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NETWORK DYNAMICS WITH HIGHER-ORDER

INTERACTIONS: COUPLED CELL HYPERNETWORKS

FOR IDENTICAL CELLS AND SYNCHRONY

MANUELA AGUIAR, CHRISTIAN BICK, AND ANA DIAS

Abstract. Network interactions that are nonlinear in the state of
more than two nodes—also known as higher-order interactions—
can have a profound impact on the collective network dynamics.
Here we develop a coupled cell hypernetwork formalism to elucidate
the existence and stability of (cluster) synchronization patterns in
network dynamical systems with higher-order interactions. More
specifically, we define robust synchrony subspace for coupled cell
hypernetworks whose coupling structure is determined by an un-
derlying hypergraph and describe those spaces for general such hy-
pernetworks. Since a hypergraph can be equivalently represented
as a bipartite graph between its nodes and hyperedges, we relate
the synchrony subspaces of a hypernetwork to balanced colorings
of the corresponding incidence digraph.

1. Introduction

Coupled dynamical processes are ubiquitous in the world and can
often be modeled by systems of ordinary differential equations (ODEs).
The coupled cell network formalism developed by Golubitsky, Stewart
and collaborators [1, 2] and Field [3] captures the network interactions
by a directed graph G to elucidate how the network structure shapes the
collective dynamics. More precisely, let V = R

d for some d ∈ N denote
the state space of each cell i ∈ {1, . . . , n}. In a classical coupled cell
system, the evolution state xi of cell i is determined by an interaction
function f : V q → V . If, for example,

(1.1) ẋi :=
dxi

dt
= f(xi; xj , xk, xl)

then (j, i), (k, i), (l, i) are the edges with head i of G since, for any f ,
the evolution of cell i depends on the cells j, k, l. The main questions
regarding coupled cell networks relate to how the network structure
influences the dynamics and bifurcations of the coupled cell system
without making specific assumptions on f . By contrast, in many ap-
plications the links in the networks have associated numerical values
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called weights to represent, for example, the strength or the signal of
the connection between the nodes associated with the edges. These
can be realized as coupled cell networks with additive input structure;
cf. [4, 5, 6, 7]. Consider the graph G associated with (1.1) and let
(wij) ∈ R

n×n be a weight matrix. For h : V → V and g : V × V → V ,
cell i of the corresponding coupled cell network with additive coupling
structure evolves according to

(1.2) ẋi := h(xi) + wijg(xi; xj) + wikg(xi; xk) + wilg(xi; xl),

where g determines the pairwise interactions between cells. In this re-
stricted framework, adding and removing edges is natural by adjusting
the corresponding weights. Networks of Kuramoto phase oscillators
and pulse coupled systems are examples of coupled cell systems with
additive input structure.
Note that the complexity of the interactions differ in traditional

coupled cell networks (1.1) and those with additive coupling struc-
ture (1.2). While the former allows for generic, nonlinear interactions
between all the input nodes through f , additive coupling structure
only allows for interactions between pairs of nodes. Recent research
has highlighted the dynamical importance of nonpairwise interactions
between nodes; cf. [8, 9] for reviews. For example, in networks that
describe the competitive interactions between species, one has to take
into account how the interaction between two species is modulated
by a third species (a triplet interaction) to explain the competition
dynamics. Similarly, incorporating nonpairwise interactions in phase
oscillator networks exhibits dynamics that would not arise in standard
Kuramoto-type equations with pairwise interactions [10, 11].
In this work, we introduce a new class of coupled cell networks—

coupled cell hypernetworks—whose structure is determined by a (di-
rected) hypergraph. A hypergraph is a generalization of a graph in
which a hyperedge can join any number of nodes, that is, the directed
hyperedges are from a set of k nodes (cells) to a set of l nodes (cells).
This coupling structure captures that the evolution of each of the l
cells depends (typically nonlinearly) on an interaction involving a set
of k cells. Directed hypergraphs are used to model problems arising in,
for example, operations research, computer science and discrete math-
ematics, to describe relationships between two sets of objects. See
for example Ausiello and Laura [12] and references therein. See, also,
Johnson et al. [13], Kim et al. [14] and Johnson [15]. We shall remark
that in some literature, as for example in Sorrentino [16], the termi-
nology of hypernetwork is used, not to denote a hypergraph, as in our
case here, but to denote a graph that has more than one edge type,
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that is, with more than one adjacency matrix. We illustrate our setup
in an example.

Example 1.1. Consider the following system of ODEs on n = 6 state
variables xi, i ∈ {1, . . . , n}:

ẋ1 = f(x1) +Q2(x1; x5, x2)(1.3a)

ẋ2 = f(x2) +Q1(x2; x2)(1.3b)

ẋ3 = f(x3) +Q1(x3; x4) +Q2(x3; x4, x6)(1.3c)

ẋ4 = f(x4) +Q1(x4; x2)(1.3d)

ẋ5 = f(x5) +Q2(x5; x4, x6)(1.3e)

ẋ6 = f(x6) +Q2(x6; x1, x2),(1.3f)

where f : V → V , Q1 : V
2 → V , Q2 : V

3 → V are smooth functions.
Assume that Q2 is symmetric under permutation of the last two coor-
dinates, that is, Q2(y; z, w) = Q2(y;w, z) for all y, z, w ∈ V . We might
interpret this system as a coupled cell system with form consistent with
a hypergraph H shown on the left of Figure 1: Each node of the hyper-
graph represents a cell, and each hyperedge represents an interaction
from a cell—or a group of cells—to a cell or a group of cells. The state
of cell i is determined by xi ∈ V and its evolution by the corresponding
differential equation; in the following we write x = (x1, . . . , xn) for the
state vector. The coupling functions Q1 and Q2 determine the influence
of one or two cells, respectively, onto another cell along the directed
hyperedges.
Now consider subsets of the phase space where cells are synchro-

nized, that is, there are distinct cells whose states take the same value;
sometimes this is also referred to as cluster synchronization. Some syn-
chronization patterns are robust, that is, they are dynamically invariant
subsets of the phase space for any coupling functions. In our example,
consider the set { x | x1 = x6 = x5, x2 = x4}, where cells 1, 6, 5 as well
as 2, 4 are synchronized. Note that this set is invariant under the flow
of the above equations and the dynamics restricted to this space are
given by

ẋ1 = f(x1) +Q2(x1; x1, x2)(1.4a)

ẋ2 = f(x2) +Q1(x2; x2)(1.4b)

ẋ3 = f(x3) +Q1(x3; x2) +Q2(x3; x1, x2).(1.4c)

These are again dynamical equations that can be interpreted as a cou-
pled cell hypernetwork; one underlying hypergraph is shown in Figure 1
on the right.
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Figure 1. Examples of two directed hypergraphs:
Nodes (cells) are shown as circles and directed hyper-
edges as arrows that can have multiple nodes in the tail
(lines from multiple nodes leading up to the arrow) and
multiple nodes in the head (lines from the arrow to the
receiving cells). Assume all hyperedges have weight 1.
The shading of the nodes/cells corresponds to the syn-
chrony pattern described in Example 1.1.

This illustrates some of the main questions we will address here:
Given a set of dynamical equations, such as (1.3), what is the underly-
ing hypergraph? Given a hypergraph H and an associated coupled cell
hypernetwork, how can we identify the robust synchrony subspaces?
Given a robust synchrony subspace, how can we describe the dynamics
on the robust synchrony subspace as a coupled cell hypernetwork and
how does this relate to the original hypergraph H? ✸

The main contribution of this paper is to develop the framework of
coupled cell hypernetworks and apply this framework to analyze the ex-
istence and stability of synchrony in hypernetwork dynamical systems.
While the dynamical equations are similar to those in [17, 18, 19], we
explicitly discuss the role of the interaction functions Qk. Placed within
the language of coupled cell networks, our approach allows to use the
general ideas developed in [7] for the analysis of network dynamical
systems with higher-order interactions. Specifically, the manuscript is
organized as follows. Section 2 reviews some definitions and notation
on directed weighted hypergraphs. The coupled cell hypernetwork for-
malism for coupled differential equations is introduced in Section 3.
In Section 4 we define robust synchrony subspace for hypernetworks,
describe those spaces for general hypernetworks and we relate them to
the balanced colorings of the corresponding incidence digraph. In Sec-
tion 5 we discuss a class of hypernetworks where we can relate stability
of equilibria taking into account the nonpairwise interactions. We see
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Figure 2. A directed hypergraph with four nodes and
three hyperedges labeled by e1, e2, e3.

already for this class of examples that the nonpairwise terms cannot
be disregarded. We finish with Section 6 discussing the main points
presented in this work and some questions that arise naturally.

2. Preliminaries on directed hypergraphs

In this section, we recall some notation and definitions on directed
hypergraphs; see, for example, [20]. An hypergraph is a generaliza-
tion of a graph where the graph edges are replaced by hyperedges that
can join any number of nodes. In contrast to traditional directed hy-
pergraphs, we allow for the tails to be multisets, i.e., a set that can
contain an element more than once. Let #A denote the cardinality of
a (multi)set A.

Definition 2.1. A directed hypergraph H = (C,E) consists of a (finite)
set of nodes C and a set of directed hyperedges E. A directed hyperedge e
is a pair (T (e), H(e)), where the tail T (e) of e is a multiset of elements
of C and the head H(e) of e is a subset of C; we assume that both
T (e) and H(e) are nonempty. ✸

Note that, a directed hypergraph where any hyperedge e satisfies the
conditions #T (e) = #H(e) = 1 is a standard directed graph.
In the above definition of directed hypergraph, we do not exclude

the situation of having hyperedges e where the tail multiset T (e) has
repetition of nodes. This fact is due to the association of hypergraphs
with coupled cell hypernetworks and it will be clarified in Section 3.
IfH = (C,E) is a hypergraph, we also write C(H) = C or E(H) = E

to denote the set of nodes and hyperedges, respectively.

Example 2.2. The directed hypergraph H = (C,E) in Figure 2 has
node set C = {1, 2, 3, 4} and hyperedge set

E = {e1 = ({1, 2}, {3, 4}) , e2 = ({1}, {4}) , e3 = ({1}, {1})} .
✸
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Definition 2.3. Consider a directed hypergraph H = (C,E) with set
of n nodes C = {1, . . . , n} and set of m directed hyperedges E =
{e1, . . . , em}. Let w : E → R be the weight function that associates
a weight wj to each hyperedge ej , j = 1, . . . , m. The weight matrix
W ∈ R

n×m of H is the n × m matrix, where the ijth entry is the
weight wj of the hyperedge ej if node i belongs to the head of the
directed hyperedge ej , and 0 otherwise. A weighted directed hyper-
graph (H,W ) consists of H and a weight matrix W . ✸

Note that the definition of weight matrix of a directed hypergraph
is distinct from that of the weighted adjacency matrix of a standard
n-node directed graph, which is the n×n matrix, where the ijth entry
is the weight wij of the directed edge from node j to node i if there is
a directed edge from j directed to node i, and 0 otherwise.

Example 2.4. Consider the weighted directed graph G with nodes
C(G) = {1, 2, 3, 4} and edges

E(G) = {({1}, {3}) , ({1}, {4}) , ({2}, {3}) , ({2}, {4})}
on the left of Figure 3. The weighted adjacency matrix of the graph G
is: 





0 0 0 0
0 0 0 0
a b 0 0
c d 0 0






.

Consider now the weighted directed hypergraph on the right of Figure 3
with two hyperedges: e1 = ({1, 2}, {3}) and e2 = ({1, 2}, {4}). The
corresponding weight matrix is:







0 0
0 0

a+ b 0
0 c+ d






.

✸

To every directed hypergraph H can be associated a bipartite di-
graph DH, called the incidence digraph, Levi digraph, or König digraph
of H, whose nodes are the nodes and the hyperedges of H; see, for
example, [21]. Here, we generalize this concept to weighted directed
hypergraphs (where the tails of the hyperedges can be multisets).

Definition 2.5. Consider a weighted directed hypergraph (H,W ) with
the set of n nodes C = {1, . . . , n} and a set of m directed hyperedges

E = {e1, . . . , em}. Let mj
i be the multiplicity of the node i in the
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Figure 3. (Left) A weighted directed graph with four
nodes and four edges. (Right) A weighted directed hy-
pergraph with four nodes and two hyperedges.

tail multiset T (ej). The weighted incidence digraph DH of H is the
weighted bipartite digraph with node set C ∪ E and edges such that:
there is a directed edge from node i to the hyperedge ej with weight

mj
i if and only if i ∈ T (ej); there is a directed edge with weight wj

from the hyperedge ej to the node i if and only if i ∈ H(ej). ✸

The adjacency matrix ADH
of the weighted incidence digraph DH

associated with a weighted directed hypergraph H has the block struc-
ture

ADH
=

[
0n×n W
T 0m×m

]

,

where W ∈ Mn×m(R) is the weight matrix for H and the matrix T ∈
Mm×n(R) describes the multiplicities of the nodes in the tail multisets
of the hyperedges of H.

Example 2.6. Consider the directed hypergraph H = (C,E) on the
left in Figure 1. Thus C = {1, . . . , 6} and

e1 = ({2, 5}, {1}) , e2 = ({2}, {2, 4}) , e3 = ({1, 2}, {6}) ,
e4 = ({4, 6}, {3, 5}) , e5 = ({4}, {3}) .

The incidence digraph DH is represented in Figure 4 and its adjacency
matrix is given by

ADH
=

[
06×6 W
T 05×5

]
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1 2 3 4 5 6

e3 e2 e1 e4 e5

Figure 4. The incidence digraph DH associated with
the directed hypergraph in Figure 1 (left).

with

W =










1 0 0 0 0
0 1 0 0 0
0 0 0 1 1
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0










and T =









0 1 0 0 1 0
0 1 0 0 0 0
1 1 0 0 0 0
0 0 0 1 0 1
0 0 0 1 0 0









.

✸

The forward star and the backward star of a node v are the sets of hy-
peredges defined by FS(v) = { e | v ∈ T (e)} and BS(v) = { e | v ∈ H(e)},
respectively.

Remark 2.7. Note that, in network theory, the input set of a node in a
directed network corresponds to the backward star of the node. ✸

We can define paths and connectivity in hypergraphs. A directed
path of lenght q between the nodes v1 and vq+1 is a sequence of nodes,
v1, v2, . . . , vq+1, and directed hyperedges, e1, e2, . . . , eq, where

v1 ∈ T (e1), vq+1 ∈ H(eq), and vj ∈ H (ej−1) ∩ T (ej) for j = 2, . . . , q .

The nodes v1 and vq+1 are said to be connected. An hypergraph is
(weakly) connected if every pair of nodes in the hypergraph is connected
by a path replacing all of its directed hyperedges with undirected hy-
peredges.
In the following we assume that all hypergraphs have nonempty node

and hyperedge sets and are connected.

3. Coupled cell hypernetwork formalism

Weighted directed hypergraphs provide the backbone for the coupled
cell hypernetwork formalism that we develop in this work. A hypernet-
work is a weighted directed hypergraph, where each node i ∈ C comes
with a phase space V = R

d(i) and internal dynamics fi : V → V—we
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refer to a node with a phase space and internal dynamics as a cell. For
simplicity, we assume that all cells are identical, i.e., V = R

d and fi = f
for all i. Thus, we will use the same symbol for each node/cell in a
graphical representation of the network. In slight abuse of notation and
terminology, we write (H,W ) for the hypernetwork, i.e., the weighted,
directed hypergraph together with the data on the phase space, and
use the words node/cell interchangeably.

3.1. Coupled cell hypernetworks. Fix a hypergraph H = (C,E)
with nodes C and hyperedges E; in the following all hypergraphs have
the same set of nodes C. Recall that the backward star of a cell c is
denoted by BS(c). For cell c let

BSk(c) = { e ∈ BS(c) | #T (e) = k}
denote the set of hyperedges whose tail has cardinality k and let

B(c) = { k | ∃ e ∈ BS(c) such that #T (e) = k} = { k | BSk(c) 6= ∅}
be the possible cardinalities. This yields a partition of the backward
star since ⋃

k∈B(c)

BSk(c) = BS(c).

Finally, write

(3.5) B(H) =
⋃

c∈C

B(c) = { k | ∃ e ∈ E such that #T (e) = k} .

Example 3.1. Recall the hypergraph H on the right of Figure 1. We
have that

B(1) = {2}, B(2) = {1}, B(3) = {1, 2} and B(H) = {1, 2}.
✸

We will now define a set of dynamical equations that is compatible
with the hypergraph H. For an hyperedge e ∈ E with weight we we
let k denote the cardinality #T (e). The evolution of cell i ∈ H(e) will
be determined by a smooth coupling function Qk : V k+1 → V such
that the evolution of cell i depends on xi and on the k variables xj

with j ∈ T (e). More precisely, for a hyperedge e with tail T (e) of
cardinality #T (e) = k, let xT (e) denote the k variables in the tail and
write Qk(xi; xT (e)). We assume that Qk is invariant under permutation
in the last k variables, the entries of xT (e). Note that this implies
that each hyperedge e′ with #T (e′) = k is of the same type: The
interactions are governed by the same coupling function. At the same
time, the strength of the interaction may be different since we may be
different from we′.
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Definition 3.2 (Admissibility). A family Q = (Qk), k ∈ N, of coupling
functions as above is admissible for the hypernetwork (H,W ) if Qk 6= 0
for k ∈ B(H) andQk = 0 otherwise. The collection of admissible family
of coupling functions Q define the admissible cell vector fields

Fi(x) = f(xi) +
∑

k∈B(i)

∑

e∈BSk(i)

weQk

(
xi; xT (e)

)
(3.6)

for i ∈ C. ✸

Definition 3.3. Every admissible family of coupling functions Q for
the hypernetwork (H,W ) and corresponding cell vector fields Fi defines
a coupled cell system where the state xi of cell i ∈ C evolves according
to

ẋi = Fi(x).

For convenience, we typically identify the dynamical system and the
cell vector fields that define it. ✸

Example 3.4. Consider the hypergraph H on the right of Figure 1.
For a collection of admissible family of coupling functions Q1, Q2, we
have that the admissible cell vector fields are given by

ẋ1 = f(x1) +Q2(x1; x1, x2)

ẋ2 = f(x2) +Q1(x2; x2)

ẋ3 = f(x3) +Q1(x3; x2) +Q2(x3; x1, x2) .

✸

From this perspective, a coupled cell hypernetwork characterizes a
set of admissible coupling functions and admissible vector fields. How-
ever, distinct hypernetworks can have the same set of admissible cou-
pling functions and even the same set of admissible vector fields.

Example 3.5. Consider the hypernetwork defined by the hypergraph
on the left of Figure 5. For a collection of admissible family of coupling
functions Q1, Q2, we have that the admissible cell vector fields are given
by

ẋ1 = f(x1) +Q2(x1; x1, x2)

ẋ2 = f(x2) +Q1(x2; x3)

ẋ3 = f(x3) +Q1(x3; x2) +Q2(x3; x1, x2) .

Note that the directed hypergraph on the right of Figure 1 and the one
on the left of Figure 5 are distinct. Nevertheless, they have the same
set of admissible functions, although they do not have the same set of
admissible vector fields. ✸
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Figure 5. Two distinct directed hypernetworks with
the same admissible vector fields. Assume all hyperedges
have weight 1.

Example 3.6. Consider the hypernetwork defined by the hypergraph
on the right of Figure 5. For a collection of admissible family of coupling
functions Q1, Q2, we have that the admissible cell vector fields are given
by

ẋ1 = f(x1) +Q1(x1; x1) +Q2(x1; x1, x2)

ẋ2 = f(x2) +Q1(x2; x2) +Q1(x2; x3)

ẋ3 = f(x3) +Q1(x3; x3) +Q1(x3; x2) +Q2(x3; x1, x2) .

Observe that the two distinct directed hypernetworks of Figure 5 have
the same set of admissible coupling functions and vector fields. ✸

Example 3.7. Consider the hypernetworks (H,W1) (left) and (H,W2)
(right) of Figure 6. Thus, the same hypergraphH and different weighted
adjacency matrices and, thus, different admissible vector fields. In fact,
for an admissible coupling function Q1, we have that the admissible cell
vector fields for (H,W1) are given by

ẋ1 = f(x1),

ẋ2 = f(x2) +Q1(x2; x1) +Q1(x2; x3),

ẋ3 = f(x3) +Q1(x3; x1) +Q1(x3; x2);

and the admissible cell vector fields for (H,W2) are given by

ẋ1 = f(x1),

ẋ2 = f(x2) +Q1(x2; x1) +Q1(x2; x3),

ẋ3 = f(x3) +Q1(x3; x1) + 3Q1(x3; x2);

Thus, we see that (H,W1) and (H,W2) have distinct set of admissible
vector fields. ✸
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Figure 6. A directed hypergraph with different
weighted adjacency matrices (and different admissible
vector fields).

Definition 3.8. Two hypernetworks (H1,W1) and (H2,W2) with iden-
tical cells (i.e., the nodes, their phase space, and internal dynamics) are
identical as coupled cell systems if they have the same set of admissi-
ble cell vector fields. Two hypernetworks (H1,W1) and (H2,W2) with
identical cells are equivalent as coupled cell systems if they are identical
up to a permutation of the cells. ✸

Example 3.9. The two directed, weighted hypergraphs in Figure 5 are
identical (and equivalent) as coupled cell hypernetworks as outlined in
Examples 3.5 and 3.6. ✸

Example 3.10. The two hypernetworks defined by the hypergraphs in
Figure 7 are identical (equivalent) as coupled cell hypernetworks. For
an admissible coupling function Q2, we have that for both coupled cell
hypernetworks, the admissible cell vector fields are given by

ẋ1 = f(x1)

ẋ2 = f(x2)

ẋ3 = f(x3) +Q2(x3; x1, x2)

ẋ4 = f(x4) +Q2(x3; x1, x2)

✸

Example 3.11. The two hypernetworks in Figure 8 are not equivalent
as coupled cell hypernetworks. For an admissible coupling function Q2,
we have that the admissible cell vector fields for the hypergraph on the
left are given by

ẋ1 = f(x1)

ẋ2 = f(x2)

ẋ3 = f(x3) +Q2(x3; x1, x2)
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Figure 7. Two identical (equivalent) coupled cell hy-
pernetworks corresponding to two distinct weighted di-
rected hypergraphs. Here, we are assuming all hyper-
edges with weight 1.

1

2

3
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Figure 8. Two distinct directed hypernetworks. As-
sume all hyperedges have weight 1. For any choice of cell
phase spaces, the set of admissible vector fields for the
hypernetwork on the right is strictly contained at the set
of admissible vector fields for the hypernetwork on the
left.

where Q2 is invariant under permutation of the last two coordinates.
For an admissible coupling function Q1, we have that the admissible
cell vector fields for the hypergraph on the right are given by

ẋ1 = f(x1)

ẋ2 = f(x2)

ẋ3 = f(x3) +Q1(x3; x1) +Q1(x3; x2) .

Note that the function Q1(x3; x1) + Q1(x3; x2) is a particular case of
Q2(x3; x1, x2). That is, fixing the same cell phase spaces for the two
hypergraphs, we have that the set of admissible cell vector fields for the
hypergraph on the right is strictly contained in the set of admissible
cell vector fields for the hypergraph on the left. ✸

Lemma 3.12. A weighted directed hypergraph (H,W ) is equivalent as
a coupled cell hypernetwork to a weighted directed hypergraph (H′,W ′)
such that the head H(e) of any hyperedge e ∈ E(H′) has cardinality 1.
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Proof. Replace any hyperedge e ∈ E(H) with head setH(e) = {v1, . . . , vk}
where k > 1, and weight we by k hyperedges ej = (T (e), {vj}), for
j = 1, . . . , k, each with weight wej = we. The set of admissible coupling
functions and vector fields remain unchanged since they only depend
on the tail of any hyperedge. �

3.2. Hyperedge-Maximality, hyperedge-minimality, and sym-

metries. In the previous section, we characterized a hypernetwork
based on its set of admissible coupling functions/vector fields. In this
section, we will now change perspective and focus on a specific choice
of coupling function. Indeed, for a specific choice of coupling functions,
we obtain a specific vector field.

Definition 3.13. A hypernetwork (H,W ) and an admissible family of
coupling functions Q = (Q1, Q2, . . . ) defines a hypernetwork coupling
(H,W,Q) with associated cell vector field F as in (3.6). ✸

Conversely, we can assign a hypernetwork coupling to a dynamical
system.

Definition 3.14. A network dynamical system determined by xi ∈ V ,
i ∈ C, evolving according to

(3.7) ẋi = Xi(x)

is a coupled cell system for a hypernetwork coupling (H,W,Q) ifXi = Fi

for an admissible cell vector field Fi with respect to (H,W,Q) as defined
in (3.6). ✸

Note that the assignment of a hypernetwork coupling to a dynamical
system is not unique since the hypergraph and coupling function go
hand in hand. Lemma 3.12 already indicated that even on the level
of admissible vector fields, there are different hypergraphs that give
rise to the same set of admissible coupling functions/vector fields. See
Example 3.10 and Figure 7.

Definition 3.15. Two hypernetwork couplings (H,W,Q), (H′,W ′, Q′)
are identical if the induced coupled cell system is the same, that is, the
corresponding cell vector fields F, F ′ satisfy F = F ′. Two hypernetwork
couplings (H,W,Q), (H′,W ′, Q′) are equivalent if they are identical up
to a permutation of the cells. ✸

Example 3.16. Consider the hypernetwork couplings (H,W,Q) with

E(H) = {({1, . . . , N} , {1, . . . , N})} ,
W = (1),
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QN(xi; x1, . . . , xN) =

N∏

j=1

xj +

N∑

j=1

xj ,

and (H′,W ′, Q′) with

E(H′) = E(H) ∪ {({1} , {1, . . . , N}), . . . , ({N} , {1, . . . , N})} ,
W ′ = (1, 1, . . . , 1),

Q′

N(xi; x1, . . . , xN) =

N∏

j=1

xj and Q′

1(xi; x1) = x1.

These hypernetwork couplings are identical. ✸

This implies that we can get equivalent hypernetwork couplings by
splitting, or conversely combining hyperedges.

Definition 3.17. Suppose that (H,W,Q) is a hypernetwork coupling
and let e ∈ E(H) be an hyperedge. The hypernetwork coupling (H′,W ′, Q′)
arises by splitting the hyperedge e into hyperedges e′1, . . . , e

′
k if (H,W,Q)

and (H′,W ′, Q′) are identical and E(H′) = (E(H)r{e})∪{e′1, . . . , e′k}.
Conversely, (H,W,Q) arises from (H′,W ′, Q′) by combining the hyper-
edges e′1, . . . , e

′

k. ✸

The hypernetwork couplings in Example 3.16 can be obtained by
splitting/combining hyperedges.
Note that we do not require e to be distinct from e′1, . . . , e

′
k, we do

not require {e′1, . . . , e′k} to be disjoint from E(H), nor do we necessarily
have Q 6= Q′. If Q = Q′ then the splitting/combining an hyperedge is
purely structural.

Definition 3.18. Given an hypernetwork (H,W ) we define the follow-
ing purely structural hyperedge operations :

(1) Any hyperedge e ∈ E(H) with weight we and head H(e) =
{v1, . . . , vr} can be split into r hyperedges el = (t, {vl}), l =
1, . . . , r each with weight we;

(2) More generally, any hyperedge e ∈ E(H) with weight we and
head H(e) = H1 ∪ . . . ∪Hr, with Hi 6= ∅ and Hi ∩Hj = ∅, for
i 6= j, can be split into r hyperedges el = (T,Hl), l = 1, . . . , r
each with weight we;

(3) Conversely, two hyperedges e1, e2 with T (e1) = T (e2) can be
combined into a single hyperedge if their heads are disjoint,
H(e1) ∩H(e2) = ∅, and they have the same weight.

✸
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The following property is immediate:

Lemma 3.19. Let (H,W ) and (H′,W ′) be two hypernetworks such that
(H′,W ′) is obtained from (H,W ) by one (or more) purely structural
splitting/combining hyperedge operations. Then the hypernetworks are
identical as coupled cell systems. Moreover, for every family of ad-
missible coupling functions Q, the hypergraph couplings (H,W,Q) and
(H′,W ′, Q) are identical.

Splitting an hyperedge does not necessarily increase the number of
hyperedges. Indeed, if {e′1, . . . , e′k} ⊂ E(H) then the hyperedge e is
redundant and splitting the hyperedge decreases the overall number of
hyperedges.

Example 3.20. Let e = ({1, . . . , N}, {1, . . . , N}). Consider (H,W,Q)
with

E(H) = {e, ({1} , {1, . . . , N}) , . . . , ({N} , {1, . . . , N})}
and QN (xi; x1, . . . , xN) =

∑N

j=1 xj and Q1(xi; x1) = x1. Then the
hyperedge e is redundant. Note that redundancy here depends on the
specific form of the coupling functions. ✸

To any arbitrary hypernetwork coupling we can associate a maximal
and minimal dynamically equivalent hypernetwork coupling.

Definition 3.21. A hypernetwork coupling (H,W,Q) is hyperedge-
maximal if no hyperedge can be split to obtain an equivalent hyper-
graph coupling. Conversely, a hypernetwork coupling is hyperedge-
minimal if no hyperedges can be joined to obtain an equivalent hy-
pergraph coupling structure. ✸

Note that without further assumptions, neither hyperedge-minimal
nor -maximal associated hypernetwork couplings need to be unique:
For example, if a hypernetwork coupling has an associated minimal
hypernetwork coupling that has a single hyperedge e with weight we

then we get an infinite family of minimal hypernetwork couplings for
w′

e = awe and Q′
e = a−1Qe, a ∈ R \ {0}.

Definition 3.22. A hypernetwork coupling (H,W,Q) is proper if all
its associated hyperedge-maximal hypernetwork couplings contain at
least one hyperedge that is not an edge of a graph, i.e., an edge that is
not of the form e = ({t} , {h}) with t, h ∈ C(H). ✸

Example 3.23. The coupled cell system defined in Example 3.20 is
not proper: An associated hyperedge-maximal hypernetwork coupling
has edges

E(H) = {({1}, {1}) , ({1}, {2}) , . . . , ({N}, {N − 1}) , ({N}, {N})}
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and Q1 (xi; x1) = x1. However, if QN is substituted with Q′
N defined by

Q′
N (xi; x1, . . . , xN) = x1 · · ·xN then any associated maximal coupling

structure must have ({1, . . . , N} , {i}) ∈ E(H), i = 1, . . . , N and thus
yields a proper coupled cell hypernetwork. ✸

Note that we can always split hyperedges whose heads have cardi-
nality greater than one. The following is an immediate consequence of
Lemma 3.12:

Lemma 3.24. Consider a coupled cell system with associated maximal
hypernetwork coupling (H,W,Q). If (t, h) ∈ E(H) then #h = 1.

We now explore some straightforward consequences of equivalent hy-
pernetwork couplings and how they relate to the symmetry of the cou-
pled cell hypernetworks they define. Let SN denote the symmetric
group of N elements that acts by permuting the node indices.

Proposition 3.25. Write e = ({1, . . . , N} , {1, . . . , N}) and consider
a coupled cell system. If an associated hyperedge-minimal hypernetwork
coupling (H,W,Q) has exactly one edge e, i.e., E(H) = {e}, then the
coupled cell hypernetwork is SN -equivariant.

Proof. The existence of a minimal hypernetwork coupling (H,W,Q)
with E(H) = {e} implies that

(3.8) ẋi = f(xi) + weQN (xi; x1, . . . , xN) (i ∈ C) ,

all cells are globally and identically coupled. These equations are SN -
equivariant. �

More generally we can make the following statement.

Proposition 3.26. Consider a coupled cell system. Suppose that there
is an associated hypernetwork coupling (H,W,Q) and a set A ⊂ C(H)
of cells such that for any edge (t, h) ∈ E(H) we have (a) if a ∈ h ∩ A
then A ⊂ h or (b) if a ∈ t∩A then A ⊂ t. Then the coupled cell system
is Sk-equivariant where k = #A and Sk acts by permuting the vertices
in A.

Proof. By definition of a coupled cell system, Property (a) ensures that
any node in A receives the same input. At the same time, Property (b)
ensures that the input of any node depends in the same way on all nodes
contained in A consequently, permuting nodes with indices in A does
not affect the dynamical equations which proves Sk-equivariance. �

Of course Proposition 3.25 is a special case of the previous statement
with A = C(H).



18 MANUELA AGUIAR, CHRISTIAN BICK, AND ANA DIAS

4. Synchrony in Coupled Cell Hypernetworks

Synchrony and synchrony patterns—where different nodes in the net-
work evolve identically—is an essential collective phenomenon in net-
work dynamical systems. Given a hypernetwork, what are the possible
synchrony patterns for any admissible vector field? In the following
we describe the synchrony patterns of a coupled cell hypernetwork and
their associated balanced relations and quotient hypernetworks.

4.1. Input sets. As a first step, we generalize the concept of input
equivalence relation for networks to the hypernetworks. For standard
n-node directed graphs, Definition 3.2 of [1] introduces the concept of
input equivalence of nodes. Roughly, two nodes c and c′ are said to be
input equivalent when besides the number of directed edges to c and c′

is the same there is also a bijection between those sets of directed edges
which preserves the edge types.

Definition 4.1. Consider a weighted directed hypernetwork with set
of nodes C, set of hyperedges E and weight matrix W . Recall from
Section 3.1 that B(c) denotes the cardinalities of the hyperedges adja-
cent to c ∈ C. Define the input equivalence relation ∼I on C in the
following way:
(i) Cells with empty backward star are input equivalent, as we are as-
suming all cells are identical.
(ii) Two cells c, c′ ∈ C with nonempty backward star are input equiv-
alent if and only if

(a) B(c) = B(c′);
(b) For all k ∈ B(c) we have

∑

e∈BSk(c)
we =

∑

e∈BSk(c′)
we, where we

denotes the weight of the hyperedge e.

✸

In the above definition for two cells to be input equivalent, condi-
tion (iia) imposes that the sets of all cardinalities of the tail sets of
the hyperedges of both cells must coincide. Moreover, condition (iib)
says that, for a fixed cardinality of the tail set of a hyperedge of a cell,
the summation of the weights of all the edges with the same tail set
cardinality must coincide for both cells.

Example 4.2. (i) Consider the directed hypernetwork in Figure 2. We
have that ∼I = {{1}, {2}, {3}, {4}}. Note that BS(1) = {e3},BS(2) =
∅, BS(3) = {e1} and BS(4) = {e1, e2} where #T (e1) = 2 and #T (e2) =
#T (e3) = 1.
(ii) Consider the weighted directed hypernetwork on the right of Fig-
ure 3 and the directed network on the left. If a + b = c + d, then
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Figure 9. A weighted directed graph with six nodes.

∼I = {{1, 2}, {3, 4}} for both.
(iii) Consider the weighted directed hypernetwork in Figure 9 with hy-
peredges

e1 = ({1, 2}, {3}) , e2 = ({5, 6}, {2, 3}) ,
e3 = ({1, 2}, {4}) , e4 = ({2, 3, 4}, {5}) .

We have that BS(3) = {e1, e2}, BS(4) = {e3} and we1 +we2 = 2 = we3.
Thus 3 ∼I 4. In fact, we have that ∼I = {{1, 6}, {2}, {3, 4}, {5}}. ✸

Example 4.3. Consider the directed hypernetwork on the left in Fig-
ure 10 with set of nodes {1, . . . , 6} and five hyperedges, all with weight 1:

e1 = ({1, 2}, {4}) , e2 = ({1, 2, 3}, {5}) , e3 = ({4, 5}, {6}) ,
e4 = ({1, 2}, {1}) , e5 = ({1, 2, 3}, {2, 3}) .

Thus ∼I = {{1, 4, 6}, {2, 3, 5}}. The admissible equations for this
hypernetwork are

ẋ1 = f(x1) +Q2(x1; x1, x2)

ẋ2 = f(x2) +Q3(x2; x1, x2, x3)

ẋ3 = f(x3) +Q3(x3; x1, x2, x3)

ẋ4 = f(x4) +Q2(x4; x1, x2)

ẋ5 = f(x5) +Q3(x5; x1, x2, x3)

ẋ6 = f(x6) +Q2(x6; x4, x5)

where Q2 and Q3 are invariant under permutation of the last two and
three variables, respectively.
Observe that the set

∆ = {x | x1 = x4 = x6, x2 = x3 = x5}
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Figure 10. (Left) Feed-forward hypernetwork with
three layers and auto-regulation. (Right) The quotient
hypernetwork of the hypernetwork on the left by the syn-
chrony space { x | x1 = x4 = x6, x2 = x3 = x5}.

is flow-invariant for the above equations and the restriction of those
equations to ∆ is given by

ẋ1 = f(x1) +Q2(x1; x1, x2),

ẋ2 = f(x2) +Q3(x2; x1, x2, x2).

These equations are admissible by the hypernetwork on the right in
Figure 10. This motivates the notion of a quotient hypernetwork; we
make this explicit in the following section. ✸

4.2. Robust synchrony subspaces. Consider a hypernetwork (H,W )
with n cells that take their state in V . Let ∆ ⊂ V n be a subspace of
the hypernetwork total phase space defined by equality of cell states—a
polydiagonal subspace. Define an equivalence relation ⊲⊳ on the cells of
the hypernetwork in the following way: If xi = xj is an equality defin-
ing ∆ then i ⊲⊳ j. To highlight the underlying equivalence relation, we
write ∆ = ∆⊲⊳. We say that ∆⊲⊳ is a hypernetwork synchrony subspace
when it is left invariant under the flow of every coupled cell system
with form consistent with the hypernetwork, as defined above, that is
for any admissible vector field. In slight abuse of notation and termi-
nology, we will forget about the phase space and call ∆ a synchrony
subspace of the weighted hypergraph (H,W ) if it is a hypernetwork syn-
chrony subspace for any hypernetwork on (H,W ). Finally, if ∆ ⊆ R

n

is a polydiagonal subspace and K ∈ Mn×n(R) leaves ∆ invariant, we
also say that ∆ is a synchrony space of K.
By Lemmas 3.12 and 3.19, we have the following result.
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Lemma 4.4. Two hypergraphs (H,W ) and (H′,W ′) such that one can
be obtained from the other by one (or more) purely structural split-
ting/combining hyperedge operations have the same set of synchrony
subspaces.

Recall that for traditional coupled cell networks there is the notion
of a balanced equivalence relation ⊲⊳ on the set of cells [1, 2]. The
balanced equivalence relations ⊲⊳ are in one-to-one correspondence with
synchrony patterns: ∆⊲⊳ is a synchrony space for the network (that is,
it is left invariant under the flow of every coupled cell system with form
consistent with the network) if and only if ⊲⊳ is balanced. Motivated
by the definition of balanced relation of a network introduced in [1, 2]
and generalized to the weighted network setup in [6, 7], we now define
balanced equivalence relation in the hypernetwork setup.
Consider a hypernetwork (H,W ) with set of cells C and set of hy-

peredges E. The hypernetwork is the union of constituent hypernet-
works (Hk,Wk) with identical set of cells C and hyperedges Ek that
contain the hyperedges whose tail sets have cardinality k1; note that
Ek 6= ∅ if and only if k ∈ B(H) with B(H) as in (3.5). For simplicity,
we will just write Hk for (Hk,Wk) (and H for (H,W )) in the follow-
ing. Trivially, the input equivalence relation of H is a refinement of the
input equivalence relation of every Hk.

Definition 4.5. Let ⊲⊳ be an equivalence relation on C with p equiva-
lence classes; for a cell c ∈ C write c for its equivalence class. Now fix an
ordering of the ⊲⊳-classes, say (c1, . . . , cp), where ci ∈ C for i = 1, . . . , p.
Fix k ∈ B(H) and consider e ∈ Ek with weight we.
(i) The pattern determined by ⊲⊳ on e is a vector with p nonnegative
integer entries, −→m(e) = (m1, . . . , mp), whose coefficients mi indicates
the number of cells at the tail set T (e) of e which are in the class ci.
Thus, as e ∈ Ek, we have that

∑p

i=1mi = k and some of the mi can be
zero.
(ii) If c ∈ C and e ∈ BSk(c) has pattern −→m(e) determined by ⊲⊳, the
weight of the pattern −→m(e) on the cell c ∈ C determined by ⊲⊳ is the
sum of the weights of the hyperedges e′ ∈ BSk(c) with

−→m(e′) = −→m(e)
determined by ⊲⊳.
(iii) We say that ⊲⊳ is balanced for the constituent hypernetwork Hk if
for every two distinct cells c, c′ ∈ C such that c ⊲⊳ c′, the set of patterns
determined by the hyperedges of the sets BS(c) and BS(c′) coincide and
each pattern has the same pattern weight on both cells. ✸

1In analogy to k-uniform hypergraphs, the directed hypergraphsHk can be called
k-tail-uniform.



22 MANUELA AGUIAR, CHRISTIAN BICK, AND ANA DIAS

Definition 4.6. Consider a hypernetworkH with cells C, hyperedges E,
and constituent hypernetworks Hk as defined above. Let ⊲⊳ be an
equivalence relation on C refining ∼I . We say that ⊲⊳ is balanced if it
is balanced for every constituent hypernetwork Hk. ✸

Note that input equivalence is not always a balanced relation; this
was already noted by Stewart [22, Section 6] for standard n-node di-
rected graphs. That is, the coarsest balanced equivalence relation re-
fines ∼I but does not need not to coincide with ∼I . See also Aldis [23]
for the description of a polynomial-time algorithm to compute the
coarsest balanced equivalence relation of a graph. Since it is a neces-
sary condition for an equivalence relation on the nodes to be balanced
is to refine ∼I , we include that assumption at the above definition. The
coarsest partition corresponds to the most synchrony that is possible.

Remark 4.7. (i) The finest partition where each cell is only equivalent
to itself (the equivalence classes are singletons) is trivially balanced.
The corresponding synchrony subspace is the entire phase space; the
finest partition corresponds to the least synchrony.
(ii) The relation with just a single equivalence class (the coarsest par-
tition possible) is balanced if all cells are input equivalent. Indeed, if
there is only one equivalence class then for any hyperedge e ∈ E(Hk)
we have only one pattern −→m(e) = (k). Thus, condition (ii) in Defini-
tion 4.5 for a relation to be balanced is equivalent to condition (iib)
in Definition 4.1 for input equivalence. Since the associated synchrony
subspace corresponds to full synchrony, this gives an explicit condition
for the existence of full synchrony as an invariant subspace.

Example 4.8. (i) Consider the directed hypernetwork in Figure 11
with node set C = {1, 2, . . . , 14}. All the hyperedges have tail set of
cardinality 3 and so H = H3. Moreover, all the cell backward stars are
empty, except for cells 4 and 14. As

∑

e∈BS(4) we = 2+ 1 = 3 coincides

with
∑

e∈BS(14) we = 1 + 1 + 1 = 3, we have that 4 ∼I 14, and so the

classes of the input relation ∼I are {4, 14} and C \ {4, 14}. Note that
in this case ∼I is balanced. Consider now the equivalence ⊲⊳ on C with
classes

1 = {1, 5, 6, 8, 9, 11}, 2 = {2, 3, 7, 10, 12, 13}, 4 = {4, 14} .
In Figure 11, cells in the class 1 have white color, cells in the class 2
have blue color, and those in the class 4 have pink color. Consider the
equivalence classes ordered as

(
1, 2, 4

)
. We have that ⊲⊳ determines two

types of patterns, (2, 1, 0) and (1, 2, 0), for the hyperedges in both BS(4)
and BS(14). The pattern (2, 1, 0) corresponds to a hyperedge with tail
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Figure 11. The equivalence relation with three classes
represented by the three colours is balanced for the hy-
pernetwork.

set consisting of two white cells and one blue cell; the pattern (1, 2, 0)
corresponds to a hyperedge whose tail set has two blue cells and one
white cell. For cell 4, the incoming hyperedge with pattern (2, 1, 0)
has weight 1 and the hyperedge with pattern (1, 2, 0) has weight 2.
For cell 14, there are two hyperedges in BS(14) with pattern (1, 2, 0)
with weight 1 each, and there is a hyperedge with pattern (1, 2, 0) with
weight 1. It follows that for both cells 4 and 14 the pattern (1, 2, 0) has
pattern weight 1 and (2, 1, 0) has pattern weight 2. Thus ⊲⊳ is balanced.
(ii) For the hypernetwork in Figure 12, with node set C = {1, 2, . . . , 12},
the input relation ∼I has also two classes, {4, 12} and C \ {4, 12}, and
is balanced. Consider the refined equivalence ⊲⊳ on C with classes

1 = {1, 2, 8, 9}, 3 = {3, 5, 6, 7, 10, 11}, 4 = {4, 12},
which is not balanced as we will now show. First, note that all the hy-
peredges have tail set with cardinality 3 and all the cell backward stars
are empty, except for cells 4 and 12. Second, for the ordering

(
1, 3, 4

)
of

the ⊲⊳-classes, we have that for cell 4, the hyperedges in BS(4) have pat-
terns (0, 3, 0) and (3, 0, 0). For cell 12, the hyperedges in BS(12) have
two types of patterns (2, 1, 0) and (1, 2, 0). Thus ⊲⊳ is not balanced.

✸

Proposition 4.9. The definition of balanced equivalence relation for
hypernetworks includes, as a particular case, the definition of balanced
equivalence relation for networks.

Proof. Let H be a hypernetwork which is a network, that is, the tail
sets of all the hyperedges have cardinality 1. Thus H1 = H. Given an
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Figure 12. The equivalence relation with three classes
represented by the three colours is not balanced for the
hypernetwork.

equivalence relation ⊲⊳ on the set of cells of the network H, we have
then to consider Definition 4.5. Let p be the number of ⊲⊳-classes and
fix an ordering of those classes, say (c1, . . . , cp). For every edge e in H,
the pattern determined by ⊲⊳ on e, −→m(e), is a vector with one entry
equal to 1 and all the other p − 1 entries equal to 0. For a cell c and
an edge e with H(e) = {c} if the the ith entry is the nonzero entry
of the pattern −→m(e) determined by ⊲⊳ then the pattern weight of the
pattern −→m(e) on the cell c is the sum of the weights of the edges with
H(e) = {c} that have the same pattern −→m(e), that is, the sum of
the weights of the edges with H(e) = {c} and T (e) ∈ ci. Then, by
Definition 4.5, ⊲⊳ is balanced for the network H when, for every two
distinct cells c, c′ ∈ C such that c ⊲⊳ c′, the pattern sets determined by
the edges of the sets BS(c) and BS(c′) coincide, that is, the pattern set
determined by the edges with H(e) = {c} coincides with the pattern
set determined by the edges with H(e) = {c′}, which means that cell c
receives edges from cells in the class ci if and only if cell c′ also receives
edges from cells in that class. Moreover, each pattern has the same
pattern weight on both cells, which means that the sum of the weights
of the edges from cells in class ci to cell c equals the sum of the weights
of the edges from cells in class ci to cell c′. �

4.3. Quotients. Given a weighted directed hypergraph (H,W ) and a
balanced equivalence relation ⊲⊳ on the cells, we now define the quotient
of (H,W ) with respect to ⊲⊳. The quotient describes the admissible
vector fields for (H,W ) when restricted to the synchrony space ∆⊲⊳.
To keep notation simple, we assume—without loss of generality by
Lemma 3.12—that all hyperedges in E(H) have tails of cardinality
one.

Definition 4.10. Let H be a hypernetwork with cells C and hyper-
edges E (whose heads have cardinality one by assumption). Let ⊲⊳ be a



COUPLED CELL HYPERNETWORKS 25

balanced equivalence relation on C with p classes, say C = (c1, . . . , cp).
(i) Let e ∈ E(H) be a hyperedge with head {c} and pattern −→m(e) =
(m1, . . . , mp) onto c. The projected hyperedge e with respect to ⊲⊳ has
head H(e) = {c} (where c denotes the equivalence class of c) and tail
multiset2

T (e) =
{
c1, . . . , c1
︸ ︷︷ ︸

m1 times

, c2, . . . , c2
︸ ︷︷ ︸

m2 times

, . . . , cp, . . . , cp
︸ ︷︷ ︸

mp times

}
.

The weight w of e is the pattern weight w of −→m(e).
(ii) Let E the hyperedges defined in (i) and W the corresponding
weights. Write H = (C,E). The quotient of H by ⊲⊳, is the hyper-
network H/⊲⊳ := (H,W ). ✸

By definition, all hyperedges of H have a head of cardinality one. For
a cell c̄ of H, the backward star BS(c) is formed by the hyperedges e
derived from each distinct pattern determined by ⊲⊳ in BS(c).

Remark 4.11. Recall that different hypernetworks (with distinct un-
derlying hypergraphs) can be identical as coupled cell systems (see
Lemma 3.12).
(i) Any hypernetworks that are identical to each other as coupled cell
networks via Lemma 3.12 have the same quotient, while their incidence
digraph differs in general.
(ii) The quotient H/⊲⊳ = (H,W ) may be equivalent as a coupled cell

network to a different hypernetwork (H′
,W

′
) (for example, by combin-

ing edges that have the same tail set). However, in our context the
quotient is uniquely defined by the convention that the hyperedges in
the quotient will have a head of cardinality one. ✸

Example 4.12. Consider the directed hypergraph H = (C,E) on the
left in Figure 1. Thus C = {1, . . . , 6} and

e1 = ({2, 5}, {1}) , e2 = ({2}, {2, 4}) , e3 = ({1, 2}, {6}) ,
e4 = ({4, 6}, {3, 5}) , e5 = ({4}, {3}) .

where each edge has weight we = 1. The resulting hypernetwork is
identical as a coupled cell system to the hypernetwork with underly-
ing hypergraph H′ = (C,E ′) such that the head H(e) of any hyper-
edge e ∈ E ′ has cardinality 1. Specifically, by splitting the head sets of
hyperedges e2 and e4 we have

E ′ = {e1, ({2} , {2}) , ({2} , {4}) , e3, ({4, 6} , {3}) , ({4, 6} , {5}) , e5} .

2Note that repeated entries are maintained for the tail of ē as it is a multiset.
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By assumption in the beginning of this section, we will identify H =
(C,E) with H′ = (C,E ′) and drop the ′.
For the balanced coloring indicated by the shading of the nodes in

Figure 1, the cells of the quotient are given by the equivalence classes

C =
{
1 = {1, 5, 6} , 2 = {2, 4} , 3 = {3}

}
.

The sets BS(1),BS(2),BS(3) are obtained from BS(1),BS(2) and BS(3),
respectively, and thus

E =
{({

1, 2
}
,
{
1
})

,
({

2
}
,
{
2
})

,
({

1, 2
}
,
{
3
})

,
({

2
}
,
{
3
})}

,

all with weight equal to 1. Note that H/⊲⊳ is identical as coupled cell
hypernetwork to the hypernetwork shown in Figure 1 to the right. ✸

Theorem 4.13. Suppose that (H,W ) is a hypernetwork and ⊲⊳ is a
balanced equivalence relation on (H,W ). The quotient H/⊲⊳ = (H,W )
is well defined. Moreover, the dynamics of (H,W ) restricted to ∆⊲⊳

correspond to the evolution of the coupled cell hypernetwork H/⊲⊳.

Proof. The first assertion follows from the definition of a balanced
equivalence relation: An equivalence relation is balanced exactly when
the weight of a pattern is the same for all cells in the same equiva-
lence class. The second assertion follows from the construction of the
quotient: (a) The heads of the hyperedges e in the quotient identify
synchronized cells and (b) the weights of the edges in the quotient
sum—for a fixed head—the weights of the corresponding edges with
the same pattern. �

Remark 4.14. The (somewhat nonstandard) convention to allow multi-
sets as tails of directed hyperedges becomes essential in the coupled cell
hypernetwork formalism presented in this work that considers generic
features for all admissible vector fields simultaneously. By contrast,
if one considers a specific hypernetwork coupling (H,W,Q), then one
may be able to identify edges whose tail sets have cardinality k with
edges with lower tail set cardinalities. For example, consider cells whose
phase space is R and hypergraph coupling with Q2(x1; x2, x3) = x2x3,
Q1(x1; x2) = x2

2. If 2 ⊲⊳ 3 the quotient of the edge e = ({2, 3} , {1}) can
be identified with an edge e′ = ({2} , {1}) of the same weight. ✸

Example 4.15. Recall the hypernetwork H = H3 in Figure 11 and the
balanced equivalence relation ⊲⊳ with classes 1 = {1, 5, 6, 8, 9, 11}, 2 =
{2, 3, 7, 10, 12, 13}, 4 = {4, 14}. The quotient network H/⊲⊳ has set of
nodes 1, 2, 4 and BS(4) is formed by two hyperedges from the two dis-
tinct patterns determined by ⊲⊳ in BS(4) as described in Example 4.8;
see Figure 13. ✸
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1

2

4

2

1

Figure 13. The quotient hypernetwork of the hypernet-
work in Figure 11 by the balanced equivalence relation
on the set of nodes whose classes are represented by the
three colours.

Theorem 4.16. Let H be a weighted directed hypergraph on the node
set C = {1, 2, . . . , n} and hyperedge set E. An equivalence relation ⊲⊳
on the node set is balanced if and only if for any hypernetwork as-
sociated with H, the polydiagonal space ∆⊲⊳ defined in terms of the
equalities on the cell coordinates xi, for i ∈ C, determined by ⊲⊳, is a
synchrony space of H.

Proof. By definition of ⊲⊳ being balanced, it follows that if ⊲⊳ is balanced
then ∆⊲⊳ is a synchrony space of H. Now, if ∆⊲⊳ is a synchrony space
ofH, then in particular, we can consider the admissible equations where
all the internal cell phase spaces are R and the coupling functions Qk

have the form

Qk(x0; x1, x2, . . . , xk) = x1x2 · · ·xk .

Consider the decomposition ofH into its constituent hypernetworksHk,
for k = j1, . . . , jr according to the (positive and integer) cardinalities k
of the tail sets of its hyperedges. Given two distinct cells c, c′ such that
xc = xc′ is one of the equalities defining ∆⊲⊳, we have that the corre-
sponding cell equations, at the restriction to ∆⊲⊳ have to coincide. The
restriction of the cells c and c′ equations, are so polynomials which are
each the sum of homogeneous polynomials of degrees j1, . . . , jr. Thus
the two polynomials coincide if and only if they coincide degree by
degree. (Equivalently, if and only if ∆⊲⊳ is a synchrony space of each
constituent hypernetwork Hk.) For a fixed degree k, then each dis-
tinct monomial that is appearing at the equation for cell c, it has also
to appear at equation for cell c′, and with the same coefficient. Now
each monomial of the c equation (c′ equation) with coefficient mc (mc′)
corresponds to a pattern −→m(ec) (−→m(ec′)) determined by ⊲⊳ at the hy-
peredges in BS(c) (BS(c′)) with weight mc (mc′). Thus the set of the
distinct patterns determined by ⊲⊳ in BS(c) and BS(c′) must coincide,
and the corresponding multiplicities have also to coincide. That is, ⊲⊳
is balanced. �
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Trivially, we have the following result.

Theorem 4.17. Let H be a weighted directed hypernetwork on the
node set C = {1, 2, . . . , n} and hyperedge set E. Let ⊲⊳ be a balanced
equivalence relation on C. Let Q be the quotient hypernetwork H/⊲⊳.
Then:
(i) Any coupled cell system consistent with H restricted to ∆⊲⊳ is a
coupled cell system consistent with the quotient hypernetwork Q.
(ii) Any coupled cell system consistent with the hypernetwork Q is the
restriction of a coupled cell system consistent with the hypernetwork H
restricted to ∆⊲⊳.

Example 4.18. Consider the hypernetwork H in Figure 11 and the
balanced equivalence relation ⊲⊳ presented in Example 4.8(i). Consider
coupled cell systems consistent with H, where the cell phase space
is V , the internal dynamics is given by f : V → V and the coupling by
Q3 : V 4 → V . Since the equivalence relation ⊲⊳ is balanced, then the
polydiagonal space

∆⊲⊳ =

{

x

∣
∣
∣
∣

x1 = x5 = x6 = x8 = x9 = x11,
x2 = x3 = x7 = x10 = x12 = x13, x4 = x14

}

is a synchrony space of H, that is, equations for H leave ∆⊲⊳ invari-
ant. The restriction of those equations to ∆⊲⊳ gives rise to coupled cell
systems consistent with the quotient hypernetwork H/⊲⊳ in Figure 13
with cells evolving according to

ẋ1 = f(x1),

ẋ2 = f(x2),

ẋ4 = f(x4) +Q3(x4, x1, x1, x2) + 2Q4(x4, x1, x2, x2) .

✸

Remark 4.19. Due to Lemma 3.19, the results in Theorem 4.17, con-
cerning the restriction of the dynamcs to the synchrony subspace ∆⊲⊳,
apply to every hypernetwork obtained from the quotient hypernetwork
Q by one (or more) purely structural combining hyperedge operations,
since they are identical as coupled cell systems. ✸

4.4. Robust synchrony subspaces via the incidence digraph. In
the previous section, we established the notion of a balanced relation
for a hypernetwork H. At the same time, as outlined in Section 2,
the hypergraph H can also be represented as a bipartite graph DH

(cf. Definition 2.5) for which traditional notions of balanced relations
and synchrony subspaces apply. How do the hypergraph synchrony
subspaces of H and the synchrony subspaces of DH relate? We now
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show how to find the set (lattice) of the synchrony subspaces for an
hypernetwork (H,W ) using the associated incidence digraph DH of H
with nodes given by the nodes and hyperedges of H. More concretely,
we prove that the synchrony subspaces for the hypernetwork (H,W )
can be obtained by a ‘projection’ of the synchrony subspaces of the
adjacency matrix of the incidence digraph DH.
We start by relating the set of balanced equivalence relations on the

set of cells of an hypernetwork (H,W ) with those on the set of the
nodes of its incidence digraph DH.

Definition 4.20. Let (H,W ) be an hypernetwork with cells C = C(H)
and hyperedges E = E(H), and let DH be the corresponding incidence
digraph with nodes C(DH) = C(H) ∪ E(H).
(i) Given an equivalence relation ⊲⊳ on C for H, we define the equiva-
lence relation ⊲⊳D on C ∪ E for DH in the following way:

(a) c ⊲⊳D c′ iff c ⊲⊳ c′, for c, c′ ∈ C;
(b) ei ⊲⊳D ej iff

−→m(ei) =
−→m(ej), for ei, ej ∈ E.

with −→m(e) the pattern determined by ⊲⊳ on the hyperedge e.
(ii) Given an equivalence relation ⊲̃⊳ on C ∪ E for DH, we define the
equivalence relation ⊲̃⊳H on C for H through

(a) c ⊲̃⊳H c′ iff c ⊲̃⊳ c′, for c, c′ ∈ C.

We say that the relation ⊲̃⊳H is the projection of the relation ⊲̃⊳. ✸

Given the definition above, we have then the following result.

Theorem 4.21. Let (H,W ) be an hypernetwork and DH the corre-
sponding incidence digraph. We have:
(i) For each balanced equivalence relation ⊲⊳ for (H,W ) the correspond-
ing equivalence relation ⊲⊳D for DH is also balanced;
(ii) Each balanced equivalence relation ⊲̃⊳ for DH projects into a bal-
anced equivalence relation ⊲̃⊳H for (H,W ).

Proof. Let (H,W ) be an hypernetwork with cells C and hyperedges E,
and let DH be the associated incidence digraph with nodes C ∪ E.
(i) Let ⊲⊳ be a balanced equivalence relation on the set of cells C of

the hypernetwork (H,W ) and consider the corresponding equivalence
relation ⊲⊳D on the set of nodes C ∪E of the bipartite network DH, as
in Definition 4.20. By definition, two nodes ei, ej ∈ E of DH such that
ei ⊲⊳D ej correspond to two hyperedges ei and ej of H that have the
same pattern determined by ⊲⊳. Also, note that the input set of a node
ei ∈ E of DH corresponds to the tail T (ei) of the hyperedge ei in H.
Thus: (a) for every two nodes ei, ej ∈ E of DH such that ei ⊲⊳D ej there
is a bijection between their input sets in DH preserving the ⊲⊳D-classes.
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Consider now two nodes c, d ∈ C of DH such that c ⊲⊳D d, and thus
with c ⊲⊳ d. Then, since ⊲⊳ is balanced, the pattern sets determined by
the hyperedges of the sets BS(c) and BS(d) coincide and each pattern
has the same weight on both cells. Note that the input set IB(i) of a
node i ∈ C of DH is given by the backward stars BS(i) of i in H. We
have then: (b) for any two nodes c, c′ ∈ C such that c ⊲⊳D c′, for every
⊲⊳D-class, the sum of the weights of the edges in DH directed to nodes c
and c′, from the nodes in that ⊲⊳D-class, is the same. From (a) and (b),
it follows that the equivalence relation ⊲⊳D, as defined in Definition 4.20,
is balanced. Thus, we have shown that, for every balanced equivalence
relation ⊲⊳ for the hypernetwork (H,W ), we can associate a balanced
equivalence relation ⊲⊳D for the incidence digraph DH.
(ii) Let ⊲̃⊳ be a balanced equivalence relation on the set of nodes C∪E

for the incidence digraph DH and consider the equivalence relation ⊲̃⊳H
that is a projection on the set of cells C of H satisfying c ⊲̃⊳H c′ if and
only if c ⊲̃⊳ c′. Since ⊲̃⊳ is balanced, for c, c′ ∈ C, if c ⊲̃⊳ c′ then for
every ⊲̃⊳-class, the sum of the weights of the edges in DH directed to
nodes c and c′, from the nodes in that ⊲̃⊳-class, is the same. Moreover,
for ei, ej ∈ E, if ei ⊲̃⊳ ej then there is a bijection between their input
sets, I(ei) and I(ej), in DH that preserves the ⊲̃⊳-classes. Thus, for
the hyperedges ei and ej in H, we have −→m(ei) = −→m(ej). If for two
cells c and c′ of C we have c ⊲̃⊳ c′ then for every ⊲̃⊳-class K we have
I(c)∩K 6= ∅ if and only if I(d)∩K 6= ∅. Thus, in terms of H, we have
that BS(c) has hyperedges with a certain pattern −→m(e) if and only if
BS(c′) also has hyperedges with that pattern −→m(e). Moreover, as for
every ⊲̃⊳-class K the sum of weights of the edges in I(c)∩K 6= ∅ equals
the sum of weights of the edges in I(c′) ∩ K 6= ∅, we have that the
weight of each pattern −→m(e) on the cell c equals the weight of that
pattern on the cell c′. Thus, ⊲̃⊳H is balanced. We conclude then that
each balanced equivalence relation ⊲̃⊳ for DH projects into a balanced
equivalence relation ⊲̃⊳H for H. �

There may not be a bijection between the set of balanced equiva-
lence relations for an hypernetwork (H,W ) and the set of balanced
equivalence relations for its incidence digraph DH. In fact, from Def-
inition 4.20 and Theorem 4.21, it follows that if two balanced rela-
tions ⊲⊳1 and ⊲⊳2 for H are not the same then the associated balanced
relations ⊲⊳1D and ⊲⊳2D for DH are also not the same. Nonetheless, two
different balanced relations ⊲̃⊳1 and ⊲̃⊳2 for DH can project into the
same balanced relation ⊲̃⊳1H = ⊲̃⊳2H for H.
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Example 4.22. Consider again the directed hypernetwork H of Ex-
ample 1.1 on the left of Figure 1. The hyperedges of H are

e1 = ({2, 5}, {1}) , e2 = ({2}, {2, 4}) , e3 = ({1, 2}, {6}) ,
e4 = ({4, 6}, {3, 5}) , e5 = ({4}, {3}) .

The input equivalence relation for the hypernetwork H is

∼I = {{1, 5, 6}, {2, 4}, {3}}
and the incidence digraph DH for H is shown in Figure 4.
The equivalence relations

⊲̃⊳1 = {{1, 5, 6}, {2, 4}, {3}, {e1, e3, e4}, {e2}, {e5}}

and

⊲̃⊳2 = {{1, 5, 6}, {2, 4}, {3}, {e1, e3, e4}, {e2, e5}}
for DH are balanced and project into the same balanced equivalence
relation

⊲⊳ = ⊲̃⊳1H = ⊲̃⊳2H = {{1, 5, 6}, {2, 4}, {3}}
for H. ✸

Nevertheless, it also follows from Definition 4.20 and Theorem 4.21
that the set of balanced equivalence relations for a hypernetwork (H,W )
can be otained by the projection of the balanced equivalence relations
for its incidence digraph DH.
Let H = (C,E) be a hypergraph with nodes/cells C and edges E.

The balanced relations of a hypernetwork (H,W ) and the digraphDH =
(C(DH), E(DH)) associated with the hypergraphH are related as stated
in Theorem 4.21. How do the synchrony subspaces relate? For DH con-
sider cells C(DH) = C ∪ E equipped with phase space R; since there
are two “types” of cells for DH, we write xc for the state of c ∈ C
and xe for the state of e ∈ E. For an equivalence relation ⊲̃⊳ on C(DH)
for DH, consider the polydiagonal subspace

∆⊲̃⊳ = {xc = xc′ if c ⊲̃⊳ c′, xe = xe′ if e ⊲̃⊳ e′} .

For the projected equivalence relation ⊲̃⊳H on C for H obtained from ⊲̃⊳
consider the usual polydiagonal subspace

∆⊲̃⊳H = {xc = xc′ if c ⊲̃⊳H c′} .
In terms of synchrony subspaces for the hypernetwork (H,W ) we have
then the following result.
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In terms of synchrony subspaces for the hypernetwork (H,W ) we
have then that they can be obtained via the ‘projection’ of the syn-
chrony subspaces of the adjacency matrix of the incidence digraph DH.

Theorem 4.23. Let (H,W ) be a weighted directed hypernetwork and
DH the associated incidence digraph. Let ⊲̃⊳H and ⊲̃⊳ be equivalence
relations and ∆⊲̃⊳H and ∆⊲̃⊳ polydiagonal subspaces, as defined above. A
polydiagonal subspace ∆ is a synchrony subspace for the hypernetwork
(H,W ) if and only if ∆ = ∆⊲̃⊳H with ∆⊲̃⊳ a synchrony subspace of the
adjacency matrix of the digraph DH.

Proof. Let ∆⊲̃⊳ be the polydiagonal subspace associated with an equiva-
lence relation ⊲̃⊳ for the incidence digraph DH, as defined above. By the
definition of balanced relation, ∆⊲̃⊳ is a synchrony subspace of (is left in-
variant by) the adjacency matrix of DH if and only if ⊲̃⊳ is balanced. By
Theorem 4.21, the balanced equivalence relations for the hypernetwork
(H,W ) are the projection ⊲̃⊳H of the balanced equivalence relations ⊲̃⊳
for the incidence digraph DH. Moreover, by Theorem 4.16, ⊲̃⊳H is bal-
anced if and only if the polydiagonal subspace ∆⊲̃⊳H , as defined above,
is a synchony subspace for (H,W ). The result then follows. �

Remark 4.24. A relevant consequence of the results in this section is
that the existing results regarding balanced relations and synchrony
spaces for networks can be used to obtain analogous results for hyper-
networks. For example, the work of Aldis [23] with the description of
a polynomial-time algorithm to compute the coarsest balanced equiva-
lence relation of a graph and the work of Aguiar and Dias [24] describ-
ing an algorithm to compute the lattice of synchrony subspaces for the
adjacency matrix of a network. ✸

Example 4.25. Consider again the hypernetwork H on the left of
Figure 1 of Examples 1.1 and 4.22. The admissible equations are

ẋ1 = f(x1) +Q2(x1; x5, x2)

ẋ2 = f(x2) +Q1(x2; x2)

ẋ3 = f(x3) +Q1(x3; x4) +Q2(x3; x4, x6)

ẋ4 = f(x4) +Q1(x4; x2)

ẋ5 = f(x5) +Q2(x5; x4, x6)

ẋ6 = f(x6) +Q2(x6; x1, x2)

where f : V → V , Q1 : V 2 → V , Q2 : V 3 → V are smooth functions
and Q2 is symmetric under permutation of the last two coordinates.
Looking at the equations, we can conclude that the set of nontrivial
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synchrony subspaces for the hypernetwork H is given by

{∆1 = {x | x2 = x4} , ∆2 = {x | x1 = x5 = x6, x2 = x4}} .

Now, let us see how we can get this set of synchrony subspaces
using the incidence digraph DH associated with H. The digraph DH is
represented in Figure 4 and its adjacency matrix given by

ADH
=

[
06×6 W
T 05×5

]

,

with

W =










1 0 0 0 0
0 1 0 0 0
0 0 0 1 1
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0










and T =









0 1 0 0 1 0
0 1 0 0 0 0
1 1 0 0 0 0
0 0 0 1 0 1
0 0 0 1 0 0









.

For an eigenvalue λ of a matrix let Wλ denote the associated (gener-
alized) eigenspace. Moreover, write 〈v1, . . . , vk〉 for the span of vectors
v1, . . . , vk. The eigenvalues of the matrixADH

are λ ∈ {0,±1,±0.5± i0.866};
the algebraic multiplicity of λ = 0 is three and that of λ = ±1 is two.
The corresponding (generalized) eigenspaces are

W0 = 〈v1, v2, v3〉, W−0.5±i0.866 = 〈v8, v9〉,
W−1 = 〈v4, v5〉, W0.5±i0.866 = 〈v10, v11〉,
W1 = 〈v6, v7〉,

where

v1 = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0) v2 = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1)

v3 = (0, 0, 1, 1, 0,−1, 0, 0, 0, 0, 1) v4 = (1, 0, 1, 0, 1, 1,−1, 0,−1,−1, 0)

v5 = (0,−2,−2,−2, 0, 0, 1, 2, 1, 1, 2) v6 = (1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0)

v7 = (0, 2, 2, 2, 0, 0, 1, 2, 1, 1, 2)

and

v8, v9 ∈ {(a, 0, b, 0, b, c, c, 0, b, a, 0) : a 6= b 6= c ∈ R}
v10, v11 ∈ {(a, 0, b, 0, b, c,−c, 0,−b,−a, 0) : a 6= b 6= c ∈ R}

The polydiagonal subspaces given by equalities of cell coordinates
and equalities of edge coordinates that are invariant by the adjacency
matrix ADH

are

∆̃1 = {x2 = x4}
= 〈v1, v2〉 ⊕W−1 ⊕W1 ⊕W−0.5±i0.866 ⊕W0.5±i0.866,
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∆̃2 = {x1 = x5 = x6, x2 = x4; xe1 = xe3 = xe4}
= 〈v1, v2〉 ⊕W−1 ⊕W1,

∆̃3 = {x1 = x5 = x6, x2 = x4; xe1 = xe3 = xe4 , xe2 = xe5}
= 〈v1〉 ⊕W−1 ⊕W1.

These now relate to the synchrony spaces of H: We have that ∆̃1

‘projects into’ the synchrony subspace ∆1 of H and ∆̃2 and ∆̃3 ‘project
into’ the synchrony subspace ∆2 of H. ✸

We stress that our results are valid for both unweighted and weigthed
hypernetworks; the previous example can be seen as a hypernetwork
where all weights are equal to one.

Remark 4.26. Note that there is no need to consider more than one
adjacency matrix for the incidence digraph DH in order to separate the
hyperedges with tails with different multiplicites since those hyperedges
as nodes in DH cannot synchronize given that the row sum of the
corresponding rows in the submatrix T of adjacency matrix ADH

is
different. ✸

5. Linearization and stability—a case study

In the previous sections, we considered the question what type of
synchrony patterns can robustly exist for coupled cell hypernetworks
and how they depend on the properties of the underlying hypergraph.
We now consider linear stability of solutions on synchrony subspaces;
asymptotic stability is crucial to actually observe synchrony patterns
in real-world systems. We show that in a class of examples that linear
stability may or may not depend on higher-order interactions.
Here we consider weighted directed hypernetworks (H,W ) with n

nodes and directed hyperedges of the two types shown in Figure 14:
There is an edge between nodes i, j with weight Kij and for each pair of
nodes k, l in {1, . . . , n} there is a hyperedge ({k, l}, {i}) for i = 1, . . . , n
with weight Hkl. Note that we do not assume any relationship between
the weightsKij of the pairwise interactions and the weightsHkl between
the nonpairwise interactions. For the remainder of this section, we fix
a hypernetwork coupling through the coupling functions

Q1(pi; pj) = pipj; Q2(pi; pk, pl) = pipkpl.
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k

l

i j i
Hkl Kij

Figure 14. (Left) A directed hyperedge ekl =
({k, l}, {i}) with cardinality two tail set and weight Hkl.
(Right) A directed edge ({j}, {i}) with weight Kij .

The choice of coupling functions now leads to an admissible coupled
cell system for the hypernetwork coupling given by

ṗi =

(
n∑

j=1

Kijpj −
n∑

k=1

n∑

l=1

Hklpkpl

)

pi(5.9)

for i = 1, . . . , n subject to
∑n

i=1 pi = 1 and 0 ≤ pi ≤ 1. For a matrix A
let AT denote its transpose. If we write K = [Kij ] and H = [Hkl] for
the n × n weight matrices, the system (5.9) can be written in matrix
form as

ṗi =
(
(Kp)i − pTHp

)
pi(5.10)

for i = 1, . . . , n.

Remark 5.1. Allesina and Levine [25, Supporting Information] consid-
ered the replicator equations with n species (see also Hofbauer and
Sigmund [26]), that is, equations (5.9) with K = H and K is skew-
symmetric. Here, Kij represents the effect of species j on the growth
rate of species i. The dynamics of species i is determined by the fitness
of species i given by

∑n

j=1Kijpj and the average fitness for the system
∑n

k=1

∑n

l=1Kklpkpl; this ensures that no species can increase in density
without other species decreasing. The condition

∑n

i=1 pi = 1 ensures
that total abundance conservation is maintained for all time. In this
model terms of the form Kijpipj represent pairwise interactions be-
tween the species i and j and

∑n

k=1

∑n

l=1Kklpkpl represents an average
of nonpairwise interactions between all the species.
In [27], it is shown that for a skew-symmetric n×n matrix K is skew

symmetric the system has a unique equilibrium solution p, which is lin-
early neutrally stable. For a skew-symmetric matrix K, the quadratic
form w 7→ wTKw is null and with K = H the system (5.9) reduces to

ṗi = (Kp)i pi(5.11)
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for i = 1, . . . , n. Chawanya and Tokita [27] reports that the condition
of skew symmetry of K (on the interactions between the species) can
be used to yield and stabilize a large complex ecosystem. The anti-
symmetry model assumption is based on the fact that many species
interact with each other in prey-predator or parasitic relationships. ✸

We can make the following two observations.

Lemma 5.2. (i) The synchrony spaces of (5.10) are the synchrony
spaces of K.
(ii) In case H is a skew symmetric matrix, that is, HT = −H, then
the quadratic form p 7→ pTHp vanishes and equations (5.10) become

ṗi = ((Kp)i) pi(5.12)

for i = 1, . . . , n.

A straightforward calculation leads to:

Lemma 5.3. Assume p is an equilibrium of (5.10) with pi 6= 0 for
i = 1, . . . , n and let Jp denote the Jacobian of (5.10) at p. Then

(Jp)i =
(
(K)i − p

(
H +HT

))
pi

for i = 1, . . . , n. Here (M)i denotes the ith row of the matrix M . Note
that the matrix H +HT is always symmetric.

We show two examples of system (5.10), one with no nonpairwise
interactions and one with nonpairwise interactions, admitting an equi-
librium whose stability does depend on the nonpairwise interactions
terms.

Examples 5.4. Consider the system (5.10) where n = 4 and

K =
1

2







0 −1 2 −1
1 0 0 −1

−2 0 0 2
1 1 −2 0






.

Note that K is a skew symmetric matrix. The eigenvalues of K are λ =
0 (double) and a pair of nonzero imaginary eigenvalues λ = ±i

√
11/2.

Moreover,
W0 = 〈(1, 1, 1, 1), (0, 2, 1, 0)〉 .

(a) Assume that in (5.10) there are no nonpairwise interactions, that
is, H = 0. We have that p∗ = 1

4
(1, 1, 1, 1) is an equilibrium of the

system (5.10) with stability determined by K (by Lemma 5.3), that
is, the equilibrium p∗ has neutral linear stability in the sense that all
eigenvalues have zero real part.
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(b) Assume now the existence of nonpairwise interactions given by the
symmetric matrix

H =







2 −1 1 −2
−1 2 −2 1
1 −2 2 −1

−2 1 −1 2







.

Note that H has eigenvalues λ = 0 (double) and λ = 2, λ = 6. More-
over,

W0 = 〈(1, 1, 1, 1), (1, 0, 0, 1)〉.
We have that p∗ = 1

4
(1, 1, 1, 1) is also an equilibrium of the system (5.10).

Its (linear) stability is given by Lemma 5.3. More precisely, the linear
stability of p∗ is determined by

Jp∗ =
1

4

(

K − 1

2
H

)

=
1

8







−2 0 1 1
2 −2 2 −2

−3 2 −2 3
3 0 −1 −2






,

which has a zero eigenvalue, a negative real eigenvalue, and a pair
of complex eigenvalues with negative real part. Thus, the equilib-
rium p∗ is (linearly) stable in the directions transverse to the diago-
nal 〈(1, 1, 1, 1)〉—these are the direction transverse to the synchrony
subspace where all cells are synchronized. ⋄
Nevertheless, we see next an example where the nonpairwise inter-

actions exist and do not change the stability of the equilibrium.

Example 5.5. Consider the system (5.10) with n = 4 and

K = H =







1 −1 1 −1
1 1 −1 −1

−1 1 1 −1
1 1 1 −3







.

Note that det(K) = 0 and ker(K) = W0 = 〈(1, 1, 1, 1)〉. Equa-
tions (5.10) evaluate to

(5.13) ṗi =
(
(Kp)i −

(
p21 + p22 + p23 − 3p24

))
pi

for i = 1, 2, 3, 4. Although the quadratic form p 7→ pTKp = p21 + p22 +
p23−3p24 is not identically null, it vanishes at p ∈ ker(K). We have that
p∗ = 1

4
(1, 1, 1, 1) is the unique equilibrium p of system (5.13) with pi > 0

for i = 1, . . . , 4. Note that K has eigenvalues λ ∈
{
0,−2, 1± i

√
3
}
and

W−2 = 〈(1, 1, 1, 3)〉. Thus
∆ = { p | p1 = p2 = p3} = W0 ⊕W−2
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Figure 15. The equivalence relation with three classes
represented by the three colours is balanced for the net-
work.

is a synchrony space for K and thus, by Lemma 5.2, also for the sys-
tem (5.13). Moreover,

K +KT =







2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 −6







.

By Lemma 5.3, the linear stability of the equilibrium p = 1
4
(1, 1, 1, 1)

of the system (5.13) is determined by the Jacobian matrix

Jp =
1

4






K − 1

4







2 2 2 −6
2 2 2 −6
2 2 2 −6
2 2 2 −6













=
1

16







2 −6 2 2
2 2 −6 2

−6 2 2 2
2 2 2 −6






,

which has eigenvalues 0,−1
2
, and 1

4
(1± i

√
3). That is, it has the same

stability as for the system without nonpairwise interactions, H = 0. ✸

6. Discussion

Here we developed a framework for coupled cell systems with higher-
order interactions. In contrast to other approaches to dynamics on
hypergraphs—including [17, 19]—our framework allows for direction-
ality of the interactions and coupling weights. The framework is re-
stricted by the assumption of homogeneity in the kth order coupling:
The interaction is mediated by a single coupling function Qk for any
edge of tail size k. These assumptions do shape the set of admissible
vector fields. Recall the hypernetwork of Example 4.8(ii), which is de-
picted in Figure 12. As an example, the admissible evolution equations
for nodes 4 and 12 take the shape

ẋ4 = f(x4) +Q3(x4; x1, x2, x8) + Q3(x4; x5, x6, x7),
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ẋ12 = f(x12) +Q3(x12; x1, x2, x3) +Q3(x12; x9, x10, x11) .

By contrast, if we forget the hyperedge structure and consider the
related network shown in Figure 15 then the equations for cells 4 and 12
in the formalism of Golubitsky, Stewart and collaborators [1, 2] have
the form

ẋ4 = g(x4; x1, x2, x5, x6, x7, x8),

ẋ12 = g(x12; x1, x2, x3, x9, x10, x11),

where g is invariant under permutations of the last six arguments. Even
though the combinatorial representation of the equations is a network
(a directed graph), the admissible vector fields that are determined by
the interaction function g can have nonlinear dependencies between the
cell coordinates xk. By contrast, in the additive input setup [4, 5, 6, 7]
no nonlinear interactions beyond pairs of cells are possible and the
admissible equations for cells 4 and 14 have the form

ẋ4 = f(x4) + h(x4, x1) + h(x4, x2) + h(x4, x5)

+ h(x4, x6) + h(x4, x7) + h(x4, x8),

ẋ12 = f(x12) + h(x12, x1) + h(x12, x2) + h(x12, x3)

+ h(x12, x9) + h(x12, x10) + h(x12, x11).

The admissible vector fields of our framework are richer than the addi-
tive setup. Moreover, they explicitly capture higher-order interaction
structure, which is only implicit in the classical formalism of Golubit-
sky, Stewart, and collaborators but important from a dynamical point
of view; cf. Section 5.
What is an appropriate combinatorial structure to encode higher-

order interactions in network dynamical systems (cf. [9])? The frame-
work developed above is phrased in terms of (directed) hypergraphs.
First, the hypergraphs employed are nonstandard: The tails of each
hyperedge is a multiset rather than a set. This is crucial to define a
quotient of a hypernetwork without making further assumptions on the
coupling functions as arguments on the synchrony subspace can appear
multiple times. Second, different hypergraphs can represent the same
coupled cell hypernetwork. This is due to the fact that hyperedge-
heads can contain more than one element which may allow to easily
identify symmetries (cf. Proposition 3.25).
It is worth pointing out that in the formalism developed above we

typically consider all admissible vector fields at the same time. More
specifically, we ask: What are the dynamical features of all ordinary dif-
ferential equations (ODE) that are compatible with the hypernetwork
structure? This elucidates the constraints network structure imposes.
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For example, Theorem 4.16 allows to translate structural properties
(balanced relations on a hypergraph) into dynamical properties (any
ODE consistent with the hypernetwork will have a particular synchrony
subspace). Consequently, these properties are not specific to any choice
of coupling function. While this is the same approach as in traditional
coupled cell systems, the approach is in contrast to some applications
where a fixed coupling function is considered: A specific coupling func-
tion may be imposed by a particular physical system. But a nongeneric
choice of coupling function can lead to nongeneric dynamical behavior
and nonproper hypernetwork couplings (Definition 3.22).
The importance of higher-order interactions in network dynamical

systems has repeatedly been highlighted. The framework presented
here bridges coupled cell systems and higher-order interaction net-
works. Specifically, it allows to characterize synchrony patterns (whether
global or localized/clustered). While other approaches are possible, our
framework strikes a balance between generality and results that can
elucidate synchronization phenomena in real-world systems.
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