $\mathbf{v} \neq \mathbf{0}$.
 - planos vectoriais: $\mathbb{S} = \{\lambda \mathbf{u} + \eta \mathbf{v} : \lambda, \eta \in \mathbb{R}\}$, onde \mathbf{u} e \mathbf{v} são dois vectores não colineares em \mathbb{R}^3 , que representa um plano que passa na origem, gerado por \mathbf{u} e \mathbf{v} .
- \blacktriangleright Exercício 2.1 ... Diga quais dos seguintes conjuntos são subespaços vectoriais de \mathbb{R}^3 :

$$\begin{array}{lll} {\bf a}) \ \mathbb{A} = \left\{ (x,y,z) \in \mathbb{R}^3 : x+y+z=0 \right\}; & {\bf e}) \ \mathbb{E} = \left\{ (a,-a,5a) \in \mathbb{R}^3 : a \in \mathbb{R} \right\}. \\ {\bf b}) \ \mathbb{B} = \left\{ (x,y,z) \in \mathbb{R}^3 : x+y=3z \right\}; & {\bf f}) \ \mathbb{F} = \left\{ (a,-a+1,5a) \in \mathbb{R}^3 : a \in \mathbb{R} \right\}. \\ {\bf c}) \ \mathbb{S} = \left\{ (x,y,z) \in \mathbb{R}^3 : x-y=3z & {\bf e} & z=2y \right\}; & {\bf g}) \ \mathbb{G} = \left\{ (b,2a+b,1) : a,b \in \mathbb{R} \right\}. \\ {\bf d}) \ \mathbb{D} = \left\{ (x,y,z) \in \mathbb{R}^3 : 0 \leq x^2+y^2 \leq z \right\}; & {\bf h}) \ \mathbb{H} = \left\{ (a^2,b,2a+b) : a,b \in \mathbb{R} \right\}. \end{array}$$

Combinação linear

▶ 2.7 Dados n vectores em \mathbb{R}^3 , digamos $\{\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_k\}$, um vector $\mathbf{x} \in \mathbb{R}^3$ dizse uma **combinação linear** dos vectores $\{\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_k\}$ se existirem escalares $\lambda_1, \lambda_2, \cdots, \lambda_n \in \mathbb{R}$ tais que:

$$\mathbf{x} = \lambda_1 \, \mathbf{a}_1 + \lambda_2 \, \mathbf{a}_2 + \dots + \lambda_k \, \mathbf{a}_k \tag{2.1.11}$$

▶ 2.8 O conjunto de todas as combinações lineares dos vectores $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$, isto é, de todos os vectores da forma $\lambda_1 \mathbf{a}_1 + \lambda_2 \mathbf{a}_2 + \dots + \lambda_k \mathbf{a}_k$, onde os escalares $\lambda_i \in \mathbb{R}$ são arbitrários, chama-se o **espaço gerado pelos vectores** $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ e representa-se por span $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k\}$:

$$\operatorname{span}\{\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_k\} = \{\lambda_1 \, \mathbf{a}_1 + \lambda_2 \, \mathbf{a}_2 + \cdots + \lambda_k \, \mathbf{a}_k : \lambda_1, \cdots, \lambda_n \in \mathbb{R}\}$$
(2.1.12)

- ▶ Exercício 2.2 ... Mostre que $\mathbb{S} = \text{span}\{\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_k\}$ é um subespaço de \mathbb{R}^3 .
- **Exercício 2.3** ... Em cada uma das alíneas que se seguem, verifique se $\mathbf{x} \in \text{span}\{\mathbf{a},\mathbf{b},\mathbf{c}\}$:

```
a) \mathbf{x} = (1,0,0), \mathbf{a} = (1,1,1), \mathbf{b} = (-1,1,0) \in \mathbf{c} = (1,0,-1);
```

- b) $\mathbf{x} = (1,0,0), \mathbf{a} = (1,1,2), \mathbf{b} = (-1,1,0) \in \mathbf{c} = (1,0,1);$
- c) $\mathbf{x} = (1, 1, 1), \mathbf{a} = (0, 1, -1), \mathbf{b} = (1, 1, 0) \in \mathbf{c} = (1, 0, 2);$
- d) $\mathbf{x} = (0,0,1), \mathbf{a} = (1,1,1), \mathbf{b} = (-1,1,0) \in \mathbf{c} = (1,0,-1);$
- e) $\mathbf{x} = (1, 2, 3), \mathbf{a} = (1, 1, 1), \mathbf{b} = (-2, -2, 0) \in \mathbf{c} = (0, 0, -1).$
- f) $\mathbf{x} = (1,0,0), \mathbf{a} = (1,1,1), \mathbf{b} = (2,2,0) \in \mathbf{c} = (1,0,-1).$
- \blacktriangleright Exercício 2.4 ... Em cada um dos casos, calcule o subespaço gerado por ${\bf a},\,{\bf b}$ e ${\bf c},$ onde

```
a) \mathbf{a} = (1, 1, -1), \mathbf{b} = (2, 2, -2), \mathbf{c} = (0, 0, 0), \text{ em } \mathbb{R}^3;
```

- b) $\mathbf{a} = ((1,0,1), \mathbf{b} = (5,0,-1), \mathbf{c} = (0,1,0), \text{ em } \mathbb{R}^3;$
- c) $\mathbf{a} = (2, -1, 1), \mathbf{b} = (1, 0, 1)\mathbf{c} = (1, 0, 1), \text{ em } \mathbb{R}^3;$
- d) $\mathbf{a} = (2, 1, 2), \mathbf{b} = (0, 0, 0), \text{ em } \mathbb{R}^3;$

Dependência e independência linear

- ▶ 2.9 Dois vectores \mathbf{x} e \mathbf{y} em \mathbb{R}^3 , dizem-se linearmente dependentes, se um deles é múltiplo escalar do outro. Se $\mathbf{x} = \mathbf{0}$ (ou $\mathbf{y} = \mathbf{0}$) então \mathbf{x} e \mathbf{y} são linearmente dependentes. Geomètricamente \mathbf{x} e \mathbf{y} são linearmente dependentes, see eles são colineares.
- ▶ 2.10 Três vectores \mathbf{x} , \mathbf{y} e \mathbf{z} em \mathbb{R}^3 , dizem-se linearmente dependentes, se um deles é múltiplo escalar dos restantes. Se $\mathbf{x} = \mathbf{0}$ (ou $\mathbf{y} = \mathbf{0}$, ou $\mathbf{z} = \mathbf{0}$) então \mathbf{x} , \mathbf{y} e \mathbf{z} são linearmente dependentes. Geomètricamente \mathbf{x} , \mathbf{y} e \mathbf{z} são linearmente dependentes, see eles são coplanares.

▶ 2.11 Dois vectores \mathbf{x} e \mathbf{y} em \mathbb{R}^2 , dizem-se linearmente independentes, sse não são linearmente dependentes (o que implica que $\mathbf{x} \neq \mathbf{0}$ e $\mathbf{y} \neq \mathbf{0}$). Geomètricamente \mathbf{x} e \mathbf{y} são linearmente independentes, sse eles são não colineares. Simbolicamente:

$$(\mathbf{x} \in \mathbf{y} \text{ são lin. indep.}) \iff (\lambda \mathbf{x} + \eta \mathbf{y} = \mathbf{0} \implies \lambda = \eta = 0)$$

▶ 2.12 Três vectores \mathbf{x}, \mathbf{y} e \mathbf{z} em \mathbb{R}^3 ,, dizem-se linearmente independentes, se não são linearmente dependentes (o que implica que $\mathbf{x} \neq \mathbf{0}$, $\mathbf{y} \neq \mathbf{0}$ e $\mathbf{z} \neq \mathbf{0}$). Geomètricamente \mathbf{x}, \mathbf{y} e \mathbf{z} são linearmente independentes, se eles são não coplanares. Simbolicamente:

$$(\mathbf{x}, \mathbf{y} \in \mathbf{z} \text{ são lin. indep.}) \iff (\lambda \mathbf{x} + \eta \mathbf{y} + \mu \mathbf{z} = \mathbf{0} \implies \lambda = \eta = \mu = 0)$$

► Exercício 2.5 ... Verifique se os vectores que se seguem são linearmente dependentes ou independentes:

```
\begin{array}{lll} a) \ (1,0,1), \ (2,-1,1) \ em \ \mathbb{R}^3; & b) \ (1,0,1), \ (2,2,0) \ em \ \mathbb{R}^3; \\ c) \ (0,0,0), \ (0,1,1), \ (0,-1,2) \ em \ \mathbb{R}^3; & d) \ (1,1,2), \ (2,3,0), (1,1,-1) \ em \ \mathbb{R}^3; \end{array}
```

Base canónica

▶ 2.13 Os vectores de \mathbb{R}^3 :

$$\mathbf{e}_1 = \mathbf{i} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad \mathbf{e}_2 = \mathbf{j} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \quad \mathbf{e} \quad \mathbf{e}_3 = \mathbf{k} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

são linearmente independentes, e têm a propriedade de que qualquer vector $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$, se pode escrever como **combinação linear** de \mathbf{e}_1 , \mathbf{e}_2 e \mathbf{e}_3 . De facto:

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
$$= x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + x_3 \mathbf{e}_3 \tag{2.1.13}$$

Diz-se então que $\mathscr{C}=\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}$ é uma base (ordenada): a base canónica de \mathbb{R}^3 .

Bases, coordenadas, dimensão

▶ 2.14 Qualquer conjunto $\mathscr{B} = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ constituído por três vectores linearmente independentes, e que têm a propriedade de que qualquer vector $\mathbf{x} \in \mathbb{R}^3$, se pode escrever como combinação linear de \mathbf{u}_1 , \mathbf{u}_2 e \mathbf{u}_3 :

$$\mathbf{x} = a_1 \, \mathbf{u}_1 + a_2 \, \mathbf{u}_2 + a_3 \, \mathbf{u}_3 \tag{2.1.14}$$

para certos escalares (únicos) $a_1, a_2, a_3 \in \mathbb{R}$, diz-se uma base de \mathbb{R}^3 . Os escalares a_1, a_2, a_3 dizem-se as **coordenadas** do vector **x** na base \mathscr{B} escreve-se:

$$\mathbf{x} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}_{\mathcal{B}} \tag{2.1.15}$$

Todas as bases de \mathbb{R}^3 têm sempre três elementos, e por isso, diz-se que a dimensão (real) de \mathbb{R}^3 é 3.

- **Exercício 2.6** ... Verifique se os conjuntos que se seguem, são ou não bases de cada um dos espaços vectoriais indicados em cada alínea. Calcule as coordenadas de $\mathbf{x} = (1, -1)$ relativamente aos que são bases:
 - a) $\{(1,1,1),(1,-1,5)\}$ em \mathbb{R}^3 ; b) $\{(1,1,1),(1,2,3),(2,-1,1)\}$ em \mathbb{R}^3 ;
- c) $\{(1,2,3),(1,0,-1),(3,-1,0),(2,1,-2)\}$ em \mathbb{R}^3 ;
- d) $\{(1,1,2),(1,2,5),(5,3,4)\}$ em \mathbb{R}^3 ;
- ightharpoonup Exercício 2.7 ... Calcule uma base de cada um dos subespaços que se seguem, e depois as coordenadas do vector u em cada uma das bases:
- a) $\mathbb{S} = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$, u = (1, 1, -2); b) $\mathbb{S} = \{(x, y, z) \in \mathbb{R}^3 : 2x - y = z\}$, u = (3, 2, 4); b) $\mathbb{S} = \{(x, y, z) \in \mathbb{R}^3 : 2x - y = 0 = x + y - z\}$, u = (-1, 2, 3);

Aplicações Lineares

▶ 2.15 Uma aplicação $\mathbf{A}: \mathbb{R}^3 \to \mathbb{R}^3$ diz-se uma transformação linear, se \mathbf{A} preserva as operações que definem a estrutura vectorial de \mathbb{R}^3 , i.e.,:

$$\mathbf{A}(\mathbf{x} + \mathbf{y}) = \mathbf{A}(\mathbf{x}) + \mathbf{A}(y) \tag{2.1.16}$$

$$\mathbf{A}(\lambda \mathbf{x}) = \lambda \mathbf{A}(\mathbf{x}) \tag{2.1.17}$$

 $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^3, e \ \forall \lambda \in \mathbb{R}.$

- ▶ 2.16 Dada uma aplicação linear $\mathbf{A}: \mathbb{R}^3 \to \mathbb{R}^3$ define-se:
 - o núcleo de A:

$$\ker \mathbf{A} = \{ \mathbf{x} \in \mathbb{R}^3 : \mathbf{A}(\mathbf{x}) = \mathbf{0} \}$$
 (2.1.18)

• a imagem de A:

$$\operatorname{im} \mathbf{A} = \{ \mathbf{y} : \mathbf{A}(\mathbf{x}) = \mathbf{y} \in \mathbb{R}^3, \operatorname{para algum} \mathbf{x} \in \mathbb{R}^3 \}$$
 (2.1.19)

- **Exercício 2.8** ... (i). Mostrar que ker \mathbf{A} e $\operatorname{Im} \mathbf{A}$ são subespaços de \mathbb{R}^3 . (ii). Mostrar que \mathbf{A} é injectiva se e só se ker $\mathbf{A} = \{\mathbf{0}\}$.
- ▶ Exercício 2.9 ... Das aplicações que se seguem, indique aquelas que são lineares. Relativamente a essas, calcule o respectivo núcleo e diga quais as que são injectivas.
 - $\begin{array}{lll} \mathbf{a}) & \mathbf{A}: \mathbb{R}^3 \longrightarrow \mathbb{R}^3 \; ; \; (x,y,z) \longmapsto (x+y,x-y,x+z) \\ \mathbf{b}) & \mathbf{A}: \mathbb{R}^3 \longrightarrow \mathbb{R}^3; (x,y) \longmapsto (|x|,|y|,x-z^2) \\ \mathbf{c}) & \mathbf{A}: \mathbb{R}^3 \longrightarrow \mathbb{R}^3 \; ; \; (x,y,z) \longmapsto (x+1,x-y,3) \\ \mathbf{d}) & \mathbf{A}: \mathbb{R}^3 \longrightarrow \mathbb{R}^3; (x,y,z) \longmapsto (0,x+y,0) \end{array}$
- **Exercício 2.10** ... Sabendo que $\mathbf{A}: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ é uma aplicação linear, calcule em cada caso a imagem de um vector genérico:
- a) sendo que $\mathbf{A}(1,0,0) = (1,1,-1)$, $\mathbf{A}(0,1,0) = (1,-2,0)$; e $\mathbf{A}(0,0,1) = (1,1,1)$
- b) sendo $\mathbf{A}(1,-1,1)=(1,2,0)$ e $\mathbf{A}(0,3,-1)=(2,-2,0);$ e $\mathbf{A}(1,0,0)=(1,1,1)$

Matriz de uma aplicação linear

- ▶ 2.17 Vamos nesta secção introduzir pela primeira vez as notações que serão usadas na parte mais avançada do curso. À primeira vista, estas notações parecem muito complicadas mas, após algum treino, veremos que elas facilitam substancialmente os cálculos e as deduções teóricas que vamos estudar. E não fossem elas usadas intensivamente por Einstein ... As principais diferenças são:
 - para as coordenadas dos vectores usamos índices superiores x^1, x^2, x^3, \dots em vez de índices inferiores x_1, x_2, x_3, \dots O risco aqui é a possível confusão entre índices superiores x^1, x^2, x^3, \dots e expoentes. Neste contexto, por exemplo, x^2 não representa "x ao quadrado" mas sim a segunda componente do vector x. Não faça pois essa confusão e esteja atento ao contexto.
 - o uso de índices superiores e inferiores $A_1^1, A_2^3, A_3^3, \dots$ para as entradas de uma matriz, de tal forma que na matriz $\mathbf{A} = (A_i^i)$, o índice superior $i \in \mathcal{A}$ **índice-linha** - o que numera as linhas - enquanto que o índice inferior jé o **índice-coluna** - o que numera as colunas:

 $A^{i
ightarrow}_{j
ightarrow}$ índice linha: numera as linhas de A índice coluna: numera as colunas de A

▶ 2.18 Se $\mathscr{B} = \{\mathbf{u}_1, \mathbf{u}_2 \, \mathbf{u}_3\}$ é uma base fixa de \mathbb{R}^3 , podemos escrever que:

$$\mathbf{A}(\mathbf{u}_1) = A_1^1 \mathbf{u}_1 + A_1^2 \mathbf{u}_2 + A_1^3 \mathbf{u}_3 \tag{2.1.20}$$

$$\mathbf{A}(\mathbf{u}_2) = A_2^1 \mathbf{u}_1 + A_2^2 \mathbf{u}_2 + A_2^3 \mathbf{u}_3 \tag{2.1.21}$$

$$\mathbf{A}(\mathbf{u}_3) = A_3^1 \mathbf{u}_1 + A_3^2 \mathbf{u}_2 + A_3^3 \mathbf{u}_3$$
 (2.1.22)

A matriz:

$$A = \begin{pmatrix} A_1^1 & A_2^1 & A_3^1 \\ A_1^2 & A_2^2 & A_3^2 \\ A_1^3 & A_2^3 & A_3^3 \end{pmatrix}$$
 (2.1.23)

diz-se a matriz de A na base \mathcal{B} , e nota-se por:

$$A = (\mathbf{A})_{\mathscr{B}}$$

▶ 2.19 Se as coordenadas de um vector $\mathbf{x} \in \mathbb{R}^2$, na base \mathscr{B} , são $\mathbf{x} = \begin{pmatrix} x^1 \\ x^2 \\ x^3 \end{pmatrix}_{\mathscr{B}}$, i.e., se:

$$\mathbf{x} = x^1 \mathbf{u}_1 + x^2 u_2 + x^3 \mathbf{u}_3$$

então as coordenadas de $\mathbf{A}(\mathbf{x})$ na base $\mathcal B$ obtêm-se da seguinte forma:

$$\mathbf{A}(x) = \mathbf{A}(x^{1}\mathbf{u}_{1} + x^{2}\mathbf{u}_{2} + x^{3}\mathbf{u}_{3})$$

$$= x^{1}\mathbf{A}(\mathbf{u}_{1}) + x^{2}\mathbf{A}(\mathbf{u}_{2}) + x^{3}\mathbf{A}(u_{3})$$

$$= x^{1}(A_{1}^{1}\mathbf{u}_{1} + A_{1}^{2}\mathbf{u}_{2} + A_{1}^{3}\mathbf{u}_{3}) + x^{2}(A_{2}^{1}\mathbf{u}_{1} + A_{2}^{2}\mathbf{u}_{2} + A_{2}^{3}\mathbf{u}_{3})$$

$$+ x^{3}(A_{3}^{1}\mathbf{u}_{1} + A_{3}^{2}\mathbf{u}_{2} + A_{3}^{3}\mathbf{u}_{3})$$

$$= (A_{1}^{1}x^{1} + A_{2}^{1}x^{2} + A_{3}^{1}x^{3})\mathbf{u}_{1} + (A_{1}^{2}x^{1} + A_{2}^{2}x^{2} + A_{3}^{2}x^{3})\mathbf{u}_{2}$$

$$+ (A_{1}^{3}x^{1} + A_{2}^{3}x^{2} + A_{3}^{3}x^{3})\mathbf{u}_{3} \qquad (2.1.24)$$

o que significa que as coordenadas de A(x) na base \mathcal{B} :

$$(\mathbf{A}(\mathbf{x}))_{\mathscr{B}} = \left(\begin{array}{c} y^1 \\ y^2 \\ y^3 \end{array}\right)_{\mathscr{B}}$$

se obtêm matricialmente através de:

$$\begin{pmatrix} y^1 \\ y^2 \\ y^3 \end{pmatrix}_{\mathcal{R}} = \begin{pmatrix} A_1^1 & A_2^1 & A_3^1 \\ A_1^2 & A_2^2 & A_3^2 \\ A_1^3 & A_2^3 & A_3^3 \end{pmatrix} \begin{pmatrix} x^1 \\ x^2 \\ x^3 \end{pmatrix}_{\mathcal{R}}$$
(2.1.25)

ou mais sucintamente:

$$(\mathbf{A}(\mathbf{x}))_{\mathscr{B}} = (\mathbf{A})_{\mathscr{B}}(\mathbf{x})_{\mathscr{B}} \tag{2.1.26}$$

ou ainda, em "notação tensorial", pondo $(\mathbf{A})_{\mathscr{B}} = (A_i^i)$ e $y^i = (\mathbf{A}\mathbf{x})^i$:

$$y^{i} = \sum_{i=1}^{3} A_{j}^{i} x^{j} = A_{j}^{i} x^{j}$$
 (2.1.27)

onde, na segunda igualdade adoptamos a chamada "convenção de Einstein" que consiste em omitir o sinal de somatório, ficando subentendido que o facto de surgir o índice j repetido, uma vez em cima e outra em baixo, implica que se faça esse somatório no índice j.

Determinantes

▶ 2.20 Dada uma matriz $A = \begin{pmatrix} A_1^1 & A_2^1 & A_3^1 \\ A_1^2 & A_2^2 & A_3^2 \\ A_1^3 & A_2^3 & A_3^3 \end{pmatrix}$, definimos o seu **determi-**

nante $\det A$, como sendo o número real:

$$\det A = \begin{vmatrix} A_1^1 & A_2^1 & A_3^1 \\ A_1^2 & A_2^2 & A_3^2 \\ A_1^3 & A_2^3 & A_3^3 \end{vmatrix}$$

$$= A_1^1 \begin{vmatrix} A_2^2 & A_3^2 \\ A_2^3 & A_3^3 \end{vmatrix} - A_2^1 \begin{vmatrix} A_1^2 & A_3^2 \\ A_1^3 & A_3^3 \end{vmatrix} + A_3^1 \det \begin{vmatrix} A_1^2 & A_2^2 \\ A_1^3 & A_2^3 \end{vmatrix}$$
(2.1.28)

Veremos en breve uma interpretação geométrica para $\det A$.

▶ 2.21 Representemos por:

$$\mathbf{c}_1 = \left(egin{array}{c} A_1^1 \ A_1^2 \ A_1^3 \end{array}
ight), \quad \mathbf{c}_2 = \left(egin{array}{c} A_2^1 \ A_2^2 \ A_2^3 \end{array}
ight) \quad e \quad \mathbf{c}_3 = \left(egin{array}{c} A_3^1 \ A_3^3 \ A_3^3 \end{array}
ight)$$

as colunas da matriz A, de tal forma que:

$$\det A = \det \left(\mathbf{c}_1 \ \mathbf{c}_2 \ \mathbf{c}_3 \right) \tag{2.1.29}$$

É possível mostrar as seguintes propriedades do det:

- (i). $\det(\mathbf{c}_1 \ \mathbf{c}_2 \ \mathbf{c}_3) \neq 0$ sse $\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3$ são linearmente independentes.
- (ii). det $[\mathbf{c}_1 \ \mathbf{c}_2 \ \mathbf{c}_3]$ muda de sinal, sempre que se permuta um par de colunas. (iii).

$$\det (\mathbf{c}_{1} + \mathbf{c}_{1}' \ \mathbf{c}_{2} \ \mathbf{c}_{3}) = \det (\mathbf{c}_{1} \ \mathbf{c}_{2} \ \mathbf{c}_{3}) + \det (\mathbf{c}_{1}' \ \mathbf{c}_{2} \ \mathbf{c}_{3}) \quad (2.1.30)$$

$$\det (\mathbf{c}_{1} \ \mathbf{c}_{2} + \mathbf{c}_{2}' \ \mathbf{c}_{3}) = \det (\mathbf{c}_{1} \ \mathbf{c}_{2} \ \mathbf{c}_{3}) + \det (\mathbf{c}_{1} \ \mathbf{c}_{2}' \ \mathbf{c}_{3}) \quad (2.1.31)$$

$$\det (\mathbf{c}_{1} \ \mathbf{c}_{2} \ \mathbf{c}_{3} + \mathbf{c}_{3}') = \det (\mathbf{c}_{1} \ \mathbf{c}_{2} \ \mathbf{c}_{3}) + \det (\mathbf{c}_{1} \ \mathbf{c}_{2} \ \mathbf{c}_{3}') \quad (2.1.32)$$

$$\det (\lambda \mathbf{c}_{1} \ \mathbf{c}_{2} \ \mathbf{c}_{3}) = \lambda \det (\mathbf{c}_{1} \ \mathbf{c}_{2} \ \mathbf{c}_{3})$$

$$= \det (\mathbf{c}_{1} \ \lambda \mathbf{c}_{2} \ \mathbf{c}_{3})$$

$$= \det (\mathbf{c}_{1} \ \lambda \mathbf{c}_{2} \ \mathbf{c}_{3}) \quad \lambda \in \mathbb{R} \quad (2.1.33)$$

e ainda que:

(iv).

$$\det \mathbf{I} = 1 \tag{2.1.34}$$

$$\det(AB) = \det A \det B \tag{2.1.35}$$

$$\det(A^{-1}) = (\det A)^{-1} \qquad \forall A \in GL(3) \tag{2.1.36}$$

$$\det(A^{-1}) = (\det A)^{-1} \quad \forall A \in GL(3)$$

$$\det(P^{-1} A P) = \det A \quad \forall P \in GL(3)$$
(2.1.36)
(2.1.37)

$$det(A) = \det(A^t) \tag{2.1.38}$$

onde A^t é a **transposta** de A.

(v). Além disso é possível provar que para uma matriz A:

A é inversível se e só se $\det A \neq 0$

ightharpoonup 2.22 Finalmente, se $\mathbf{A}:\mathbb{R}^3\to\mathbb{R}^3$ é uma aplicação linear, define-se o respectivo determinante det A, como sendo o determinante da matriz de A, relativamente a uma qualquer base de \mathbb{R}^3 . Veremos, num próximo capítulo, que esta definição não depende da base escolhida.

Veremos en breve uma interpretação geométrica para det A.

▶ Exercício 2.11 ... Calcule o determinante das aplicações lineares descritas no exercício??.

Produto interno (euclideano)

▶ 2.23 Dados dois vectores $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ e $\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$, em \mathbb{R}^3 , define-se o

respectivo produto interno (euclideano), como sendo o escalar $\mathbf{x} \cdot \mathbf{y} \in \mathbb{R}$, dado por:

$$\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + x_3 y_3$$

$$= (x_1 \ x_2 \ x_3) \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

$$= \mathbf{x}^t \mathbf{y}$$

$$(2.1.39)$$

▶ 2.24 O produto interno (euclideano), que acabámos de definir, verifica as propriedades seguintes:

• é bilinear:

$$(\mathbf{x} + \mathbf{y}) \cdot \mathbf{z} = \mathbf{x} \cdot \mathbf{z} + \mathbf{y} \cdot \mathbf{z}$$

$$\mathbf{x} \cdot (\mathbf{y} + \mathbf{z}) = \mathbf{x} \cdot \mathbf{y} + \mathbf{x} \cdot \mathbf{z}$$

$$\lambda \mathbf{x} \cdot \mathbf{y} = \mathbf{x} \cdot \lambda \mathbf{y} = \lambda (\mathbf{x} \cdot \mathbf{y})$$
(2.1.40)

• é simétrica:

$$\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x} \tag{2.1.41}$$

• é não degenerada:

$$\mathbf{x} \cdot \mathbf{y} = 0 \quad \forall \mathbf{y} \in \mathbb{R}^2 \quad \Rightarrow \quad \mathbf{x} = \mathbf{0}$$
 (2.1.42)

• é definida positiva:

$$\mathbf{x} \cdot \mathbf{x} \ge 0 \quad \text{e} \quad \mathbf{x} \cdot \mathbf{x} = 0 \iff \mathbf{x} = \mathbf{0}$$
 (2.1.43)

 $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^3, \forall \lambda \in \mathbb{R}.$

► Exercício 2.12 ... Verifique que o produto interno (2.1.39) satisfaz as propriedades acima referidas.

Norma (euclideana)

▶ 2.25 Define-se a norma euclideana $\|\mathbf{x}\|$, de um vector $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3$, através da fórmula:

$$\|\mathbf{x}\| \equiv \sqrt{\mathbf{x} \cdot \mathbf{x}}$$

$$= \sqrt{\mathbf{x}^t \mathbf{x}}$$

$$= \sqrt{(x_1)^2 + (x_2)^2 + (x_3)^2}$$
(2.1.44)

- ▶ 2.26 A norma euclideana verifica as propriedades seguintes:
 - é positiva e não degenerada:

$$\|\mathbf{x}\| \ge 0 \quad e \quad \|\mathbf{x}\| = 0 \quad sse \quad \mathbf{x} = \mathbf{0} \tag{2.1.45}$$

• é homogénea (positiva):

$$\|\lambda \mathbf{x}\| = |\lambda| \|\mathbf{x}\| \tag{2.1.46}$$

• verifica a desigualdade triangular:

$$\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$$
 (2.1.47)

 $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^2, \forall \lambda \in \mathbb{R}$

Todas as propriedades são de demonstração imediata com excepção da desigualdade triangular, que resulta imediatamente de uma outra importante desigualdade que passamos a enunciar, e cuja prova é em tudo análoga à que foi feita no capítulo anterior:

• Desigualdade de Cauchy-Schwarz:

$$|\mathbf{x} \cdot \mathbf{y}| \le ||\mathbf{x}|| ||\mathbf{y}|| \tag{2.1.48}$$

 $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^2$.

Ângulo, ortogonalidade

▶ 2.27 Dados dois vectores não nulos $\mathbf{x}, \mathbf{y} \in \mathbb{R}^3$, deduzimos da desigualdade de Cauchy-Schwarz que:

$$-1 \le \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|} \le 1 \tag{2.1.49}$$

o que permite definir o **ângulo (não orientado)** $\theta \in [0, \pi]$, entre os referidos vectores não nulos $\mathbf{x}, \mathbf{y} \in \mathbb{R}^3$, como sendo o único $\theta \in [0, \pi]$, tal que:

$$\cos \theta = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|} \in [-1, 1]$$
 (2.1.50)

Portanto:

$$\mathbf{x} \cdot \mathbf{y} = \|\mathbf{x}\| \|\mathbf{y}\| \cos \theta \tag{2.1.51}$$

Dois vectores $\mathbf{x}, \mathbf{y} \in \mathbb{R}^3$ dizem-se **ortogonais** se $\mathbf{x} \cdot \mathbf{y} = 0$.

Rectas vectoriais e afins

▶ 2.28 Dado um vector não nulo $\mathbf{v} \neq \mathbf{0}$, o conjunto dos vectores \mathbf{x} que são da forma:

$$\mathbf{x} = t\mathbf{v} \qquad \qquad t \in \mathbb{R} \tag{2.1.52}$$

diz-se a **recta (vectorial)** gerada por \mathbf{v} . Se $\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$, então (3.3.4) é

equivalente ao sistema de equações:

$$\begin{cases} x_1 = t \, v_1 \\ x_2 = t \, v_2 \\ x_3 = t \, v_3 \end{cases} \qquad t \in \mathbb{R}$$

que se dizem as equações paramétricas da referida recta.

▶ 2.29 Dado um ponto $A \in \mathbb{R}^3$ e um vector não nulo $\mathbf{v} \neq \mathbf{0}$, o conjunto dos pontos P que são da forma:

$$P = A + t\mathbf{v} \qquad \qquad t \in \mathbb{R} \tag{2.1.53}$$

isto é, tais que $\overrightarrow{AP} = t \mathbf{v}$, diz-se a recta (afim) que passa em A e é gerada por \mathbf{v} .

Se
$$P = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
, $A = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$, e $\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$, então (2.1.53) é equivalente

ao sistema de equações:

$$\begin{cases} x_1 = a_1 + t \, v_1 \\ x_2 = a_2 + t \, v_2 \\ x_3 = a_3 + t \, v_3 \end{cases} \qquad t \in \mathbb{R}$$

que se dizem as equações paramétricas da referida recta.

Resolvendo em ordem a t podemos escrever as chamadas **equações homogéneas** da referida recta, na forma:

$$\frac{x_1 - a_1}{v_1} = \frac{x_2 - a_2}{v_2} = \frac{x_3 - a_3}{v_3}, \quad \text{se } v_1 v_2 v_3 \neq 0 \tag{2.1.54}$$

Planos vectoriais e afins

▶ 2.30 Dados dois vectores $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3 - \{\mathbf{0}\}$, linearmente independentes, ao subespaço gerado por esses dois vectores, i.e., ao conjunto constituído por todas as combinações lineares de \mathbf{u} e \mathbf{v} :

$$\operatorname{span}\{\mathbf{u}, \mathbf{v}\} \equiv \{\mathbf{x} \in \mathbb{R}^3 : \mathbf{x} = \lambda \mathbf{u} + \eta \mathbf{v} \qquad \lambda, \eta \in \mathbb{R}\}$$
 (2.1.55)

chama-se o **plano (vectorial)** gerado por \mathbf{u} e \mathbf{v} . Se P é um ponto genérico desse plano, com vector de posição $\overrightarrow{OP} = \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$, e se $\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$,

$$\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$
, a equação vectorial:

$$\mathbf{x} = \lambda \, \mathbf{u} + \eta \, \mathbf{v} \qquad \quad \lambda, \eta \in \mathbb{R}$$

que define o referido plano, é equivalente às seguintes equações paramétricas:

$$\begin{cases} x_1 = \lambda u_1 + \eta v_1 \\ x_2 = \lambda u_2 + \eta v_2 \\ x_3 = \lambda u_3 + \eta v_3 \end{cases} \lambda, \eta \in \mathbb{R}$$
 (2.1.56)

▶ 2.31 Dado um ponto $A \in \mathbb{R}^3$ e dois vectores $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3 - \{\mathbf{0}\}$, linearmente independentes, ao conjunto dos pontos P que são da forma:

$$P = A + \lambda \mathbf{u} + \eta \mathbf{v} \qquad \lambda, \eta \in \mathbb{R}$$
 (2.1.57)

chama-se o plano (afim) que passa em p e é gerada por u e v.

As equações paramétricas de um tal plano, são do tipo:

$$\begin{cases} x_1 = a_1 + \lambda u_1 + \eta v_1 \\ x_2 = a_2 + \lambda u_2 + \eta v_2 \\ x_3 = a_3 + \lambda u_3 + \eta v_3 \end{cases} \qquad \lambda, \eta \in \mathbb{R}$$
 (2.1.58)

▶ 2.32 Dado um vector não nulo $\mathbf{n} \in \mathbb{R}^3 - \{\mathbf{0}\}$, o conjunto dos pontos P cujos vectores de posição $\overrightarrow{OP} = \mathbf{x} \in \mathbb{R}^3$ são ortogonais a \mathbf{n} :

$$\{\mathbf{x} \in \mathbb{R}^3 : \mathbf{x} \cdot \mathbf{n} = 0\} \tag{2.1.59}$$

formam um subespaço de dimensão 2 em \mathbb{R}^3 , que se diz o **plano (vectorial)** ortogonal a n. Se $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ e se $\mathbf{n} = \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix}$, a equação $\mathbf{x} \cdot \mathbf{n} = 0$, é equivalente à seguinte **equação cartesiana**:

$$n_1 x_1 + n_2 x_2 + n_3 x_3 = 0 (2.1.60)$$

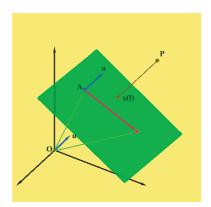
▶ 2.33 Dado um ponto arbitrário $A \in \mathbb{R}^3$ e um vector não nulo $\mathbf{n} \in \mathbb{R}^3 - \{\mathbf{0}\}$, o conjunto dos pontos P que verificam a equação:

$$\overrightarrow{AP} \cdot \mathbf{n} = 0 \tag{2.1.61}$$

diz-se o plano afim que passa em A e é ortogonal a n. Se $\overrightarrow{OP} = \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$, $A = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ e $\mathbf{n} = \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix}$, a equação cartesiana de um tal plano é do tipo:

$$n_1(x_1 - a_1) + n_2(x_2 - a_2) + n_3(x_3 - a_3) = 0$$
 (2.1.62)

▶ 2.34 Exemplo ... Calcular a distância entre um ponto P e um hiperplano afim em $\overline{\mathbb{E}^n}$.



Res... Suponhamos que esse hiperplano é perpendicular ao vector $\mathbf{u} \neq \mathbf{0}$ e passa num ponto \mathbf{a} e, portanto, tem equação:

$$(\mathbf{x} - \mathbf{a}) \cdot \mathbf{u} = 0$$

ou

$$\mathbf{x} \cdot \mathbf{u} + c = 0,$$
 $c = -\mathbf{a} \cdot \mathbf{u}$

A recta que passa em $P\simeq \overrightarrow{OP}=\mathbf{p}$ e tem a direcção do vector \mathbf{u} , tem equação:

$$\mathbf{x}(t) = \mathbf{p} + t\mathbf{u}$$

O ponto desta recta que pertence ao plano referido, corresponde ao valor do parâmetro \bar{t} que verifica:

$$0 = \mathbf{x}(\overline{t}) \cdot \mathbf{u} + c = (\mathbf{p} + \overline{t}\mathbf{u}) \cdot \mathbf{u} + c = \mathbf{p} \cdot \mathbf{u} + \overline{t}\|\mathbf{u}\|^2 + c \quad \Rightarrow \quad \overline{t} = -\frac{\mathbf{p} \cdot \mathbf{u} + c}{\|\mathbf{u}\|^2}$$

A distância entre um ponto $P \simeq \mathbf{p}$ e o hiperplano afim é pois dada por:

$$d = \|\mathbf{p} - \mathbf{x}(\overline{t})\| = \left\|\mathbf{p} - \mathbf{p} + \frac{\mathbf{p} \cdot \mathbf{u} + c}{\|\mathbf{u}\|^2} \mathbf{u}\right\| = \frac{|\mathbf{p} \cdot \mathbf{u} + c|}{\|\mathbf{u}\|}$$

Assim por exemplo:

• No plano, a distância entre um ponto $P=(\alpha,\beta)$ e a recta afim ax+by+c=0 é:

$$d = \frac{|\mathbf{p} \cdot \mathbf{u} + c|}{\|\mathbf{u}\|} = \frac{|(\alpha, \beta) \cdot (a, b) + c|}{\|(a, b)\|} = \frac{|a\alpha + b\beta + c|}{(a^2 + b^2)^{1/2}}$$

• No espaço, a distância entre um ponto $P=(\alpha,\beta,\gamma)$ e o plano afim ex+fy+gz+h=0 é:

$$d = \frac{|\mathbf{p} \cdot \mathbf{u} + c|}{\|\mathbf{u}\|} = \frac{|(\alpha, \beta, \gamma) \cdot (e, f, g) + h|}{\|(e, f, g)\|} = \frac{|e\alpha + f\beta + g\gamma + h|}{(e^2 + f^2 + g^2)^{1/2}}$$

- ▶ 2.35 <u>Exemplo</u> ... Calcular a distância entre um ponto P e uma recta afim em \mathbb{E}^3 , quando:
 - 1. essa recta é definida parametricamente.
 - 2. essa recta é definida como intersecção de dois planos afins.

Produto vectorial em \mathbb{E}^3

▶ 2.36 Definamos agora o chamado produto vectorial de dois vectores no espaço Euclideano \mathbb{E}^3 :

Dados dois vectores
$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
, $\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$, em \mathbb{E}^3 , define-se o **produto**

vectorial, $\mathbf{x} \times \mathbf{y}$, de \mathbf{x} por \mathbf{y} , como sendo o seguinte vector de \mathbb{R}^3 :

$$\mathbf{x} \times \mathbf{y} \equiv (x_2 y_3 - x_3 y_2)\mathbf{i} + (\mathbf{x_3 y_1} - \mathbf{x_1 y_3})\mathbf{j} + (\mathbf{x_1 y_2} - \mathbf{x_2 y_1})\mathbf{k}$$
 (2.1.63)

O produto vectorial $\mathbf{x} \times \mathbf{y}$, pode ser obtido desenvolvendo segundo a primeira linha, o determinante formal:

$$\mathbf{x} \times \mathbf{y} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix}$$

- ▶ 2.37 O produto vectorial verifica as propriedades seguintes:
 - é bilinear:

$$(\mathbf{x} + \mathbf{y}) \times \mathbf{z} = \mathbf{x} \times \mathbf{z} + \mathbf{y} \times \mathbf{z}$$

$$\mathbf{x} \times (\mathbf{y} + \mathbf{z}) = \mathbf{x} \times \mathbf{y} + \mathbf{x} \times \mathbf{z}$$

$$\lambda \mathbf{x} \times \mathbf{y} = \mathbf{x} \times \lambda \mathbf{y} = \lambda (\mathbf{x} \times \mathbf{y})$$
(2.1.64)

• é antissimétrico:

$$\mathbf{x} \times \mathbf{y} = -\mathbf{y} \times \mathbf{x} \tag{2.1.65}$$

• verifica a identidade de Jacobi:

$$(\mathbf{x} \times \mathbf{y}) \times \mathbf{z} + (\mathbf{y} \times \mathbf{z}) \times \mathbf{x} + (\mathbf{z} \times \mathbf{x}) \times \mathbf{y} = \mathbf{0}$$
 (2.1.66)

Além disso, se $\mathbf{x} \in \mathbb{R}^3$ e $\mathbf{y} \in \mathbb{R}^3$, são ambos não nulos, então:

• $\mathbf{x} \times \mathbf{y}$ é perpendicular a \mathbf{x} e a \mathbf{y} , i.e.:

$$(\mathbf{x} \times \mathbf{y}) \cdot \mathbf{x} = 0 = (\mathbf{x} \times \mathbf{y}) \cdot \mathbf{y} \tag{2.1.67}$$

Se ${\bf x}$ e ${\bf y}$ são linearmente independentes, ${\bf x} \times {\bf y}$ é perpendicular ao plano gerado por ${\bf x}$ e ${\bf y}$.

 $\|\mathbf{x} \times \mathbf{y}\| = \|\mathbf{x}\| \|\mathbf{y}\| \sin \theta \tag{2.1.68}$

onde θ é o ângulo entre \mathbf{x} e \mathbf{y} . Portanto, $\|\mathbf{x} \times \mathbf{y}\|$ é igual à área do paralelogramo cujos lados adjacentes são \mathbf{x} e \mathbf{y} .

- $\mathbf{x} \times \mathbf{y} = \mathbf{0} \Leftrightarrow \mathbf{x}$ e \mathbf{y} são linearmente dependentes.
- O produto vectorial <u>não é</u> associativo. De facto, são válidas as seguintes **identidades de Lagrange**:

$$(\mathbf{x} \times \mathbf{y}) \times \mathbf{z} = (\mathbf{x} \cdot \mathbf{z})\mathbf{y} - (\mathbf{y} \cdot \mathbf{z})\mathbf{x}$$
(2.1.69)

enquanto que:

$$\mathbf{x} \times (\mathbf{y} \times \mathbf{z}) = (\mathbf{x} \cdot \mathbf{z})\mathbf{y} - (\mathbf{x} \cdot \mathbf{y})\mathbf{z}$$
 (2.1.70)

▶ 2.38 Em particular, se consideramos o paralelogramo de lados adjacentes $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix}$ e $\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ 0 \end{pmatrix}$, contido no plano $x_3 = 0$, vemos que a respectiva área é dada por:

$$\|\mathbf{x} \times \mathbf{y}\| = \left| \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ x_1 & x_2 & 0 \\ y_1 & y_2 & 0 \end{pmatrix} \right|$$
$$= \left| \det \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix} \right| \tag{2.1.71}$$

▶ 2.39 Uma equação (cartesiana) para o plano vectorial span $\{\mathbf{u}, \mathbf{v}\}$, gerado por dois vectores $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3 - \{\mathbf{0}\}$, linearmente independentes, é:

$$\mathbf{x} \cdot (\mathbf{u} \times \mathbf{v}) = 0 \tag{2.1.72}$$

Produto misto (ou triplo) em \mathbb{R}^3 . Interpretação geométrica do det

▶ 2.40 Definamos agora, ainda em \mathbb{E}^3 , o chamado **produto misto (ou triplo)**. Dados três vectores $\mathbf{x}, \mathbf{y}, \mathbf{z}$ em \mathbb{R}^3 , define-se o **produto misto (ou triplo)** $[\mathbf{x}, \mathbf{y}, \mathbf{z}]$, de \mathbf{x}, \mathbf{y} e \mathbf{z} (<u>por esta ordem</u>), através de:

$$[\mathbf{x}, \mathbf{y}, \mathbf{z}] \equiv \mathbf{x} \cdot (\mathbf{y} \times \mathbf{z}) \tag{2.1.73}$$

•

É fácil ver que $[\mathbf{x}, \mathbf{y}, \mathbf{z}]$ é dado por:

$$[\mathbf{x}, \mathbf{y}, \mathbf{z}] = \det \begin{bmatrix} \mathbf{x} & \mathbf{y} & \mathbf{z} \end{bmatrix}$$

$$= \det \begin{pmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{pmatrix}$$
(2.1.74)

▶ 2.41 O produto misto verifica as propriedades seguintes:

•

$$[\mathbf{x}, \mathbf{y}, \mathbf{z}] = [\mathbf{y}, \mathbf{z}, \mathbf{x}] = [\mathbf{z}, \mathbf{x}, \mathbf{y}] = -[\mathbf{y}, \mathbf{x}, \mathbf{z}]$$
$$= -[\mathbf{x}, \mathbf{z}, \mathbf{y}] = -[\mathbf{z}, \mathbf{y}, \mathbf{x}]$$
(2.1.75)

• O volume vol $(\mathbf{x}, \mathbf{y}, \mathbf{z})$, do paralelipípedo de lados adjacentes $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^3$, é igual ao módulo do produto misto:

$$vol(\mathbf{x}, \mathbf{y}, \mathbf{z}) = |[\mathbf{x}, \mathbf{y}, \mathbf{z}]| \tag{2.1.76}$$

De facto, o volume de um paralelipípedo é igual ao produto da área da base pela sua altura. A base é o paralelogramo de lados adjacentes \mathbf{x} e \mathbf{y} , e por isso, a sua área é $\|\mathbf{x} \times \mathbf{y}\|$. A altura é igual à norma da projecção de \mathbf{z} sobre um vector perpendicular à base. Mas $\mathbf{x} \times \mathbf{y}$ é perpendicular à base, e atendendo a (2.1.87), a projecção de \mathbf{z} sobre $\mathbf{x} \times \mathbf{y}$, é igual a:

$$\frac{\mathbf{z} \cdot (\mathbf{x} \times \mathbf{y})}{\|\mathbf{x} \times \mathbf{y}\|^2} (\mathbf{x} \times \mathbf{y}) \tag{2.1.77}$$

donde se deduz fàcilmente o resultado .

Quando $\mathbf{x}_1, \mathbf{x}_2$ e \mathbf{x}_3 são linearmente independentes, de tal forma que:

$$\det \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_3 \end{bmatrix} \neq 0$$

dizemos que a base ordenada $\{x_1, x_2, x_3\}$ é

- positiva se det $[\mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{x}_3] > 0$, e
- negativa se det $[\mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{x}_3] < 0$.

Interpretação geométrica de det A

▶ 2.42 Consideremos agora uma aplicação linear $\mathbf{A}: \mathbb{R}^3 \to \mathbb{R}^3$. A imagem do cubo $\mathcal{Q} \subset \mathbb{R}^3$, gerado pelos vectores da base canónica (que é positiva) $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$:

$$Q = \{a\mathbf{e}_1 + b\mathbf{e}_2 + c\mathbf{e}_3 : 0 \le a, b, c \le 1\}$$

é o paralelipípedo $\mathbf{A}(\mathcal{Q})$, de lados adjacentes $\mathbf{A}(\mathbf{e}_1), \mathbf{A}(\mathbf{e}_2)$ e $\mathbf{A}(\mathbf{e}_3)$.

Pondo
$$\mathbf{A}(\mathbf{e}_1) = a_1^1 \mathbf{e}_1 + a_1^2 \mathbf{e}_2 + a^3 \mathbf{e}_3 = \begin{bmatrix} a_1^1 \\ a_1^2 \\ a_1^3 \end{bmatrix}, \mathbf{A}(\mathbf{e}_2) = a_2^1 \mathbf{e}_1 + a_2^2 \mathbf{e}_2 + a_2^3 = \begin{bmatrix} a_1^1 \\ a_1^2 \\ a_2^2 \\ a_2^3 \end{bmatrix}, \ \mathbf{e} \ \mathbf{A}(\mathbf{e}_3) = a_3^1 \mathbf{e}_1 + a_3^2 \mathbf{e}_2 + a_3^3 = \begin{bmatrix} a_3^1 \\ a_3^2 \\ a_3^3 \end{bmatrix}$$
sabemos que o volume deste paralelipípedo é igual a:

$$\operatorname{vol} \mathbf{A}(\mathcal{Q}) = |[\mathbf{A}(\mathbf{e}_{1}), \mathbf{A}(\mathbf{e}_{2}), \mathbf{A}(\mathbf{e}_{3})]|$$

$$= |\det [\mathbf{A}(\mathbf{e}_{1}) \ \mathbf{A}(\mathbf{e}_{2}) \ \mathbf{A}(\mathbf{e}_{3})]|$$

$$= |\det \begin{bmatrix} a_{1}^{1} & a_{2}^{1} & a_{3}^{1} \\ a_{1}^{2} & a_{2}^{2} & a_{3}^{2} \\ a_{1}^{3} & a_{2}^{3} & a_{3}^{3} \end{bmatrix}|$$

$$= |\det \mathbf{A}| \qquad (2.1.78)$$

Portanto:

$$vol \mathbf{A}(\mathcal{Q}) = |\det \mathbf{A}| \tag{2.1.79}$$

▶ 2.43 Mais geralmente, se \mathcal{P} é um paralelipípedo gerado pelos vectores \mathbf{x} , \mathbf{y} e \mathbf{z} , então a imagem $\mathbf{A}(\mathcal{P})$ é o paralelipípedo gerado por $\mathbf{A}(\mathbf{x})$, $\mathbf{A}(\mathbf{y})$ e $\mathbf{A}(\mathbf{z})$, e é fácil provar que o volume dessa imagem é igual a:

$$vol \mathbf{A}(\mathcal{P}) = |[\mathbf{A}(\mathbf{x}), \mathbf{A}(\mathbf{y}), \mathbf{A}(\mathbf{z})]|$$

$$= |\det[\mathbf{A}(\mathbf{x}) \ \mathbf{A}(\mathbf{y}) \ \mathbf{A}(\mathbf{z})]|$$

$$= |\det \mathbf{A}| \ vol(\mathcal{P}))$$
 (2.1.80)

Em particular, se os vectores \mathbf{x}, \mathbf{y} e \mathbf{z} são linearmente independentes, de tal forma que vol $\mathcal{P} \neq 0$, então:

$$|\det \mathbf{A}| = \frac{\operatorname{vol} \mathbf{A}(\mathcal{P})}{\operatorname{vol} \mathcal{P}} \tag{2.1.81}$$

- ightharpoonup 2.44 Diz-se que uma aplicação linear inversível $\mathbf{A}:\mathbb{R}^3 \to \mathbb{R}^3$
 - preserva a orientação (ou é positiva) se $\det \mathbf{A} > 0$, e que
 - inverte a orientação (ou é negativa) se $\det \mathbf{A} < 0$

Valores e vectores próprios

▶ 2.45 Seja $\mathbf{A}: \mathbb{R}^3 \to \mathbb{R}^3$ uma aplicação linear. Um escalar $\lambda \in \mathbb{R}$ diz-se um valor próprio de \mathbf{A} se existir um vector não nulo $\mathbf{v} \in \mathbb{R}^3 - \{\mathbf{0}\}$ tal que:

$$\mathbf{A}(\mathbf{v}) = \lambda \,\mathbf{v} \tag{2.1.82}$$

Neste caso, o vector não nulo \mathbf{v} , diz-se um **vector próprio** pertencente ao valor próprio λ .

▶ 2.46 O conjunto constituído pelo vector nulo $\mathbf{0}$ e por todos os vectores próprios pertencentes a um certo valor próprio λ , de \mathbf{A} , é um subespaço de \mathbb{R}^3 , chamado o subespaço próprio de \mathbf{A} , pertencente ao valor próprio λ , e nota-se por:

$$\mathbb{E}_{\mathbf{A}}(\lambda) = \mathbb{E}(\lambda) = \{ \mathbf{x} : \mathbf{A}(\mathbf{x}) = \lambda \, \mathbf{x} \}$$
 (2.1.83)

A restrição de **A** a $\mathbb{E}(\lambda)$ é pois uma **homotetia** de razão λ (eventualmente λ pode ser 0), i.e.:

$$\mathbf{A}(\mathbf{x}) = \lambda \, \mathbf{x} \qquad \forall \mathbf{x} \in \mathbb{E}(\lambda)$$

▶ 2.47 Em particular, se $\lambda = 0$ é valor próprio de \mathbf{A} , isto significa que o núcleo de \mathbf{A} ;

$$\ker \mathbf{A} = \mathbb{E}_{\mathbf{A}}(0)$$

não se reduz ao vector nulo $\mathbf{0}$, e portanto \mathbf{A} é não inversível (ou **singular**), ou de forma equivalente, det $\mathbf{A} = 0$.

Quando $\lambda \neq 0$, dizer que λ é valor próprio de \mathbf{A} , é equivalente a dizer que 0 é valor próprio de $\mathbf{A} - \lambda \operatorname{Id}$, o que, pelo parágrafo anterior, é equivalente a dizer que $\mathbf{A} - \lambda \operatorname{Id}$ é não inversível (ou **singular**), ou ainda que:

$$\det\left(\mathbf{A} - \lambda \operatorname{Id}\right) = 0 \tag{2.1.84}$$

▶ 2.48 O polinómio $p(\lambda) = \det(\mathbf{A} - \lambda \operatorname{Id})$ diz-se o polinómio característico de \mathbf{A} . Portanto as raízes reais da chamada equação característica de \mathbf{A} :

$$p(\lambda) = \det\left(\mathbf{A} - \lambda \operatorname{Id}\right) = 0 \tag{2.1.85}$$

(se existirem), são exactamente os valores próprios (reais) de A.

Num capítulo posterior demonstrar-se-á que o polinómio característico de uma aplicação linear $\mathbf{A}: \mathbb{R}^3 \to \mathbb{R}^3$, não depende da representação matricial de \mathbf{A} .

▶ 2.49 Note ainda que o polinómio característico $p(\lambda) = \det(\mathbf{A} - \lambda \operatorname{Id})$, de uma aplicação linear $\mathbf{A} : \mathbb{R}^3 \to \mathbb{R}^3$, é sempre um polinómio do 3.º grau, do tipo:

$$p(\lambda) = -\lambda^3 + b\lambda^2 + c\lambda + d$$
 $b, c, d \in \mathbb{R}$

e por isso admite sempre uma raiz real $\lambda \in \mathbb{R}$ (eventualmente nula). Se $\lambda \neq 0$, concluímos portanto que, neste caso, existe sempre um subespaço próprio invariante $\mathbb{E}(\lambda) \subset \mathbb{R}^3$, de dimensão superior ou igual a 1, tal que:

$$\begin{array}{cccc} \mathbf{A}(\mathbb{E}(\lambda)) & \subseteq & \mathbb{E}(\lambda) \\ & \mathbf{A}(\mathbf{x}) & = & \lambda \, \mathbf{x} & & \mathbf{x} \in \mathbb{E}(\lambda) \end{array}$$

Exemplo...

Calcule os valores e vectores próprios (reais) da aplicação linear $\mathbf{A}: \mathbb{R}^3 \to \mathbb{R}^3$, cuja matriz na base canónica de \mathbb{R}^3 é:

$$A = \left(\begin{array}{rrr} 1 & 0 & 0 \\ -5 & 2 & 0 \\ 2 & 3 & 7 \end{array}\right)$$

A equação característica de A é:

$$p(\lambda) = \det(\mathbf{A} - \lambda \operatorname{Id})$$

$$= \begin{vmatrix} 1 - t & 0 & 0 \\ -5 & 2 - t & 0 \\ 2 & 3 & 7 - t \end{vmatrix}$$

$$= (1 -)(2 - t)(7 - t) = 0$$
 (2.1.86)

cujas raízes reais (os valores próprios de **A**) são $\lambda_1=1,\,\lambda_2=2$ e $\lambda_3=7.$

Para calcular os vectores póprios $\mathbf{x}=\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}$, pertencentes ao valor próprio $\lambda_2=2$, devemos resolver o sistema:

$$\begin{pmatrix} 1-2 & 0 & 0 \\ -5 & 2-2 & 0 \\ 2 & 3 & 7-2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

isto é:

$$\begin{cases}
-x_1 & = 0 \\
-5x_1 & = 0 \\
2x_1 + 3x_2 + 5x_3 & = 0
\end{cases}$$

cuja solução geral é:

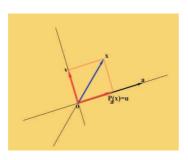
$$\begin{cases} x_1 &= 0 \\ x_2 &= -\frac{5}{3}s \\ x_3 &= s \end{cases}$$
 $s \in \mathbb{R}$

Portanto os vectores póprios de A, pertencentes ao valor próprio $\lambda_2=2$, são da forma:

$$s\left(\begin{array}{c}0\\-\frac{5}{3}\\1\end{array}\right)\qquad \qquad s\in\mathbb{R}-\{0\}$$

Procedendo da mesma forma relativamente aos outros valores próprios $\lambda_1=1$ e $\lambda_3=7$, podemos calcular os correspondentes vectores póprios.

Projecção ortogonal sobre uma recta gerada por a $\neq 0$



Sejam $\mathbf{a} \neq \mathbf{0}$ e \mathbf{x} dois vectores em \mathbb{R}^3 , com <u>a não nulo</u>. Então existe um único vector **u**, na recta gerada por **a**, e um único vector **v**, ortogonal a **a**, tais que $\mathbf{x} = \mathbf{u} + \mathbf{v}$. O vector **u**, notado por $\mathbf{P_a}(\mathbf{x})$, diz-se a **projecção ortogonal** de **x** sobre a recta gerada por **a**, e é dado por:

$$\mathbf{P_a}(\mathbf{x}) = \frac{\mathbf{x} \cdot \mathbf{a}}{\|\mathbf{a}\|^2} \mathbf{a}$$
 (2.1.87)

▶ 2.50 A aplicação $\mathbf{P_a}: \mathbb{R}^3 \to \mathbb{R}^3$ definida por (7.7.7), é linear. Note que $\mathbf{P_a^2} = \mathbf{P_a}$. Uma vez que $\mathbf{P_a(a)} = \mathbf{a}$ vemos que \mathbf{a} é vector próprio de $\mathbf{P_a}$, pertencente ao valor próprio 1. Por outro lado, se considerarmos um qualquer vector $\mathbf{b} \neq \mathbf{0}$ ortogonal a \mathbf{a} (i.e.: $\mathbf{a} \cdot \mathbf{b} = 0$), vemos que $\mathbf{P_a(b)} = \mathbf{0}$ e portanto:

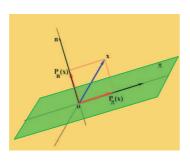
$$\ker \mathbf{P_a} = \operatorname{span}\{\mathbf{b}\} = \{\mathbf{b} \in \mathbb{R}^3 : \mathbf{b} \cdot \mathbf{a} = 0\} = \mathbf{a}^{\perp}$$

é o plano vectorial ortogonal a a.

A matriz de $\bf P_a$ numa base $\{a,b_1,b_2\},$ onde b_1,b_2 geram o ker $\bf P_a,$ é portanto:

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)$$

Projecção ortogonal sobre um plano vectorial, em \mathbb{E}^3



Consideremos um plano vectorial ortogonal a um vector $\mathbf{n} \in \mathbb{R}^3 - \{\mathbf{0}\}$ (se esse plano é gerado por dois vectores \mathbf{u}, \mathbf{v} linearmente independentes, podemos tomar $\mathbf{n} = \mathbf{u} \times \mathbf{v}$). Notemos esse plano por $\pi = \mathbf{n}^{\perp}$. Dado um vector $\mathbf{x} \in \mathbb{R}^3$, ao vector:

$$\mathbf{P}_{\pi}(\mathbf{x}) \equiv \mathbf{x} - \mathbf{P}_{\mathbf{n}}(\mathbf{x})$$

chamamos a **projecção ortogonal** de \mathbf{x} sobre o plano vectorial $\pi = \mathbf{n}^{\perp}$, ortogonal a \mathbf{n} .

 \triangleright 2.51 De acordo com (2.1.87), temos que:

$$\mathbf{P}_{\pi}(\mathbf{x}) \equiv \mathbf{x} - \mathbf{P}_{\mathbf{n}}(\mathbf{x}) = \mathbf{x} - \frac{\mathbf{x} \cdot \mathbf{n}}{\|\mathbf{n}\|^2} \, \mathbf{n}$$

isto é:

$$\mathbf{P}_{\pi}(\mathbf{x}) = \mathbf{x} - \frac{\mathbf{x} \cdot \mathbf{n}}{\|\mathbf{n}\|^2} \mathbf{n}$$
 (2.1.88)

A aplicação $\mathbf{P}_{\pi}: \mathbb{R}^{3} \to \mathbb{R}^{3}$ definida por (7.7.8), é linear. Note que $\mathbf{P}_{\pi}^{2} = \mathbf{P}_{\pi}$. Se $\mathbf{x} \cdot \mathbf{n} = 0$, i.e., se \mathbf{x} é ortogonal a \mathbf{n} , então $\mathbf{P}_{\pi}(\mathbf{x}) = \mathbf{x}$, enquanto que, por outro lado, $\mathbf{P}_{\pi}(\mathbf{n}) = \mathbf{0}$. Portanto vemos que:

$$\ker \mathbf{P}_{\pi} = \operatorname{span}\{\mathbf{n}\}\$$

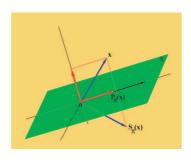
e:

$$\mathbf{P}_{\pi}(\mathbf{x}) = \mathbf{x} \qquad \forall \mathbf{x} \in \pi = \mathbf{n}^{\perp}$$

Portanto a matriz de \mathbf{P}_{π} numa base $\{\mathbf{n},\mathbf{b}_1,\mathbf{b}_2\}$, onde $\mathbf{b}_1,\mathbf{b}_2$ geram o plano $\pi,$ é:

$$\left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]$$

Reflexão num plano vectorial



Consideremos novamente um plano vectorial \mathbf{n}^{\perp} , ortogonal a um vector $\mathbf{n} \in \mathbb{R}^3 - \{\mathbf{0}\}$ (se esse plano é gerado por dois vectores \mathbf{u}, \mathbf{v} linearmente independentes, podemos tomar $\mathbf{n} = \mathbf{u} \times \mathbf{v}$). A simetria relativamente ao plano vectorial $\pi = \mathbf{n}^{\perp}$, ou reflexão em π , é a aplicação linear $\mathbf{S}_{\pi} : \mathbb{R}^3 \to \mathbb{R}^3$, definida pela condição:

$$\frac{1}{2}(\mathbf{S}_{\pi}(\mathbf{x}) + \mathbf{x}) = \mathbf{P}_{\pi}(x) \qquad \forall \mathbf{x} \in \mathbb{R}^{3}$$
(2.1.89)

isto é, o ponto médio do segmento que une \mathbf{x} a $\mathbf{S}_{\pi}(\mathbf{x})$ deve ser igual à projecção de \mathbf{x} sobre o plano vectorial $\pi = \mathbf{n}^{\perp}$.

▶ **2.52** Atendendo a (2.1.88), vemos que:

$$\mathbf{S}_{\pi}(x) = 2\mathbf{P}_{\pi}(\mathbf{x}) - \mathbf{x} = 2\left(\mathbf{x} - \frac{\mathbf{x} \cdot \mathbf{n}}{\|\mathbf{n}\|^2} \mathbf{n}\right) - \mathbf{x} = \mathbf{x} - 2\frac{\mathbf{x} \cdot \mathbf{n}}{\|\mathbf{n}\|^2} \mathbf{n}$$

isto é:

$$\mathbf{S}_{\pi}(x) = \mathbf{x} - 2 \, \frac{\mathbf{x} \cdot \mathbf{n}}{\|\mathbf{n}\|^2} \, \mathbf{n}, \quad \forall \mathbf{x} \in \mathbb{R}^3$$
 (2.1.90)

Note que $\mathbf{S}_{\pi}^2 = \text{Id.}$ Além disso, é fácil ver que :

$$S_{\pi}(\mathbf{n}) = -\mathbf{n}$$

o que significa que ${\bf n}$ é vector próprio de ${\bf S}_{\pi},$ pertencente ao valor próprio -1, e ainda que:

$$\mathbf{S}_{\pi}(\mathbf{x}) = \mathbf{x} \qquad \forall \mathbf{x} \in \pi$$

Portanto a matriz de \mathbf{S}_{π} numa base $\{\mathbf{n},\mathbf{b}_1,\mathbf{b}_2\},$ onde $\mathbf{b}_1,\mathbf{b}_2$ geram o plano $\pi,$ é:

$$\left[\begin{array}{ccc} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]$$

o que mostra que det $\mathbf{S}_{\pi} = -1 < 0$, i.e., \mathbf{S}_{π} inverte orientação.

Isometrias em \mathbb{R}^3 . Rotações. Os grupos $\mathcal{O}(3)$ e $\mathcal{SO}(3)$

▶ 2.53 Uma aplicação linear $\mathbf{A} : \mathbb{R}^3 \to \mathbb{R}^3$ diz-se uma transformação ortogonal ou uma isometria de \mathbb{R}^3 , se \mathbf{A} preserva o produto interno (Euclideano) usual de \mathbb{R}^3 , i.e.:

$$\mathbf{A}(\mathbf{x}) \cdot \mathbf{A}(\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$$
 $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^3$ (2.1.91)

Esta condição é equivalente a:

$$\|\mathbf{A}(\mathbf{x})\| = \|\mathbf{x}\| \qquad \forall \mathbf{x} \in \mathbb{R}^3$$
 (2.1.92)

i.e., **A** preserva os comprimentos dos vectores. Se A é a matriz de uma tal transformação ortogonal, relativamente a uma qualquer base ortonormada $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ de \mathbb{R}^2 (por exemplo, a base canónica), A é uma matriz ortogonal, isto é, $A^tA = \mathbf{I}$. Portanto $A \in \mathcal{O}(3)$. Vejamos como é a forma geral de uma tal matriz.

▶ 2.54 Se $\mathbf{c}_1 = \mathbf{A}(\mathbf{e}_1), \mathbf{c}_2 = \mathbf{A}(\mathbf{e}_2), \mathbf{c}_3 = \mathbf{A}(\mathbf{e}_3)$ são as colunas de A, então:

$$\mathbf{c}_i \cdot \mathbf{c}_j = \delta_{ij}$$

o que significa que $\mathbf{c}_1, \mathbf{c}_2$ e \mathbf{c}_3 são ortonormais. Portanto \mathbf{A} transforma bases ortonormadas em bases ortonormadas, preservando ou invertendo orientação, conforme det $\mathbf{A} = +1$ ou det $\mathbf{A} = -1$, respectivamente. Por exemplo, a reflexão \mathbf{S}_{π} , descrita em (2.1.89), é uma transformação ortogonal com det igual a -1.

▶ 2.55 Como já vimos **A** admite sempre um valor próprio real. De facto, se $\mathbf{A} : \mathbb{R}^3 \to \mathbb{R}^3$ é uma isometria então esse valor próprio (real) ou é 1 ou −1. Com efeito, se $\lambda \in \mathbb{R}$ é valor próprio de \mathbf{A} , e \mathbf{v} é um vector próprio pertencente a λ , temos que:

$$\|\mathbf{v}\| = \|\mathbf{A}(\mathbf{v})\| = \|\lambda \mathbf{v}\| = |\lambda| \|\mathbf{v}\|$$

o que implica que $|\lambda| = 1$ (uma vez que $\mathbf{v} \neq \mathbf{0}$), i.e., $\lambda = \pm 1$.

Analisemos agora a estrutura das isometrias de \mathbb{R}^3 com determinante igual a 1, isto é, a estrutura das matrizes $A \in \mathcal{SO}(3)$. Seja $\mathbf{A} : \mathbb{R}^3 \to \mathbb{R}^3$ uma tal isometria, com:

$$\det \mathbf{A} = 1$$

Pelo parágrafo anterior, $\bf A$ admite o valor próprio 1 ou -1. Vamos analisar cada um destes casos:

(i). $\lambda = 1$ é valor próprio de A (e det A = 1) ... Seja $u \neq 0$ um vector próprio de A, pertencente ao valor próprio 1:

$$A(u) = u$$

Podemos supôr também que $\|\mathbf{u}\| = 1$. Se $\Pi = \mathbf{u}^{\perp}$ é o plano ortogonal a \mathbf{u} , é fácil ver que \mathbf{A} deixa Π invariante:

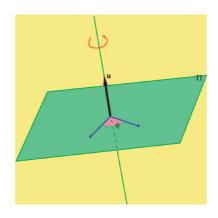
$$\mathbf{A}(\Pi) \subseteq \Pi$$

e que a restrição de $\bf A$ a Π é uma isometria de Π . Portanto existe uma base ortonormada $\{{\bf e},{\bf f}\}$ de Π , relativamente à qual a matriz da restrição de $\bf A$ a Π , é de um dos seguintes dois tipos:

(i1).
$$\begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix}$$
 (2.1.93)

ou:

(i 2).
$$\begin{bmatrix} \cos \varphi & \sin \varphi \\ \sin \varphi & -\cos \varphi \end{bmatrix}$$
 (2.1.94)



A matriz de \mathbf{A} , relativamente à base ortonormada $\{\mathbf{u}, \mathbf{e}, \mathbf{f}\}$ de \mathbb{R}^3 é portanto no caso (i1):

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \varphi & -\sin \varphi \\ 0 & \sin \varphi & \cos \varphi \end{bmatrix}$$
 (2.1.95)

que tem de facto determinante 1, e representa uma rotação em torno da recta gerada por $\mathbf{u} \in \Pi$ (que se diz o **eixo da rotação**), de ângulo φ .

Por outro lado, no caso (i 2), a matriz de A, relativamente à base ortonormada $\{u, e, f\}$ de \mathbb{R}^3 , é:

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \varphi & \sin \varphi \\ 0 & \sin \varphi & -\cos \varphi \end{bmatrix}$$
 (2.1.96)

que tem determinante -1 e por isso não pode ser a matriz de A.

(i). $\lambda = -1$ é valor próprio de A (e det A = 1) ... Seja $u \neq 0$ um vector próprio de A, pertencente ao valor próprio -1:

$$A(u) = -u$$

Podemos supôr também que $\|\mathbf{u}\| = 1$.

Mais uma vez, se $\Pi = \mathbf{u}^{\perp}$ é o plano ortogonal a \mathbf{u} , \mathbf{A} deixa Π invariante:

$$\mathbf{A}(\Pi) \subseteq \Pi$$

e a restrição de $\bf A$ a Π é uma isometria de Π . Portanto existe uma base ortonormada $\{{\bf e},{\bf f}\}$ de Π , relativamente à qual a matriz da restrição de $\bf A$ a Π , é de um dos seguintes dois tipos:

(ii 1).
$$\begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix}$$
 (2.1.97)

ou:

(ii 2).
$$\left[\begin{array}{cc} \cos \varphi & \sin \varphi \\ \sin \varphi & -\cos \varphi \end{array} \right]$$
 (2.1.98)

Como vimos anteriormente, esta é uma matriz de uma simetria relativamente a uma recta no plano Π , e portanto podemos escolher uma base ortonormada $\{\mathbf{e}',\mathbf{f}'\}$ para Π , relativamente à qual a matriz dessa simetria é:

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right]$$

A matriz de A, relativamente à base ortonormada $\{u, e, f\}$ de \mathbb{R}^3 é portanto no caso (ii 1):

$$A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & \cos \varphi & -\sin \varphi \\ 0 & \sin \varphi & \cos \varphi \end{bmatrix}$$
 (2.1.99)

que tem determinante -1, e por isso não pode ser a matriz de A.

Finalmente no caso (ii 2), a matriz de A, relativamente à base ortonormada $\{u, e', f'\}$ de \mathbb{R}^3 , é:

$$A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
 (2.1.100)

que tem determinante 1, e representa uma rotação em torna da recta gerada por $\mathbf{e}' \in \Pi$, de ângulo π .

▶ 2.56 <u>Resumindo</u> ... Uma isometria **A** em \mathbb{R}^3 , com det **A** = 1, é sempre uma rotação em torno de uma certa recta $\mathbb{R}\{\mathbf{u}\}$ (o eixo de rotação), e de ângulo

 φ no sentido directo. Representamos uma tal rotação por $\mathbf{R}_{(\mathbf{u};\varphi)}$. As matrizes das rotações em torno dos eixos coordenados de \mathbb{R}^3 , e de ângulo φ no sentido directo, são respectivamente:

$$\mathbf{R}_{1}(\varphi) = \mathbf{R}_{(\mathbf{e}_{1};\varphi)} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\varphi & -\sin\varphi \\ 0 & \sin\varphi & \cos\varphi \end{bmatrix}$$
(2.1.101)

$$\mathbf{R}_{2}(\varphi) = \mathbf{R}_{(\mathbf{e}_{2};\varphi)} = \begin{bmatrix} \cos \varphi & 0 & \sin \varphi \\ 0 & 1 & 0 \\ -\sin \varphi & 0 & \cos \varphi \end{bmatrix}$$
(2.1.102)

$$\mathbf{R}_{3}(\varphi) = \mathbf{R}_{(\mathbf{e}_{3};\varphi)} = \begin{bmatrix} \cos \varphi & -\sin \varphi & 0\\ \sin \varphi & \cos \varphi & 0\\ 0 & 0 & 1 \end{bmatrix}$$
(2.1.103)

Os grupos O(3) e SO(3)

O conjunto de todas as transformações ortogonais de \mathbb{R}^3 , constituem um grupo que se diz o **grupo ortogonal** O(3). Este grupo é isomorfo ao grupo das matrizes ortogonais, também notado por O(3).

O subgrupo de O(3) constituído por todas as transformações ortogonais de \mathbb{R}^3 , que têm determinante 1 (isto é, constituído por todas as rotações em \mathbb{R}^3) diz-se o **grupo ortogonal especial** e nota-se por SO(3). Este grupo é isomorfo ao grupo das matrizes ortogonais de determinante 1, também notado por SO(3).

▶ Exercício 2.13 ... Demonstre as afirmações anteriores.

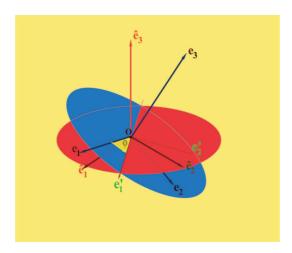
▶ 2.57 Ângulos de Euler ... Qualquer rotação pode ser escrita como um produto de rotações dos tipos acima indicados.

Com efeito consideremos uma qualquer rotação $\mathbf{R} \in \mathcal{SO}(3)$ e duas bases ortonormadas de \mathbb{R}^3 :

$$\mathcal{B} = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$$

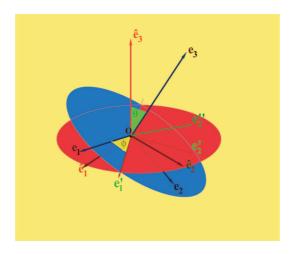
$$\hat{\mathcal{B}} = \mathcal{B} \mathbf{R} = \{\hat{\mathbf{e}}_1, \hat{\mathbf{e}}_2, \hat{\mathbf{e}}_3\}$$
(2.1.104)

com a mesma orientação. A base $\widehat{\mathcal{B}}=\mathcal{B}\,\mathbf{R}$ pode ser obtida através das seguintes três fases sucessivas:



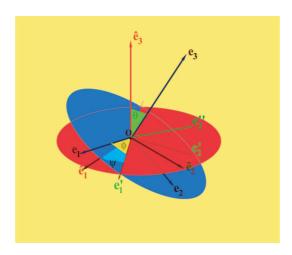
1. Obter uma base ortonormada $\mathscr{B}' = \{\mathbf{e}_1', \mathbf{e}_2', \mathbf{e}_3' = \mathbf{e}_3\}$, através de uma rotação $\mathbf{R}_3(\phi)$, em torno de \mathbf{e}_3 e de ângulo ϕ , onde ϕ é o ângulo entre \mathbf{e}_1 e a chamada **linha dos nodos** (a recta de intersecção dos planos gerados respectivamente por $\{\mathbf{e}_1, \mathbf{e}_2\}$ e $\{\widehat{\mathbf{e}}_1, \widehat{\mathbf{e}}_2\}$):

$$\mathscr{B}' = \mathscr{B} \mathbf{R}_3(\phi) \tag{2.1.105}$$



2. Obter uma base ortonormada $\mathscr{B}'' = \{\mathbf{e}_1', \mathbf{e}_2'', \widehat{\mathbf{e}}_3\}$, através de uma rotação $\mathbf{R}_2(\theta)$, em torno da linha dos nodos, gerada por \mathbf{e}_1' , e de ângulo θ , onde θ é o ângulo entre \mathbf{e}_3 e $\widehat{\mathbf{e}}_3$:

$$\mathscr{B}'' = \mathscr{B}' \mathbf{R}_2(\theta) \tag{2.1.106}$$



3. Finalmente, obter a base ortonormada $\widehat{\mathscr{B}} = \mathscr{B}\mathbf{R} = \{\widehat{\mathbf{e}}_1, \widehat{\mathbf{e}}_2, \widehat{\mathbf{e}}_3\}$, através de uma rotação $\mathbf{R}_2(\varphi)$, em torno de $\widehat{\mathbf{e}}_3$, e de ângulo ψ , onde ψ é o ângulo entre a linha dos nodos e $\widehat{\mathbf{e}}_1$:

$$\widehat{\mathscr{B}} = \mathscr{B}'' \mathbf{R}_3(\psi) \tag{2.1.107}$$

▶ 2.58 Portanto:

$$\widehat{\mathcal{B}} = \mathcal{B} \mathbf{R}
= \mathcal{B} \mathbf{R}_3(\phi) \mathbf{R}_2(\theta) \mathbf{R}_3(\psi)$$
(2.1.108)

e:

$$\begin{array}{llll} \mathbf{R} & = & \mathbf{R}_3(\phi)\mathbf{R}_2(\theta)\mathbf{R}_3(\varphi) \\ & = & \left(\begin{array}{ccc} \cos\phi & -\sin\phi & 0 \\ \sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{array} \right) \left(\begin{array}{ccc} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{array} \right) \left(\begin{array}{ccc} \cos\psi & -\sin\psi & 0 \\ \sin\psi & \cos\psi(2.\mathbf{0}.1) \\ 0 & 0 & 1 \end{array} \right)$$

Os ângulos ϕ, θ, ψ chamam-se **ângulos de Euler**.