
Workforce timetabling optimization
- III Iberian Modelling Week -

April 11th - 15th, 2016

Arti Bandhana - FCUP Duarte Ribeiro - UNL
Marina Pereira - FCUP Ricardo Silva - UNL
Sara Cerqueira - FCUP Tiago Nunes - UNL

Coordinator
Prof. Paula Amaral

Assistant Professor at Department of Mathematics FCT-UNL
Member of CMA/FCT-UNL

Contents

1 Introduction 1
1.1 Linear programming . 1
1.2 Integer programming . 1
1.3 Problem Description . 2
1.4 Purpose . 2
1.5 Limitations . 2

2 Model M0 - Just to start 3
2.1 Formulation . 3

3 Model M1 - Balance the use of workforce 4
3.1 Formulation . 4

4 Model M2 - Working with demands 5
4.1 Formulation . 5

5 Model M3 - Satisfying the labour rules 6
5.1 Formulation . 6

6 Computational Complexity 9
6.1 Words, Languages and Algorithms . 9
6.2 The classes NP, NP-hard and NP-complete . 10
6.3 Matroids and Optimization Problems . 10

7 Computational Results 13

8 Conclusions 17

Appendices 19
A R code to model 0 . 19
B R code to Model 1 . 20
C R code to Model 2 . 21
D R code to Model 3 . 23

1 Introduction

Optimization is based on finding the best solution to a given problem by simplifying and express-
ing it in mathematical notation in order to create a model describing the problem. This is done
by employing different optimization algorithms to the mathematical description of the problem,
which consists of an objective function f(x), that is to be minimized (or maximized), and a
set of constraints.

min
x

f(x)

subject to x ∈ X

Where f(x) : X −→ R, with X ⊆ Rn, n ∈ N, the feasible set determined by the problem
constraints.
The objective function expresses the goal of a given problem in terms of variables, x. The
objective function, together with the set of constraints, is what builds the mathematical model
for the given problem.
Even though the goal is to find the best solution for each problem, some problems are very large
and thus finding it can be very time consuming. However, with increasing technical resources,
many problems today are manageable. There are many areas where optimization is frequently
used, for example finding a suitable timetabling of courses at universities or trying to find the
most efficient route for deliveries to certain destinations.

1.1 Linear programming

In linear programming both the objective function and the constraints are linear. A general
linear programming problem is a problem of the form

min f(x) = cTx
subject to Ax ≥ b

x ≥ 0

Here, c ∈ Rn is the weight coefficient of the objective function and A ∈ Mm,n (R) and b ∈ Rm
are the coefficients of the constraints.

The LP model has been applied in a large number of areas including military applications,
transportation and distribution, scheduling, production and inventory management, telecom-
munication, agriculture and more. Linear Programming is broad enough to encompass many
interesting and important applications, yet specific enough to be tractable even if the number of
variables is large.

1.2 Integer programming

In many real world problems some variables may not take any value. For example if the question
is whether a specific project should be carried through or not we would not get any useful
information with a linear model. We would need a variable that takes the value one if the
project should be realized and zero otherwise. Then we get an IP problem: when all variables
may only take integer values. Solving it as an LP problem and rounding the LP solution does
not necassarily give the optimal solution. If the variable in the above example can take any
value between zero and one, we can not conclude that the project should be realized even if we
get 0.99 as the optimal solution. There could be several other aspects that make this choice
disadvantageous, for instance if there is not enough money available to complete the project and
it is of no use when it is incomplete.

1

A general integer programming problem is a problem of the form

min f(x) = cTx
subject to Ax ≥ b

x ≥ 0
x integer

Because of the fact that the optimal solution of integer programming problems can be anywhere
in the discrete set of possible solutions, not only in the vertixes of the subjacent feasible set,
this kind or problems are much harder to solve than LP ones. The most naive approach to solve
an IP problem would be compute all possible solutions and simply choose the best one, but in
practice it takes too much time for large problems.
Several techniques have been developed in order to help us solve this large problems, which
can be exact approaches or heuristics (non-optimizing methods). One of this methods, which is
exact, is the Branch and Bound. The ideia behind this method is to divide iteratively the set of
feasible solutions, creating and solving sub problems using linear relaxations, and take advantage
of bounds updated so far to indentify the interesting path towards the solution.

1.3 Problem Description

Many companies have to deal with staff timetabling issues. Assigning laboring periods of time to
individuals is a complex problem. Having understaffed or overstaffed during work hours seems to
be a perpetual problem. How should employees be scheduled to meet the demand of workforce
with minimum labor costs satisfying labour rules? Scheduling is a classic operations research
problem. Constraints such as shift lengths, employee weekly hours, and minimum number of
shifts are often considered. If the company operates in a 24hours base the problem is even more
complex since the beginning and end of the shifts must be decided and the sequence of shifts
must meet health regulations.
A classic example of this problem is nurse rostering, but many other applications are easy to find
like in TAP, EDP, Security enterprises, etc.

1.4 Purpose

The purpose of this report is to, through the use of integer programming, determine a valid
timetable for the given problems. The timetable must fulfill all requirements necessary to be
practically possible and it should be optimized in order to minimize the cost of not satisfying
the work demands. The formulation should be as general as possible and we will apply it to a
real TAP problem, described in the Computational Results chapter.

1.5 Limitations

We were forced to work with a limitation which assumes that every worker is available at all
times. This means that there will be no consideration taken to the availability of the worker on
a certain period. This is the actual way the timetable is done nowadays so this limitation won’t
be a practical problem.

2

2 Model M0 - Just to start

In order to reach to the final model, step-by-step approach was executed whereby in each step
the level of difficulty was increased which led to the model being more practical and applicable
to real life scenarios. This model was formulated just for the purpose of familiarity with the
problem statement, which can give an indication as to what approach needs to be taken into
consideration in order to reach to the final model with all constraints considered. As per the
problem description, the goal here is to assign teams to different slots minimizing the assignment
costs and ensure that every slot has at least one team working.

2.1 Formulation

Given s slots, t teams and the scheduling costs of assigning a team i to a slot j, ci,j , we choosed
to use the following variables.

xij =

{
1, if team i is assigned to slot j
0, other wise , i ∈ {1, . . . , t}, j ∈ {1, . . . , s}

Since the goal was minimize the cost of assigning each team to a slot we had to take into account
our variables and the the costs of assignment:

min

t∑
i=1

s∑
j=1

cijxij

The constraints that translate the desire to assign at least one team to each slot can be expressed
as:

t∑
i=1

xij ≥ 1, ∀j ∈ {1, . . . , s}

Model M0 can then be formulated as

min
t∑
i=1

s∑
j=1

cijxij

Subject to:
t∑
i=1

xij ≥ 1, ∀j ∈ {1, ..., s}

xij ∈ {0, 1}, i ∈ {1, ..., t}, j ∈ {1, ..., s}

3

3 Model M1 - Balance the use of workforce

The next step is to think about the number of slots that each team should work so that there
aren’t teams working much more than others. In order to balance the use of workforce and given
lower and upper bounds, Lb and Ub, we have to add constraints to the previous model to ensure
that each team will work a number of slots between Lb and Ub.

3.1 Formulation

Our variables are the same as before:

xij =

{
1, if team i is assigned to slot j
0, other wise , i ∈ {1, . . . , t}, j ∈ {1, . . . , s}

And given costs cij , i ∈ {1, . . . , t}, j ∈ {1, . . . , s}, we still want to minimize the assignment costs,
such that the objective function remains the same:

min

t∑
i=1

s∑
j=1

cijxij

Although we are adding new rules to the problem, the constraints from the previous model,
related to assign at least one team to each slot, stay unalterable:

t∑
i=1

xij ≥ 1, ∀j ∈ {1, . . . , s}

The new constraints that translate the desire to keep the number of slots that each team will
work between given lower and upper bounds can be written as shown next:

Lb ≤
s∑
j=1

xij ≤ Ub, ∀i ∈ {1, . . . , t}

Therefore, we have a new ILP model that guarantees each slot will have at least one team
assigned and each team will work between a limited number of slots, minimizing the assignment
costs, that can me formulated as below.

min

t∑
i=1

s∑
j=1

cijxij

Subject to:
t∑
i=1

xij ≥ 1, ∀j ∈ {1, ..., s}

Lb ≤
s∑
j=1

xij ≤ Ub, ∀i ∈ {1, ..., t}

xij ∈ {0, 1}, i ∈ {1, ..., t}, j ∈ {1, ..., s}

4

4 Model M2 - Working with demands

Taking another step towards our final model, the next approach includes the previous restrictions
that at least one team should be assigned per slot and that each team will work in a number of
slots between Lb and Ub, but now the goal is to minimize the cost of not satisfying the demand.
For every slot is given a cost for having less teams than necessary and, because of this, we have
to add new variables and modify our previous objective function in order to model this problem.

4.1 Formulation

Given the demand for each slot dj , j ∈ {1, . . . , s}, the costs of failing the demand cj , j ∈ {1, . . . , s},
the variables for our new model are:

xij =

{
1, if team i is assigned to slot j
0, other wise , i ∈ {1, . . . , t}, j ∈ {1, . . . , s}

vj = difference between the demand and the service at slot j, j ∈ {1, . . . , s}

Since we want to minimize the cost of failing the demand, we had to change the objective function
to:

min

s∑
i=1

cjvj

The role of the new variables introduced will be explained later.
All previous constrains stay unalterable and for the purpose of only taking in account failing the
demand, not by having more teams working than necessary, but for having less, new constrains
were needed:

vj ≥ dj −
t∑
i=1

xij , ∀j ∈ {1, ..., s}

vj ≥ 0, ∀j ∈ {1, ..., s}

Note that if dj −
t∑
i=1

xij ≤ 0, then the fact that we want to minimize the objective function and

the constrain vj ≥ 0 forces that vj = 0. And if dj −
t∑
i=1

xij > 0, again due to the fact that we

are minimizing the objective function, mandatorily vj = dj −
t∑
i=1

xij . These are the constraints

that guarantee that only the costs of not meeting the demand by default are considered, since if
the service exceeds the demand, the portion added to the cost function is 0.

min
s∑
j=1

cjvj

Subject to:
t∑
i=1

xij ≥ 1, ∀j ∈ {1, ..., s}

Lb ≤
s∑
j=1

xij ≤ Ub, ∀i ∈ {1, ..., t}

xij ∈ {0, 1}, i ∈ {1, ..., t}, j ∈ {1, ..., s}

vj ≥ dj −
t∑
i=1

xij , ∀j ∈ {1, ..., s}

vj ≥ 0, ∀j ∈ {1, ..., s}

5

5 Model M3 - Satisfying the labour rules

The final step of our problem is to extend the previous model to satisfy certain labour rules,
accomplishing the established final goal.

The considered labour rules are:

1. Teams are assigned to sequences of ε slots;

2. After each assignment, teams must rest at least δ consecutive slots.

5.1 Formulation

Once again, we consider the sets of variables:

xij =

{
1, if team i is assigned to slot j
0, other wise , i ∈ {1, . . . , t}, j ∈ {1, . . . , s}

vj = difference between the demand and and the service at slot j, j ∈ {1, . . . , s}

However, we need to introduce additional ones:

Bij =

{
1, if team i begins a sequence of slots at slot j
0, other wise , i ∈ {1, . . . , t}, j ∈ {1, . . . , s}

Eij =

{
1, if team i finishes a sequence of slots at slot j
0, other wise , i ∈ {1, . . . , t}, j ∈ {1, . . . , s}

Our objective function remains the same as before, as we still want to minimize the gap between
the demand and service for each slot:

min
s∑
j=1

cjvj

All the constraints of the previous model are aswell considered, otherwise this would not be an
improvement of that problem.

We will introduce new constraints in order to satisfy the referred labour rules, altough we start
with the ones related to the new variables formulation.

The new variables are binary, so:

• Bij ∈ {0, 1}, i ∈ {1, ..., t}, j ∈ {1, ..., s}

• Eij ∈ {0, 1}, i ∈ {1, ..., t}, j ∈ {1, ..., s}

Consider now the following set of constraints:

xi(j+1) − xij = Bi(j+1) − Eij ,∀i ∈ {1, ..., t}, ∀j ∈ {1, ..., s− 1} (1)

If team i starts a sequence of slots at j+1, then i must not be assigned to slot j, xij = 0, and
must be assigned to slot j+1, xi(j+1) = 1. In this case, the first member of equation (1) is 1,
implying that Bi(j+1) = 1, as intended. Similarly, if team i finishes a sequence of slots at j, then
necessarily xij = 1 and xi(j+1) = 0, implying by (1) that Eij = 1.

6

In all the other cases, that is, if xi(j+1) = xij , we want to ensure that Bi(j+1) = Eij = 0, but
looking at (1), both can be 1 aswell. To overcome this situation, we introduce the next set of
constraints:

Bi(j+1) + Eij ≤ 1,∀i ∈ {1, ..., t}, ∀j ∈ {1, ..., s− 1}

Finally, regarding the new variables good functioning, (1) does not treat Bi1 and Eis, ∀i, so we
add a new set of constraints.

• Bi1 = xi1,∀i ∈ {1, ..., t}

• Eis = xis,∀i ∈ {1, ..., t}

We are finally in conditions of formulate the constraints regarding the labour rules. Start con-
sidering the following set of constraints:

Bij − Ei(j+ε−1) = 0, i ∈ {1, ..., t}, j ∈ {1, ..., s− ε+ 1}

These guarantee that if a team i starts a sequence of slots at j then i must finish a sequence
of slots at j+ε-1, totalizing ε slots. Note that we cannot be sure that team i did all the ε slots.
Something like the presented in the next table can occur:

Variables xi(j−1) xij xi(j+1) xi(j+2) . . . xi(j+ε−2) xi(j+ε−1) xi(j+ε)
Value 0 1 1 0 0 1 1 0

In this example, Bij = Ei(j+ε−1) = 1, although team i did not work ε consecutive slots.
We can overcome this making sure that team i does not start more than one sequence of
slots in each ε consecutive slots, which is the case of the previous example when Bij = 1 and
Bi(j+ε−2) = 1.

To overcome this limitation and simultaneously satisfy the second labour rule, consider the fol-
lowing constraints:

k+ε+δ−1∑
j=k

Bij ≤ 1; i ∈ {1, . . . , t}, j ∈ {1, . . . , s− ε− δ + 1} (2)

In each set of ε + δ consecutive slots, (1) guarantees that a team can’t start more than one
sequence of slots. In particular for each set of ε consecutive slots, so we successfully overcame
the constraint (1) limitation and the first labour rule is now completly treated.

On the other hand, if a team starts a sequence of slots at j, constraint (2) guarantees that it
cannot start another one before doing all the sequence of ε slots and resting for δ consecutive
ones, satisfying the second labour rule.

We finished this way the explanation over the additional constraints considered in this model
and present the full model bellow.

7

min
s∑
j=1

rjvj

Subject to:
t∑
i=1

xij ≥ 1, ∀j ∈ {1, ..., s}

Lb ≤
s∑
j=1

xij ≤ Ub, ∀i ∈ {1, ..., t}

vj ≥ dj −
t∑
i=1

xij , ∀j ∈ {1, . . . , s}

xi(j+1) − xij = Bi(j+1) − Eij , ∀i ∈ {1, ..., t}, ∀j ∈ {1, ..., s− 1}
Bi(j+1) + Eij ≤ 1, ∀i ∈ {1, ..., t}, ∀j ∈ {1, ..., s− 1}
Bi1 = xi1, ∀i ∈ {1, ..., t}
Eis = xis, ∀i ∈ {1, ..., t}
Bij − Ei(j+ε−1) = 0, i ∈ {1, ..., t}, j ∈ {1, ..., s− ε+ 1}
k+ε+δ−1∑
j=k

Bij ≤ 1; i ∈ {1, . . . , t}, j ∈ {1, . . . , s− ε− δ + 1}

xij ∈ {0, 1}, i ∈ {1, ..., t}, j ∈ {1, ..., s}
vj ≥ 0, ∀j ∈ {1, . . . , s}
Bij ∈ {0, 1}, i ∈ {1, ..., t}, j ∈ {1, ..., s}
Eij ∈ {0, 1}, i ∈ {1, ..., t}, j ∈ {1, ..., s}

8

6 Computational Complexity

Another objective we had was to classify the problem according to its computational complexity,
the intuition being that the timetable problem is NP-hard and, therefore, much more difficult to
solve and much more resource-consuming than the simpler models that were discussed before,
specifically models M0 and M1, which belong to the P class of problems.

The following exposition is an abridged version of chapters 6 and 10 of Schrijver’s A Course
in Combinatorial Optimization, which we highly recommend.

We start, in an informal way, with understanding what a problem is and how can we classify
them. A problem is, informally, a question for which we seek answers, for example, the different
problems we have modeled in the previous sections. We will only focus on decision problems,
that is, yes or no problems, since most problems in Optimization, specifically the problem at
hand, can be studied by the related decision problem. Therefore, we will study problems of the
form: Given a certain object, does it have a certain property?

There are several ways to classify problems, but we will only consider the temporal complexity
of the problem, that is, the number of steps required by algorithms (that may or may not exist)
to solve the problem or check its answers. We will focus on the P, NP, NP-hard and NP-complete
classes:

• A problem is in P if there exists an algorithm that solves the problem in polynomial time,
that is, its running time is upper bounded by a polynomial expression in the size of the
input for the algorithm. Problems in P are considered efficiently, solvable or fast.

• The NP class is a larger class of problems that includes all the problems in P, and most
problems in Combinatorial Optimization. The letters NP stand for non-deterministic poly-
nomial time. Informally, a problem is in NP if, for any input that has a positive answer,
there exists a certificate from which the correctness of this answer can be derived in poly-
nomial time. It is usually said that these are problems whose solutions can be quickly
verified by a computer. It is also unknown if P = NP or P 6= NP .

• NP-hard problems are at least as hard as every problem in NP: a problem Π is in NP-hard if
every problem in NP can be reduced to Π, in polynomial time. NP-complete problems are
those problems that are both in NP and in NP-hard. If an NP-complete problem is proved
to be solvable in polynomial time, then every problem in NP can be solved in polynomial
time, that is, P = NP .

6.1 Words, Languages and Algorithms

For a computer to solve a problem, it is necessary to properly encode the problem by describing
it by a sequence of symbols from a finite alphabet Σ, for example, the ASCII set of symbols or
the set {0, 1}.

Fix an alphabet Σ. We call any ordered finite sequence of elements of Σ a word. The set of
all words is denoted by Σ∗. A language is a subset of Σ∗, that is, it is a set of words, that may
have specific properties or follow a certain set of rules. The size of a word,|.|, is the number of
symbols used in the word, counting multiplicities. Since the object of our study is solvability in
polynomial time, most encodings are equivalent in this setting.

9

Thus, we have the following mathematical definition of problem: a problem Π is a subset of
Σ∗. The informal problem associated with Π is: Given a word w, does w belong in Π? In this
context, the word w is called an instance or the input.

We can also formally define an algorithm. Since an algorithm is a finite list of instructions
to solve a problem, and these instructions are of the form Replace subword u by v, we can fully
describe it by a finite sequence ((u1, u

′
1), . . . , (un, u

′
n)), where u1, u′1, . . . , un, u′n are words. We

say that word w’ follows from w if there exists a j ∈ {1, . . . , n} such that w = tujv andw’ = tu’jv,
for certain words t and v, in such a way that j is the smallest index for which this is possible
and the size of t is as small as possible. The algorithm stops at word w if w has no subword
in {u1, ..., un}. So for any word w, either there is a unique word w′ that follows from w, or
the algorithm stops at w. A (finite or infinite) sequence of words {w0, w1, w2, . . .} is said to be
allowed if each wi+1 follows from wi and, if the sequence is finite, the algorithm stops at the last
word of the sequence. So for each word w there is a unique allowed sequence starting with w.
We say that the algorithm accepts w if this sequence is finite.

Let A be an algorithm and let Π ⊆ Σ∗ be a problem. We say that A solves Π if Π is the set
of words accepted by A. Moreover, A solves Π in polynomial-time if there exists a polynomial
p(x) such that, for any word w ∈ Σ∗, if A accepts w, then the allowed sequence starting with w
contains at most p(size(w)) words. Thus, we can decide in polynomial time if a given word w
belongs to Π. We just take w0 := w, and, for i ∈ {0, 1, 2, . . .}, we replace the first subword uj ,
in wi, by u′j , for some j ∈ {1, . . . , n}, thus obtaining wi+1. If within p(|w|) iterations we stop,
we know that w belongs to Π, and otherwise we know that w does not belong to Π.

6.2 The classes NP, NP-hard and NP-complete

We now give a formal definition of the class NP of problems: it consists of the problems Π ⊆ Σ∗

for which there exists a problem Π′ ∈ P and a polynomial p(x) such that, for any w ∈ Σ∗, w ∈ Π
if and only if there exists a word v such that (w, v) ∈ Π′ and such that |v| ≤ p(|w|). The word
v is the so-called certificate showing that w belongs to Π. With the polynomial time algorithm
solving Π′, the certificate proves in polynomial time that w belongs to Π.

Clearly, P ⊆ NP , since if Π belongs to P, then we can just take the empty string as certificate
for any word w to show that it belongs to Π. That is, we can take Π′ := {(w,)|w ∈ Π}. As
Π ∈ P , also Π′ ∈ P .

Let Π and Π′ be two problems and let A be an algorithm. We say that A is a polynomial-time
reduction of Π′ to Π if A is a polynomial-time algorithm (i.e., that solves Σ∗), so that for any
allowed sequence starting with w and ending with v one has: w ∈ Π′ if and only if v ∈ Π. A
problem Π is called NP-complete, if Π ∈ NP and for each problem Π′ in NP there exists a
polynomial-time reduction of Π′ to Π. A problem Π is called NP-hard if it is both in NP and in
NP-complete.

6.3 Matroids and Optimization Problems

In order to prove that the problems which are represented by models M0 and M1 are in P, we
introduce the concept of matroid, along with some theorems, that will allow us to see that the
structures for models M0 and M1 are some of those for which the greedy algorithm leads to an
optimal solution, in polynomial time.

10

Let X be a finite set and let I be a collection of subsets of X. Then the pair (X, I) is called
a matroid if it satisfies the following conditions:

1. ∅ ∈ I;

2. If Y ∈ I and Z ⊆ Y , then Z ∈ I;

3. If Y,Z ∈ I and |Y | < |Z|, then Y ∪ {x}, for some x ∈ Z \ Y .

For any matroid M = (X, I), a subset Y of X is called independent if Y belongs to I, and
dependent otherwise.

Let Y ⊆ X. A subset B of Y is called a basis of Y if B is an inclusion wise maximal inde-
pendent subset of Y . That is, for any set Z ∈ I with B ⊆ Z ⊆ Y one has Z = B.

We next show that the matroids indeed are those structures for which the greedy algorithm
leads to an optimal solution. Let X be some finite set and let I be a collection of subsets of X
satisfying (1) and (2). For any weight function w : X → R we want to find a set Y in I minimizing

4. w(Y) :=
∑

y∈Y w(y)

The greedy algorithm consists of selecting y1, ..., yr successively as follows. If y1, ..., yk have
been selected, choose y ∈ X so that:

5. (i) y /∈ {y1, . . . , yk} and {y1, . . . , yk, y} ∈ I;

(ii) w(y) is as small as possible among all y satisfying (i).

We stop if no y satisfying 5) (i) exist, that is, if {y1, . . . , yk} is a basis. Thus, we have the
following statement, which proof will be omitted:

The pair (X, I) satisfying 1) and 2) is a matroid if and only if the greedy algorithm leads to
a set Y in I of minimum weight w(Y), for each weight function w : X −→ <+.

We now show that the structure of model M0 is a matroid: Let X1, . . . , Xm be subsets of the
finite set X. A set Y = {y1, . . . , yn} is called a partial transversal of X1, . . . , Xm, if there exist
distinct indices i1, . . . , in so that yj ∈ Xij for j = 1, . . . , n. A partial transversal of cardinality
m is called a transversal.

Another way of representing partial transversals is as follows. Let G be the bipartite graph
with vertex set V := {1, . . . ,m} ∪ X and with edges all pairs {i, x} with i ∈ {1, . . . ,m} and
x ∈ Xi (we assume here that {1, . . . ,m} ∩ X = ∅). For any matching M in G, let ρ(M) de-
note the set of those elements in X that belong to some edge in M . Then Y ⊆ X is a partial
transversal if and only if Y = ρ(M) for some matching M in G. Now let I be the collection of
all partial transversals for X1, . . . , Xm. Then (X, I) is a matroid.

Any matroid obtained in this way, or isomorphic to such a matroid, is called a transversal
matroid. If the sets X1, . . . , Xm form a partition of X, one speaks of a partition matroid. Thus,
the structure of model M0 is a partition matroid, therefore the greedy algorithm will solve the
problem in polynomial time.

Regarding model M1, its structure is not a matroid, but it is in fact an intersection of ma-
troids.

11

Let M1 = (X, I1) and M2 = (X, I2) be two matroids, on the same set X. Consider the
collection I1 ∩ I2 of common independent sets. The pair (X, I1 ∩ I2) is generally not a matroid
again. But, according to Edmonds [1970], a minimum-cardinality common independent set in
two matroids can be found in polynomial time.

Let G = (V,E) be a bipartite graph, with colour classes V1 and V2, say. Let I1 be the collec-
tion of all subsets F of E so that no two edges in F have a vertex in V1 in common. Similarly,
let I2 be the collection of all subsets F of E so that no two edges in F have a vertex in V2
in common. So both (X, I1) and (X, I2) are partition matroids. Now I1 ∩ I2 is the collection
of matchings in G. Finding a minimum-weight common independent set amounts to finding a
minimum-weight matching in G.

Thus, the structure of model M1 is an intersection of matroids, hence there exists an algorithm
that solves the problem in polynomial time.

12

7 Computational Results

In order to prove empirically the quality of the work done, we present in this section the com-
putational results and their analysis.

The data considered is related to TAP(Transportes Aéreos Portugueses), featuring 20 teams and
96 slots, and we used the optimizer Gurobi, with R as interface, to solve the formulated models.

There were no detailed information about the problem, so the demands, dj and the costs per unity
of demand not satisfied, cj , were considered as random generated and fixed for all problems and
the costs of assigning each team to each slot, cij , was considered unitary, for all i ∈ {1, . . . , 20}, j ∈
{1, . . . , 96}. Also the following parameters were considered:

• Ub = 25;

• Lb = 10;

• β = 6;

• δ = 10

We compare at Table 1, the size of each model and, as expected, model 1 is larger in terms of
constraints, since it features two additional constraints by team related to Lb and Ub, which
gives 40 additional constraints.

Models Number of variables Constrains
0 1920 2016

1 1920 2056

We present now the outputs from R regarding the resolution of the specified models 0 and 1,
respectively.

Solution to model 0

Warning for adding variables: zero or small (< 1e-13) coefficients, ignored
Optimize a model with 96 rows, 1920 columns and 1920 nonzeros
Coefficient statistics:

Matrix range [1e+00, 1e+00]
Objective range [1e+00, 1e+00]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 1e+00]

Found heuristic solution: objective 96
Presolve removed 96 rows and 1920 columns
Presolve time: 0.00s
Presolve: All rows and columns removed

Explored 0 nodes (0 simplex iterations) in 0.00 seconds
Thread count was 1 (of 2 available processors)

Optimal solution found (tolerance 1.00e-04)
Best objective 9.600000000000e+01, best bound 9.600000000000e+01, gap 0.0%

13

Solution to model 1

Warning for adding variables: zero or small (< 1e-13) coefficients, ignored
Optimize a model with 136 rows, 1920 columns and 5760 nonzeros
Coefficient statistics:

Matrix range [1e+00, 1e+00]
Objective range [1e+00, 1e+00]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 3e+01]

Found heuristic solution: objective 200
Presolve time: 0.03s
Presolved: 136 rows, 1920 columns, 5760 nonzeros
Variable types: 0 continuous, 1920 integer (1920 binary)

Root relaxation: cutoff, 19 iterations, 0.06 seconds

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 cutoff 0 200.00000 199.00020 0.50% - 0s

Explored 0 nodes (19 simplex iterations) in 0.13 seconds
Thread count was 2 (of 2 available processors)

Optimal solution found (tolerance 1.00e-04)
Best objective 2.000000000000e+02, best bound 2.000000000000e+02, gap 0.0%

This models are very similar and, as observed in the previous chapter, solvable in polynomial
time, which stands by the output obtained where Gurobi solved both problems in pre processing,
since both ILP are equivalent to solve their linear relaxation. About the solution, model 1 ex-
tends model 0 to the bounds of use of each team (Lb, Ub), so naturally being more constrained,
presents a solution with a higher cost.

Passing to more sophisticated models, we now present in Table 2 the models 2 and 3 sizes.

Models Number of variables Constrains
2 2016 2228

3 5856 15108

As we can see, labour rules induce so much complexity into our models that Model 3 features
almost three times more variables and 7 times more constraints compared to Model 2.

Down below we present the output obtained solving Model 2 and 3 using the chosen software.

Solution to model 2

Warning for adding variables: zero or small (< 1e-13) coefficients, ignored
Optimize a model with 328 rows, 2016 columns and 7872 nonzeros
Coefficient statistics:

Matrix range [1e+00, 1e+00]
Objective range [2e-02, 2e+00]
Bounds range [1e+00, 1e+00]
RHS range [2e-01, 3e+01]

14

Found heuristic solution: objective 185.046
Presolve removed 100 rows and 4 columns
Presolve time: 0.04s
Presolved: 228 rows, 2012 columns, 7692 nonzeros
Variable types: 0 continuous, 2012 integer (1920 binary)

Root relaxation: objective 7.581308e-01, 412 iterations, 0.02 seconds

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 0.75813 0 80 185.04583 0.75813 100% - 0s
H 0 0 14.3885680 0.75813 94.7% - 0s
H 0 0 5.0341756 0.75813 84.9% - 0s
H 0 0 3.9613256 0.75813 80.9% - 0s
* 0 0 0 3.1711980 3.17120 0.00% - 0s

Cutting planes:
Gomory: 1
MIR: 75

Explored 0 nodes (1025 simplex iterations) in 0.23 seconds
Thread count was 2 (of 2 available processors)

Optimal solution found (tolerance 1.00e-04)
Best objective 3.171197997600e+00, best bound 3.171197997600e+00, gap 0.0%

Solution to model 3

Warning for adding variables: zero or small (< 1e-13) coefficients, ignored
Optimize a model with 7608 rows, 5856 columns and 48912 nonzeros
Coefficient statistics:

Matrix range [1e+00, 1e+00]
Objective range [2e-02, 2e+00]
Bounds range [1e+00, 1e+00]
RHS range [2e-01, 3e+01]

Found heuristic solution: objective 138.421
Presolve removed 3780 rows and 1884 columns
Presolve time: 3.44s
Presolved: 3828 rows, 3972 columns, 41072 nonzeros
Variable types: 0 continuous, 3972 integer (3880 binary)

Root simplex log...

Iteration Objective Primal Inf. Dual Inf. Time
0 0.0000000e+00 6.626875e+02 0.000000e+00 5s

10012 9.4267501e+00 3.046524e+04 0.000000e+00 10s
14722 2.0970197e+01 0.000000e+00 0.000000e+00 13s

Root relaxation: objective 2.097020e+01, 14722 iterations, 7.32 seconds

Nodes | Current Node | Objective Bounds | Work

15

Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 20.97020 0 349 138.42085 20.97020 84.9% - 14s
H 0 0 31.9104622 20.97020 34.3% - 14s
H 0 0 30.4304984 20.97020 31.1% - 14s
H 0 0 27.4820662 20.97020 23.7% - 14s

0 0 25.11592 0 363 27.48207 25.11592 8.61% - 14s
H 0 0 26.8460522 25.11592 6.44% - 14s
H 0 0 26.2885566 25.11592 4.46% - 14s

0 0 25.66043 0 344 26.28856 25.66043 2.39% - 15s
0 0 25.66043 0 344 26.28856 25.66043 2.39% - 15s
0 0 25.66043 0 337 26.28856 25.66043 2.39% - 15s
0 0 25.66043 0 323 26.28856 25.66043 2.39% - 15s
0 0 25.66043 0 327 26.28856 25.66043 2.39% - 16s
0 0 25.66043 0 385 26.28856 25.66043 2.39% - 16s
0 0 25.66043 0 385 26.28856 25.66043 2.39% - 16s
0 0 25.66043 0 125 26.28856 25.66043 2.39% - 17s
0 0 25.66043 0 135 26.28856 25.66043 2.39% - 17s
0 0 25.66043 0 152 26.28856 25.66043 2.39% - 18s
0 0 25.66043 0 152 26.28856 25.66043 2.39% - 19s
0 2 25.66043 0 152 26.28856 25.66043 2.39% - 20s

137 120 26.17118 46 180 26.28856 25.66043 2.39% 58.8 25s
342 226 cutoff 61 26.28856 25.66043 2.39% 48.8 30s
588 380 26.27545 40 147 26.28856 25.66043 2.39% 43.3 35s
731 496 26.01215 64 152 26.28856 25.66043 2.39% 41.4 44s
733 497 25.81668 13 305 26.28856 25.66043 2.39% 41.3 50s

Cutting planes:
Gomory: 29
MIR: 34
Flow cover: 2
Zero half: 10

Explored 737 nodes (65825 simplex iterations) in 52.87 seconds
Thread count was 2 (of 2 available processors)

Optimal solution found (tolerance 1.00e-04)
Best objective 2.628855661710e+01, best bound 2.628855661710e+01, gap 0.0%

As mentioned before, Model 3 complexity is much higher, where the software needed for the only
time to use Branch and Bound and more precisely 737 nodes of it. As expected Model 3 solution
have an higher cost since it satisfies the labour rules.

16

8 Conclusions

The results obtained in the previous section satisfy all the constrains of the respective models
and, therefore, represent valid timetables. The final model is general enough to be used in real
life situations (for example in airports), being only necessary to change the weight of the objec-
tive function (cost of not meeting the demand), the demands, teams maximum and minimum
quantity of assigned work and values relating to the modelled labour requirements, necessary
breaks and consecutive work. The proposed objective was then sucessfully accomplished.

Two possible next steps would be:

• To consider a more complex problem, with new constrains, with the purpose of a better
approach to real situations. For example, to consider the availability of the workers;

• Create a user graphical interface in which the user could make the necessary changes to a
given solution and immediately see the result in the form of a timetable and its associated
cost.

17

References

[1] http://homepages.cwi.nl/~lex/files/dict.pdf

[2] http://www.fc.up.pt/mat/3imw/P2.html

[3] http://publications.lib.chalmers.se/records/fulltext/185558/185558.pdf

18

http://homepages.cwi.nl/~lex/files/dict.pdf
http://www.fc.up.pt/mat/3imw/P2.html
http://publications.lib.chalmers.se/records/fulltext/185558/185558.pdf

Appendices

In this appendix we will show the R code that we have used to get the numerical results presented
in this paper.

A R code to model 0

###########################PROBLEM v1#####################################
#Tab problem for the day with 15 minutes time intervals
#TOTAL TEAMS = 20
#TOTAL SLOTS = 96
###OBJECTIVE FUNCTION:
#COST OF ASSIGNING EACH TEAM TO EACH SLOT IS 1 (EASY EXAMPLE)
###CONSTRAINTS:
#EACH SLOT MUST BE COVERED BY AT LEAST 1 TEAM

#Number teams
t = 20

#Number slots
s = 96

#Minimum teams per slot
cover = 1

model1 <- list()

#Costs vector
cost = as.matrix(rep(1, times = t * s))
model1$obj = cost

#Model objective
model1$modelsense = "min"

#Constrains type
model1$sense = c(’>=’)

#Constrains Matrix
i = 0
counter = 0
A = matrix(rep(0, times = s*s*t), nrow = s, ncol = s*t)
for(j in 1:s){

for(i in 1:t){
A[j, 1 + (i-1)*s+counter] = 1;

}
counter = counter + 1;

}
model1$A = A

#Constrains independent vector
model1$rhs = as.matrix(rep(cover, times = s))

19

#Variables type
model1$vtypes = as.matrix(rep(’B’, times = s*t))

#Gurobi call
result1 <- gurobi(model1)
print(result1$x)

B R code to Model 1

###########################PROBLEM v2#####################################
#Tab problem for the day with 15 minutes time intervals
#TOTAL TEAMS = 20
#TOTAL SLOTS = 96
###OBJECTIVE FUNCTION:
#COST OF ASSIGNING EACH TEAM TO EACH SLOT IS 1 (EASY EXAMPLE)
###CONSTRAINTS:
#EACH SLOT MUST BE COVERED BY AT LEAST 1 TEAM
#EACH TEAM MUST BE USED AT LEAST 10 TIMES
#EACH TEAM MUST BE USED AT MOST 25 TIMES

#Number teams
t = 20

#Number slots
s = 96

#Minimum usage of each team
LB<-10

#Maximum usage of each team
UB<-25

#Minimum teams per slot
Cover<-1

model1 <- list()

#Cost vector
cost = as.matrix(rep(1, times = t * s))
model1$obj = cost

#Problem objetive
model1$modelsense = "min"

#Constrains type
model1$sense = c(’>=’)

#Constrains matrix
i = 0
counter = 0
A = matrix(rep(0, times = (s+2*t)*s*t), nrow = s+2*t, ncol = s*t)
for(j in 1:s){

20

for(i in 1:t){
A[j, 1 + (i-1)*s+counter] = 1;

}
counter = counter + 1;

}

for(i in (s+1):(s+t)){
A[i, (1+s*(i-(s+1))):(s+s*(i-(s+1)))] = 1

}

for(i in (s+t+1):(s+2*t)){
A[i, (1+s*(i-(s+t+1))):(s+s*(i-(s+t+1)))] = -1

}

model1$A = A

#Constrains independent vector
model1$rhs = as.matrix(c(rep(cover, times = s),rep(LB,times=t), rep(-UB, times = t)))

#Variables type
model1$vtypes = as.matrix(rep(’B’, times = s*t))

#Gurobi call
result1 <- gurobi(model1)

print(result1$x)

C R code to Model 2

####################PROBLEM V3############################
#Tab problem for the day with 15 minutes time intervals
#TOTAL TEAMS = 20
#TOTAL SLOTS = 96
###OBJECTIVE FUNCTION:
#KNOWN COST PER MISSING SERVICE (VERSUS GAP) PER TIME SLOT
###CONSTRAINTS:
#EACH SLOT MUST BE COVERED BY AT LEAST 1 TEAM
#EACH TEAM MUST BE USED AT LEAST 10 TIMES
#EACH TEAM MUST BE USED AT MOST 25 TIMES
#EACH SLOT GAP MUST BE EQUAL TO THE DIFERENCE BETWEEN THE DEMAND AND THE SERVICE
#EACH SLOT GAP MUST BE EQUAL OR GREATER THAN 0

#Number of teams
t<-20

#Number of slots
s<-96

#Minimum usage of each team
LB<-10

21

#Maximum usage of each team
UB<-25

#Minimum teams per slot
Cover<-1

#Demand of each tap slot
slot_demands <- as.matrix(read.csv2("~/Mestrado/2Ano/IMW/Tap_Demans.txt", header=FALSE,_
sep=""))

#Each slot gap cost
gap_costs <- as.matrix(read.csv2("~/Mestrado/2Ano/IMW/TAP_Costs.txt", header=FALSE,_
sep=""))

model1 <- list()

#Cost vector
cost = as.matrix(c(rep(0, times = t * s), gap_costs))
model1$obj = cost

#Problem type
model1$modelsense = "min"

#Constraints type
model1$sense = c(’>=’)

#Constrains Matrix construction
i = 0
counter = 0
SLOT_COVERAGE = matrix(rep(0, times = s*s*t), nrow = s, ncol = s*t)
for(j in 1:s){

for(i in 1:t){
SLOT_COVERAGE[j, 1 + (i-1)*s+counter] = 1;

}
counter = counter + 1;

}

TEAM_USAGE_LOWER_BOUND = matrix(rep(0, times=t*s*t), nrow = t, ncol = s*t)
for(i in 1:t){

TEAM_USAGE_LOWER_BOUND[i, (1 + (i-1)*s):(s + (i-1)*s)] = 1
}

TEAM_USAGE_UPPER_BOUND = matrix(rep(0, times = t * s * t), nrow = t, ncol = s*t)
for(i in 1:t){

TEAM_USAGE_UPPER_BOUND[i, (1 + (i-1)*s):(s + (i-1)*s)] = -1
}

TEAM_USAGE = rbind(TEAM_USAGE_LOWER_BOUND, TEAM_USAGE_UPPER_BOUND)

IDENTITY = diag(x = 1, nrow = s)

22

C = matrix(rep(0, times = s*s*t), nrow = s, ncol = s*t)

A = rbind(SLOT_COVERAGE, TEAM_USAGE)
B = matrix(rep(0, times = s*(s+2*t)), nrow = s+2*t, ncol = s)

CONSTRAINT_MATRIX = rbind(cbind(A, B),cbind(SLOT_COVERAGE, IDENTITY), cbind(C, IDENTITY))
model1$A = CONSTRAINT_MATRIX

#Constrains independent vector
model1$rhs = as.matrix(c(rep(Cover, times = s),rep(LB,times=t), rep(-UB, times = t),_
slot_demands, rep(0, times = s)))

#Variably types
model1$vtypes = as.matrix(c(rep(’B’, times = s*t), rep(’C’,times = s)))

#Gurobi call
result1 <- gurobi(model1)

print(result1$x)

D R code to Model 3

####################PROBLEM V3############################
#Tab problem for the day with 15 minutes time intervals
#TOTAL TEAMS = 20
#TOTAL SLOTS = 96
###OBJECTIVE FUNCTION:
#KNOWN COST PER MISSING SERVICE (VERSUS GAP) PER TIME SLOT
###CONSTRAINTS:
#EACH SLOT MUST BE COVERED BY AT LEAST 1 TEAM
#EACH TEAM MUST BE USED AT LEAST 10 TIMES
#EACH TEAM MUST BE USED AT MOST 25 TIMES
#EACH SLOT GAP MUST BE EQUAL TO THE DIFERENCE BETWEEN THE DEMAND AND THE SERVICE
#EACH SLOT GALP MUST BE EQUAL OR GREATER THAN 0
#EACH TEAM MUST HAVE A BREAK OF DELTA SLOTS AFTER BEING ASSIGNED FOR A JOB (SLOT OR
SET OF CONSECUTIVE SLOTS)
#WHEN A TEAM IS ASSIGNED TO SLOT, IT WORKS BETA SLOTS IN A ROW

#Number of teams
t<-20

#Number of slots
s<-96

#Minimum usage of each team
LB<-10

#Maximum usage of each team
UP<-25

#Minimum teams per slot
Cover<-1

23

#Size of necessary break
min_team_break<-10

#Consecute ssigned slots constraint
consecutive_slots<-6

#Demand of each tap slot
slot_demands <- as.matrix(read.csv2("~/Mestrado/2Ano/IMW/Tap_Demans.txt", header=FALSE,_
sep=""))

#Each slot gap cost
gap_costs <- as.matrix(read.csv2("~/Mestrado/2Ano/IMW/TAP_Costs.txt", header=FALSE,_
sep=""))

model1 <- list()

#Cost vector
cost = as.matrix(c(rep(0, times = t * s), gap_costs, rep(0, times = 2*s*t)))
model1$obj = cost

#Problem type
model1$modelsense = "min"

#Constrain Matrix construction
i = 0
counter = 0
SLOT_COVERAGE = matrix(rep(0, times = s*s*t), nrow = s, ncol = s*t)
for(j in 1:s){

for(i in 1:t){
SLOT_COVERAGE[j, 1 + (i-1)*s+counter] = 1;

}
counter = counter + 1;

}

TEAM_USAGE_LOWER_BOUND = matrix(rep(0, times=t*s*t), nrow = t, ncol = s*t)
for(i in 1:t){

TEAM_USAGE_LOWER_BOUND[i, (1 + (i-1)*s):(s + (i-1)*s)] = 1
}

TEAM_USAGE_UPPER_BOUND = matrix(rep(0, times = t * s * t), nrow = t, ncol = s*t)
for(i in 1:t){

TEAM_USAGE_UPPER_BOUND[i, (1 + (i-1)*s):(s + (i-1)*s)] = -1
}

TEAM_USAGE = rbind(TEAM_USAGE_LOWER_BOUND, TEAM_USAGE_UPPER_BOUND)

B = matrix(rep(0, times = s*(s+2*t)), nrow = s+2*t, ncol = s)

C = matrix(rep(0, times = s*s*t), nrow = s, ncol = s*t)

24

IDENTITY = diag(x = 1, nrow = s)

A = rbind(SLOT_COVERAGE, TEAM_USAGE)

CONSTRAINT_MATRIX_v1 = rbind(cbind(A, B),cbind(SLOT_COVERAGE, IDENTITY),_
cbind(C, IDENTITY))

number_previous_constraints = nrow(CONSTRAINT_MATRIX_v1);

ZEROS_HELPER = matrix(rep(0, times = number_previous_constraints*2*s*t),_
nrow = number_previous_constraints, ncol = 2*s*t)

CONSTRAINT_MATRIX_v2 = cbind(CONSTRAINT_MATRIX_v1, ZEROS_HELPER)

FIRST_SLOT_BEGIN_CONSTRAINTS = matrix(rep(0, times = t*(s*t +s+2*s*t)),_
nrow = t, ncol = s*t+s+2*s*t)

for(i in 1:t){
FIRST_SLOT_BEGIN_CONSTRAINTS[i, 1 + (i-1)*s] = 1
FIRST_SLOT_BEGIN_CONSTRAINTS[i, s*t + s +(i-1)*s+1] = -1

}

LAST_SLOT_END_CONSTRAINTS = matrix(rep(0, times = t*(s*t +s+2*s*t)),_
nrow = t, ncol = s*t+s+2*s*t)

for(i in 1:t){
LAST_SLOT_END_CONSTRAINTS[i, s+(i-1)*s] = 1
LAST_SLOT_END_CONSTRAINTS[i, s*t+s+s*t+ s+(i-1)*s] = -1

}

BEING_END_CONSTRAINTS = matrix(rep(0, times = t*(s-1)*(s*t+s+2*s*t)),_
nrow = t*(s-1), ncol = s*t+s+2*s*t)

for(i in 1:t){
for(k in 1:(s-1)){

BEING_END_CONSTRAINTS[k + (s-1)*(i-1), k + (i-1)*s] = -1
BEING_END_CONSTRAINTS[k + (s-1)*(i-1), k + 1 + (i-1)*s] = 1
BEING_END_CONSTRAINTS[k + (s-1)*(i-1), s*t+s+k+1+(i-1)*s] = - 1
BEING_END_CONSTRAINTS[k + (s-1)*(i-1), s*t+s+s*t+k+(i-1)*s] = 1

}
}

ALL_BEGIN_END_CONSTRAINTS = rbind(FIRST_SLOT_BEGIN_CONSTRAINTS,_
LAST_SLOT_END_CONSTRAINTS, BEING_END_CONSTRAINTS)

number_of_begin_end_constraints = nrow(ALL_BEGIN_END_CONSTRAINTS);

CONSTRAINT_MATRIX = rbind(CONSTRAINT_MATRIX_v2, ALL_BEGIN_END_CONSTRAINTS)

BEGIN_END_VARIABLES = matrix(rep(0, times = t*(s-1)*(s*t + s + 2*s*t)),_

25

nrow = t*(s-1), ncol= s*t + s + 2*s*t)

for(i in 1:t){
for(k in 1:(s-1)){

BEGIN_END_VARIABLES[k + (s-1)*(i-1), s*t+s+k+1+(i-1)*s] = 1
BEGIN_END_VARIABLES[k + (s-1)*(i-1), s*t+s+s*t+k+(i-1)*s] = 1
}

}

number_begin_end_variables = nrow(BEGIN_END_VARIABLES);

CONSTRAINT_MATRIX = rbind(CONSTRAINT_MATRIX, BEGIN_END_VARIABLES)

CONSECUTIVE_SLOTS_CONSTRAINTS = matrix(rep(0,_
times = t*(s-consecutive_slots+1)*(s*t + s + 2 *s*t)), nrow = t*(s-consecutive_slots+1),_
ncol = s*t + s + 2 *s*t)

for(i in 1:t){
for(k in 1:(s-consecutive_slots+1)){

CONSECUTIVE_SLOTS_CONSTRAINTS[k + (i-1)*(s-consecutive_slots+1),_
s*t + s + k + s*(i-1)] = 1

CONSECUTIVE_SLOTS_CONSTRAINTS[k + (i-1)*(s-consecutive_slots+1),_
s*t + s + s*t + k - 1 + consecutive_slots + s*(i-1)] = - 1

}
}

number_consecutive_constraints = nrow(CONSECUTIVE_SLOTS_CONSTRAINTS);

CONSTRAINT_MATRIX = rbind(CONSTRAINT_MATRIX, CONSECUTIVE_SLOTS_CONSTRAINTS)

TEAM_BREAK_CONSTRAINTS = matrix(rep(0,_
times = (t*(s-consecutive_slots - min_team_break + 1))*(s*t + s + 2*s*t)),_
nrow = t*(s-consecutive_slots - min_team_break + 1) , ncol = s*t + s + 2*s*t)

for(i in 1:t){
for(k in 1:(s-consecutive_slots-min_team_break +1)){

for(j in k:(k+consecutive_slots+min_team_break-1)){
TEAM_BREAK_CONSTRAINTS[k +_

((s-consecutive_slots-min_team_break +1))*(i-1), s*t + s + j + s*(i-1)] = 1
}

}
}

number_team_break_constrains = nrow(TEAM_BREAK_CONSTRAINTS);

CONSTRAINT_MATRIX = rbind(CONSTRAINT_MATRIX, TEAM_BREAK_CONSTRAINTS)

model1$A = CONSTRAINT_MATRIX

#Constrains type
model1$sense = as.matrix(c(rep(’>=’, times = number_previous_constraints),_

26

rep(’=’, times = number_of_begin_end_constraints),_
rep(’<=’, times = number_begin_end_variables),_
rep(’=’, times = number_consecutive_constraints),_
rep(’<=’, times = number_team_break_constrains)))

#Constrains independent vector
model1$rhs = as.matrix(c(rep(Cover, times = s),rep(LB,times=t),_
rep(-UP, times = t), slot_demands, rep(0, times = s),_
rep(0, times = number_of_begin_end_constraints),_
rep(1, times = number_begin_end_variables),_
rep(0, times =number_consecutive_constraints),_
rep(1, times = number_team_break_constrains)))

#Variably types
model1$vtypes = as.matrix(c(rep(’B’, times = s*t),_
rep(’C’,times = s), rep(’B’, times = 2*s*t)))

#Gurobi call
result1 <- gurobi(model1)

X<-result1$x
View(as.matrix(X))

27

	Introduction
	Linear programming
	Integer programming
	Problem Description
	Purpose
	Limitations

	Model M0 - Just to start
	Formulation

	Model M1 - Balance the use of workforce
	Formulation

	Model M2 - Working with demands
	Formulation

	Model M3 - Satisfying the labour rules
	Formulation

	Computational Complexity
	Words, Languages and Algorithms
	The classes NP, NP-hard and NP-complete
	Matroids and Optimization Problems

	Computational Results
	Conclusions
	Appendices
	R code to model 0
	R code to Model 1
	R code to Model 2
	R code to Model 3

