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Abstract. We consider coupled cell networks with identical cells and asymmetric
inputs. We obtain general results concerning codimension-one steady-state bifurca-
tions for networks with any number of cells and any number of asymmetric inputs.
These results rely solely on the network adjacency matrices eigenvalue structure
and the existence, or not, of network synchrony subspaces. For networks with three-
cells, we describe the possible lattices of synchrony subspaces annotated with the
eigenvalues on each synchrony subspace. Applying the previous results, we clas-
sify the synchrony-breaking steady-state bifurcations that can occur for three-cell
minimal networks with one, two or six asymmetric inputs.
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1. Introduction

In this paper we consider coupled cell systems, that is, continuous dynamical
systems whose structure can be schematized through a network. We follow the for-
malisms of Stewart, Golubitsky and co-workers [25, 15] and Field [12], where a cou-
pled cell network is a directed graph with nodes and edges representing, respectively,
the cells (sets of dynamical systems, here, systems of ordinary differential equations)
and the couplings between the cells. One of the key properties of coupled cell sys-
tems is the existence of synchrony spaces – spaces defined in terms of equalities of
cell coordinates and that are left invariant under any coupled cell system consistent
with a given network. Remarkably, the existence of such spaces depends solely on
the network structure and not on the given admissible vector field.

We concentrate our work on networks with k asymmetric inputs – there are k ∈ N
different input types and each cell receives exactly one input of each type. The
corresponding coupled cell systems have all the cells with the same internal phase
space (identical cells) and the cells are all input equivalent as every cell receives
exactly k couplings of the k different types. These networks are formally defined
by k adjacency matrices, one for each type of coupling. Any coupled cell system
associated to a network with asymmetric inputs admits the full-synchrony subspace
where all cells are synchronized. It is also known that the set of synchrony spaces
of a given network is a lattice where the bottom is the full-synchrony subspace
and the top is the network phase space, see Stewart [23]. Moreover, coupled cell
systems restricted to any network synchrony subspace correspond to coupled cell
systems consistent with a smaller network determined by the original network and
the synchrony space, [25, 15].

In a previous work, Aguiar, Dias and Soares [7] made a start in classifying the
networks with asymmetric inputs into different classes according to the different
types of dynamics they can support – ODE-classses.

Consider one such class of networks, and take a one-parameter family of coupled
cell systems associated with a class representative network possessing an equilibrium
in the full-synchrony subspace. One important observation we make is that the Ja-
cobian matrix at that equilibrium is a linear combination of the adjacency matrices
of the network, and its eigenvalues are functions of the first order derivatives of the
associated coupled cell systems. Assume that one of such eigenvalues crosses 0 as
the parameter changes. In any neighbourhood of the full synchrony equilibrium, new
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equilibria may appear forming a steady-state bifurcation branch. Such bifurcation
branch can have less synchrony and, in this case, we say that a synchrony-breaking
steady-state bifurcation has occurred. The synchrony of a bifurcation branch is the
smallest synchrony subspace which contains it. Given a network and one of its syn-
chrony spaces, we may ask whether the synchrony subspace supports a steady-state
bifurcation branch from the full synchrony equilibrium. More generally, the main
question we address at this paper is the following. Given a network representative of
an ODE-class of networks, can we answer which synchrony subspaces robustly sup-
port a steady-state bifurcation branch? Notably, most of the results in the present
work are obtained just from the analysis of the underlying network structure.

In Section 3, we give general results about the synchrony-breaking steady-state
bifurcations for networks with asymmetric inputs. More specifically, we show which
synchrony spaces support a bifurcating branch of equilibria arising through a codimension-
one steady-state bifurcation from a full synchronous equilibrium, for generic coupled
cell systems. The results are organized according to the number of synchrony sub-
spaces intersecting, in a non trivial way, the generalized kernel K of the Jacobian
matrix at a full synchronous equilibrium.

The first result corresponds to the case where K has dimension one and where
it is taken the smallest synchrony subspace containing K. It is usually called the
synchrony bifurcation branch, and has been proved for different types of networks,
such as networks with symmetric inputs, see Soares [21] and Golubitsky and Lauter-
bach [13]. Using the Lyapunov-Schmidt Reduction Method, see for example Golubit-
sky and Schaeffer [14], we show in Theorem 3.1 that each such synchrony subspace
supports a steady-state bifurcation branch.

In the second result, we consider the case where K has dimension m and the
smallest synchrony subspace which contains K also includes 2m − 1 synchrony sub-
spaces intersecting K in a one-dimensional space. By Theorem 3.1 mentioned above,
we know that those 2m − 1 synchrony subspaces intersecting K support a bifurca-
tion branch. Using Bézout’s Theorem, see for example Blum et al. [10], we prove
in Theorem 3.3 that the synchrony subspace containing K does not support a bi-
furcation branch. The result is obtained under the assumption of certain network
non-degeneracy conditions.

The third result considers the case of K being two-dimensional and the kernel of
the Jacobian matrix at a full synchronous equilibrium being one-dimensional. We
prove in Theorem 3.10 that the smallest synchrony subspace containing K supports
a bifurcation branch, under the assumption of certain network non-degeneracy con-
ditions.

The analysis of small networks, usually called motifs, Milo et al. [18], that are part
of complex networks modelling real-world problems can help understand the dy-
namical properties of those big networks. Here, we study which synchrony-breaking
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patterns emerge as a bifurcation occur in networks with three cells. Examples of
previous works about this topic are Beer [9], Leite and Golubistky [17] and Golubit-
sky and Wang [16]. The dynamics associated with networks of just two or three-cells
can already be complex. See, for example, Pasemann [20] for the discrete-time case
and Aguiar et al [4] for the continuous-time case.

In Section 4, we study the codimension one steady-state bifurcations from a
full synchronous equilibrium for continuous-time dynamical systems associated with
three-cell networks with any number k of asymmetric inputs. We use the results ob-
tained in Section 3 which completely covers the study of three-cell networks with k
asymmetric inputs. We characterize the synchrony patterns which robustly support
a steady-state bifurcation branch. Furthermore, the characterization given here still
holds for any n-cell network with k-asymmetric inputs when restricted to a synchrony
pattern with dimension three or lower. The strategy for such study goes through
grouping the networks according to their lattice of synchrony subspaces, which we
annotate with the indication of which network eigenvalues belong to each of its syn-
chrony subspaces. We show in Theorem 4.5 that there are seven possible synchrony
lattice structures for connected three-cell networks with any number of asymmetric
inputs, see Figure 3. Under the assumption of some network non-degeneracy con-
ditions, the previous results show which synchrony spaces support a steady-state
bifurcating branch. Noticeably, we derive that there are eight possible bifurcation
diagrams, see Figure 4, where one lattice leads to two disctinct bifurcation diagrams
and the other six lead to a distinct bifurcation diagram each.

Finally, in Section 5, we apply the methodology developed here, and described
above, to the minimal networks with three-cells and one, two and six asymmetric
inputs enumerated in [7] which cover every possible dynamics with those numbers of
cells and asymmetric inputs. First, the network eigenvalues are obtained in Theo-
rem 5.2 and the annotated lattices of each network in Theorem 5.4. An observation
is that only six of the seven possible lattices obtained in Theorem 4.5 occur for the
networks under study. Using the results of Section 3, and checking the network non-
degeneracy conditions, we prove in Theorem 5.6 which synchrony subspaces support
a steady-state bifurcation branch from a full synchronous equilibrium, obtaining then
the corresponding bifurcation diagrams, see Table 9. It should be noted that, this
characterization is still valid for synchrony subspaces with dimension at most three
of a network with one, two or six asymmetric inputs and an arbitrary number of
cells. We point out that a similar characterization for the 34 networks with 3 cells
and 2 symmetric inputs is obtained in Leite and Golubistky [17].

The paper is organized in the following way. In Section 2 we recall the main defi-
nitions and results concerning coupled cell networks, coupled cell systems, synchrony
spaces and codimension-one steady-state bifurcations of coupled cell networks. In
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Section 3 we present general results concerning the codimension-one steady-state bi-
furcations for coupled cell networks with asymmetric inputs. The main results are
Theorems 3.1, 3.3 and 3.10 proving which synchrony subspaces robustly support a
steady-state bifurcation branch. In Section 4, we consider networks with three-cells
and any number of asymmetric inputs, obtaining the network eigenvalues, the lattices
of synchrony subspaces and applying the bifurcation results of Section 3. Finally, in
Section 5, we apply the previous methodology to the minimal networks with three-
cells and one, two and six asymmetric inputs. The main result is Theorem 5.6 listing
the synchrony subspaces supporting a steady-state bifurcation branch.

2. Steady-state bifurcations for coupled cell networks

We follow the formalisms of Stewart, Golubitsky and Pivato [25], Golubitsky,
Stewart and Török [15] and Field [12] on coupled cell networks and the associated
coupled cell systems.

2.1. Coupled cell networks. In this paper, we consider n-cell coupled cell networks
with k asymmetric inputs which can be represented by directed graphs, where the
cells are placed at vertices (nodes) and the couplings are depicted by directed arrows.
Any cell receives k inputs, one from each type. The description of any such network
can be given by k adjacency matrices, of order n, if n is the network number of cells
and the rows and columns are indexed by the network cells. If A1, . . . , Ak are the
adjacency matrices, the entry ij of the matrix Al is 1 if there is a directed edge from
cell j to cell i of type l, or 0 otherwise, where l = 1, . . . , k and i, j = 1, 2, . . . , n.
Thus, each row of Al has exactly one entry equal to 1 and 0 elsewhere.

We recall that a network is connected if there is an undirected path between any
two cells. All networks considered here are connected.

Example 2.1. In Figure 1 we have two three-cell and one two-cell coupled net-
works with asymmetric inputs. As an example, the network in the middle has two
asymmetric inputs which can be described by the following two adjacency matrices

A1 =

 0 1 0
1 0 0
1 0 0

 , A2 =

 0 1 0
0 0 1
0 1 0

 .

3

2.2. Coupled cell systems. Let N be an n-cell network with k asymmetric inputs,
say of types 1, . . . , k. We take a cell to be a system of ordinary differential equations
and we consider the class of coupled cell systems consistent with the structure of
the network N . As every cell of the network receives k inputs, one from each type,
we say that the network is homogeneous. It follows that we consider that all the
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Figure 1. Examples of coupled cell networks with asymmetric inputs.

cells are identical, that is, they have the same phase space V assumed here to be
V = R. Moreover, the dynamics of each cell i is governed by the same smooth
function f : V k+1 → V , evaluated at cell i and at the k cells belonging to its input
set. Thus, for i = 1, . . . , n, the evolution of cell i is given by the set of ordinary
differential equations

(2.1) ẋi = f (xi; xi1 ; . . . ;xik) ,

where ij is the start cell of the edge with type j and heading to cell i. The coupled
cell systems with cells governed by equations of the form (2.1) are N -admissible and
fN denotes the coupled cell system defined by f .

Example 2.2. Consider the network in the middle of Figure 1 and any smooth
function f : R3 → R. Coupled cell systems associated with this network are of the
form

(2.2)

 ẋ1 = f(x1;x2;x2)
ẋ2 = f(x2;x1;x3)
ẋ3 = f(x3;x1;x2)

.

3

Given two networks, the set of coupled cell systems associated to them can coin-
cide, up to renumbering of the cells. In this case, we say that those networks are
ODE-equivalent. This defines an equivalence relation between networks whose equiv-
alence classes are called ODE-classes. Inside each ODE-class, the networks having
a minimal number of inputs are called minimal networks. See Dias and Stewart [11]
and Aguiar and Dias [5] for details.

2.3. Synchrony subspaces. One of the most remarkable and first observed prop-
erty of coupled cell systems, which only depends on the network structure and not
on the particular coupled cell system, is the existence of flow-invariant subspaces.
Those subspaces are called synchrony subspaces and are defined by some equalities of
cell’s coordinates, xi = xj. More precisely, one such polydiagonal subspace ∆ is said
to be a network synchrony subspace if it is invariant for any admissible vector field
of that network. By [25, Theorem 6.5], a polydiagonal space is a network synchrony
subspace if and only if it is left invariant by every network’s adjacency matrix,
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Example 2.3. Consider the network G in the middle of Figure 1 and the associated
coupled cell systems in (2.2). The polydiagonal space ∆ = {(x1, x2, x3) : x2 = x3} is
flow-invariant for any such coupled cell system. In fact, looking at the form of the
coupled systems in (2.2), we see that, given an initial condition where the values for
x2 and x3 coincide, then the equations for the two variables are the same and thus
they stay synchronized for forward time. Moreover, this property does not depend
on the particular choice of the function f neither on the choice of the cell phase
spaces. The space ∆ is a synchrony space for the network G. Note that ∆ is left
invariant under the network adjacency matrices, A1 and A2 in Example 2.1. 3

The restriction of a coupled cell system associated with a networkN to a synchrony
subspace ∆ corresponds to a coupled cell system consistent with a smaller network
Q, the quotient network of N determined by ∆, see [15, Theorem 5.2]. We can define
an equivalence relation ▷◁ on the network set of cells in the following way: if xi = xj
is one of the equalities defining ∆ then i ▷◁ j. We write ∆ = ∆▷◁. The cells of Q are
so the ▷◁-equivalence classes and, for each edge-type l, an edge [j] →l [i] corresponds
to the edges j →l i in N where j ∈ [j] and i ∈ [i]. Thus, edge types are preserved
and both networks have the same number of asymmetric inputs. That is, if G has k
asymmetric inputs, the quotient network Q has also k asymmetric inputs.

Example 2.4. Consider the network G in the middle of Figure 1 and recall that
the space ∆ = {(x1, x2, x3) : x2 = x3} is a synchrony space for that network. Note
that ∆ = ∆▷◁, where ▷◁= {[1] = {1}, [2] = {2, 3}}. The quotient network Q of G
determined by ∆ is the network on the right of Figure 1. 3

Stewart [23] showed that the set of synchrony subspaces of a network together with
the partial order of inclusion is a finite lattice. Thus the join and meet of any two
synchrony subspaces ∆1 and ∆2 are well-defined in the set of synchrony subspaces.
The join of ∆1 and ∆2 is the smallest synchrony subspace containing ∆1 and ∆2.
Analogously, the meet of ∆1 and ∆2 is the largest synchrony subspace contained in
∆1 and ∆2 (the intersection of the two synchrony subspaces).
For the networks with asymmetric inputs considered here, the bottom of the lattice,

the smallest synchrony subspace or the meet of all synchrony subspaces, is the full-
synchronized subspace ∆0. The top of the lattice, the biggest synchrony subspace, or
the join of all synchrony subspaces, is the network phase space Rn, if n is the number
of cells in the network.

Example 2.5. The lattice of the synchrony spaces of the network G in the middle
of Figure 1 is formed by the full-synchronized subspace ∆0 = {(x1, x2, x3) : x1 =
x2 = x3}, ∆ = {(x1, x2, x3) : x2 = x3} and the network phase space R3. 3
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2.4. Steady-state bifurcations for networks. Let N be a network with k asym-
metric inputs. We address in this paper the possible codimension-one local steady-
state bifurcations of coupled cell systems from a full synchrony equilibrium solution
x0 and their spontaneous synchrony breaking. Let f : R×Rk ×R → R be a family
of smooth functions defining a family of coupled cell systems fN on N parametrized
by a real parameter λ:

(2.3) ẋ = fN(x, λ) .

We assume, without loss of generality, that the solution x0 and the bifurcation point
λ0 are the origin. In the following, we will assume that the origin is an equilibrium
point for every λ,

f(0, λ) ≡ 0 .

We consider that the family of coupled cell systems fN has a local steady-state
bifurcation at (x0, λ0) = (0, 0) if the number of steady-state solutions of (2.3) in any
neighbourhood of x0 changes when the parameter λ crosses λ0 = 0. Recall that a
necessary condition for the existence of local steady-state bifurcations at (0, 0) is that
the Jacobian matrix of fN(x, 0) at the origin has a zero eigenvalue. Throughout, we
denote by JNf the Jacobian matrix of fN(x, 0) at the origin.

Using the k network adjacency matrices, say A1, . . . , Ak, we have that J
N
f has the

following form:

(2.4) JNf = Dxf
N(0, 0) = f0Idn +

k∑
j=1

fjAj,

where fj, for j = 0, . . . , k, denotes the derivative of f at the origin with respect to
the variable j+1. Since the Jacobian matrix depends linearly on the first derivatives
of f , there are continuous functions

µ1, . . . , µs : Rk+1 → C

such that µ1(f0, f1, . . . , fk), . . . , µs(f0, f1, . . . , fk) are the distinct eigenvalues of JNf .
We call these functions the network eigenvalues. Moreover, as every matrix Aj has
row sum one, we have that one of the network eigenvalues is

υ =
k∑
j=0

fj,

the network valency eigenvalue.
A steady-state bifurcation condition (at λ = 0) for the family fN is given by the

equality of one of those network eigenvalues of JNf to zero,

µi(f0, . . . , fk) = 0.
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Example 2.6. Let N be the network with three-cells and one asymmetric input
forming a 3-cycle. Then the network eigenvalues of N are

µ1(f0, f1) = f0 + f1, µ2(f0, f1) = f0 + f1e
ıπ/3, µ3(f0, f1) = f0 + f1e

ı2π/3.

Note that µ2 = 0 implies that f0 = f1 = 0 and thus µ1 = µ3 = 0. 3

Since we are interested in steady-state bifurcations, we consider network eigenval-
ues which are real on some open set of Rk+1, i.e., the interior of µ−1

i (R) is nonempty.
Next, we define the space of functions with a bifurcation condition given by a

network eigenvalue.

Definition 2.7. Let N be a network with k asymmetric inputs and µ a network
eigenvalue. The space of one-parameter families of coupled cell systems with a bi-
furcation condition given by µ is denoted by Vµ(N), where

(2.5) Vµ(N) := {f : µ(f0, . . . , fk) = 0, (f0, . . . , fk) ∈ int(µ−1(R)), f(0, λ) ≡ 0} . 3

Remark 2.8. Given a network N with a synchrony space ∆ and Q the quotient
network of N determined by ∆, as the restriction of a coupled cell system associated
with N to ∆ corresponds to a coupled cell system consistent with Q, we have that
any eigenvalue of Q is also an eigenvalue of N . Moreover, the spaces of functions
with a bifurcation condition given by an eigenvalue µ of Q is equal for the networks
N and Q:

Vµ(N) = Vµ(Q) . 3

Definition 2.9. An eigenvalue of a network N which is also an eigenvalue of the
quotient network Q of N determined by a synchrony space ∆ is called an eigenvalue
of ∆. 3

Following usual conventions in bifurcation theory, we consider generic functions
satisfying a bifurcation condition. A function is generic if it satisfies a finite number
of non-degenerated conditions. A non-degenerated condition is a non-trivial inequal-
ity on the derivatives of the function f at the origin which does not contradict
the bifurcation condition. Trivially, from (2.4), we see that a bifurcation condition
µ(f0, . . . , fk) = 0 determines the value of f0 based on the other first derivatives of f .
Thus, we consider non-degenerated conditions given by inequalities in the derivatives
of the function f not including the derivative f0.

Definition 2.10. Given a bifurcation problem determined by f ∈ Vµ(N).
(i) A function b : D → Rn is a bifurcation branch of fN if b ̸≡ 0 and

fN(b(λ), λ) = 0,

where λ ∈ D and D is a connected region of R containing the origin.
(ii) A bifurcation branch b of fN has synchrony ∆b if ∆b is the smallest synchrony
subspace which contains b(D). 3
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Definition 2.11. A synchrony subspace ∆ supports a steady-state synchrony-breaking
bifurcation if there is a generic bifurcation problem Vµ(N) where some bifurcation
branch has synchrony ∆, for a generic family of functions f ∈ Vµ(N). 3

We use the following terminology:

Definition 2.12. Let N be a network with k asymmetric inputs and µ : Rk+1 → C
an eigenvalue of N . We say that µ is:
(i) semisimple with multiplicity m, if µ(f0, . . . , fk) is a semisimple eigenvalue of JNf
with multiplicity m, for f generic.
(ii) simple if it is semisimple with multiplicity 1.
(iii) defective with multiplicity (m,n) if m < n and µ(f0, . . . , fk) is an eigenvalue of
JNf with geometric multiplicity m and algebraic multiplicity n, for f generic. 3

The next definition relates eigenspaces and synchrony subspaces.

Definition 2.13. Let N be a network with k asymmetric inputs, ∆ a synchrony
subspace of N and µ : Rk+1 → C a network eigenvalue of ∆. We say that ∆ is:
(i) µ-maximal when µ is not an eigenvalue of ∆ for any synchrony subspace ∆ ⊊ ∆.
(ii) µ-submaximal of order j ≥ 1, if there are j simple and maximal synchrony
subspaces ∆1, . . . ,∆j ⊊ ∆ and, for any generic f ∈ Vµ(N) and ∆ ⊊ ∆,

∆ ∩
⋃
k

ker(JNf
k
) ⊊ ∆ ∩

⋃
k

ker(JNf
k
). 3

In the first case of the above definition, the synchrony subspace is one of the lowest
in the lattice of synchrony subspaces to have that network eigenvalue. In the second
case, the synchrony subspace is not one of the lowest in the lattice, but the eigenspace
increases as we move up in the lattice at such synchrony subspace.

Example 2.14. Consider the networks N1, N2, N3 in the left, middle and right,
respectively, in Figure 1 and take the adjacency matrices

A1 =

 0 1 0
1 0 0
1 0 0

 , A2 =

 0 1 0
0 0 1
0 1 0

 , A3 =

(
0 1
1 0

)
, A4 =

(
0 1
0 1

)
.

Note that A1 is the adjacency matrix of N1 and A1, A2 (A3, A4) are the adjacency
matrices of the network with two asymmetric inputs N2 (N3, respectively). The
eigenvalues of N1 (N2) are υ = f0 + f1, f0, f0 − f1 (υ = f0 + f1 + f2, f0 − f1, f0 − f2,
respectively). The network N3 is a quotient network of N2. Its eigenvalues are
υ = f0+f1+f2, f0−f1. All the eigenvalues are simple. Note that µ(f0, f1, f2) = f0−f1
is an eigenvalue of N2 and N3. The synchrony space {x : x2 = x3} of N2 is µ-maximal
since µ is not an eigenvalue in the full-synchrony subspace. 3
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3. Steady-state bifurcations for networks with asymmetric inputs:
general results

Let N be a network with k asymmetric inputs and consider an one-parameter
family of coupled cell systems for N as in (2.3). Let µ be an eigenvalue of N and
f ∈ Vµ(N). We address three general cases concerning the relation between the
network synchrony spaces and the eigenspace associated with the eingenvalue µ,
namely, when the synchrony subspace is (i) µ-simple and maximal, (ii) µ-semisimple
with multiplicity m and it is submaximal of order 2m − 1, and (iii) µ-defective with
multiplicity (2,1) and submaximal of order 1. We point out that these three cases
cover the study of minimal networks with three-cells and two asymmetric inputs
presented in the next two sections.

3.1. Simple eigenvalue and maximal synchrony space. We start by addressing
the simplest case where µ is simple and the synchrony space ∆ is maximal, which is a
common case, specially when the synchrony subspace ∆ has a low dimension. Similar
cases have been studied in [24, 21] for regular networks and our approach is similar.
The idea is to apply Lyapunov-Schmidt Reduction [14], reducing the steady-state
bifurcation problem to a one-dimensional steady-state bifurcation problem, since
the eigenvalue µ is simple. Moreover, the reduced problem is finitely determined
and we can find at least one bifurcation branch. Since the synchrony subspace ∆ is
maximal, the bifurcation branch must have that synchrony. Next, we state this result
and sketch its proof for completeness. We note that the details can be filled using
well-known techniques of bifurcation theory which can be found in many references
including the references mention above.

Theorem 3.1. Let N be a network with k asymmetric inputs and µ a network
eigenvalue. Assume that f ∈ Vµ(N) is generic, µ is simple and that ∆ is a µ-
maximal synchrony subspace of N . Then, besides the trivial branch, there exists a
bifurcation branch of fN with the synchrony ∆.

Proof. Note that µ is assumed to be a simple eigenvalue of the quotient network
of N determined by ∆. Thus, we look for steady-state bifurcation branches with
synchrony ∆ which corresponds to solve the following equation in a neighbourhood
of (0, 0):

fN(x, λ) = 0, (x, λ) ∈ ∆× R .
Assume ∆ is (isomorphic to) Rn. In order to study the equation fN(x, λ) = 0

in a neighbourhood of (0, 0), we use Lyapunov-Schmidt Reduction, [14, Chapter
I, Section 3; Chapter VII]. Since µ is simple, we can find v, v∗ ∈ Rn such that
ker(JNf ) = {αv : α ∈ R}, range(JNf )⊥ = {αv∗ : α ∈ R} and ⟨v∗, v⟩ = 1. There
exists a function g : R × R → R such that the solutions of g = 0 are in one-to-one
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correspondence with the solutions of f = 0. Moreover, the derivatives of g at the
origin can be computed using the derivatives of f at the origin. In particular,

gx = 0, gλ = 0, gxλ = ⟨v∗, (Dxf
N
λ )(0,0)(v)⟩ = µ(f0λ, f1λ, . . . , fkλ) .

Since f is generic, we can assume that gxλ ̸= 0.
Next, we see that there exists r > 1 such that the r-derivative of g with respect

to x, gxr , is different from zero. Using the formulas for the derivative of g, presented
in [14], and the form of the admissible vector fields we know that

gxr = f0r⟨v∗, v[r]⟩+ hr(f),

where f0r is the r derivative of f with respect to the first variable, v[r] = (vr1, . . . , v
r
n)

and hr(f) is a polynomial function where its variables are the derivatives of f with
order less or equal to r excluding f0r . By [24, Theorem 6.1.], we know that there
exists r such that ⟨u, v[r]⟩ ≠ 0. Since f is generic, we can assume that

f0r ̸= −hr(f)/⟨u, v[r]⟩ ⇔ gxr ̸= 0 .

Let r be the minimum integer such that gxr ̸= 0 for f generic.
Thus the function g has the following Taylor expansion around the origin:

g(x, λ) = gxλxλ+
gxr

r!
xr + · · · ,

where · · · includes the terms which are higher order in x and may depend at the
bifurcation parameter λ. Factoring out the variable x, we can apply the Implicit
Function Theorem and conclude that there exists a nontrivial solution β :]−ϵ, ϵ[→ R
such that

g(x, β(x)) = 0.

This proves the existence of a bifurcation branch. It follows from the maximality
of the synchrony subspace that the bifurcation branch cannot be contained in any
smaller synchrony subspace. □

In the previous proof, we defined r as the minimum integer such that gxr ̸= 0. In
this case, we say that the bifurcation problem is r-determined.

3.2. Semisimple eigenvalue and submaximal synchrony spaces. We consider
now two cases of synchrony-breaking steady-state bifurcations where the network
eigenvalue µ is semisimple, f ∈ Vµ(N) and ∆ is a µ-submaximal synchrony subspace.
In the first, we suppose that the eigenvalue has multiplicity m and the submaximal
synchrony subspace has order 2m − 1. In the second case, the network eigenvalue is
the network valency. The second case have been studied in Aguiar, Dias and Soares
[6] and we recall known results in the end of this section. We note that the results
we obtain can be applied independently of the network number of cells.
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Suppose µ has multiplicity m and ∆ has order 2m − 1. Let ∆1, . . . ,∆2m−1 be the
µ-maximal synchrony subspaces. It follows from Theorem 3.1 that each µ-maximal
synchrony subspaces generically supports a bifurcation branch when f ∈ Vµ(N).
We prove in Theorem 3.3 below that, under certain conditions strictly depending
on the network, there are no more bifurcation branches. Using the terminology
of Definition 2.11, we have then that ∆ does not generically support a bifurcation
branch when f ∈ Vµ(N).

In the proof of Theorem 3.3 below, we use the Lyapunov-Schmidt Reduction
method to obtain a function g : Rm × R → Rm such that the solutions of g = 0
(near the origin) are in one-to-one correspondence with the solutions of fN = 0
(near the origin). Since f(0, λ) ≡ 0 and each ∆1, . . . ,∆2m−1 supports a bifurcation
branch, we know that the reduced problem g = 0 has at least 2m zeros. Supposing
that the study of g = 0 is equivalent to its quadratic approximation, we apply then
Bézout’s Theorem [10, Section 10.5] to conclude that there are exactly those 2m ze-
ros. Thus every bifurcation branch belongs to the µ-maximal synchrony subspaces
and ∆ does not generically support a bifurcation branch. The result holds under the
following assumptions:

Assumptions 3.2. Let h be the second-order Taylor expansion at zero of the reduced
function g. Assume that:
1. D(y,λ)h(ỹ, 1) has rank m, for each solution of h(ỹλ, λ) = 0 with ỹ ̸= 0.
2. The homogeneous quadratic polynomial components hi, for i = 1, . . . ,m, of h do
not share a common factor.

Depending on the network, these assumptions lead to non-degeneracy conditions
of the bifurcation problem. It follows from the first assumption that we can focus on
the quadratic approximation of g = 0. Bézout’s Theorem can be applied when the
second assumption holds. First we state and prove the result, then we return to the
previous assumptions and see how they depend on the network structure.

Theorem 3.3. Let N be a network with k asymmetric inputs, µ a network eigenvalue,
f ∈ Vµ(N) generic and ∆ a synchrony subspace of N which is µ-semisimple with
multiplicity m and µ-submaximal with order 2m − 1. Suppose that the bifurcation
problem on each µ-maximal synchrony subspace of N contained in ∆ is 2-determined
and that Assumptions 3.2 hold. Then there is no bifurcation branch of fN with
synchrony ∆.

Proof. Looking for steady-state bifurcation branches with synchrony ∆ corresponds
to solve the following equation in a neighbourhood of (0, 0),

fN(x, λ) = 0, (x, λ) ∈ ∆× R.
As before, assume ∆ is (isomorphic to) Rn.



14 MANUELA AGUIAR, ANA DIAS, AND PEDRO SOARES

Let µ be a semisimple network eigenvalue with geometric multiplicity m and
f ∈ Vµ(N) generic. Suppose that Rn is µ-submaximal with order 2m − 1 and that
Assumptions 3.2 hold. Let ∆1, . . . ,∆2m−1 be the µ-maximal synchrony subspaces
such that the bifurcation problem is 2-determined on ∆i for i = 1, . . . , 2m − 1.
Take v1, v2, . . . , vm, v

∗
1, v

∗
2, . . . , v

∗
m ∈ Rn such that ker(JNf ) = span ({v1, v2, . . . , vm}),

range(JNf )⊥ = span ({v∗1, v∗2, . . . , v∗m}) and
⟨v∗1, v1⟩ ⟨v∗1, v2⟩ . . . ⟨v∗1, vm⟩
⟨v∗2, v1⟩ ⟨v∗2, v2⟩ . . . ⟨v∗2, vm⟩

...
...

. . .
...

⟨v∗m, v1⟩ ⟨v∗m, v2⟩ . . . ⟨v∗m, vm⟩

 = Idm .

By the Lyapunov-Schmidt Reduction Method, there exists a function g : Rm×R →
Rm such that the solutions of g = 0 (near the origin) are in one-to-one correspondence
with the solutions of fN = 0 (near the origin). Moreover, we have the following
derivatives of g at the origin

gxi = 0, gλ = 0, gλλ = 0, (gxiλ)i = µ(f0λ, . . . , fkλ), (gxiλ)j = 0,

where i, j = 1, . . . ,m and j ̸= i. Since f is generic we assume that µ(f0λ, . . . , fkλ) ̸= 0.
Expanding g in its Taylor series around the origin, we have that

g(x1, . . . , xm, λ) = µ(f0λ, . . . , fkλ)λ Idm x+Q(x) + · · · ,
where Q = (q1, . . . , qn) has quadratic homogeneous polynomials components in x.
Denote by h the second-order Taylor expansion truncation of g,

(3.6) h(x1, . . . , xm, λ) = µ(f0λ, . . . , fkλ)λ Idm x+Q(x),

which satisfies

h(λx1, . . . , λxm, λ) = λ2(µ(f0λ, . . . , fkλ)x+Q(x)) = λ2h(x1, . . . , xm, 1) .

Since ∆1, . . . ,∆2m−1 are µ-maximal synchrony subspaces, it follows from Theorem 3.1
that ∆i supports a bifurcation branch for each i = 1, . . . , 2m − 1. Adapting [21,
Proposition 3.5], we know for each i = 1, . . . , 2m − 1 that the bifurcation branch
on ∆i leads to a non-trivial solution ỹi = (ỹi1, . . . , ỹ

i
m) of h(x1, . . . , xm, 1) = 0, since

the bifurcation problem is 2-determined on ∆i. Moreover, we have that ỹi1v1 + · · ·+
ỹimvm ∈ ∆i and the solutions ỹ1, . . . , ỹ2

m−1 are distinct. Using Assumption 3.2.1 and
adapting [21, Proposition 3.6], we see that each of these solutions corresponds to an
unique solution of g = 0 and a unique bifurcation branch of fN .

From Bézout’s Theorem [10, Section 10.5] and Assumption 3.2.2, the system

h(x1, . . . , xm, 1) = (h1(x1, . . . , xm, 1), . . . , hm(x1, . . . , xm, 1)) = 0

has at most 2m solutions as the polynomials h1, . . . , hm are homogeneous of degree
2. Counting the solutions ỹ1, . . . , ỹ2

m−1 together with the trivial solution ỹ = 0,
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there are 2m solutions of h(x1, . . . , xm, 1) = 0. So there is no more solutions of
h(x1, . . . , xm, 1) = 0 and there are exactly the 2m− 1 bifurcation branches. Thus the
µ-submaximal synchrony subspace does not support a bifurcation branch. □

Remark 3.4. Note that the valency eigenvalue of a network with n cells has multi-
plicity n if and only if every cell of the network is isolated from the others. Thus
any network eigenvalue of a connected network with n cells has multiplicity less or
equal than n − 1. Moreover, Rn has 2n−1 − 1 polydiagonal subspaces with dimen-
sion 2 since each polydiagonal subspace with dimension 2 defines a partition of the
set {1, . . . , n} into two complementary subsets. Thus there are at most 2n−1 − 1
synchrony subspaces with dimension 2. 3

Remark 3.5. In Theorem 3.3, we assume that the bifurcation condition is given by a
semisimple network eigenvalue µ with multiplicity m and the submaximal subspace
has order 2m−1. From the previous remark, we see that this condition is not expected
to occur frequently for coupled cell systems. Nevertheless, we show in the three-cell
networks steady-state bifurcations classification done in the following two sections
that there is one network for which the bifurcation condition assumed in Theorem 3.3
holds. Namely, network C1&D1 in Table 6 has the eigenvalue f0 with multiplicity
2, the network phase space R3 is f0-submaximal with order 3 (see Figure 3b) and
Theorem 3.3 holds. 3

We see now that Assumptions 3.2 depend solely on the network structure. More
precisely, the dependence is on the second derivatives of the function g at the origin,
which in their turn are computed using only the second derivatives of the function f
at the origin, and the vectors v1, . . . , vm, v

∗
1, . . . , v

∗
m. In order to calculate the second

derivatives of g and h at the origin, we use the formulas provided in [14, Chapter I,
Section 3; Chapter VII].

The function fN has the following second-order Taylor expansion around the origin

fN(x, λ) =
k∑
j=0

fjAjx+
k∑
j=0

fjλλAjx+
k∑

j1=0

k∑
j2=0

fj1j2
2

(Aj1x) ∗ (Aj2x) + · · ·

and the second order directional derivative of fN in the directions va and vb is

d2fN(va, vb) =
k∑

j1=0

k∑
j2=0

fj1j2(Aj1va) ∗ (Aj2vb),

where a, b = 1, . . . ,m and fj1j2 is the second derivative of f with respect to xj1 and
xj2 at the origin for j1, j2 = 0, . . . , k. Here, ∗ denotes the componentwise product.
The vectors v1, . . . , vm usually depend on the first order derivatives of f and the
expressions above cannot be further simplified. Note that the bifurcation condition
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may be seen as a restriction on the value of f0. The functions g and h have the same
second order derivatives at the origin

(gi)ab = (hi)ab =
k∑

j1=0

k∑
j2=0

fj1j2 < v∗i , (Aj1va) ∗ (Aj2vb) >,

where i, a, b = 1, . . . ,m.
The first assumption in Assumptions 3.2 may be expressed as a set of inequalities

using the previous derivatives, excluding f0. Thus, if those inequalities are nontrivial,
they lead to non-degeneracy conditions on the function f . The fact that those
inequalities are trivial or not depends only on the network structure. Hence, if the
first assumption in Assumptions 3.2 holds for some function, then they must hold
for any generic function f .

For the second assumption in Assumptions 3.2, we have the following lemma about
the common factors of the components h1, . . . , hm of the function h given in (3.6).

Lemma 3.6. Let h1, . . . , hm : Rm+1 → R be polynomial functions with the following
form

hi(x1, . . . , xm, λ) = µxiλ+ qi(x1, . . . , xm),

where i = 1, . . . ,m and qi are homogeneous quadratic polynomials. If i ̸= j and hi
and hj have a common factor, then

(3.7) (hi)dl = 0 (if l, d ̸= i), (hj)dl = 0 (if l, d ̸= j), (hi)ki = (hj)kj

where (ha)bc denotes the second order derivative of ha with respect to the variables
xb and xc at the origin and a, b, c = 1, . . . ,m.

Proof. Let h1, . . . , hm be the functions with the given form. Suppose that hi and hj
have a common factor. Since there is only one term of hi which includes the variable
λ and it is equal to µxiλ, we know that the common factor of hi and hj must be
linear. That is, hi and hj have the following form:

hi(x1, . . . , xm, λ) = xi

(
µλ+

m∑
l=1

clxl

)
, hj(x1, . . . , xm, λ) = xj

(
µλ+

m∑
l=1

clxl

)
for constants c1, . . . , cm ∈ R. Thus

qi(x1, . . . , xm) =
m∑
l=1

clxixl, qj(x1, . . . , xm) =
m∑
l=1

clxjxl .

We have then the equalities (3.7). □

It follows from Lemma 3.6 and the expression for the second derivatives of h given
above that the second assumption in Assumptions 3.2 leads to a set of inequalities
that may be expressed using the derivative of f , excluding f0. If those inequalities
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are nontrivial, then they form a set of non-degeneracy conditions on the function f .
Thus if both Assumptions 3.2 are satisfied by one function f for a given network N ,
then every generic coupled cell system of N satisfies Assumptions 3.2.

We finish this section with the bifurcation problem when the bifurcation condition
is given by the valency, υ. We point out that this case has been studied in [6].

We recall the definition of a source of a network:

Definition 3.7. Let N be a network. We say that a subset of cells S is a source
if every edge targeting a cell in S starts in a cell of S, there exists a directed path
between any two cells of that subset and S is the maximal subset that satisfy the
previous two conditions. The number of source components of a network is denoted
by s(N). 3

Example 3.8. The network E6&E4 in Table 6 of Section 5 has two source compo-
nents S1 = {1} and S2 = {3}. 3

Note that there exists at least one source, i.e., s(N) ≥ 1.
In a network with k asymmetric inputs, the polydiagonal where xi = xj for all

the cells i, j in one source is a network synchrony space because all the cells inside
a source receive k edges, only from cells inside that source. Suppose that s(N) ≥ 2.
Given two source components, the polydiagonal subspace given by xi = xj for all
the cells i, j in these two source components is also a synchrony subspace. Repeating
this synchronization for more sources, we can find synchrony subspaces such that the
corresponding quotient network has exactly two source components. In particular, we
can find the smallest synchrony subspace where the corresponding quotient network
has only two source components.

In those smallest synchrony subspaces the valency eigenvalue is semisimple with
multiplicity 2 and they are υ-submaximal with order 1. We denote those smallest
synchrony subspaces by valency synchrony-breaking subspaces and the name is clear
by the next result.

Proposition 3.9. [6, Proposition 5.7] Let N be a network with asymmetric inputs, ∆
a valency synchrony-breaking subspace of N and f ∈ Vυ(N) generic where υ denotes
the valency eigenvalue of N . Then there exists a bifurcation branch of fN with the
synchrony associated to ∆.

3.3. Defective synchrony spaces. There are networks with defective network
eigenvalues, i.e., the algebraic and geometric multiplicity do not coincide. In this
section, we study the case of defective synchrony spaces in networks with any num-
ber of cells. We prove that a µ-defective synchrony subspace with multiplicity (1, 2)
supports a bifurcation branch.
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Consider a network N with asymmetric inputs, a network eigenvalue µ, a generic
function f ∈ Vµ(N) and a synchrony subspace ∆ which is µ-defective with multi-
plicity (1, 2) and µ-submaximal. Note that ∆ must be submaximal with order 1,
because µ has geometric multiplicity 1 and algebraic multiplicity 2. Denote by ∆1

the µ-maximal synchrony subspace contained in ∆. Note that ker(JNf ) ∩ ∆ ⊂ ∆1

and there are v1, v2 ∈ ker(JNf
2
) and v∗1, v

∗
2 ∈ (range(JNf

2
))⊥ such that v∗1, v1 ∈ ∆1,

JNf v2 = v1, ⟨v∗1, v1⟩ = 1, ⟨v∗2, v2⟩ = 1 and ⟨v∗1, v∗2⟩ = 0. To prove the generic existence
of bifurcation branches, we adapt the Lyapunov-Schmidt Reduction Method [14] con-
sidering vectors in the above conditions. Moreover, we need to impose the following
condition: there are (p, q) such that

(3.8) ⟨v∗2, [Ap(v2 − (PJNf )−1Pv1)] ∗ [Aq(v2 − (PJNf )−1Pv1)]⟩ ≠ 0,

where A0 = Id, A1,. . . ,Ak are the adjacency matrix of N and P is the projection

onto range(JNf
2
) and kernel (range(JNf

2
))⊥. This condition leads to a non-degeneracy

condition on the function f .
We can now state the result:

Theorem 3.10. Let N be a network with asymmetric inputs, µ be a defective network
eigenvalue, f ∈ Vµ(N) generic and ∆ be a µ-submaximal synchrony subspace of N
where µ has multiplicity (1, 2). Suppose that condition (3.8) holds. Then there exists
a bifurcation branch of fN with the synchrony ∆.

Proof. Since we are interested in proving the existence of bifurcation branches with
the synchrony ∆, that is, we look for steady-state bifurcation branches with syn-
chrony ∆, the following equation has to be solved in a neighbourhood of (0, 0):

fN(x, λ) = 0, (x, λ) ∈ ∆× R .
Assume ∆ is (isomorphic to) Rn. Denote by ∆1 the µ-maximal synchrony subspace

and let v1, v2 ∈ ker(JNf
2
) and v∗1, v

∗
2 ∈ (range(JNf

2
))⊥ such that v∗1, v1 ∈ ∆1, J

N
f v2 =

v1, ⟨v∗1, v1⟩ = 1, ⟨v∗2, v2⟩ = 1 and ⟨v∗1, v∗2⟩ = 0. Note that v∗2⊥∆1 and we have the
following splits of Rn:

Rn = ker(JNf
2
)⊕ range(JNf

2
), Rn = (range(JNf

2
))⊥ ⊕ range(JNf

2
).

Applying the Lyapunov-Schmidt Reduction Method [14] to fN = 0, we obtain
a function g : R2 × R → R2 such that the solutions of g = 0 are in one-to-one
correspondence with the solutions of f = 0. Note that g2(x1, 0, λ) = 0 and

∂g1
∂λ

=
∂g2
∂λ

=
∂g1
∂x1

=
∂g1
∂x2

=
∂g2
∂x2

= 0
∂g1
∂x2

= 1,

∂2g1
∂λ2

=
∂2g2
∂x1∂λ

=
∂2g2
∂x21

= 0,
∂2g1
∂x1∂λ

=
∂2g2
∂x2∂λ

= µ(f0λ, f1λ, . . . , fkλ) ̸= 0,
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∂2g1
∂x2∂λ

= µ(f0λ, f1λ, . . . , fkλ)⟨v∗1, v2⟩+ 1 ̸= 0,

for a generic f .
It follows from the Lyapunov-Schmidt Reduction Method that there exists a func-

tion W : R2 × R → range(JNf
2
) such that PfN(x1v1 + x2v2 +W (x1, x2, λ), λ) = 0

where P is the projection onto range(JNf
2
) and kernel (range(JNf

2
))⊥. The first

derivatives of W are

W1 = 0, W2 = −(PJNf )−1Pv1.

We can also calculate the second derivatives of g and we obtain that

(gi)j1j2 :=
∂2gi

∂xj1∂xj2
= ⟨v∗i , d2fN(vj1 +Wj1 , vj2 +Wj2)⟩

=
k∑

p,q=0

fpq⟨v∗i , [Ap(vj1 +Wj1)] ∗ [Aq(vj2 +Wj2)]⟩,

where j1j2 = 1, 2, fpq are the second order derivative of f at the origin with respect
to the variables p+ 1 and q + 1 and Wj is the derivative of W with respect to xj at
the origin.

Since g2(x1, 0, λ) = 0, there is h2(x1, x2, λ) such that g2(x1, x2, λ) = x2h2(x1, x2, λ)
and

g2(x1, x2, λ) = 0 ⇔ x2 = 0 ∨ h2(x1, x2, λ) = 0 .

In the first case, x2 = 0, we are looking for bifurcation branches in the synchrony
subspace ∆1. By Theorem 3.1, there exists a bifurcation branch of steady-state
solutions with synchrony ∆1. We are now interested in solving h2(x1, x2, λ) = 0
providing a bifurcation branch of steady-state solutions having synchrony ∆ but
which are not ∆1-synchronous.

In the second case, in order to solve equation h2(x1, x2, λ) = 0, we use condition
(3.8) which implies that (g2)22 ̸= 0 for f generic. It follows from the Implicit Function
Theorem that there exists β : R × R → R such that x2 = β(x1, λ) is the unique
solution of h2(x1, x2, λ) = 0 in a neighbourhood of the origin. The derivative of β
with respect to λ at the origin is:

βλ =
∂β

∂λ
= −(g2)2λ

(g2)22
̸= 0 .

Replacing x2 by β in the function h2 of equation h2(x1, x2, λ) = 0, we obtain the
function

h1(x1, λ) = g1(x1, β(x1, λ), λ)
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which has the following nonnull derivative at the origin:

∂h1
∂λ

= βλ ̸= 0.

Again by the Implicit Function Theorem, there exists a continuous function Λ : R →
R such that

h1(x1,Λ(x1)) = 0.

Therefore

fN(x1v1 + β(x1,Λ(x1))v2 +W (x1, β(x1,Λ(x1)),Λ(x1)),Λ(x1)) = 0.

Since the function f is generic, the origin is an isolated zero of the function f at
λ = 0. Thus the function Λ is not constant and we can write, at least part of, the
graph (x1,Λ(x1)) ⊂ R2 as a graph of a function in λ. We obtain so a nontrivial
bifurcation branch of steady-state solutions of fN with synchrony ∆. □

Remark 3.11. The previous proof also holds even if the synchrony subspace is µ-
maximal instead of µ-submaximal. Specifically, if the synchrony subspace ∆ in
Theorem 3.10 is µ-maximal instead of µ-submaximal, we can still find a solution
of g = 0 with x2 = 0 and this solution leads to a non-trivial bifurcation branch of
steady-state solutions of fN with synchrony ∆, since ∆ is maximal. 3

4. Steady-state bifurcations for three-cell networks with
asymmetric inputs

In this section we address three-cell networks with any number of asymmetric
inputs. We obtain the network eigenvalues and lattices of synchrony subspaces which
combined with the results of the previous section derive the possible codimension-
one steady-state for three-cell networks with asymmetric inputs and corresponding
bifurcation diagrams.

4.1. Eigenvalue structure. Let N be a three-cell network with asymmetric inputs
and fN an admissible coupled cell system for N . Recalling (2.4), we have that the
Jacobian matrix of fN at the origin is a 3 × 3 matrix determined by the adjacency
matrices of N and the first derivatives of f at the origin. It follows, in particular,
that the Jacobian matrix has constant row-sum, say υ, which is an eigenvalue of
such matrix and (1, 1, 1) is a corresponding eigenvector. For completeness, we collect
in Proposition 4.1 the possible eigenvalue structures of a general 3 × 3 matrix with
constant row sum.
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Proposition 4.1. Let A be a 3 × 3 matrix with real entries and constant row-sum
υ ̸= 0. Suppose that

(4.9) A =

 a b υ − a− b
c d υ − c− d
e f υ − e− f

 .

and denote by α0 = det(A)/υ and α1 = tr(A)− υ. Table 1 lists the possible cases for
the eigenvalue structure of the matrix A.

Proof. Suppose A is given by (4.9). As (1, 1, 1) is an eigenvector of A associated
with the eigenvalue λ1 = υ, taking the non-singular matrix P and the 2× 2 matrix
S given by

P =

 1 0 1
0 1 1
0 0 1

 , S =

[
a− e b− f
c− e d− f

]
,

we have that

P−1AP =

[
S 02,1
e f υ

]
.

Thus α0 = det(S) = det(A)/υ, α1 = tr(S) = tr(A) − υ and the characteristic
polynomial of A is given by pA(λ) = |A− λId3| = −(λ− υ)(λ2 − α1λ+ α0). Denote
by ma(υ) the algebraic multiplicity of the constant row-sum eigenvalue υ. We have
the following cases:
(i) ma(υ) = 3 if and only if α0 = υ2 and α1 = 2υ.
(ii) ma(υ) = 2 if and only if α1 ̸= 2υ and υ2 − α1υ + α0 = 0.
(iii) ma(υ) = 1 and there is an eigenvalue λ2 ̸= υ with algebraic multiplicity 2 if
and only if α2

1 = 4α0 and α1 ̸= 2υ. Moreover, λ2 = λ3 = α1/2 and the geometric
multiplicity of λ2 is equal to the dimension of the kernel of the matrix P−1AP −
α1/2Id3. Trivially, the dimension of the kernel of the matrix P−1AP − α1/2Id3 is
equal to the dimension of the kernel of the matrix B = 2 (S − α1/2Id2). Note that

B =

[
(a− e)− (d− f) 2(b− f)

2(c− e) (d− f)− (a− e)

]
,

and so, the dimension of ker(B) is two if and only if B = 0 if and only if b − f =
0, c− e = 0, d− f = a− e.
(iv) Finally, A has three distinct eigenvalues if and only if υ is not an eigenvalue of S
(υ2−α1υ+a0 ̸= 0, that is, υ(α1−υ) ̸= α0) and S has two distinct roots (α2

1 ̸= 4α0).
The roots of the characteristic polynomial of S are real if and only if α2

1 > 4α0. □

Remark 4.2. (i) Note that when the network has one asymmetric input, the Jacobian
matrix of fN at the origin is JNf = f0Id3 + f1A1 which has eigenvalues given by
f0 + µf1, where µ runs through the eigenvalues of the adjacency matrix A1. This is
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Eigenvalues of A Conditions Eigenvalues of A Conditions

λ1 = λ2 = λ3 = υ α0 = υ2 and α1 = 2υ λ1 = λ2 = υ, λ3 = α1 − υ ̸= υ α0 = υ(α1 − υ) and α1 ̸= 2υ

λ1 = υ, λ2 = λ3 =
α1

2
̸= υ α1 ̸= 2υ and α2

1 = 4α0 λ1 = υ, λ2 = λ3 =
α1

2
̸= υ α1 ̸= 2υ and α2

1 = 4α0

A is not diagonalizable (c− e, b− f, d− a+ e− f) ̸= (0, 0, 0) A is diagonalizable (c− e, b− f, d− a+ e− f) = (0, 0, 0)

λ1 = υ, υ ̸= λ2 ̸= λ3 ̸= υ υ(α1 − υ) ̸= α0 and α2
1 ̸= 4α0 λ1 = υ, υ ̸= λ2 ̸= λ3 ̸= υ υ(α1 − υ) ̸= α0 and α2

1 ̸= 4α0

λ2, λ3 ∈ R α2
1 > 4α0 λ2, λ3 ̸∈ R and λ2 = λ3 α2

1 < 4α0

Table 1. Eigenvalues λ1, λ2, λ3 of a 3×3 matrix A with constant row-
sum υ ̸= 0. Here, α0 = det(A)/υ, α1 = tr(A) − υ and it is followed
the notation (4.9) for the entries of the matrix A. In the top left case
ma(v) = 3, in the top right case ma(v) = 2 and in the other cases,
ma(v) = 1.

a special case of (2.4).
(ii) Among the results obtained in [7], it is remarked that the minimal network
in Figure 2 represents the unique ODE-class of minimal three-cell networks with
six asymmetric inputs. The Jacobian matrix of fN at the origin for such network
has the form JNf = f0Id3 +

∑6
i=1 fiAi, where Ai, for i = 1, . . . , 6 are the network

adjacency matrices. It also follows from [7] that the six adjacency matrices Ai plus
the 3×3 identity matrix generate the linear space of the 3×3 matrices with constant
row sum.Therefore, besides the valency eigenvalue of JNf , the other eigenvalues are
generically arbitrary and simple. Thus there exists an open set of generic functions
f where the eigenvalues of the Jacobian matrix JNf are distinct and real. 3

1 2

3

Figure 2. A representative of the minimal class of the networks with
three-cells and six asymmetric inputs.

Example 4.3. Table 2 lists, up to ODE-equivalence, the minimal connected net-
works with three-cells and one asymmetric input and the eigenvalues and eigenvectors
of the associated adjacency matrices. 3

4.2. Lattice structures. We characterize now, for the three-cell networks with
asymmetric inputs, the lattice of synchrony subspaces. Here, the bottom element is
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2D Adjacency Eigenvalues/ 2D Adjacency Eigenvalues/

Network Synchrony Matrix Eigenvectors Network Synchrony Matrix Eigenvectors
Subspaces Subspaces

A
1 2

3

-

 0 0 1

1 0 0
0 1 0

 1 (1, 1, 1)

ψ (1, ψ2, ψ)
ψ2 (1, ψ, ψ2)

F
1 2

3

∆1

∆3

 0 1 0

1 0 0
1 0 0

 1 (1, 1, 1)

−1 (−1, 1, 1)
0 (0, 0, 1)

C
1 2

3

∆1

∆2

∆3

 1 0 0

1 0 0
1 0 0

 1 (1, 1, 1)

0 (0, 1, 0)
0 (0, 0, 1)

D
1 2

3

∆3

 1 0 0

1 0 0
0 1 0

 1 (1, 1, 1)

0∗ (0, 0, 1)

Table 2. Three-cell connected networks with one asymmetric input,
up to re-enumeration of the cells. Here ψ = ei2π/3 and ∆l = {x :
xj = xk for j, k ̸= l}, where 1 ≤ l ≤ 3. Eigenvalues having algebraic
multiplicity two and geometric multiplicity one are marked with a star
∗.

the full-synchrony subspace and the top element is the network phase space. When-
ever there are synchrony subspaces with dimension two, they correspond to the
middle elements. Each lattice element is labelled with the eigenvalues of the cor-
responding quotient network. So the bottom element is labelled with the valency
eigenvalue υ.

Consider a connected network N with three-cells and asymmetric inputs, a generic
coupled cell system fN and the corresponding Jacobian JNf (at the origin). Denote
by ma(υ) the algebraic multiplicity of the eigenvalue υ corresponding to the constant
row-sum or valency of JNf . It follows from [6, Proposition 5.6] that υ is a semisimple
eigenvalue and ma(υ) is equal to the number of source components in the network.
Thus ma(υ) < 3, otherwise the network has three source components and it is dis-
connected. We have then that there exists at least one more eigenvalue which we
denote by µ. In the next result, we refer to the eigenvalues of JNf for generic f as
υ, µ in case there are only two distinct eigenvalues, and υ, µ1, µ2 in case there are
three distinct eigenvalues.

Remark 4.4. Let N be a network with n cells and µ a semisimple eigenvalue such
that Rn = ∆ ⊕ Eµ for some network synchrony subspace ∆. Given a polydiagonal
subspace ∆′ containing ∆, i.e., ∆ ⊂ ∆′, trivially, there are v1, . . . , vm ∈ Eµ such that
we have ∆′ = ∆⊕ < v1, . . . , vm >. Hence, as ∆′ is invariant for any JNf and it is a
polydiagonal, we conclude that ∆′ is also a network synchrony subspace. 3

Theorem 4.5. The possible annotated synchrony lattice structures for connected
three-cell networks with asymmetric inputs are presented in Figure 3.
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υ

υ, µ

υ, υ, µ

(a) ma(υ) = 2 and ma(µ) = 1

υ

υ, µ υ, µυ, µ

υ, µ, µ

(b) ma(υ) = 1 and mg(µ) = 2

υ

υ, µ

υ, µ∗

(c)

υ

υ, µ∗

(d)

ma(υ) = 1, ma(µ) = 2 and mg(µ) = 1

υ

υ, µ1 υ, µ2

υ, µ1, µ2

(e)

υ, µ1, µ2

υ, µ1

υ

(f)

υ

υ, µ1, µ2

(g)

ma(υ) = 1 and ma(µ1) = ma(µ2) = 1

Figure 3. Annotated synchrony lattice structures for connected
three-cell networks with asymmetric inputs where υ denotes the va-
lency eigenvalue and µ, µ1, µ2 denote the other network eigenvalues.
The defective eigenvalues are marked as µ∗.

Proof. Consider a connected network N with three-cells, a generic coupled cell sys-
tem fN and the corresponding Jacobian JNf (at the origin).
(i) Suppose that ma(υ) = 2. Then the eigenvalue µ has multiplicity one and the two
source components of the network have one cell each. Otherwise, the network will
be disconnected. Note that if i, j are the cells of the two source components then the
polydiagonal defined by the equality xi = xj is a two-dimensional network synchrony
space. Moreover, the two-cell quotient associated to that synchrony subspace with
dimension two has the eigenvalues υ and µ, because it is connected. If there were
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more than one synchrony subspaces with dimension two, then there were at least two
linear independent eigenvectors of µ. But, that is not possible, since the algebraic
multiplicity of the eigenvalue µ is one. Therefore, there is only one two-dimensional
synchrony subspace and the lattice structure must be the one in Figure 3a.
(ii) Suppose that υ and µ are the unique eigenvalues of JNf , where ma(υ) = 1 and

µ has geometric multiplicity two. Then R3 = ∆0 ⊕ Eµ and by Remark 4.4, every
polydiagonal subspace of R3 is a synchrony subspace of N . Thus the lattice structure
must be the one in Figure 3b.
(iii) Suppose that υ and µ are the unique eigenvalues, ma(υ) = 1 and µ has geomet-
ric multiplicity one. Again, we know that any synchrony subspace with dimension
two has the eigenvalues υ and µ. If there were two or more synchrony subspace
with dimension two, we would obtain at least two linear independent eigenvectors
associated with µ, a contradiction. Therefore, the lattice structure must be one of
the following two in Figures 3c-3d, where the defective eigenvalue is marked with a
star ∗.
(iv) Suppose that the network has three distinct eigenvalues, υ, µ1 and µ2, with
multiplicity one. The quotient network associated to any two dimensional synchrony
subspace has the eigenvalue υ and µi for some i = 1, 2. Since the eigenvalues µ1 and
µ2 have multiplicity one, two-dimensional synchrony subspaces can not have the same
eigenvalues. Thus we have three cases depending on the number of two-dimensional
synchrony subspaces, see Figures 3e-3g. □

4.3. Bifurcation diagrams. The results obtained in Section 3 combined with the
possible synchrony lattice structures described in Theorem 4.5 above are now ap-
plied to connected networks with three-cells and asymmetric inputs. Concretely, we
take each of the synchrony lattice structures and prove which network synchrony
subspaces support a bifurcation branch of steady-state solutions when a network
eigenvalue crosses zero. This information is collected into a bifurcation diagram.
Remarkably, we get that each of the synchrony lattice structures presented in The-
orem 4.5 has a distinct bifurcation diagram.

Theorem 4.6. Let N be a connected three-cell network with asymmetric inputs and
take its associated annotated synchrony lattice structure L which has to be one of the
seven lattice structures in Figure 3. Then the structure of the bifurcation diagram of
N is the one indicated in Figure 4 for the lattice structure L.

Proof. We start by noticing that the full synchrony subspace ∆0 is υ-simple and
υ-maximal and any two-dimensional synchrony subspace in Figure 3 is also µ-simple
and µ-maximal. Applying Theorem 3.1, we conclude that the full synchrony subspace
∆0 and any two-dimensional synchrony subspace support a bifurcation branch for a
bifurcation problem given by the condition υ = 0 and µ = 0, respectively.
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υ = 0 µ = 0

∆0

R3

∆1

(a) For networks with lattice struc-
ture Figure 3a.

υ = 0

∆0

µ = 0

∆1

∆2

∆3

(b) For networks with lattice struc-
ture Figure 3b (if Assumptions 3.2
hold).

υ = 0

∆0

µ = 0

∆1

R3

(c) For networks with lattice struc-
ture Figure 3c (if condition (3.8)
holds).

υ = 0

∆0

µ = 0

R3

(d) For networks with lattice struc-
ture Figure 3d.

υ = 0 µ1 = 0 µ2 = 0

∆0 ∆1 ∆2

(e) For networks with lattice struc-
ture Figure 3e.

υ = 0 µ1 = 0 µ2 = 0

∆0 ∆1 R3

(f) For networks with lattice struc-
ture Figure 3f.

υ = 0

∆0

(g) For networks with lattice struc-
ture Figure 3g when µ1 = µ2, µ2 are
nonreal.

υ = 0 µ1 = 0 µ2 = 0

∆0 R3 R3

(h) For networks with lattice struc-
ture Figure 3g when µ1, µ2 are real
and distinct.

Figure 4. Bifurcation diagrams displaying the synchrony of bifur-
cation branches of steady-state solutions emerging from bifurcation
problems with the mention bifurcation condition. Here, ∆0 denotes
the full-synchrony subspace and ∆1, ∆2, ∆3 denote two-dimensional
synchrony subspaces. Also, υ is the valency eigenvalue, and µ, µ1, µ2

are other network eigenvalues.
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If a synchrony space ∆ is µ-simple and µ-submaximal, then there is no bifurcation
branch with synchrony ∆ for any generic f ∈ Vµ(N), as the dimension of the center
subspace does not increase from the µ-maximal subspace.
(i) For the lattice in Figure 3a, we see that there is one two-dimensional synchrony
space and that the space R3 is valency synchrony-breaking. By Proposition 3.9,
the network phase space R3 supports a bifurcation branch for bifurcation problems
given by condition υ = 0. Thus bifurcation problems given by the valency have a
bifurcation branch with synchrony ∆0 and another with synchrony R3. In [6], it
is proven that there are two bifurcation branches with synchrony R3. However we
are only interested in the synchrony of the branches and we only draw one branch
with synchrony R3 in the diagram. For the second condition µ = 0, we know that
the two-dimensional synchrony space supports a bifurcation branch for a bifurcation
problem given by that condition. This means that there are two and one types of
synchrony emerging for bifurcation problems given by the condition υ = 0 and µ = 0,
respectively. Hence the diagram bifurcation is given in Figure 4a.
(ii) For the lattice structure in Figure 3b, there are three two-dimensional synchrony
spaces, and the space R3 is µ-semisimple with multiplicity 2 and µ-submaximal with
order 3. Note that 22 − 1 = 3 and so Theorem 3.3 can be applied to R3. If the
Assumptions 3.2 hold, we conclude that R3 does not support a bifurcation branch.
Since the two-dimensional synchrony spaces support a bifurcation branch, we have
bifurcation branches with synchronies ∆1, ∆2 and ∆3 for bifurcation problems given
by the condition µ = 0. Moreover, a bifurcation problem given by the valency,
that is, υ = 0, has a bifurcation branch with synchrony ∆0. Thus, there are three
(resp. one) types of synchrony branches of steady-state solutions emerging when the
bifurcation condition imposed is µ = 0 (resp. υ = 0) and the bifurcation diagram is
given in Figure 4b.
(iii) Taking now the lattice structure in Figure 3c, there is one two-dimensional
synchrony space, and the space R3 is µ-defective with multiplicity (1, 2) and µ-
submaximal with order 1. Assuming that condition (3.8) holds, from Theorem 3.10
it follows that R3 supports a bifurcation branch of steady-state solutions under the
bifurcation condition µ = 0. As the two-dimensional synchrony spaces also support
a bifurcation branch of steady-state solutions under the bifurcation condition µ = 0,
we have that there are two types of synchrony branches of steady-state solutions
emerging when µ = 0. Under the valency bifurcation condition υ = 0, there is
a bifurcation branch of steady-state solutions with synchrony ∆0 and the diagram
bifurcation is so given in Figure 4c.
(iv) We consider now the synchrony lattice structure given in Figure 3d, where there is
no two-dimensional synchrony space, and the space R3 is µ-defective with multiplicity
(1, 2) and µ-maximal. It follows from Remark 3.11 that the space R3 supports a
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bifurcation branch of steady-state solutions under the bifurcation condition µ =
0. Moreover, ∆0 supports a bifurcation branch of steady-state solutions under the
bifurcation condition υ = 0. See the bifurcation diagram in Figure 4d.
(v) In the synchrony lattice structure of Figure 3e, there are two two-dimensional
synchrony spaces, ∆1 which is µ1-simple and µ1-maximal and ∆2 which is µ2-simple
and µ2-maximal and the space R3 is simple and submaximal. Thus ∆0, ∆1 and
∆2 support a bifurcation branch for bifurcation problems given by the conditions
υ = 0, µ1 = 0 and µ2 = 0, respectively. Moreover, the space R3 does not support a
bifurcation branch. We obtain the bifurcation diagram in Figure 4e.
(vi) In the synchrony lattice structure of Figure 3f, the two-dimensional synchrony
space ∆1 is µ1-simple and µ1-maximal and the space R3 is µ2-simple and µ2-maximal.
Hence, from Theorem 3.1 applied to the synchrony spaces ∆0, ∆1 and R3, each
synchrony space supports a bifurcation branch of steady-state solutions under the
corresponding bifurcation condition and the bifurcation diagram is given in Figure 4f.
(vii) Last, we study the annotated lattice given in Figure 3g. In this case, the network
eigenvalues can be complex conjugated and this leads to two different bifurcation
diagrams. If the network eigenvalues µ1 and µ2 are conjugate complex numbers,
µ1 = µ2, then only the full synchrony subspace ∆0 supports a bifurcation branch of
steady-state solutions under bifurcation condition υ = 0 and we get the bifurcation
diagram in Figure 4g. If the µ1 and µ2 are real and distinct, then the space R3 is
µ1-simple and µ1-maximal and it is also µ2-simple and µ2-maximal. Now, we can
apply Theorem 3.1 to R3 for the two bifurcation conditions µ1 = 0 and µ2 = 0. Thus
the space R3 supports a bifurcation branch for bifurcation problems given by µ1 = 0
and µ2 = 0 and the diagram bifurcation is given in Figure 4h. □

Figure 4 does not display the stability neither the number of branches.

5. Case study: three-cell networks with one, two or six asymmetric
inputs

The minimal connected three-cell networks with one, two and six asymmetric
inputs are enumerated, up to ODE-equivalence, in [7]. Moreover, it is proved that
any three-cell network with k-asymmetric inputs , k ∈ N, is ODE-equivalent to a
minimal three-cell network with at most six asymmetric inputs. In this section, for
each such three-cell connected network, we study which synchrony subspaces support
a synchrony-breaking bifurcation branch of steady-state solutions.

We start by recalling the classification given in [7] of the minimal connected three-
cell networks with one, two and six asymmetric inputs.

Theorem 5.1 ([7]). There are exactly:
(i) Four ODE-classes of connected three-cell networks with one asymmetric input,
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E6&B1

1 2

3

B1&F2
1 2

3

C1&A2
1 2

3

A2&A1
1 2

3

B1&B3
1 2

3

Table 3. Minimal three-cell networks with two asymmetric inputs
and no 2D synchrony subspaces.

see the minimal representatives in Table 2.
(ii) Forty eight ODE-classes of connected three-cell networks with two asymmetric
inputs, see the minimal representatives in Tables 3-8. The networks in Tables 3-
4 have no two-dimensional synchrony subspaces; the networks in Tables 5-6 have
exactly one two-dimensional synchrony subspace; the networks in Table 7 have exactly
two two-dimensional synchrony subspaces; the network in Table 8 has three two-
dimensional synchrony subspaces.
(iii) One ODE-class of connected three-cell networks with six asymmetric inputs, with
minimal representative in Figure 2 and it has no two-dimensional synchrony spaces.

Table 2 includes the two-dimensional synchrony subspaces of each connected three-
cell network with one asymmetric input in Table 2.

For each three-cell connected network described in Theorem 5.1, in order to investi-
gate which synchrony subspaces support a synchrony-breaking bifurcation branch of
steady-state solutions, the strategy is the following. First, we use Proposition 4.1 to
see when the network eigenvalues are simple, semisimple or defective, and conjugate
complex numbers or not. Combining this study about network eigenvalues and the
number of two-dimensional network synchrony subspaces given in Theorem 5.1, we
list the annotated network synchrony lattices. Finally, we use the results obtained in
Section 3 to determine which synchrony subspaces support a synchrony-breaking bi-
furcation branch of steady-state solutions, assuming a codimension-one steady-state
bifurcation occurs determined by a degeneracy condition of the network Jacobian
matrix at the origin. In this last part, we remark that for three-cell networks with
the synchrony lattice structure in Figure 3b and corresponding bifurcation diagram
given in Figure 3b, Assumptions 3.2 have to be verified. For three-cell networks
with the synchrony lattice structure given in Figure 3c and corresponding bifurca-
tion diagram in Figure 4c, condition (3.8) has to be verified. Table 9 aggregates the
information obtained in the previous steps and the results of this section which are
obtained by explicit calculation for each network.
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D1&F3
1 2

3

D1&D6
1 2

3

D1&F6
1 2

3

D1&A1
1 2

3

D1&D2

1 2

3

D1&D5
1 2

3

D1&B1

1 2

3

D1&B2
1 2

3

D1&E4

1 2

3

E6&A2
1 2

3

B1&A2
1 2

3

F1&A2
1 2

3

D1&A2
1 2

3

F1&A1
1 2

3

Table 4. Minimal three-cell networks with two asymmetric inputs
and no 2D synchrony subspaces.

D1&E1

1 2

3

D1&F1
1 2

3

D1&F2
1 2

3

D1&B3
1 2

3

C1&B1

1 2

3

D1&F4
1 2

3

C1&B3
1 2

3

E6&F3
1 2

3

D1&E6

1 2

3

E6&F6
1 2

3

E6&F4
1 2

3

B1&F1
1 2

3

F1&F2
1 2

3

F1&F3
1 2

3

F1&F6
1 2

3

D1&F5
1 2

3

Table 5. Minimal three-cell networks with two asymmetric inputs
and one 2D synchrony subspace.

Theorem 5.2. Consider the three-cell networks listed in Theorem 5.1. For each
such network N take coupled cell systems fN where f is generic and consider the
corresponding Jacobian matrix JNf at the origin. We have the following:

(i) For the network E6&E4 in Table 6, JNf has the valency eigenvalue with algebraic
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E6&E4

1 2

3

C1&D1

1 2

3

C1&D4
1 2

3

C1&D6
1 2

3

D1&D4
1 2

3

Table 6. Minimal three-cell networks with two asymmetric inputs
and one 2D synchrony subspace.

C1&E6

1 2

3

C1&E3

1 2

3

C1&F1
1 2

3

C1&F2
1 2

3

C1&F3
1 2

3

E6&F5
1 2

3

F1&F4
1 2

3

Table 7. Minimal three-cell networks with two asymmetric inputs
and two 2D synchrony subspaces.

C1&C2
1 2

3

Table 8. Minimal three-cell network with two asymmetric inputs and
three 2D synchrony subspaces.

and geometric multiplicities 2 and the eigenvalue f0 with multiplicity 1.
(ii) For the network C in Table 2 and the network C1&C2 in Table 8, JNf has the
valency eigenvalue with multiplicity 1 and the eigenvalue f0 with algebraic and geo-
metric multiplicities 2.
(iii) For the network D in Table 2 and networks C1&D1, C1&D4, C1&D6, D1&D4

in Table 6, JNf has the valency eigenvalue with multiplicity 1 and the eigenvalue f0
with algebraic multiplicity 2 and geometric multiplicity 1.
(iv) For the network F in Table 2, the networks in Tables 5 and 7 and networks
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E6&B1, B1&F2, B1&B3 in Table 3, JNf has three distinct real eigenvalues with mul-
tiplicity 1.
(v) For the networks in Table 4 and the network in Figure 2, JNf has three distinct
real eigenvalues with multiplicity 1 on a open set of the generic functions.
(vi) For the network A in Table 2 and networks C1&A2, A2&A1 in Table 3, JNf has
three distinct eigenvalues with multiplicity 1 where the two eigenvalues different from
the valency have nonzero imaginary parts.

Proof. The proof of this result goes through the direct application of Proposition 4.1
to the networks with three-cells listed in Theorem 5.1, obtaining the fourth column
in Table 9. We present details of that in some illustrative examples. Recall the
notation of Proposition 4.1.
(i) Consider the network N1 = E6&E4 in Table 6 and f : R3 → R generic. We have
that

υ = f0 + f1 + f2, α0 = f0(f0 + f1 + f2), α1 = 2f0 + f1 + f2 .

Now α0 = υ2 if and only if f1 + f2 = 0. Assuming the non-degeneracy condition
f1 + f2 ̸= 0, it follows from Proposition 4.1 that the eigenvalue f0 + f1 + f2 has
algebraic multiplicity lower that 3. Note that υ(α1 − υ) = α0 for every f . Thus the
eigenvalue f0+f1+f2 has algebraic multiplicity 2 and the eigenvalue f0 has algebraic
multiplicity 1, for f generic.
(ii) Consider the network N2 = C1&C2 in Table 8 and f : R3 → R generic and
assume the non-degenerated conditions α1 ̸= 2υ and υ(α1 − υ) ̸= α0. Like in the
previous example, we have that α2

1 = 4α0 for every f . However, in this case, we
also have that c − e = b − f = d − a + e − f = 0 for every f . It follows from
Proposition 4.1 that JN2

f has the eigenvalue f0 + f1 + f2 with algebraic multiplicity
1 and the eigenvalue f0 with algebraic and geometric multiplicity 2.
(iii) Consider the network N3 = C1&D1 in Table 6 and f : R3 → R generic. We have
that

υ = f0 + f1 + f2, α0 = f 2
0 , α1 = 2f0 .

In this case, α1 = 2υ if and only if f1 + f2 = 0. Also, α0 = υ(α1 − υ) if and only
if f1 + f2 = 0. This condition is degenerated and we can take the corresponding
inequality to obtain a non-degeneracy condition satisfied by any generic function f .
By Proposition 4.1, we know that the eigenvalue f0+f1+f2 has algebraic multiplicity
1. Note that α2

1 = 4α0, for any f . Using the notation of Proposition 4.1, we have
that c−e = 0 if and only if f2 = 0; also, b−f = 0 if and only if f2 = 0. For a generic
function f , assume that f2 ̸= 0. We obtain so that f0 is an eigenvalue of JN3

f with
algebraic multiplicity 2 and geometric multiplicity 1 for f generic.
(iv) Consider the network N4 = E6&B1 in Table 3 and f : R3 → R satisfying the
non-degeneracy conditions υ(α1 − υ) ̸= α0 and α2

1 ̸= 4α0. By Proposition 4.1, the
Jacobian matrix has 3 distinct eigenvalues with algebraic multiplicity 1 for f generic.
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Note that α2
1−4α0 = f 2

1 +4f 2
2 > 0 for any f satisfying the non-degeneracy condition

above. Thus the eigenvalues are real, for every f generic.
(v) Consider the network N5 = D1&D2 in Table 4 and f : R3 → R satisfying the non-
degenerated conditions υ(α1 − υ) ̸= α0 and α2

1 ̸= 4α0. Again using Proposition 4.1,
the Jacobian matrix has 3 distinct eigenvalues with algebraic multiplicity 1 for f
generic. Note that α2

1 − 4α0 = 4f1f2 − 8f 2
1 can be positive or negative for distinct

open regions of functions. The three eigenvalues are real for any generic function f
in the open set given by f1f2 − 2f 2

1 > 0.
(vi) Consider the network N6 = C1&A2 in Table 3 and f : R3 → R satisfying the
non-degeneracy conditions υ(α1 − υ) ̸= α0 and α2

1 ̸= 4α0. By Proposition 4.1, the
Jacobian matrix has 3 distinct eigenvalues with algebraic multiplicity 1. Note that
α2
1 − 4α0 = −3f 2

2 < 0 for every f satisfying the above non-degeneracy condition.
Thus the two eigenvalues different of f1 + f2 + f3 are conjugate complex numbers
with imaginary part different from 0. □

Remark 5.3. Among the three-cell networks in Table 2, Tables 3-8 and Figure 2,
presented in Theorem 5.1, taking a coupled cell system fN where f is generic and
the corresponding Jacobian JNf at the origin, we have that:

(i) JNf is semisimple, except for the networks in Theorem 5.2 (iii);

(ii) JNf has always a pair of conjugate complex eigenvalues with nonzero imaginary
part for the networks in Theorem 5.2 (vi). It has a pair of conjugate complex eigen-
values with nonzero imaginary part in a region of the functions f for the networks in
Theorem 5.2 (v). In this work we focus on steady-state bifurcations and we do not
address the cases where the eigenvalues are conjugate complex numbers. We point
out that in those cases, Hopf bifurcation can occur. 3

Combining Theorems 5.1-5.2 and Theorem 4.5, we have the following classification
on the networks annotated synchrony lattices:

Theorem 5.4. The annotated synchrony lattice structures for the three-cell networks
listed in Theorem 5.1 are presented in the fifth column of Table 9.

Proof. For completeness, we illustrate how Theorems 5.1-5.2 determine the networks
annotated synchrony lattices for some of the networks listed in Theorem 5.1.
(i) The Jacobian matrix for the network N1 = E6&E4 in Table 6 has the valency
eigenvalue f0 + f1 + f2 with algebraic multiplicity 2 and the eigenvalue f0 with
algebraic multiplicity 1, for f generic. Since the network N1 has one two-dimensional
synchrony subspace, we know that the annotated lattice of N1 is given in Figure 3a.
(ii) The Jacobian matrix for the network N2 = C1&C2 in Table 8, has the valency
eigenvalue f0 + f1 + f2 with algebraic multiplicity 1 and the eigenvalue f0 with
algebraic and geometric multiplicity 2. We also know that the network N2 has three
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Network Table # 2D Network Annotated Bifurcation
eigenvalues lattice diagram

E6&E4 6 1 υ, υ, µ Figure 3a Figure 4a
C1&C2 8 3 υ, µ, µ Figure 3b Figure 4b
C 2

C1&D1, C1&D4 6
C1&D6, D1&D4 6 1 υ, µ∗ Figure 3c Figure 4c

D 2
C1&A2, A2&A1 3 0 υ, µ1, µ2 Figure 3g Figure 4g

A 2 µ1 = µ2

E6&B1, B1&F2 3
B1&B3 3 0 υ, µ1, µ2 Figure 3g Figure 4h
Figure 2 µ1 ̸= µ2

All 4 0 υ, µ1, µ2 Figure 3g Figure 4g or 4h
All 5 1 υ, µ1, µ2 Figure 3f Figure 4f

µ1 ̸= µ2

All 7 2 υ, µ1, µ2 Figure 3e Figure 4e
F 2 µ1 ̸= µ2

Table 9. This table aggregates the results obtained for the networks
listed in Theorem 5.1. The third column, # 2D, corresponds to the
number of two-dimensional synchrony subspaces for the corresponding
network. The fourth column displays the network eigenvalues as ob-
tained in Theorem 5.2. The valency eigenvalue is denoted by υ and
other network eigenvalues are denoted by µ or µ1, µ2. Defective net-
work eigenvalues with algebraic multiplicity two and geometry mul-
tiplicity one are marked with a star. There is also information on
whether the eigenvalues µ1, µ2 are conjugate complex numbers or not.
The fifth column corresponds to the annotated synchrony lattices as
given in Theorem 5.4 and the last column displays the bifurcation di-
agram.

two-dimensional synchrony subspaces and its lattice is given in Figure 3b.
(iii) The Jacobian matrix for the network N3 = C1&D1 in Table 6 has the valency
eigenvalue f0 + f1 + f2 with algebraic multiplicity 1 and the eigenvalue f0 with
algebraic multiplicity 2 and geometric multiplicity 1, for f generic. Moreover, the
network N3 has one two-dimensional synchrony subspace and its lattice is given in
Figure 3c.
(iv) The Jacobian matrix for the network N4 = E6&B1 in Table 3 has 3 distinct
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eigenvalues with algebraic multiplicity 1, for f generic. The network N4 has no two-
dimensional synchrony subspace and its annotated lattice is given in Figure 3g.
(v) The Jacobian matrix for the network N5 = D1&E1 in Table 5, has 3 distinct
eigenvalues with algebraic multiplicity 1, for f generic. And the network N5 has
one two-dimensional synchrony subspace. Thus its annotated lattice is given in
Figure 3f.
(vi) The Jacobian matrix for the network N6 = C1&E6 in Table 7 has 3 distinct
eigenvalues with algebraic multiplicity 1, for f generic. Moreover, the network N6

has two two-dimensional synchrony subspace. Thus its annotated lattice is given in
Figure 3e. □

Remark 5.5. From the possible lattice structures presented in Theorem 4.5 for con-
nected three-cell networks with asymmetric inputs, we have:
(i) Only the lattice structure in Figure 3d does not appear when we restrict to net-
works with one or two asymmetric inputs.
(ii) The lattice structures of Figures 3a and 3f occur for connected three-cell net-
works with two asymmetric inputs but not for connected three-cell networks with
one asymmetric input. 3

Finally, we classify which synchrony subspaces support a steady-state bifurcation
branch for generic bifurcation problems on coupled cell systems of the three-cell
networks given in Theorem 5.1. This classification appears at the sixth column of
Table 9.

Theorem 5.6. For the networks given in Theorem 5.1, we have that every syn-
chrony subspace supports a bifurcation branch of steady-state solutions, for generic
bifurcation problems on coupled cell systems respecting the appropriate bifurcation
condition, except for the network phase space R3 in the case of all the networks in
Tables 4, 7-8, the networks C1&A2, A2&A1 in Table 3, networks A, C, F in Table 2
and the network in Figure 2. However, for each of the networks in Table 4 and the
network in Figure 2, there exists an open set of generic bifurcation problems, on cou-
pled cell systems respecting the appropriate bifurcation condition, where the network
phase space R3 supports a bifurcation branch. The sixth column of Table 9 contains
the bifurcation diagrams for the networks given in Theorem 5.1.

Proof. The proof of Theorem 5.6 follows as in the proof of Theorem 4.6, where
the bifurcation diagram is obtained for each possible annotated synchrony lattice
structure taking every connected three-cell network given in Theorem 4.5. We include
an illustrative example for each case studied in the proof of Theorem 4.6 except
case (iv), since the networks given in Theorem 5.1 do not have the synchrony lattice
structure given in Figure 3d. If a particular network has the lattice given by Figure 3b
or Figure 3c, then we need to check Assumptions 3.2 or condition (3.8), respectively.
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More specifically, for the examples illustrating cases (ii) and (iii) in the proof of
Theorem 4.6, we provide non-degeneracy conditions associated with Assumptions 3.2
and condition (3.8), respectively.
(i) The network N1 = E6&E4 in Table 6 has the annotated lattice given in Figure 3a.
The Jacobian matrix at the origin JN1

f has the eigenvalue υ = f0 + f1 + f2 with
algebraic multiplicity 2 and the simple eigenvalue µ = f0. So there are two steady-
state bifurcation conditions υ = 0 and µ = 0. For the first condition, υ = 0, we
consider f ∈ Vυ(N1). The synchrony subspace ∆0 is υ-simple and υ-maximal, the
two-dimensional synchrony subspace ∆1 is υ-simple and υ-submaximal and R3 is
valency synchrony-breaking. It follows from Theorem 3.1 and Proposition 3.9 that
there are bifurcation branches of fN1 with the synchrony ∆0 and R3. Since ∆1 is
υ-simple and υ-submaximal, we know that the bifurcation problem in ∆1 is reduced
to a bifurcation problem in ∆0. Thus there is no bifurcation branches of fN1 with
synchrony exactly equal to ∆1. Figure 4a displays the two synchrony subspaces that
support a bifurcation branch at υ = 0. For the second condition, µ = 0, we consider
f ∈ Vµ(N1). As ∆0 does not have the eigenvalue µ, the synchrony space ∆1 is µ-
simple and µ-maximal and R3 is µ-simple and µ-submaximal. Using Theorem 3.1,
we see that there is a bifurcation branch of fN1 with the synchrony ∆1. Moreover,
we also know that there is no bifurcation branch of fN1 with synchrony exactly equal
to ∆0 or R3. Figure 4a displays that ∆1 supports a bifurcation branch at µ = 0 and
the bifurcation diagram for N1 is given by Figure 4a.
(ii) Consider the network N2 = C1&C2 in Table 8. The lattice of N2 is given in
Figure 3b and JN2

f has the eigenvalue υ = f0 + f1 + f2 with algebraic multiplicity
1 and the eigenvalue µ = f0 with algebraic and geometric multiplicity 2. Thus
there are two steady-state bifurcation conditions υ = 0 and µ = 0, and there are
three two-dimensional synchrony subspaces ∆1, ∆2 and ∆3. For the first condition,
υ = 0, we consider f ∈ Vυ(N2). The synchrony subspace ∆0 is υ-simple and υ-
maximal, and ∆1, ∆2, ∆3 and R3 are υ-simple and υ-submaximal. Thus there is a
bifurcation branch of fN2 with the synchrony ∆0 and no bifurcation branches of fN2

with synchrony exactly equal to ∆1, ∆2, ∆3 or R3. Hence the bifurcation diagram at
υ = 0 is given in Figure 4b. For the second condition, µ = 0, we consider f ∈ Vµ(N2).
There is no bifurcation branch of fN2 with synchrony exactly equal to ∆0, since µ is
not an eigenvalue in ∆0. The synchrony subspaces ∆1, ∆2 and ∆3 are µ-simple and
µ-maximal and we apply Theorem 3.1 to each two-dimensional synchrony subspace.
So, there are bifurcation branches of fN2 with the synchronies ∆1, ∆2 and ∆3. The
network phase space R3 is µ-semisimple with multiplicity 2 and µ-submaximal with
order 3. Using Theorem 3.3, we can conclude that R3 does not support a bifurcation
branch. We need to check that the conditions in Theorem 3.3 are satisfied. The
µ-maximal synchrony subspaces ∆1, ∆2 and ∆3 are 2-determined (see Remark 5.7).
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Next, we obtain explicit non-degeneracy conditions on the function f such that it
satisfies Assumptions 3.2. Using the notation used in the proof of Theorem 3.3, set

v1 = (0, 0, 1), v2 = (−f2, f1, f1), v∗1 = (0,−1, 1), v∗2 =
1

f1 + f2
(−1, 1, 0).

Following the proof of Theorem 3.3, the reduced function g of fN2 given by the
Lyapunov-Schmidt Reduction has the following second-order Taylor expansion:

h(x1, x2, λ) =

(
h1(x1, x2, λ)
h2(x1, x2, λ)

)
=

(
f0λλx1 +

f00
2
x21 + (f00f1 − f01f2 + f02f1)x1x2

f0λλx2 +
f00(f1−f2)−2f01f2+2f02f1

2
x22

)
.

Consider the following non-degeneracy conditions:

f0λ ̸= 0, f00 ̸= 0, f1 + f2 ̸= 0, f1 − f2 ̸= 0,

f00(f1 − f2)− 2f01f2 + 2f02f1 ̸= 0 .

Under these conditions, Assumptions 3.2 hold and there is no bifurcation branch of
fN2 with synchrony exactly equal to R3. Thus Figure 4b is the bifurcation diagram
of N2.
(iii) Consider the network N3 = C1&D1 in Table 6 with lattice given in Figure 3c.
We know that υ = f0 + f1 + f2 is an eigenvalue of JN3

f with algebraic multiplicity 1

and that µ = f0 is an eigenvalue of JN3
f with algebraic multiplicity 2 and geometric

multiplicity 1 for f generic. As the previous case, we know that there is a bifurcation
branch of fN2 with synchrony ∆0 when f ∈ Vυ(N3) and no bifurcation branches
exactly with synchrony ∆1 or R3. For the bifurcation condition µ = 0, we consider
f ∈ Vµ(N3). There is no bifurcation branch of fN3 with synchrony exactly equal to
∆0 and there is a bifurcation branch of fN3 with synchrony ∆1. The network phase
space R3 is µ-defective with multiplicity (1, 2) and µ-submaximal with order 1 and
we will use Theorem 3.10 to prove that there is a bifurcation branch of fN3 with
synchrony R3. In order to apply Theorem 3.10, we need to check if condition (3.8)
holds. Following the proof of Theorem 3.10, we set

v1 = (0, 0, 1), v2 = (0, 1/f2, 0), v∗1 = (−1/2,−1/2, 1), v∗2 = (−f2, f2, 0).
The networkN3 satisfies condition (3.8) for p = q = 0, if the following non-degeneracy
condition holds

< v∗2, [v2 − (PJN3
f )(−1)Pv1] ∗ [v2 − (PJN3

f )(−1)Pv1] >=
3f 2

1 + 4f1f2 + f 2
2

3f2(f1 + f2)2
̸= 0,

where P is the projection into Im(JN3
f )2 = ∆0. Therefore, by Theorem 3.10, there is

a bifurcation branch with synchrony R3 for every generic f ∈ Vυ(N). The bifurcation
diagram has so two branches of steady-state solutions with synchrony ∆1 and R3 at
µ = 0 and the bifurcation diagram of N3 is given in Figure 4c.
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(iv) Consider the networkN4 = C1&E6 in Table 7 with lattice given in Figure 3e. The
Jacobian matrix JN4

f has the following three simple eigenvalues: υ = f0 + f1 + f2,
µ1 = f0 + f2 and µ2 = f0. The full-synchrony subspace ∆0 is υ-simple and υ-
maximal. Note also that one of the two-dimensional synchrony spaces ∆1 is µ1-
simple and µ1-maximal and the other ∆2 is µ2-simple and µ2-maximal. As before,
there is bifurcation branch with synchrony ∆0, ∆1 or ∆2 for bifurcation problems
given by the condition υ = 0, µ1 = 0 or µ2 = 0, respectively. In this case, R3 is
µ-simple and µ-submaximal, for any network eigenvalue, υ, µ1 or µ2. Independently
of the bifurcation condition, R3 does not support a bifurcation branch. Then the
bifurcation diagram has one branch emerging at each bifurcation condition υ = 0,
µ1 = 0 and µ2 = 0 with synchrony ∆0, ∆1 or ∆2 leading to the bifurcation diagram
given in Figure 4e.
(v) Consider the network N5 = C1&B1 in Table 5 with the lattice given in Figure 3f.
The Jacobian matrix JN5

f has the following three simple eigenvalues: υ = f0+f1+f2,
µ1 = f0+f2 and µ2 = f0−f2. Thus we need to consider three steady-state bifurcation
conditions: υ = 0, µ1 = 0 and µ2 = 0. Note that the full-synchrony subspace ∆0 is
υ-simple and υ-maximal, the two-dimensional synchrony subspace ∆1 is µ1-simple
and µ1-maximal. The space R3 is µ2-simple and µ2-maximal. The study for each
bifurcation condition is similar and we can apply Theorem 3.1. Then, we have a
bifurcation branch inside each synchrony space for bifurcation problems with the
associated bifurcation conditions and the bifurcation diagram is given in Figure 4f.
(vi) Consider the network N6 = C1&A2 in Table 3 with the lattice given in Figure 3g.
The Jacobian matrix JN6

f has the following three simple eigenvalues: υ = f0+f1+f2,

µ1 = f0 − f2
2
+ if2

√
3

2
and µ2 = f0 − f2

2
− if2

√
3

2
. Since the eigenvalues are µ1 and

µ2 are conjugate complex numbers, they do not lead to a steady-state bifurcation
condition. We need to consider only the bifurcation condition υ = 0. In this case,
we take f ∈ Vυ(N4). The full-synchrony subspace ∆0 is υ-simple and υ-maximal and
R3 is υ-simple and υ-submaximal. Thus there is exactly one bifurcation branch with
synchrony ∆0 and the bifurcation diagram is given in Figure 4g.
(vii) Consider the network N7 = E6&B1 in Table 3 with lattice given in Figure 3g.
The Jacobian matrix JN7

f has the following three simple eigenvalues: υ = f0+f1+f2,

µ1 = f0+
f1
2
+

√
f21+4f22
2

and µ2 = f0+
f1
2
−
√
f21+4f22
2

. Note that f 2
1 +4f 2

2 ≥ 0, then there
are three steady-state bifurcation conditions: υ = 0, µ1 = 0 and µ2 = 0. As before,
there exists a bifurcation branch with synchrony ∆0 for any generic f ∈ Vυ(N5). The
bifurcation diagram for the bifurcation condition υ = 0 has a branch with synchrony
∆0. The total phase space R3 is µ1-simple and µ1-maximal. Thus, there exists
a bifurcation branch of steady-state solutions with synchrony R3 for any generic
f ∈ Vµ1(N5) and the bifurcation diagram for the bifurcation condition µ1 = 0 has
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a branch with synchrony R3. The total phase space R3 is also µ2-simple and µ2-
maximal. So the bifurcation diagram at µ2 = 0 is identical to the previous case and
the bifurcation diagram at µ2 = 0 has a branch with synchrony R3. Therefore, the
bifurcation diagram for N7 is given in Figure 4h.
(viii) Consider the network N8 = D1&D2 in Table 4 with lattice given in Figure 3g.
The Jacobian matrix JN8

f has the following eigenvalues: υ = f0 + f1 + f2, µ1 =

f0 +
√
f1f2 and µ2 = f0 −

√
f1f2. Note that the eigenvalues µ1 and µ2 are real or

conjugate complex numbers if f1f2 ≥ 0 or f1f2 < 0. Moreover, the space of functions
can be divided into two disjoint regions of functions depending if there is one or
there are three steady-state bifurcation conditions. In the region given by f1f2 < 0,
the analysis is similar to the case (vi) studied above. Therefore, in this region the
bifurcation diagram for N8 is given in Figure 4g. The second region is given by
f1f2 > 0 and it is identical to the previous case (vii). Here, the bifurcation diagram
is given in Figure 4h. Thus the network N8 has two different bifurcation diagrams:
Figure 4g or Figure 4h. □

Remark 5.7. (i) The networks C1&D1, C1&D4 and C1&D6 and D1&D4 in Table 6
satisfy the conditions of Theorem 3.10 for one of their eigenvalues. The steady-state
bifurcation branches of the first three of those networks have been studied in [19]
and they correspond to the networks A, B and C, respectively, in that work.
(ii) It follows from [24, Theorem 6.7] and the considerations about determinacy given
in the proof of Theorem 3.1 that the bifurcation problems considered in Theorem 5.6
are at most 3 determined when the bifurcation condition is µ-simple. This means
that gx2 ̸= 0 or gx3 ̸= 0, where g is the reduced function obtained by the Lyapunov-
Schmidt Reduction. By explicit computation for the networks considered here, we
have that gx2 = 0 if and only if the network and the bifurcation condition is one of
the following: E6&F5 when f0 + f1 − f2 = 0, C1&B1 when f0 − f2 = 0, E6&F6 when
f0+ f1− f2 = 0, E6&F4 when f0+ f1− f2 = 0, B1&F1 when f0+ f1− f2 = 0, F1&F2

when f0 − f1 − f2 = 0, F1&F6 when f0 − f1 − f2 = 0, and F when f0 − f1 = 0.
The condition gx2 = 0 is usually associated with a Z2-symmetry of the bifurcation

problem. However, the authors of [24] noted that this is not always the case for
coupled cell systems of regular networks. That occurs, in particular, for the networks
E6&F6 and F1&F6, that we study here, where gx2 = 0, without the networks or any
of their quotient networks having Z2-symmetry. 3

6. Conclusions

This work contributes to the classification of the codimension-one steady-state
synchrony-breaking bifurcations for networks with identical cells and asymmetric
inputs. In order to achieve this goal, we start by deriving general results regarding the
codimension-one steady-state bifurcation problems from a full synchrony equilibrium
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covering connected networks with any number of identical cells and any number of
asymmetric inputs. The results take into account how the network synchrony spaces
intersect the eigenspaces of the Jacobian matrix at a full synchrony equilibrium. In
particular, they are organized by the type of the eigenvalues, i.e., simple, semisimple
or defective, and maximal or submaximal.

These bifurcation results are then applied to the class of networks of three-cells
with any number of asymmetric inputs, after we have obtained a classification of their
eigenvalues and lattices of synchrony subspaces. A direct application is the steady-
state bifurcation analysis for the three-cell quotient networks of a given network with
n > 3 cells. We then restrict to three-cell networks with one, two or six asymmetric
inputs and, for each such network, we are able to identify the synchrony subspaces
that support a synchrony-breaking bifurcation branch of steady-state solutions. We
believe that the classification obtained here also holds for the three-cell networks
with three, four and five asymmetric inputs, as the eigenvalues of the Jacobian at
the full equilibrium tend to be simple as we increase the number of inputs.
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