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CLASSIFICATION OF NETWORKS WITH ASYMMETRIC
INPUTS

MANUELA AGUIAR, ANA DIAS, AND PEDRO SOARES

Abstract. Coupled cell systems associated with a coupled cell network are de-
termined by (smooth) vector fields that are consistent with the network struc-
ture. Here, we follow the formalisms of Stewart, Golubitsky and Pivato (Symme-
try groupoids and patterns of synchrony in coupled cell networks, SIAM J. Appl.

Dyn. Syst. 2 (4) (2003) 609–646), Golubistky, Stewart and Török (Patterns of
synchrony in coupled cell networks with multiple arrows, SIAM J. Appl. Dynam.

Sys. 4 (1) (2005) 78–100) and Field (Combinatorial dynamics, Dynamical Systems

19 (2004) (3) 217–243). It is known that two non-isomorphic n-cell coupled net-
works can determine the same sets of vector fields – these networks are said to
be ODE-equivalent. The set of all n-cell coupled networks is so partitioned into
classes of ODE-equivalent networks. With no further restrictions, the number of
ODE-classes is not finite and each class has an infinite number of networks. Inside
each ODE-class we can find a finite subclass of networks that minimize the number
of edges in the class, called minimal networks.

In this paper, we consider coupled cell networks with asymmetric inputs. That
is, if k is the number of distinct edges types, these networks have the property
that every cell receives k inputs, one of each type. Fixing the number n of cells,
we prove that: the number of ODE-classes is finite; restricting to a maximum of
n(n−1) inputs, we can cover all the ODE-classes; all minimal n-cell networks with
n(n−1) asymmetric inputs are ODE-equivalent. We also give a simple criterion to
test if a network is minimal and we conjecture lower estimates for the number of
distinct ODE-classes of n-cell networks with any number k of asymmetric inputs.
Moreover, we present a full list of representatives of the ODE-classes of networks
with three cells and two asymmetric inputs.
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1. Introduction

In this paper, we follow the formalisms of Stewart, Golubitsky and Pivato [29],
Golubitsky, Stewart and Török [16] and Field [15] where a (coupled cell) network
is represented by a directed graph, representing schematically a set of dynamical
systems (the cells) and their dependencies (the couplings). The nodes of the graph
represent the cells and the edges represent the couplings. Any such directed graph on
n nodes can be represented by a set of adjacency matrices, one for each type of input.
Here we consider that each cell represents a system of ordinary differential equations
(ODEs) where auto-couplings (self-loops) are allowed. Note that the number of
networks grows exponentially with the number of cells and the number of edges.
See, for example, Aldosray and Stewart [11] for the enumeration of networks with a
single type of cell and a single type of input such that all the cells receive the same
number of inputs.
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A coupled cell system associated with a network has to respect its topology. That
is, choosing cell phase spaces, the network admissible vector fields are the smooth
mappings on the total phase space that reflect whose cells are coupled to whom, and
whose cells and couplings are identical or not. Golubitsky, Stewart and Török [16]
have remarked that non-isomorphic networks can correspond to the same space of
admissible vector fields, that is, be ODE-equivalent. In particular, it follows that
the sets of dynamics that can be realized by ODE-equivalent networks are the same,
which from the modelling point of view is important in its own. Dias and Stewart [14]
showed that two n-cell networks are ODE-equivalent if and only if are linearly equiv-
alent, choosing cell phase spaces to be R. That is, considering the real linear space M
of the n×n matrices with real entries, two n-cell networks are ODE-equivalent if and
only if, renumbering the cells of one of the networks if necessary, the corresponding
real linear subspaces of M generated by the associated adjacency matrices coincide.
Using this result, Aguiar and Dias [8] characterize the subclass of any ODE-class of
networks with minimal number of edges, including an algorithm for obtaining those
minimal subclasses. The number of networks at each ODE-class is not finite, however
the subclass of minimal networks is finite.

We restrict our attention to networks with k asymmetric inputs, where k is any
positive integer number. That is, networks with k input types and where each
node receives exactly one input of each type. We remark that these networks are
homogeneous, that is, every cell receives exactly the same number of inputs. It is
proved in Aguiar, Ashwin, Dias and Field [4] that these networks can support robust
heteroclinic cycles, even in low dimension. See also Aguiar [3] for the synchrony
lattice of networks with asymmetric inputs. In Aguiar, Dias and Soares [9], it is
studied the steady-state lifting bifurcation problem for those networks. All the theory
developed on normal form and bifurcation theory by Rink and Sanders [25, 26] and
Nijholt, Rink and Sanders [19]-[21] concerns networks with asymmetric inputs.

We present a methodology for classifying networks of n-cells with k asymmetric
inputs. Fixing the number n of cells, we ask if the number of distinct ODE-classes of
networks is finite and, in that case, if there is a methodology of enumerating minimal
n-cell networks with k asymmetric inputs, for any k. Following Aguiar and Dias [8],
we provide a simple criterion to test if a network is minimal: an n-cell network with
k asymmetric inputs is minimal if and only if the n × n identity matrix and the
corresponding k adjacency matrices are linearly equivalent (Proposition 4.2).

In view of the large number of possible networks, different authors have focus their
attention to classify and study networks with a low number of cells and inputs. Leite
and Golubistky [17] classify all three-cell networks with identical cells and couplings,
i.e., just one cell type and one input type with valency one or two. They show that, up
to ODE-equivalence, there are 34 distinct connected such networks. Aguiar, Ashwin,
Dias and Field [4] presented the 10 ODE-classes of strongly connected networks
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with three cells, two asymmetric inputs and one or two two-dimensional synchrony
subspaces. Rink and Sanders [25] classified the homogenous networks with two and
three cells and asymmetric inputs which have a monoid symmetry.

Small networks are also called motifs networks, [18]. Motifs networks can be viewed
as building blocks of complex networks. The frequency of these motifs networks
in complex networks can reveal some characteristics of those complex networks. In
particular, some studies suggest that the motifs’ frequency is related with the function
and the context of the complex networks such as biological or social networks. In
the formalism of coupled cell systems, Golubitsky, Stewart and Török [16] noted
the existence of invariant subspaces given by the synchronization of some cells and
thus called synchrony subspaces. Those synchrony subspaces only depend on the
network structure and are independent from the given coupled cell system. Moreover,
the restriction of the system to a synchrony subspace corresponds to a coupled cell
system in a smaller network. Therefore the study of small networks can help our
understanding of bigger networks.

Motivated by the works mentioned above, we consider to be of interest, as a start,
to enumerate all three-cell networks with identical cells and one or two types of input
where each cell receives exactly one coupling of each type. In a follow-up work, we
study the steady-state bifurcation problems for these networks [10]. There are 650
networks with three cells and two asymmetric inputs that we reduce to a list of 48
minimal networks representing all the different ODE-classes (see Theorem 5.2 and
Tables 3-6). Reducing the list of all three-cell networks to minimal representative
networks is a demanding computational task, because we need to compare the linear
vector spaces generated by the adjacency matrices of two networks and all possible
permutations of the cells of one of the networks. Note that this list includes the 10
classes of networks presented by Aguiar, Ashwin, Dias and Field [4] and the seven
3-cells networks considered by Rink and Sanders [25]. Surprisingly, as we remark,
two 3-cell non-ODE-equivalents have the same monoid symmetry with 3 elements.
The particular case of the three-cell networks with two asymmetric inputs already
illustrates the difficulty and the amount of work involved to classify networks, up to
ODE-equivalence.

In this work, we prove that the maximum number of asymmetric inputs for a
minimal network with n cells is n(n − 1) (Theorem 6.3). Thus any n-cell network
with asymmetric inputs is ODE-equivalent to an n-cell network with at most n(n−1)
asymmetric inputs. That is, the set of dynamics that can occur for n-cell networks
with at most n(n−1) asymmetric inputs covers all possible types of dynamics that can
occur for any n-cell network with any number of asymmetric inputs. Moreover, we
remark that all minimal networks of n-cells with n(n−1) asymmetric inputs are ODE-
equivalent (Corollary 6.4). We present a minimal network with n(n− 1) asymmetric
inputs which represents such unique ODE-class (Theorem 7.5). Surprisingly this
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representative is given by the union of n(n − 1) feed-forward networks with one
input. In feed-forward networks, cells are arranged in layers, and the information
moves only in one direction, forward, from the input nodes (first layer), through the
hidden nodes (middle layers), and to the output nodes (last layer). This class of
networks have been applied in different fields and theoretical studies of these kind of
networks have been addressed. See for example [5, 28, 6] and references therein to
specific applications. Feed-forward systems can exibit dynamical features that are not
common in systems without feed-forward structure. One example is the occurrence
of generic Hopf bifurcation in one-parameter families of coupled cell systems, from
an equilibrium to periodic solutions and where there is growth of the amplitude of
cells (as a function of the bifurcation parameter) faster than would be expected in
systems that do not have the feed-forward structure [24]. See also [20, 28] where a
similar phenomenon is proved in the steady-state bifurcation case for feed-forward
systems and for more recent work [27, Chapters 8-11] and [23].

Our results imply that, fixing the number n of cells, the number of distinct ODE-
classes of n-cell networks with any number of asymmetric inputs is finite. Therefore,
we can obtain a finite list of minimal networks such that each ODE-class of networks
with n-cells and asymmetric inputs is uniquely represented. In order to list every
ODE-class we can repeat the method we use in Section 5 for three cell networks and
enumerate all distinct ODE minimal n-cell networks with k asymmetric inputs, where
k runs from 1 to n(n − 1). Alternatively, we can start with a list of every network
with n(n−1) asymmetric inputs and then reduce it to a list of minimal representative
networks. We present two algorithms to construct minimal representative networks
with n cells and one asymmetric input of distinct ODE-classes using the minimal
representatives networks with less than n cells. These algorithms allow us to prove
that there are at least n(n−1) ODE-classes where the minimal networks have n cells
and one asymmetric input (Theorem 8.7).

The manuscript is organised as follows: Section 2 establishes some definitions that
are used in the rest of the paper. In Section 3 we recall the structure of coupled cell
systems consistent with networks. The definition of ODE-equivalence of networks is
given and it is stated the result that establishes that ODE-equivalent networks are
the linear equivalent networks. The minimality of networks is defined in Section 4,
together with a criterion is given for checking the minimality of networks with asym-
metric inputs. This simple criterion is a basic tool used in Section 6 to obtain our
main results of the paper. In Section 5, we illustrate the ideas described above, by
presenting the classification of the three-cell networks with two asymmetric inputs.
Our general results concerning the classification of n-cell networks with asymmetric
inputs appear in Section 6. In Section 7, we give a representative network of the
ODE-class of the minimal n-cell networks with n(n − 1) asymmetric inputs which
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Figure 1. Networks with three cells and asymmetric inputs: the left
and the middle networks have one input; the right network has two
asymmetric inputs.

is the union of n(n − 1) feed-forward networks. In Section 8, we propose two algo-
rithms to describe minimal n-cell networks with one asymmetric input of distinct
ODE-classes. We end with some final conclusions in Section 9 where, in particular,
we present two conjectures about the number of minimal networks.

2. Preliminary definitions

In this section, we recall a few definitions and results concerning coupled cell net-
works, coupled cell systems and ODE-equivalence of networks. We follow the coupled
cell network formalism of Stewart, Golubitsky and Pivato [29] and Golubistky, Stew-
art and Török [16].

Definition 2.1. A (coupled cell) network G consists of a finite nonempty set C of
cells and a finite nonempty set E = {(c, d) : c, d ∈ C} of edges. Each pair (c, d) ∈ E
represents an edge from cell d to cell c and the cells c, d are called, respectively, the
head and tail cell. Cells and edges can be of different types.

A network can be represented by a directed unweighted graph, where the nodes
represent the cells and the edges are depicted by directed arrows. Different types of
cells and edges are indicated in the graph, respectively, by different shapes of nodes
and different edge arrowheads.

Definition 2.2. A network with k asymmetric inputs is a network with k edge types
where each cell receives exactly one edge of each type.

Every network with k asymmetric inputs is a homogenous network.

Definition 2.3. A network is said to be homogeneous if the cells have all the same
type, that is, they are identical, and receive the same number of input edges per edge
type.

Example 2.4. In Figure 1, we present three-cell networks with one and two asym-
metric inputs. ✸
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Definition 2.5. Given a network with set of cells C, we say there is a directed path
connecting a sequence of cells (c0, c1, . . . , ck−1, ck) of C, if there is an edge from cj−1

to cj, for j ∈ {1, ..., k}. If, for every j ∈ {1, ..., k}, there is an edge from cj−1 to cj
or from cj to cj−1, we say that there is an undirected path connecting the sequence
of cells (c0, c1, . . . , ck−1, ck). A network is connected if there is an undirected path
between any two cells. And a network is strongly connected if there is a directed path
connecting all the cells.

The coupling structure of a network with set of cells C = {c1, . . . , cn} and k

edge types can be described through k adjacency matrices Al := (a
(l)
ij ) ∈ Mn,n(R),

with rows and columns indexed by the cells in C and 1 ≤ l ≤ k. Each entry a
(l)
ij

corresponds to the number of edges of type l from cell cj to cell ci. If the network
has asymmetric inputs then its adjacency matrices have entries 0 or 1.

Example 2.6. The three-cell network on the right in Figure 1 has two asymmetric
inputs. Its coupling structure can be represented by the following two 3×3 adjacency
matrices (corresponding, respectively, to the adjacency matrices of the networks on
the left and the middle of Figure 1):

A1 =




1 0 0
1 0 0
1 0 0


 , A2 =




1 0 0
1 0 0
0 1 0


 .

✸

According to the definition of union of graphs, we have the following definition for
the union of two networks with the same set of cells but having different edge-types.

Definition 2.7. Given k networks Gi with the same set of cells C, and sets of edges
Ei, for i = 1, . . . , k, we define the union network G1 ∪ · · · ∪ Gk, to be the network
with set of cells C and set of edges E1∪· · ·∪Ek. The set of adjacency matrices of the
union network is the disjoint union of the corresponding sets of adjacency matrices.

Example 2.8. A network with k asymmetric inputs is the union of k networks with
one (asymmetric) input. The network on the right of Figure 1 is the union of the
networks on the middle and the left. ✸

Among the networks with one (asymmetric) input some are feed-forward networks:
they have one cell with a self-loop and tails with root at that cell. A tail with length
n is a directed path connecting a sequence of n + 1 cells from a root cell to a cell
with no outgoing connections.

Example 2.9. The networks on the left and middle of Figure 1 are feed-forward with
one input. The network on the left has two tails with length one and the network on
the middle has one tail with length two. ✸
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2.1. Coupled cell systems. Let G be an n-cell network with k asymmetric inputs,
say of types 1, . . . , k. Following [29, 16], we take a cell to be a system of ordinary
differential equations and we consider the class of coupled cell systems that have
structure consistent with the network G. All the cells have the same phase space,
say V = R

m for some m > 0, the same internal dynamics and, for each cell i, the
dynamics is governed by the same smooth function f , evaluated at the starting cells
of the edges targeting that cell. Thus, for i = 1, . . . , n, we have that the evolution of
cell i is given by the set of ordinary differential equations

(2.1) ẋi = f (xi; xi1 , . . . , xik) ,

if the input set of cell i is {i1, . . . , ik}, where ij is the tail cell of the edge with
type j and head cell i. The function f : V k+1 → V is assumed to be smooth. We
say that coupled cell systems with cells governed by equations of the form (2.1) are
G-admissible.

Example 2.10. Consider the networks on the left and the right of Figure 1. Coupled
cell systems with structure consistent with these, have the following form, respec-
tively: 




ẋ1 = f(x1; x1)
ẋ2 = f(x2; x1)
ẋ3 = f(x3; x1)





ẋ1 = g(x1; x1; x1)
ẋ2 = g(x2; x1; x1)
ẋ3 = g(x3; x1; x2)

for any smooth functions f : (Rm)2 → R
m and g : (Rm)3 → R

m, if cell phase spaces
are chosen to be R

m. ✸

2.2. Network synchrony subspaces. A network synchrony subspace ∆ is a sub-
space of the network total phase space defined by certain equalities of cell coordinates
(a polydiagonal subspace) which is left invariant under the flow of every network ad-
missible coupled cell system. In that case, if xi = xj is one of the cell coordinates
defining ∆, then a solution of any system given by (2.1) with initial condition in ∆
have cells i, j synchronized (i.e., xi(t) = xj(t)) for all time t. One of the consequences
of Theorem 6.5 of [29] is that a polydiagonal space ∆ is a synchrony subspace if and
only if it is left invariant under the network adjacency matrices. So, a polydiagonal
space is a synchrony subspace for a union network if and only if it is a synchrony
subspace for each network.

Example 2.11. Consider the networks of Figure 1. The diagonal space defined
by x1 = x2 = x3 is a synchrony subspace for the three networks. In fact, any
polydiagonal is a synchrony subspace for the network on the left and the subspace
defined by x1 = x2 is a synchrony subspace for the middle network. Thus that
subspace, x1 = x2, is a synchrony subspace for the network in the right. ✸
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Figure 2. Two networks with three cells and asymmetric inputs that
are ODE-equivalent.

3. ODE-equivalence of networks

It was noted in [29] that different networks with the same number of cells can
have the same set of admissible equations for any choice of cell phase spaces. As an
example of that, consider the two networks in Figure 2. Note that the corresponding
coupled cell systems with structure consistent with these, have the following form,
respectively: 




ẋ1 = f(x1; x1)
ẋ2 = f(x2; x1)
ẋ3 = f(x3; x1)





ẋ1 = g(x1; x1; x1)
ẋ2 = g(x2; x1; x1)
ẋ3 = g(x3; x1; x1)

for any smooth functions f : (Rm)2 → R
m and g : (Rm)3 → R

m, if cell phase
spaces are chosen to be Rm. Trivially, given f we can define g in the following form:
g(x, y, z) = f(x, y). Also, given g, we can define f such that f(x, y) = g(x, y, y).
Thus, we have two networks where the associated sets of vector fields coincide.

The next definition corresponds to Definitions 5.1 and 6.2 in [14]. There is also
the more combinatorial approach presented by Agarwal and Field [1, 2].

Definition 3.1. [14] Two n-cell networks G1 and G2 are ODE-equivalent when there
is a bijection map between their sets of cells such that, for any choice of their cells
phase spaces preserving this bijection between the sets of cells, they define the same
set of admissible coupled cell systems. If this holds for the set of linear admissible
coupled cell systems, then G1 and G2 are said to be linearly equivalent.

The following theorem which corresponds to Theorem 7.1 of [14] relates the two
concepts of ODE-equivalence and linear equivalence on networks:

Theorem 3.2. [14] Two n-cell networks G1 and G2 are ODE-equivalent if and only
if they are linearly equivalent.

In fact, by Corollary 7.9 in [14], we have that two n-cell networks, G1 and G2,
are ODE-equivalent if and only if it is possible to identify through a bijection the
corresponding sets of cells such that there is equality between the two linear subspaces
ofMn×n(R) generated by Idn, A1, . . . , Ak1 and Idn, B1, . . . , Bk2, where A1, . . . , Ak1 and
B1, . . . , Bk2 are the adjacency matrices of G1 and G2, respectively.
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Example 3.3. In Figure 2, note that the network on the right has two edge types
represented by the same adjacency matrix. Trivially, using the linear equivalence
criterion, the two networks in Figure 2 are ODE-equivalent. ✸

4. Criterion for minimality of networks with asymmetric inputs

Fixing the number n of cells, and given an n-cell network G, the ODE-class of
G, denoted by [G], is the set of all n-cell networks that are ODE-equivalent to [G],
which is in general non-finite. In Aguiar and Dias [8], it was introduced the notion
of minimal networks of an ODE-class of a network G, which are the networks with
the minimal number of edges among the set [G] of all the networks that are ODE-
equivalent to G.

Example 4.1. As noted above, the two networks in Figure 2 are ODE-equivalent.
We see that each cell in the network on the left receives a unique input. It follows
that this network is minimal. In fact, from Proposition 5.11 of Aguiar and Dias [8],
we have that, up to permutation of the cells, the network on the left is the unique
minimal network in the ODE-class of both networks of Figure 2. ✸

In [8], it was also observed that, in general, fixing a network ODE-class, there are
several networks which are minimal. Moreover, it was obtained a method to describe
all the minimal networks of the class - that method, is precisely obtained making
use of Theorem 3.2. We are interested in networks with asymmetric inputs that are
minimal. The next result follows from Proposition 7.11 in [8].

Proposition 4.2. Let G be an n-cell network with m asymmetric inputs where
A1, . . . , Am are the associated adjacency matrices. The network G is minimal if
and only if the m+ 1 matrices Idn, A1, . . . , Am are linearly independent.

4.1. Minimal n-cell networks with one (asymmetric) input. Consider that G
is an n-cell network with one (asymmetric) input and adjacency matrix A such that
A 6= Idn. Trivially, we have that Idn and A are linearly independent. Thus a direct
consequence of Proposition 4.2 is that G is minimal.

Let Minm,n denote the set of minimal n-cell networks withm asymmetric inputs. In
particular, Min1,n denotes the set of minimal n-cell networks with one (asymmetric)
input.

For n ∈ N, the number of networks in Min1,n, up to permutation of cells, it is
given by Theorem 8.3 in [11] with r = 1. See the first column of Table 2 in [11] for
n ≤ 6. The number of connected networks in Min1,n, up to permutation of cells, it
is given by Theorem 8.10 in [11] with r = 1. See the first column of Table 3 in [11]
for n ≤ 6. Note that, as stated in [11], these n-cell networks with one input are
in one-to-one correspondence with the distinct mappings of n points to themselves:
given such a map f , we can take the n-cell network where each cell i receives an
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input edge from cell f(i). Moreover, up to re-enumeration of the cells, they are not
ODE-equivalent:

Proposition 4.3. Let G1 and G2 be two minimal n-cell networks with one (asym-
metric) input and adjacency matrices Ai 6= Idn, for i = 1, 2. Then [G1] = [G2] if and
only if G1 and G2 are equal up to permutation of cells. Equivalently, [G1] = [G2] if
and only if it exists an n× n permutation matrix P such that A1 = PA2P

−1.

Note that the statement of Proposition 4.3 can also be derived from Proposition
5.11 of [8] where it is proved that if G is a network with one asymmetric input then
G is the unique minimal network of the class [G], up to re-enumeration of the cells.

We have, then, the following result.

Theorem 4.4. Let n be a positive integer. The number of distinct ODE-classes at
the set Min1,n is given by Theorem 8.3 in [11] with r = 1. The number of distinct
ODE-classes of connected networks at the set Min1,n is given by Theorem 8.10 in [11]
with r = 1.

4.2. Minimal n-cell networks with two asymmetric inputs. For the particular
case of a network G with two asymmetric inputs, the result in Proposition 4.2 states
that G is minimal if and only if the adjacency matrices A1 and A2 of G and the
identity matrix (of the same dimension) are linearly independent. We get then the
following corollary of Proposition 4.2:

Corollary 4.5. A network G with two asymmetric inputs given by the valency one
adjacency matrices Ai 6= idn, for i = 1, 2, where A1 6= A2 is minimal.

Proof. By Proposition 4.2, G is not minimal if and only if the matrices Idn, A1, A2

are linearly dependent. As the matrices A1 and A2 have valency one and are not
the identity matrix, then Idn, A1 are linearly independent and Idn, A2 are linearly
independent. Thus if Idn, A1, A2 are linearly dependent, then there are nonzero real
entries a, b, c such that

aIdn + bA1 + cA2 = 0m×n .

Without loss of generality, we assume that A2 is a linear combination of Idn and A1.
Thus, there are real numbers α and β such that

A2 = αIdn + βA1 .

As A1 6= Idn, the matrices A1 and Idn have at least one row i such that two entries
differ and so, we can find j with j 6= i such that (A1)ij = 1 and (A1)ii = 0. We
obtain two linear equations: taking k1 = (A2)ij and k2 = (A2)ii,

{
(A2)ij = α(Idn)ij + β(A1)ij
(A2)ii = α(Idn)ii + β(A1)ii

⇔

{
0α+ 1β = k1
1α+ 0β = k2

.
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Thus β = k1 ∈ {0, 1} and α = k2 ∈ {0, 1}. Therefore we have one of the following
cases A2 = Idn + A1, A2 = A1, A2 = Idn or A2 = 0. By assumption, all those cases
are impossible. Thus Idn, A1, A2 are linearly independent and G is minimal. �

It follows from Corollary 4.5 that an n-cell network with two asymmetric inputs
is not minimal if and only if the two inputs are equal. In this case the network is
ODE-equivalent to an n-cell network with one (asymmetric) input.

4.3. Minimal n-cell networks with k asymmetric inputs. By Proposition 4.2
and Theorem 3.2, it also follows that:

Corollary 4.6. Let G be an n-cell network with k asymmetric inputs and adjacency
matrices A1, . . . , Ak. If p denotes the dimension of the linear space generated by Idn
and A1, . . . , Ak, then G is ODE-equivalent to a minimal n-cell network with p − 1
asymmetric inputs.

Remark 4.7. Under the conditions of Corollary 4.6, any set of p−1 adjacency matrices
of G, say A1, . . . , Ap−1, such that Idn, A1, . . . , Ap−1 are linearly independent, define
a minimal network with p− 1 asymmetric inputs in the ODE-class [G]. ✷

5. Classification of three-cell networks with two asymmetric inputs

Using the fact that a network with k asymmetric inputs is the union of k networks
with one input, we have a way of enumerating network with k asymmetric inputs
using the enumeration of networks with one input. This list is large and the concept
of minimality and ODE-equivalence of networks can be used to restrict this list.
We illustrate this method with networks with three cells and two asymmetric inputs.
That is, we obtain all the minimal three-cell connected networks with two asymmetric
inputs, up to ODE-equivalence.

We start by classifying the three-cell minimal networks with one (asymmetric)
input.

5.1. Classification of three-cell networks with one (asymmetric) input. We
state and prove a well known classification of the ODE-classes of the minimal three-
cell networks with one (asymmetric) input. See, for example, Leite and Golubit-
sky [17]. We include this classification for completeness as it will be used in the next
sections. We also include the two-dimension synchrony subspaces of those minimal
representative networks.

Lemma 5.1. There are only seven ODE-classes of three-cell networks with one input.
One of these classes corresponds to the disconnected three cell network with adjacency
matrix Id3. The other six classes are represented by the six minimal networks in
Table 1.
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Proof. Let G be a three-cell network with one (asymmetric) input and adjacency
matrix A 6= Id3.
(i) If every cell of G sends some input then: either G is the 3-cycle and it has no two-
dimensional synchrony subspaces, see network A of Table 1; or G has a cell i with a
self-loop and a 2-cycle and it has exactly one two-dimensional synchrony subspace,
∆i = {x : xj = xk where j, k 6= i}, see network B of Table 1. Moreover, there are no
more two-dimensional synchrony subspace since cell i cannot synchronize with only
one of the two other cells.
(ii) If two cells of G do not send any input to the other cells, then the third cell has
to send all the three edges including a self-loop and G has three two-dimensional
synchrony subspaces. Equivalently, every two cells can synchronize. See network C
of Table 1.
(iii) If exactly one cell of G does not send any input to the other cells, then it must
receive an edge from a second cell. If this second cell does not send another edge, then
the third cell must send two edges including a self-loop. Thus, in this case G is the
network D of Table 1 and has exactly one two-dimensional synchrony subspace. If
the second cell sends another edge, then the second and third cell must send each an
edge between them. In this case, they can send self-loops corresponding to network
E of Table 1 or form a 2-cycle corresponding to network F of Table 1. Moreover,
the networks E and F have exactly two two-dimensional synchrony subspaces. �

5.2. Classification of three-cell networks with two asymmetric inputs. We
obtain now all the minimal three-cell connected networks with two asymmetric in-
puts, up to ODE-equivalence.

As stated before, every three-cell network with two asymmetric inputs is the union
of two three-cell networks with one (asymmetric) input. Since, in the union of two
such networks, the order of the cells matters, we list in Table 2 all the three-cell
networks with one (asymmetric) input and adjacency matrix A 6= Id3, which are
obtained from the networks in Table 1 by permutation of the three cells.

By Corollary 4.5, a three-cell network with two asymmetric inputs is not minimal
if and only if the two inputs are equal. In this case the network is ODE-equivalent
to a three-cell network with one (asymmetric) input.

Theorem 5.2. Up to ODE-equivalence, there are 48 minimal 3-cell connected net-
works with two asymmetric inputs. See Tables 3-6.

Proof. Excluding the network where each cell receives only one self-loop, there are
26 networks with three cells and one (asymmetric) input, which are listed in Table 2.
It follows then, from Corollary 4.5, that there are 26 × 25 = 650 minimal networks
with three cells and two asymmetric inputs. Since we are interested in minimal net-
works, up to ODE-equivalence, we consider the networks up to interchange of the
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2D Adjacency 2D Adjacency
Network Synchrony Matrix Network Synchrony Matrix

Subspaces Subspaces

A
1 2

3

-





0 0 1
1 0 0
0 1 0



 B
1 2

3

∆1





1 0 0
0 0 1
0 1 0





C
1 2

3

∆1

∆2

∆3





1 0 0
1 0 0
1 0 0



 D
1 2

3

∆3





1 0 0
1 0 0
0 1 0





E
1 2

3

∆2

∆3





1 0 0
0 1 0
1 0 0



 F
1 2

3

∆1

∆3





0 1 0
1 0 0
1 0 0





Table 1. Three-cell networks with one (asymmetric) input and ad-
jacency matrix A 6= Id3, up to re-enumeration of the cells. Note that
the networks C and D are feed-forward.

edge types, which gives 325 networks. Among the networks with one (asymmet-
ric) input in Table 2, there are two (networks A1 and A2) with Z3-symmetry, six
with (networks Bi and Ci, with i = 1, 2, 3) with Z2-symmetry and the remaining 18
networks have no symmetry. Thus, among the 325 networks with two asymmetric
inputs, up to re-enumeration of the cells, there are 64 networks, as we explain next.
When considering the union of networks A with networks A,B,C,D,E, F , since we
are interested in networks up to re-enumeration of the cells, we can consider only
the union of network A1 with networks A2, B, C,D,E, F . Given the Z3-symmetry of
A1, the Z2-symmetry of networks B and C and no symmetry of networks D,E, F ,
up to re-enumeration of the cells, we get, respectively, 1, 1, 1, 2, 2, 2 networks. When
considering the union of networks B with networks B,C,D,E, F , since we are inter-
ested in networks up to re-enumeration of the cells, we can consider only the union
of network B1 with networks B2, B3, C,D,E, F . Given the Z2-symmetry of networks
B and C and no symmetry of networks D,E, F , up to re-enumeration of the cells,
we get, respectively, 1, 2, 3, 3, 3 networks. When considering the union of networks C
with networks C,D,E, F , since we are interested in networks up to re-enumeration of
the cells, we can consider only the union of network C1 with networks C2, C3, D, E, F .
Given the Z2-symmetry of networks C and no symmetry of networks D,E, F , up to
re-enumeration of the cells, we get, respectively, 1, 3, 3, 3 networks. When considering
the union of networks D with networks D,E, F , since we are interested in networks
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Network 2D Syn Network 2D Syn Network 2D Syn
Subspace Subspace Subspace

A1

1 2

3

- A2

1 2

3

-

B1
1 2

3

∆1 B2
1 2

3

∆2 B3
1 2

3

∆3

C1

1 2

3

∆1

∆2

∆3

C2

1 2

3

∆1

∆2

∆3

C3

1 2

3

∆1

∆2

∆3

D1
1 2

3

∆3 D2
1 2

3

∆2 D3
1 2

3

∆1

D4

1 2

3

∆3 D5

1 2

3

∆2 D6

1 2

3

∆1

E1
1 2

3

∆2

∆3

E2
1 2

3

∆1

∆2

E3
1 2

3

∆1

∆3

E4

1 2

3

∆1

∆2
E5

1 2

3

∆1

∆3
E6

1 2

3

∆2

∆3

F1

1 2

3

∆1

∆3
F2

1 2

3

∆2

∆3
F3

1 2

3

∆1

∆2

F4

1 2

3

∆1

∆3
F5

1 2

3

∆2

∆3
F6

1 2

3

∆1

∆2

Table 2. Three-cell networks with one (asymmetric) input obtained
from the networks in Table 1 by permutation of cells.
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1 2

3

1 2

3

1 2

3

E6&B1 D1&F3 B1&F2

1 2

3

1 2

3

1 2

3

D1&D6 C1&A2 D1&F6

1 2

3

1 2

3

1 2

3

A2&A1 D1&A1 D1&D2

1 2

3

1 2

3

1 2

3

D1&D5 D1&B1 D1&B2

1 2

3

1 2

3

1 2

3

D1&E4 E6&A2 D1&A2

1 2

3

1 2

3

1 2

3

B1&B3 B1&A2 F1&A2

1 2

3

F1&A1

Table 3. 3-cell networks with two asymmetric inputs and no 2D synchrony.
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1 2

3

1 2

3

1 2

3

E6&E4 D1&E1 C1&D1

1 2

3

1 2

3

1 2

3

D1&F1 C1&D4 D1&F2

1 2

3

1 2

3

1 2

3

C1&D6 D1&B3 D1&D4

1 2

3

1 2

3

1 2

3

D1&F5 C1&B1 D1&F4

1 2

3

1 2

3

1 2

3

C1&B3 E6&F3 D1&E6

1 2

3

1 2

3

1 2

3

E6&F6 E6&F4 B1&F1

1 2

3

1 2

3

1 2

3

F1&F2 F1&F3 F1&F6

Table 4. 3-cell networks with two asymmetric inputs and one 2D synchrony.
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1 2

3

1 2

3

1 2

3

C1&E6 C1&E3 C1&F1

1 2

3

1 2

3

1 2

3

C1&F2 C1&F3 E6&F5

1 2

3

F1&F4

Table 5. 3-cell networks with two asymmetric inputs and two 2D synchrony.

1 2

3

C1&C2

Table 6. 3-cell network with two asymmetric inputs and three 2D synchrony.

up to re-enumeration of the cells, we consider only the union of network D1 with
networks D2, D3, D4, D5, D6, E, F . Since the networks D,E, F have no symmetry
we get, respectively, 5, 6, 6 networks. Analogously, making the union of networks E
with networks E, F we get, respectively, 5, 6 networks and making the union net-
works F with networks F we get 5 networks. From the set of these 64 networks, we
consider the bigger subset of the connected networks that are not ODE-equivalent:
using MATLAB we obtain the 48 minimal three-cell networks with two asymmetric
inputs listed in Tables 3-6. �

Theorem 5.3. Among the 48 minimal three-cell connected networks with two asym-
metric inputs given by Theorem 5.2, there are 19 networks with no two-dimensional
synchrony subspaces (see Table 3), 21 networks with one two-dimensional synchrony
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subspace (see Table 4), 7 networks with two two-dimensional synchrony subspaces
(see Table 5) and one network with three two-dimensional synchrony subspaces (see
Table 6).

Proof. Let G be a minimal three-cell connected network with two asymmetric inputs.
Then, G = G1∪G2 with G1 and G2 three-cell networks with one (asymmetric) input,
both in Table 2. The network G has a synchrony subspace ∆i if and only if ∆i

is a synchrony subspace for both networks G1 and G2. Using the information in
Table 2, we obtain the information above stated concerning the synchrony spaces of
the minimal three-cell connected networks with two asymmetric inputs. �

Remark 5.4. If, among the 48 minimal three-cell connected networks with two asym-
metric inputs given by Theorem 5.2, we consider only the strongly connected ones,
that have one or two two-dimensional network synchrony subspace, then we see that
there are only 8 networks with one two-dimensional synchrony subspace (C1&D6,
D1&F5, D1&F4, E6&F3, E6&F4, B1&F1, F1&F3, F1&F6 from Table 4) and 2 net-
works with two two-dimensional synchrony subspaces (C1&F3, F1&F4 from Table 5).
These are in accordance with the results of Aguiar, Ashwin, Dias and Field [4] con-
cerning strongly connected networks of three cells and two asymmetric inputs that
have one or two two-dimensional synchrony subspace. ✷

5.3. ODE distinct three-cell two-input asymmetric networks with the same
hidden symmetries. Rink and Sanders [19, 26] show that networks with asymmet-
ric inputs have hidden symmetries which influence the network dynamics and more-
over, can be used to study the dynamics. When the network has a semigroup struc-
ture, Rink and Sanders in [26] have calculated normal forms of coupled cell systems
and in [25] have used the hidden symmetries of the network to derive Lyapunov-
Schmidt reduction that preserves hidden symmetries. In [19], Nijholt, Rink and
Sanders have introduced the concept of fundamental network which reveals the hid-
den symmetries of a network. A fundamental network is a Cayley Graph of a monoid
(semigroup with unity). The dynamics associated to a fundamental network can be
studied using the revealed hidden symmetries and be related with the dynamics asso-
ciated to the original network which does not need to be fundamental [25, Theorem
3.7 & Remark 3.9].

In Section 7 of [25], it is considered fundamental networks with two or three cells
and their possible generic codimension-one steady-state bifurcations that can occur
assuming that the cell phase spaces are one-dimensional. It is remarked that these
systems are fully characterized by their monoid symmetry, moreover, their semigroup
representations split as the sum of mutually nonisomorphic indecomposable repre-
sentations. In their classification, in case of monoid networks with three cells, it is
used the fact that, there are up to isomorphism, precisely seven monoids with three
elements (see [12]).
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In this section, we make two observations. We first remark that from the 48 net-
works with three cells and two asymmetric inputs obtained in Theorem 5.2, there are
only eight networks which have symmetry monoids with three elements. Moreover,
only seven of these are fundamental networks, where all the possible seven monoids
with three elements occur in this list of eight networks. The other 40 networks have
symmetry monoids with more than three elements. The second remark concerns the
fact that there are ODE distinct three-cell networks with the same symmetry monoid
of three elements. The multiplication operation is given by the composition of such
functions.

In what follows, a three-cell network with two asymmetric inputs denoted by
G1&G2, has each edge type j, for j = 1, 2, represented by a function σj : {1, 2, 3} →
{1, 2, 3} such that σj(l) = al, for l = 1, 2, 3, and we represent it by σj = [a1 a2 a3].
Thus, if we take the edge type j and σj(l) = al, then there is an edge of the type j
from cell al to cell l which corresponds to an edge from cell al to cell l in the network
Gj.

Proposition 5.5. From the 48 networks with three cells and two asymmetric inputs
obtained in Theorem 5.2, only eight have symmetry monoids with three elements:
A2&A1, E6&E4, C1&D1, C1&B1, E6&F5, C1&C2, C1&E3 and C1&E6. Each corre-
sponds to one of the seven distinct possible symmetry monoids with three elements,
except the last two that have the same symmetry monoid. Except the network C1&E6,
the other seven are fundamental networks. See Tables 5.3-8.

Proof. The symmetry monoid of each G1&G2 in the list of the 48 networks with 3 cells
and two asymmetric inputs in Tables 3-6 is determined by three functions: σ0 = Id3

and σ1, σ2 corresponding to the subnetworks with one input, G1 and G2, respectively.
Except for the eight networks (A2&A1, E6&E4, C1&D1, C1&B1, E6&F5, C1&C2,
C1&E3 and C1&E6), the set Σ = {σ0, σ1, σ2} is not closed for the composition. In
fact, for those 40 networks, at least one of the products σ1σ2 or σ2σ1 does not belong
to Σ. Now, for the other eight networks, we see that Σ = {σ0, σ1, σ2} is closed
under multiplication (composition) and we have all the possibilities for the products
σiσj where i, j 6= 1, 2. See Tables 5.3-8 for the matching between each of the eight
networks and the corresponding symmetry monoid. As an example, if we take the
network A2&A1, we have that

σ0 = [1 2 3] , σ1 = [2 3 1] , σ2 = [3 1 2] .

It follows that Σ = {σ0, σ1, σ2} is a monoid. Moreover, as σ2
1 = σ2, σ

2
2 = σ1 and

σ1σ2 = σ2σ1 = σ0, we have that the multiplication table for Σ corresponds to Σ6 in
Table 8 (it corresponds to the Σ6 in Section 7 of [25]). �
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Network Monoid Monoid
symmetries structure

A2&A1 σ0 = [1 2 3] , σ1 = [2 3 1] , σ2 = [3 1 2] Σ6

E6&E4 σ0 = [1 2 3] , σ1 = [1 1 3] , σ2 = [1 3 3] Σ5

C1&D1 σ0 = [1 2 3] , σ1 = [1 1 1] , σ2 = [1 1 2] Σ1

C1&B1 σ0 = [1 2 3] , σ1 = [1 1 1] , σ2 = [1 3 2] Σ7

E6&F5 σ0 = [1 2 3] , σ1 = [1 1 3] , σ2 = [3 3 1] Σ2

C1&C2 σ0 = [1 2 3] , σ1 = [ 1 1 1] , σ2 = [2 2 2] Σ4

C1&E3 σ0 = [1 2 3] , σ1 = [1 1 1] , σ2 = [1 2 2] Σ3

C1&E6 σ0 = [1 2 3] , σ1 = [1 1 1] , σ2 = [1 1 3] Σ3

Table 7. The eight ODE-distinct networks with three cells and two
asymmetric inputs which have symmetry monoids with three ele-
ments, and the corresponding symmetry monoids. The monoids Σi

for i = 1, . . . , 7 appear in Table 8. Except C1&E6, they are fundamen-
tal networks. Here, σ0 represents the dependence of each cell on its
own state which we omit in the network representation.

Σ1 σ0 σ1 σ2

σ0 σ0 σ1 σ2

σ1 σ1 σ1 σ1

σ2 σ2 σ1 σ1

Σ2 σ0 σ1 σ2

σ0 σ0 σ1 σ2

σ1 σ1 σ1 σ2

σ2 σ2 σ2 σ1

Σ3 σ0 σ1 σ2

σ0 σ0 σ1 σ2

σ1 σ1 σ1 σ1

σ2 σ2 σ1 σ2

Σ4 σ0 σ1 σ2

σ0 σ0 σ1 σ2

σ1 σ1 σ1 σ1

σ2 σ2 σ2 σ2

Σ5 σ0 σ1 σ2

σ0 σ0 σ1 σ2

σ1 σ1 σ1 σ2

σ2 σ2 σ1 σ2

Σ6 σ0 σ1 σ2

σ0 σ0 σ1 σ2

σ1 σ1 σ2 σ0

σ2 σ2 σ0 σ1

Σ7 σ0 σ1 σ2

σ0 σ0 σ1 σ2

σ1 σ1 σ1 σ1

σ2 σ2 σ1 σ0

Table 8. Up to isomorphism, there are seven monoids with three elements [12].

Remark 5.6. The eight three-cell networks with symmetry monoids with three ele-
ments have the following properties according to the number of nontrivial synchrony
spaces: A2&A1 has no nontrivial synchrony space (from Table 3); E6&E4, C1&D1

and C1&B1 have one nontrivial synchrony space (from Table 4); E6&F5, C1&E6

and C1&E3 have two nontrivial synchrony spaces (from Table 5); C1&C2 has three
nontrivial synchrony spaces (from Table 6). ✸

Remark 5.7. The networks C1&E3 and C1&E6 are ODE distinct and have the same
symmetry monoid. Thus they have the same fundamental network. Which in this
case is the network with set of three cells Σ = {σ0, σ1, σ2} and the asymmetric inputs
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Fundamental Monoid
Network symmetries

Σ̃1 σ̃0 = [1 2 3] , σ̃1 = [2 2 2] , σ̃2 = [3 2 2]

Σ̃2 σ̃0 = [1 2 3] , σ̃1 = [2 2 3] , σ̃2 = [3 3 2]

Σ̃3 σ̃0 = [1 2 3] , σ̃1 = [2 2 2] , σ̃2 = [3 2 3]

Σ̃4 σ̃0 = [1 2 3] , σ̃1 = [2 2 3] , σ̃2 = [3 2 3]

Σ̃5 σ̃0 = [1 2 3] , σ̃1 = [2 2 2] , σ̃2 = [3 3 3]

Σ̃6 σ̃0 = [1 2 3] , σ̃1 = [2 3 1] , σ̃2 = [3 1 2]

Σ̃7 σ̃0 = [1 2 3] , σ̃1 = [2 2 2] , σ̃2 = [3 2 1]
Table 9. The seven fundamental networks with three cells and two
asymmetric inputs corresponding to the symmetry monoids with three
elements in Table 8. Here, σ̃0 represents the dependence of each cell
on its own state.

can be read off from the multiplication table of Σ3 in Table 8 (recall that σ̃j encodes
the left-multiplicative behaviour of σj):

σ̃0 = [1 2 3] , σ̃1 = [2 2 2] , σ̃2 = [3 2 3] .

In fact, this three-cell fundamental network with asymmetric inputs σ̃1 and σ̃2 corre-
sponds to an isomorphic network of C1&E3. Thus C1&E3 is a fundamental network
and C1&E6 is not. The other six networks are fundamental networks. See Table 9
for the asymmetric inputs for each of the fundamental networks Σ̃i associated with
each of the monoids Σi in Table 8. ✸

Remark 5.8. More generally, Aguiar, Dias and Soares [10, Theorem 5.16] present a set
of necessary and sufficient conditions (on the topology of the network) for a network
with asymmetric inputs to be a fundamental network. One of such properties is
the backward connectivity of the graph (i.e., there exists a cell such that any other
cell has a directed path ending in that cell). We remark that the network C1&E6

mentioned in the previous remark is not backward connected. ✸

6. Why the number n(n-1) of inputs for an n-cell network with
asymmetric inputs is special?

As a first step towards obtaining a classification, in terms of ODE-classes, of the
n-cell networks with asymmetric inputs, for a fixed n, we show next that for every
ODE-class of n-cell networks with asymmetric inputs, the minimal networks have at
most n(n− 1) asymmetric inputs.
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Given a positive integer n, consider the n2-dimensional real linear space of the
n × n matrices Mn×n(R) with the usual operations of sum of matrices and scalar
product of matrices by reals. Denote by V1,n, the subspace of Mn×n(R) generated by
the valency one n× n matrices (with integer entries 0, 1).

Theorem 6.1. For n ≥ 1, the dimension of the linear subspace V1,n of Mn×n(R) is
n(n− 1) + 1.

Proof. Let dn = n(n − 1) + 1. We show that V1,n has dimension dn. Note that
Mn×n(R) has dimension n2. We first observe that V1,n has dimension at most dn.
There are N = nn valency one square matrices of order n, say B1, . . . , BN . Using

the isomorphism between Mn×n(R) and R
n2

mapping A = [aij] to the column vector
(a11, . . . , a1n, . . . , an1, . . . , ann)

t, take the n2×N matrix B whose columns correspond
to those N matrices. It follows that, the sum of the n first rows of B is the row
(1 1 · · · 1), and the same row sum is obtained for the following groups each with n
rows. Thus the rank of the matrix B is at most dn. We show now that there are
indeed dn linearly independent matrices Bi. There is a specific choice of valency one
adjacency matrices Bi, such that we get the n2 × dn submatrix B of B with the
following block structure:

B =




Idn L1 L1 · · · L1 L1

L2 I L1 · · · L1 L1

L2 L1 I · · · L1 L1

...
...

...
. . .

...
...

L2 L1 L1 · · · I L1

L2 L1 L1 · · · L1 I




.

Here the blocks I, L1 are n× (n− 1) and L2 is n× n having the form:

I =

[
Idn−1

01,n−1

]
, L1 =

[
0n−1,n−1

11,n−1

]
, L2 =

[
0n−1,n

11,n

]
.

Using the elementary operations on the columns of B, for i = n+1, . . . , d, replacing
the column Ci by Ci − Cn, we obtain the matrix:

S =




Idn 0n,n−1 0n,n−1 · · · 0n,n−1 0n,n−1

L2 I∗ 0n,n−1 · · · 0n,n−1 0n,n−1

L2 0n,n−1 I∗ · · · 0n,n−1 0n,n−1

.

..
.
..

.

..
. . .

.

..
.
..

L2 0n,n−1 0n,n−1 · · · I∗ 0n,n−1

L2 0n,n−1 0n,n−1 · · · 0n,n−1 I∗




where

I∗ =

[
Idn−1

−11,n−1

]
.

Clearly, the rank of S is n+ (n− 1)(n− 1), that is, dn = n(n− 1) + 1. �
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Example 6.2. To illustrate the above result, we consider the 3-cell networks with
asymmetric inputs. As we have showed, the dimension d3 of the linear subspace V1,3

of M3,3(R), generated by the valency one 3× 3 matrices, is 7. We take the following
3× 3 valency one matrices:

M1 =





1 0 0
0 0 1
0 0 1



 , M2 =





0 1 0
0 0 1
0 0 1



 , M3 =





0 0 1
0 0 1
0 0 1



 , M4 =





0 0 1
1 0 0
0 0 1



 ,

M5 =





0 0 1
0 1 0
0 0 1



 , M6 =





0 0 1
0 0 1
1 0 0



 , M7 =





0 0 1
0 0 1
0 1 0



 .

(i) Using the isomorphism M3×3(R) → R
9 mapping A = [aij ] to the column vector

(a11 a12 . . . a33)
t, we can form the 9 × 7 matrix whose columns correspond to the

above 7 matrices: 


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 1 1 1 1

0 0 0 1 0 0 0
0 0 0 0 1 0 0
1 1 1 0 0 1 1

0 0 0 0 0 1 0
0 0 0 0 0 0 1
1 1 1 1 1 0 0




.

This matrix is the submatrix B in the proof of Theorem 6.1, when n = 3. Thus the
matrices M1, . . . ,M7 form a basis of V1,3.
(ii) Consider now the seven 3-cell networks with one (asymmetric) input and adja-
cency matrices M1, . . . ,M7, say G1, . . . , G7, respectively. We have that [G1] = [G5],
[G2] = [G4] and [G6] = [G7], and that G1, G2, G3, G6 are minimal representatives of
four distinct ODE-classes.
(iii) We have

A =




0 0 1
1 0 0
0 1 0


 = −M3 +M4 +M7

and so {A,M1,M2,M3,M4,M5,M6} is also a basis of V1,3. Similarly, we have

B =




1 0 0
0 0 1
0 1 0


 = A+M1 −M4.

Thus {A,B,M1,M2,M3,M5,M6} is also a basis of V1,3. Finally, we have that id3 =
M1 − M3 + M5. We get then that {id3, A, B,M1,M2,M3,M6} is also a basis of
V1,3. We saw in Lemma 5.1 that A,B,M1,M2,M3,M6 are adjacency matrices of
representatives of the (six) distinct ODE-classes of the 3-cell networks with one
(asymmetric) input. ✸
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Theorem 6.3. If G is an n-cell network with k asymmetric inputs which is minimal
then k ≤ n(n− 1).

Proof. By the previous theorem, V1,n has dimension dn = n2 − (n − 1). The result
follows trivially, as if G is an n-cell network with k asymmetric inputs given by the
valency one adjacency matrices A1, . . . , Ak, by Proposition 4.2, G is minimal if and
only if the matrices Idn, A1, . . . , Ak are linearly independent. Thus, in particular,
Ai 6= Idn, for i = 1, . . . , k and k is at most dn − 1 = n(n− 1). �

Corollary 6.4. An n-cell network with asymmetric inputs is ODE-equivalent to an
n-cell network with at most n(n− 1) asymmetric inputs.

We have then that if G is an n-cell minimal network with m asymmetric inputs
then m ≤ n(n− 1). In particular, we have that for all k > n(n− 1),

Mink,n = ∅ .

As remarked before, if there is no restriction on the inputs, then the number of dis-
tinct ODE-classes of n-cell networks is not finite. However, if we restrict to networks
with asymmetric inputs, as the number of n-cell networks with asymmetric inputs
with at most n(n− 1) asymmetric inputs is finite, it also follows from Corollary 6.4
that:

Theorem 6.5. The number of distinct ODE-classes of n-cell networks with asym-
metric inputs is finite.

Example 6.6. Consider the set of 2-cell networks with asymmetric inputs. We have
by Corollary 6.4 that any such network is ODE-equivalent to a 2-cell network with at
most 2 asymmetric inputs. Moreover, by Theorem 6.3, the linear space V1,2 generated
by the 2 × 2 valency one matrices (with integer entries 0, 1) is 3. For example Id2

and

A1 =

[
1 0
1 0

]
, A2 =

[
0 1
1 0

]

form a basis of V1,2. We can check that, up to ODE-equivalence, there are only 4
classes of 2-cell networks with asymmetric inputs, with the following representative
networks: the 2-cell network with no inputs, two 1-input networks given by A1 and
A2, and one network with two asymmetric inputs given by A1, A2.

✸

7. The ODE-class of the n-cell networks with n(n-1) asymmetric
inputs

In this section, we start by observing that there is a unique ODE-class of the n-cell
networks with n(n − 1) asymmetric inputs. We then address the issue of finding a
minimal representative of that class.
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As a direct consequence of Theorem 6.1, we have that:

Corollary 7.1. If n is a positive integer then all networks in Minn(n−1),n are ODE-
equivalent.

Proof. Given two (minimal) networks G1, G2 ∈ Minn(n−1),n, with adjacency matrices
Ai and Bi, respectively, for i = 1, . . . , n(n− 1), we have that idn, A1, . . . , An(n−1) are
linearly independent. Similarly, Idn, B1, . . . , Bn(n−1) are linearly independent. Thus
both sets form a basis of V1,n, that is, G1 and G2 are ODE-equivalent. �

Given an n-cell network G with adjacency matrix AG and given a permutation
π ∈ Sn on its set of cells {1, . . . , n}, we denote by πG the network obtained from G
by permuting the cells according to π. Thus the adjacency matrix of πG is P−1

π AGPπ,
where Pπ is the permutation matrix corresponding to π.

Note that any representative of the ODE-class Minn(n−1),n is the union network of
n(n − 1) networks in Min1,n. In the next section, we show that Min1,n has at least
n(n− 1) distinct ODE-classes. It might seem natural that selecting any network in
each of those classes, then their union would be a minimal network in Minn(n−1),n.
The following example shows that this depends on the networks in Min1,n that we
select.

Example 7.2. Fix n = 3 and consider the six distinct ODE-classes of the 3-cell
minimal networks with one (asymmetric) input, given by Lemma 5.1. As remarked
in Example 6.2 the adjacency matrices of the representatives of the six distinct
ODE-classes, the networks A, . . . , F in Table 1 are linearly independent together
with the identity matrix id3. Thus, the union of the six networks A, . . . , F is a
minimal network in Min6,3. However, if we consider instead the representatives A,
π1B, π2C, π3D, π3E, π2F , where π1, π2, π3, are the cell permutations given by π1 =
(321), π2 = (213) and π3 = (312), then the subspace generated by the corresponding
adjacency matrices, together with id3, has dimension 4 6= 7. It follows that the union
of the networks A, π1B, π2C, π3D, π3E, π2F is not a minimal network in Min6,3. ✸

For the case n = 4, if we select randomly twelve ODE-distinct classes in Min1,4, we
have noticed that we will not obtain a representative of Min12,4. However, the next
example shows that, we may find two such representatives of Min12,4 using distinct
ODE-classes in Min1,4.

Example 7.3. We present below two 16 × 13 matrices with rank 13, each corre-
sponding to a different choice of subsets of Min1,4. The first column of each of those
matrices corresponds to the matrix id4 and the other twelve columns to the adjacency
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matrices of the networks in the corresponding subset:



1 1 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1

0 1 0 1 1 0 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 1 1 1
1 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 1 1 0 0 1
1 1 1 1 0 0 1 1 0 0 1 0 0




,




1 1 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1

0 1 0 0 0 1 1 1 1 1 1 1 1
1 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 1 1 0 0 0 1 0 0 0
0 0 0 0 0 0 1 1 0 0 1 1 1
1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0

0 0 1 1 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 1 1 0 0 1
1 1 0 0 0 0 0 0 0 0 1 0 0




✸

On the other hand, it would be unexpected that the union of a set in Min1,n

of networks where most are ODE-equivalent would be a network representative of
Minn(n−1),n. We prove indeed that one such representative is given by considering
n− 1 feed-forward networks and their orbits under the cyclic permutation group on
the n cells.

Lemma 7.4. Given n ∈ N, up to permutation of the cells, the number of n-cell feed-
forward networks with one (asymmetric) input having at most one tail with length
greater than one is n− 1.

Proof. An n-cell feed-forward network with one (asymmetric) input having at most
one tail with length greater than one satisfies one of the following: it has n− 1 tails
with length one, it has n− 3 tails with length one and one tail with length two,..., it
has one tail with length one and one tail with length n− 2 or has only one tail with
length n−1. Thus, up to permutation of the cells, there are n−1 such networks. �

Denote by Zn the cyclic subgroup of Sn generated by the n-cycle permutation
πn = (1 2 · · · n). Let

ZnG =
{
π
j
nG : j = 0, 1, . . . , n− 1

}
, ZnAG =

{
P−1

π
j
n

AGPπ
j
n
: j = 0, 1, . . . , n− 1

}
.

Theorem 7.5. Given n ∈ N, consider the n− 1 feed-forward networks, F1, F2, . . . ,
Fn−1, with n− 1, n− 3, n− 4, . . . , 0 length one tails, respectively, as in Lemma 7.4.
The n-cell network with n(n− 1) asymmetric inputs given by the union

n−1⋃

i=1

ZnFi

is a representative of the minimal class Minn(n−1),n.
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Proof. Consider the n − 1 feed-forward networks in the conditions of Lemma 7.4,
F1, F2, . . . , Fn−1, with n − 1, n − 3, n − 4, . . . , 0 length one tails. Without loss of
generality, we can consider that the cells in each Fi are enumerated such that the
cell 1 receives a self-input, the cells 2, . . . , n − i + 1 receive an edge from cell 1 and
the cells n − i + 2, . . . , n, when i > 1, receive an edge, respectively, from the cells
n− i+ 1, . . . , n− 1.

Consider the matrix B whose columns 1+ (i− 1)n, . . . , n+ (i− 1)n correspond to
the matrices in the sets ZnAFi

, for i = 1, . . . , n− 1, by row. We have that, the rows
1+(i−1)n, . . . , n+(i−1)n, for i = 1, . . . , n, of B, correspond to the inputs that cell
i receives from cells 1, . . . , n, respectively, in the networks ZnFi for i = 1, . . . , n− 1.

We have the following observations: among the networks ZnFi, for i = 1, . . . , n−1,
there is only one network, F1, such that cell n receives its input from cell 1. Thus,
there is one row of B with the entry in the first column equal to 1 and all the other
entries equal to 0. Using the permutations in Zn, there is one row of B with the
entry in column k equal to 1 and all the other entries equal to 0, for k = 2, . . . , n,
Among the networks ZnFi, for i = 1, . . . , n− 1, there are only two networks, F1 and
F2, such that cell n − 1 receives its input from cell 1. Thus, there is one row of B
with the entries in columns 1 and n + 1 equal to 1 and all the other entries equal
to 0. Using the permutations in Zn, for k = 2, . . . , n, there is one row of B with
the entries in columns k and (k + n) equal to 1 and all the other entries equal to
0. This reasoning applies recursively, until cell 3. Among the networks ZnFi, for
i = 1, . . . , n− 1, there are only n− 2 networks, Fi, i = 1, . . . , n− 2, such that cell 3
receives its input from cell 1. Thus, there is one row of B with the entries in columns
1 + (i − 1)n, for i = 1, . . . , n − 2, equal to 1 and all the other entries equal to 0.
Using the permutations in Zn, for each k = 2, . . . , n, there is one row of B with
the entries in the columns k + (i − 1)n, for i = 1, . . . , n − 2, equal to 1 and all the
other entries equal to 0. Finally, for the cell 1, we have that, among the networks
ZnFi, for i = 1, . . . , n − 1, there are only n − 1 networks, Fi, i = 1, . . . , n − 1, such
that cell 1 has a self-loop. Thus, there is one row of B with the entries in columns
1+(i−1)n, for i = 1, . . . , n−1, equal to 1 and all the other entries equal to 0. Using
the permutations in Zn, for each k = 2, . . . , n, there is one row of B with the entries
in the columns k + (i− 1)n, for i = 1, . . . , n− 1, equal to 1 and all the other entries
equal to 0.

Taking the above observations into account, we conclude that there is a permu-
tation of the rows of matrix B such that B is row-equivalent to a matrix with the
following lower triangular block form:




Idn 0 0 · · · 0
Idn Idn 0 · · · 0
· · · · · · · · · · · · · · ·

Idn Idn Idn · · · Idn

Idn B1 B2 · · · Bn−2
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1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

Figure 3. The networks C1, C2, C3, D1, D3, D5 from Table 2 whose
union represent a minimal network in the class Min6,3.

It follows that the matrix B has rank (n−1)n and, thus, that the (n−1)n matrices
in ZnAFi

, for i = 1, . . . , n−1, are linearly independent. We conclude that the network

given by the union of networks,
⋃n−1

i=1 ZnFi, is a representative of the minimal class
Minn(n−1),n. �

1 2

3

Figure 4. A representative of the minimal class Min6,3.

In the next example, we illustrate Theorem 7.5 when n is equal to 3.

Example 7.6. Up to permutation of the cells, there are two 3-cell feed-forward
networks with one (asymmetric) input, one having two tails of length one each and
the other having just one tail with length two. See networks C ≡ F1 and D ≡ F2,
respectively, in Table 1. Consider, also, the networks in the sets Z3F1 = {C1, C2, C3}
and Z3F2 = {D1, D3, D5} , where the networks Ci and Dj appear in Table 2. By
Theorem 7.5, the 3-cell network with 6 asymmetric inputs given by the union of the
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networks in Z3F1∪Z3F2 (see Figure 3) is a representative of the minimal class Min6,3

(see Figure 4). ✸

Remark 7.7. For an integer n ≥ 2, consider the n − 1 feed-forward networks,
F1, F2, . . . , Fn−1, with n − 1, n − 3, n − 4, . . . , 0 length one tails, respectively, as

in Lemma 7.4. We remark that, for each k ≤ n(n− 1), the

(
n(n− 1)

k

)
networks

with k asymmetric inputs defined by the union of the possible combinations of k
networks in the set {ZnFi : i = 1, . . . , n − 1} are minimal networks representing
ODE-classes. However, they can represent the same ODE-classes. For example, the
minimal networks F1 and πnF1 represent the same ODE-class. Therefore the number
of distinct ODE-classes in Min1,n given by those feed-forward networks is n− 1. ✸

Nevertheless, we believe that the number of distinct classes in Mink,n can be lower
bounded by the number of k-combinations from n(n − 1) elements. In the next
section, we prove that this lower bound is valid when k = 1.

8. More on n-cell networks with one asymmetric input

Observe that for n = 3 and n = 2, the number of distinct ODE-classes of the
network set Min1,n is equal to n(n − 1). However, this is not true for n ≥ 4. For
example, from the results obtained by [11], we have that, up to permutation of cells,
the set Min1,4 contains 18 networks and n(n− 1) = 12 when n = 4. More generally,
from the results of [11], we have that the number of distinct ODE-classes in Min1,n

increases quite fast with n and it is bigger than n(n − 1) for n ≥ 4. We present
below an algorithm that provides n(n − 1) networks belonging to n(n − 1) distinct
ODE-classes in Min1,n constructed from networks in distinct ODE-classes in Min1,l

for l < n.
By explicit computation, we can see that Min1,1 has no networks and Min1,2 has

two ODE distinct networks. Also, from Table 1, we know that Min1,3 has six distinct
ODE-classes of networks. We describe now explicitly some of the distinct ODE-
classes of Min1,n, for n > 3.

Algorithm 8.1.
Input: A representative network G of an ODE-class in Min1,n−1 with adjacency ma-
trix AG, where n > 3 is an integer. Let k be the number of cells of the largest cycle
of the network.
Output: a representative network G̃ with adjacency matrix ÃG̃ of an ODE-class in
Min1,n where k + 1 is the number of cells of the largest cycle of the network.

(i) Choose a representative network G ∈ Min1,n−1 and consider its adjacency
matrix AG . Let k be the number of cells of the largest cycle of the network.
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Three-cell Network Four-cell Network Three-cell Network Four-cell Network

1 2

3

1 2

34

1 2

3

1 2

34

1 2

3

1 2

34

1 2

3

1 2

34

1 2

3

1 2

34

1 2

3

1 2

34

Table 10. Six ODE distinct four-cell networks with one (asymmetric)
input which are minimal build from the six ODE-disctint three-cell
minimal networks with one (asymmetric) input.

(ii) Re-enumerate the cells if necessary so that the matrix AG has the form:

AG =

[
Ck 0
B D

]
,

where Ck is the adjacency matrix of the cycle 1 → 2 → · · · → k → 1, B is a
(n− 1− k)× k matrix and D is a (n− 1− k)× (n− 1− k) matrix.

(iii) Take the network with n cells by the following adjacency matrix

ÃG̃ =

[
Ck+1 0
B 0 D

]
,

where 0 is a column of zeros.
(iv) Output the network with adjacency matrix ÃG̃.

✸

Proposition 8.2. Algorithm 8.1 applied to a set of representatives of the distinct
ODE-classes in Min1,n−1, where n > 3 is an integer, provides a set of ODE-distinct
networks in Min1,n.
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1 2 3
3-cell feed-forward network

1 2

34

1 2

34

1 2

34

1 2

34

1 2
2-cell feed-forward network

1 2

3 4

1 2

3 4

Table 11. Six ODE distinct four-cell networks with one (asymmetric)
input which are minimal build from a three-cell and two-cell minimal
feed-forward networks with one (asymmetric) input.

Proof. We follow the notation of Algorithm 8.1. Take two graphs G1 and G2 in
Min1,n−1 with adjacency matrices A1 and A2 and consider the two networks in Min1,n

obtained as output in Algorithm 8.1 with adjacency matrices Ã1 and Ã2. We need to
check that if Ã1 and Ã2 define ODE-equivalent networks then A1 and A2 define ODE-
equivalent networks. Suppose that Ã1 and Ã2 define ODE-equivalent networks, i.e.,
there exists a permutation network P such that Ã1P = PÃ2. Note that the largest
cycle of both networks is unique and it must have the same dimension, say k + 1.
Then the permutation P must permute cells in the largest cycle with cells in the
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largest cycle and has the following form:

P =

[
P1 0
0 P2

]
,

where P1 is a (k + 1)× (k + 1) matrix and P2 is a (n− 1− k)× (n− 1− k) matrix.
If Ã1P = PÃ2, then Ck+1P1 = P1Ck+1. By Theorem 3.1.1 of [13], we know that
P1 = C l

k+1 for some integer 0 ≤ l ≤ k.

Let P̂ be the permutation matrix given by

P̂ =

[
C l

k 0
0 P2

]
.

Next, we check that Ã1P = PÃ2 implies that A1P̂ = P̂A2. It is clear that
CkC

l
k = C l

kCk and D1P2 = P2D2. We need to see that B1C
l
k = P2B2. It follows from

Ã1P = PÃ2 that

([B1|0])i(j−l)k+1
=

n−k∑

a=1

(P2)ia(B2)aj = (P2B2)ij, j < k + 1

([B1|0])i(k+1−l) = 0,

where 0 is a column of zeros, (j− l)k+1 is j− l module k+1 and 1 ≤ i ≤ n−k. Then
[B1|0] = [X|0|Y |0] and [P2B2|0] = P2[B2|0] = [Y |0|X|0], where X is a (n−k)×(k−l)
matrix and Y is a (n− k)× (l − 1) matrix. Thus P2B2 = [Y |0|X ] = B1C

l
k. �

Example 8.3. Table 10 illustrates the application of Algorithm 8.1 to a set of ODE-
distinct networks in Min1,3 (taken from Table 1) by increasing for each network the
largest cycle by one cell, obtaining six ODE-distinct networks in Min1,4. ✸

Algorithm 8.4.
Input: The feed-forward networks F1, with n − 1 cells (and n − 1 layers), and F2,
with n− 2 cells (and n− 2 layers), respectively, where n > 3 is a positive integer
Output: 2(n− 1) ODE-distinct feed-forward networks in Min1,n.

(i) Taking the feed-forward network F1 with n − 1 cells, we can join one cell
in n − 1 different ways or we can leave it separated from F1, obtaining n
feed-forward networks with n cells.

(ii) Taking the feed-forward network F2 with n− 2 cells, we can join the last two
cells, since n > 3, to the same cell (except to the last one) in F2, or we can
leave them separated from F2 in n− 2 different ways.

✸

In Algorithm 8.4, we provide 2(n−1) feed-forward networks in Min1,n, where n > 3
is a positive integer. Trivially, we have that:
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Proposition 8.5. The 2(n−1) feed-forward networks outputted from Algorithm 8.4,
where n > 3 is a positive integer, are ODE-distinct.

Example 8.6. Table 11 illustrates the construction given in Algorithm 8.4 for the
case n = 4 providing six ODE distinct 4-cell networks in Min1,4 which are feed-
forward. ✸

Theorem 8.7. Let n be a positive integer. The difference between the number of
distinct ODE-classes in Min1,n and in Min1,n−1 is at least 2(n − 1). Furthermore,
the number of distinct ODE-classes in Min1,n is at least n(n− 1).

Proof. Recall that Min1,1 has no networks, Min1,2 has two ODE distinct networks,
and that from Table 1, we see that Min1,3 has six distinct ODE-classes of networks.
So both assertions are true for n ≤ 3. Assume now that n > 3. From Algorithm 8.1
and Proposition 8.2, we obtain ODE-distinct networks in Min1,n from ODE-distinct
networks in Min1,n−1. From Algorithm 8.4 and Proposition 8.5, we obtain 2(n− 1)
ODE-distinct feed-forward networks in Min1,n. As the feed-forward networks are not
ODE-equivalent to those networks obtained from extending the largest cycle because
the largest cycle of the networks has different dimension, we have proved that the
difference of the number of distinct ODE-classes between Min1,n and Min1,n−1 is at
least 2(n− 1) for n > 1.

By induction, we assume that the number of distinct ODE-classes in Min1,n−1 is
greater than (n− 1)(n− 2) and using the previous claim we see that the number of
distinct ODE-classes in Min1,n is greater than n(n−1). Thus, the second part of the
theorem follows. �

9. Final conclusions

In this work, we have proved that the set Mink,n is empty for k > n(n−1) and that
there is a unique ODE-class in Minn(n−1),n. Note that the minimal representative of
the unique ODE-class in Minn(n−1),n obtained in Theorem 7.5 is given by the union of
n(n−1) networks in Min1,n from solely (n−1) distinct ODE-classes. Nevertheless, as
we have illustrated for the case of networks with 3 and 4 cells, it is natural to expect
that there exists a minimal representative of Minn(n−1),n such that each asymmetric
input corresponds to a different ODE-class in Min1,n.

Moreover, we conjecture that the union of every subset of k such networks, with
k < n(n−1), will correspond to a minimal representative of a distinct ODE-class for
the networks with k asymmetric inputs. Therefore, we conjecture that the binomial
coefficient, below, is a lower bound for the number of distinct ODE-classes in Mink,n(

n(n− 1)
k

)
=

n(n− 1)!

k! (n(n− 1)− k)!
, k < n(n− 1).
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Nevertheless, we describe two algorithms to construct at least n(n − 1) distinct
ODE-classes with one asymmetric input and n cells. Therefore, the conjecture above
holds for k = 1. It also holds trivially for k = 0 and k = n(n− 1). We believe that
the algorithms presented here can be generalized for bigger numbers of asymmetric
inputs. Since these algorithms use the minimal representative networks with less
cells, we hope that those generalized algorithms lead to a proof of the conjecture
for k ≤ n(n − 1)/2. For the values of k on the second half, we conjecture that the
number of ODE-classes is symmetric. Specifically, we conjecture that the number of
ODE-classes in Mink,n is equal to the number of ODE-classes in Minn(n−1)−k,n. The
orthogonality of subspaces in the space generated by all adjacency matrix can lead
to a proof of this conjecture. Note that the binomial coefficient is strictly lower than
the number of ODE-classes in the cases (n, k) = (3, 2) and (n, k) = (4, 1).
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