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Abstract. We study Hopf bifurcation with SN -symmetry for the standard absolutely
irreducible action of SN obtained from the action of SN by permutation of N coordi-
nates. Stewart (Symmetry methods in collisionless many-body problems, J. Nonlinear
Sci. 6 (1996) 543-563) obtains a classification theorem for the C-axial subgroups
of SN × S1. We use this classification to prove the existence of branches of periodic
solutions with C-axial symmetry in systems of ordinary differential equations with SN -
symmetry posed on a direct sum of two such SN -absolutely irreducible representations,
as a result of a Hopf bifurcation occurring as a real parameter is varied. We determine
the (generic) conditions on the coefficients of the fifth order SN ×S1-equivariant vector
field that describe the stability and criticality of those solution branches. We finish
this paper with an application to the cases N = 4 and N = 5.

1. Introduction

The general theory of Hopf Bifurcation with symmetry was developed by Golubit-
sky and Stewart [13] and by Golubitsky, Stewart, and Schaeffer [16]. Golubitsky and
Stewart [14] applied the theory of Hopf bifurcation with symmetry to systems of or-
dinary differential equations having the symmetries of a regular polygon (this is, with
Dn-symmetry). They studied the existence and stability of symmetry-breaking branches
of periodic solutions in such systems. Finally, they applied their results to a general sys-
tem of n nonlinear oscillators, coupled symmetrically in a ring, and describe the generic
oscillation patterns. Since the development of the theory, some examples were studied
with detail (see for example, [1],[7]-[9],[10, Chapter 5],[11],[12],[17], [19],[21],[23]).

In this paper we study one of the few classic problems in the theory of Hopf bifurcation
with symmetry that has not been completely investigated: Hopf bifurcation with SN -
symmetry. This problem is relevant to, for example, the behaviour of all-to-all coupled
nonlinear oscillators. See for example the group theoretic work done by Aronson et
al. [2] on period doubling with SN -symmetry and its application to coupled arrays of
Josephson junctions; and the work of Ashwin and Swift [4] on the analysis of networks
of identical dissipative oscillators weakly coupled.

The basic existence theorem for Hopf bifurcation in the symmetric case is the Equi-
variant Hopf Theorem, which involves C-axial isotropy subgroups of SN × S1 (in this
case), this is, isotropy subgroups with two-dimensional fixed-point subspace. Stewart [22]
obtains a classification theorem for C-axial subgroups of SN × S1. We use this classifi-
cation and the Equivariant Hopf Theorem to prove the existence of branches of periodic
solutions in systems of ordinary differential equations with SN -symmetry taking the re-
striction of the standard action of SN on CN onto a SN -simple space. Moreover, we
determine (generic) conditions on the coefficients of the fifth order SN × S1-equivariant
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vector field that describe the stability of the different types of bifurcating periodic solu-
tions.

Consider the natural action of SN on CN where σ ∈ SN acts by permutation of
coordinates:

(1) σ(z1, . . . , zN) =
(
zσ−1(1), . . . , zσ−1(N)

)

where (z1, . . . , zN) ∈ CN . Observe the following decomposition of CN into invariant
subspaces for this action:

CN ∼= CN,0 ⊕ V1

where

CN,0 = {(z1, . . . , zN) ∈ CN : z1 + · · ·+ zN = 0}
and

V1 = {(z, . . . , z) : z ∈ C} ∼= C.

The action of SN on V1 is trivial and the space CN,0 is SN -simple:

CN,0 ∼= RN,0 ⊕RN,0

where SN acts absolutely irreducibly on

RN,0 = {(x1, . . . , xN) ∈ RN : x1 + · · ·+ xN = 0} ∼= RN−1.

We say that a representation of a group Γ on a vector space V is absolutely irreducible,
or the space V is said to be absolutely irreducible, if the only linear mappings on V that
commute with Γ are the scalar multiples of the identity.

If we have a local Γ-equivariant Hopf bifurcation problem, generically the centre sub-
space at the Hopf bifurcation point is Γ-simple (see [16, Proposition XVI 1.4]). We make
that assumption here. Thus we consider a general SN -equivariant system of ordinary
differential equations (ODEs)

(2)
dz

dt
= f(z, λ),

where z ∈ CN,0, λ ∈ R is the bifurcation parameter and f : CN,0 × R → CN,0 is
smooth and commutes with the restriction of the natural action (1) of SN on CN to the
SN -simple space CN,0. Observe that f(0, λ) ≡ 0 since FixCN,0(SN) = {0}.

We study Hopf bifurcation of (2) from the trivial equilibrium, say, at λ = 0, and
so we assume that (df)0,0 has purely imaginary eigenvalues ±i (after rescaling time if
necessary). Thus if we denote the eigenvalues of (df)0,λ by σ(λ) ± iρ(λ) then σ(0) =
0, ρ(0) = 1 (see [16, Lemma XVI 1.5]) and we make the standard hypothesis of the
Equivariant Hopf Theorem:

σ′(0) 6= 0.

Under the above hypothesis, we can assume that the action of S1 on the centre space
CN,0 of (df)0,0 (that can be identified with the exponential of (df)0,0) is given by multi-
plication by eiθ:

(3) θ(z1, . . . , zN) = eiθ (z1, . . . , zN)

for θ ∈ S1, (z1, . . . , zN) ∈ CN,0.
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Structure of the Paper. In Section 2 we recall the key points for Hopf bifurcation theory
of symmetric systems. In Section 3 we describe the classification of the C-axial sub-
groups of SN ×S1 acting on CN,0 given by Stewart [22]. There are two types of C-axial
subgroups of SN × S1: ΣI

q,p and ΣII
q (Theorem 3.1). We also obtain the isotypic decom-

position of CN,0 for the action of each of these groups (Table 4). In Section 4 we use
the Equivariant Hopf Theorem to prove the existence of branches of periodic solutions
with these symmetries of (2) by Hopf bifurcation from the trivial equilibrium at λ = 0
for a bifurcation problem with symmetry Γ = SN . The main result of this paper is The-
orem 4.1 determining the directions of branching and the stability of periodic solutions
guaranteed by the Equivariant Hopf Theorem. For solutions with symmetry ΣII

q the
terms of the degree three truncation of the vector field determine the criticality of the
branches and also the stability of these solutions (near the origin). However, for solu-
tions with symmetry ΣI

p,q, although the criticality of the branches is determined by the
terms of degree three, the stability of solutions in some directions is not. Moreover, in
one particular direction, we show that even the degree five truncation is too degenerate.
In Section 5 we present our results for the cases N = 4 and N = 5. While for N = 4
we only need the degree three truncation of the vector field in order to determine the
branching equations and the stability of the periodic solutions guaranteed by the Equi-
variant Hopf Theorem, for N = 5 the degree five truncation is necessary (and sufficient).
We determine explicitly the directions of branching and the stability of these solutions
in both cases. Furthermore, we observe the (generic) existence of periodic solutions
with submaximal symmetry for the N = 4 case. In Section 6 we prove the main result
of this paper on the stability of the periodic solutions guaranteed by the Equivariant
Hopf Theorem, Theorem 4.1. In Appendix A we state the main technical details for the
computation of the fifth order truncation of the vector field equivariant under SN × S1

defined on CN,0. Finally, in Appendix B we present the bifurcation diagrams for the
periodic solutions with maximal isotropy for Hopf bifurcation with S4 × S1-symmetry.

2. Background

In this section we review some key points related to Hopf bifurcation theory of symmet-
ric systems. For the basics of equivariant bifurcation theory see, for example, Golubitsky
et al.[16, Chapter XVI].

Consider a system of ODEs

(4)
dx

dt
= f(x, λ), f(0, 0) = 0,

where x ∈ V, λ ∈ R is the bifurcation parameter, f : V × R → V is a smooth (C∞)
mapping and f(0, λ) ≡ 0 for all λ ∈ R. We say that (4) undergoes a Hopf Bifurcation
at λ = 0 if (df)0,0 has a pair of purely imaginary eigenvalues. Here, (df)0,0 denotes the
n×n Jacobian matrix of the derivatives of f with respect to the variables xj, evaluated
at (x, λ) = (0, 0).

Suppose that Γ is a compact Lie group with a linear action on V = Rn and f commutes
with Γ (or it is Γ-equivariant), this is, f(γx, λ) = γf(x, λ) for all γ ∈ Γ, x ∈ V, λ ∈ R.

We are interested in branches of periodic solutions of (4) occurring by Hopf bifurcation
from the trivial solution (x, λ) = (0, 0). We say that a representation V of Γ is Γ-simple
if either V ∼= W ⊕W , where W is absolutely irreducible for Γ, or V is irreducible, but
not absolutely irreducible for Γ. Suppose that (df)0,0 has purely imaginary eigenvalues
±iω. Then, generically, the corresponding real generalized eigenspace of (df)0,0 is Γ-
simple (see [16, Proposition XVI 1.4]). Assuming these conditions and supposing that
Rn is Γ-simple, after an equivariant change of coordinates and a rescaling of time if
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necessary, we can assume that (df)0,0 has the form

(df)0,0 =

(
0 −Im

Im 0

)
= J

where Im is the m × m identity matrix and m = n/2. This is due to the fact that
if we assume that Rn is Γ-simple, the mapping f is Γ-equivariant and (df)0,0 has i
as an eigenvalue, then the eigenvalues of (df)0,λ consist of a complex conjugate pair
σ(λ) ± iρ(λ), each with multiplicity m. Moreover, σ and ρ are smooth functions of
λ and there is an invertible linear map S : Rn → Rn, commuting with Γ, such that
(df)0,0 = SJS−1 (see [16, Lemma XVI 1.5]).

We define the isotropy subgroup of x ∈ V in Γ as

Σx = {γ ∈ Γ : γx = x} ⊆ Γ

and the fixed-point space of a subgroup Σ ⊆ Γ is the subspace of V defined by

Fix(Σ) = {x ∈ V : γx = x, ∀ γ ∈ Σ}.
For any Γ-equivariant mapping f and any subgroup Σ ⊆ Γ we have

f(Fix(Σ)×R) ⊆ Fix(Σ).

Identify the circle S1 with R/2πZ and suppose that x(t) is a periodic solution of (4)
in t of period 2π. A symmetry of x(t) is an element (γ, θ) ∈ Γ× S1 such that

γx(t) = x(t− θ).

The set of all symmetries of x(t) forms a subgroup

Σx(t) = {(γ, θ) ∈ Γ× S1 : γx(t) = x(t− θ)}.
Take the natural action of Γ×S1 on the space C2π of 2π-periodic functions from R into
V , given by

(γ, θ) · x(t) = γx(t + θ).

Thus, the action of Γ on C2π is induced through its spatial action on V and S1 acts by
phase shift.

This way, the initial definition of symmetry of the periodic solution x(t) may be
rewritten as

(γ, θ) · x(t) = x(t)

and with respect to this action, Σx(t) is the isotropy subgroup of x(t).
So if we assume (4) where f commutes with Γ and (df)0,0 = L has purely imaginary

eigenvalues, we can apply a Liapunov-Schmidt reduction, preserving symmetries, that
will induce a different action of S1 on a finite-dimensional space, which can be identified
with the exponential of L|Ei

acting on the imaginary eigenspace Ei of L. The reduced
function of f will commute with Γ× S1 (see [16, Chapter XVI Section 3]).

Consider the system of ODEs (4), where f : Rn ×R → Rn is smooth and commutes
with a compact Lie group Γ. Assume the generic hypothesis that Rn is Γ-simple and
(df)0,0 has i as eigenvalue. Thus, after a change of coordinates, we can assume that
(df)0,0 = J , where m = n/2. The eigenvalues of (df)0,λ are σ(λ) ± iρ(λ) each with
multiplicity m. Therefore σ(0) = 0 and ρ(0) = 1. Furthermore, assume that σ′(0) 6= 0,
that is, the eigenvalues of (df)0,λ cross the imaginary axis with nonzero speed. Let Σ ⊆
Γ×S1 be an isotropy subgroup such that dimFix(Σ) = 2. Then by the Equivariant Hopf
Theorem (see [16, Theorem XVI 4.1]) there exists a unique branch of small-amplitude
periodic solutions to (4) with period near 2π, having Σ as their group of symmetries.

The basic idea in the Equivariant Hopf Theorem is that small amplitude periodic
solutions of (4) of period near 2π correspond to zeros of a reduced equation ϕ(x, λ, τ) = 0
where τ is the period-perturbing parameter. To find periodic solutions of (4) with
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symmetries Σ is equivalent to find zeros of the reduced equation with isotropy Σ and
they correspond to the zeros of the reduced equation restricted to Fix(Σ).

The main tool for calculating the stabilities of the periodic solutions (including those
guaranteed by the Equivariant Hopf Theorem) is to use a Birkhoff normal form of f : by
a suitable coordinate change, up to any given order k, the vector field f can be made to
commute with Γ and S1 (in the Hopf case). This result is the equivariant version of the
Poincaré-Birkhoff normal form Theorem.

Suppose that the vector field f in (4) is in Birkhoff normal form. Then it is possible
to perform a Liapunov-Schmidt reduction on (4) such that the reduced equation ϕ has
the explicit form

ϕ(x, λ, τ) = f(x, λ)− (1 + τ)Jx,

where τ is the period-scaling parameter (see [16, Theorem XVI 10.1]). Let (x0, λ0, τ0)
be a solution to ϕ = 0 with isotropy Σ, and let x(t) be the corresponding solution of (4).
Then x(t) is orbitally stable if the n− dΣ (where dΣ = dimΓ + 1− dimΣ) eigenvalues of
(dϕ)x0,λ0,τ0 which are not forced to be zero by the group action have negative real parts
(see [16, Corollary XVI 10.2]).

Thus, the assumptions of Birkhoff normal form implies that we can apply the stan-
dard Hopf Theorem to ẋ = f(x, λ) restricted to Fix(Σ) × R. In this case, exchange
of stability happens, so that if the trivial steady-state solution is stable subcritically,
then a subcritical branch of periodic solutions with isotropy subgroup Σ is unstable.
Supercritical branches may be stable or unstable depending on the signs of the real part
of the eigenvalues on the complement of Fix(Σ).

Call the system
ẏ = Ly + g2(y) + · · ·+ gk(y)

the (kth order) truncated Birkhoff normal form. The dynamics of the truncated Birkhoff
normal form are related to, but not identical with, the local dynamics of the system (4)
around the equilibrium x = 0. On the other hand, in general, it is not possible to find
a single change of coordinates that puts f into normal form for all orders. And if it is,
then there is the problem of the first ‘tail’.

When discussing the stability of the solutions found using the Equivariant Hopf The-
orem we suppose that the kth order truncation of f commutes also with S1. Thus we
are ignoring terms of higher order that do not commute necessarily with S1 and that can
change the dynamics. However, we use a result (that we state below) that guarantees
that the stability results for the periodic solutions hold even when f is of the form

f̃(x, λ) + o(‖x‖k),

where f̃ commutes with Γ × S1 but o(‖x‖k) commutes only with Γ, provided k is
large enough (see [16, Theorem XVI 11.2]). Here we use h(x) = o(‖x‖k) to mean
that h(x)/‖x‖k → 0 as ‖x‖ → 0.

Before we state the result, we recall the definition of p-determined stability of an
isotropy subgroup Σ ⊂ Γ× S1. Suppose that dim Fix(Σ) = 2. Following [16, Definition

XVI 11.1], we say that Σ has p-determined stability if all eigenvalues of (df̃)(x0,λ0)− (1+
τ0)J , other than those forced to zero by Σ, have the form

µj = αja
mj + o(amj)

on a periodic solution x(s) of

(5) ẋ = f̃(x, λ)

such that ‖x(s)‖ = a, where αj is a C-valued function of the Taylor coefficients of terms

of degree lower or equal p in f̃ . We expect that the real parts of the αj to be generically
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nonzero: these are the nondegeneracy conditions on the Taylor coefficients of f̃ at the
origin that are obtained when computing stabilities along the branches. In this case, we
say that f̃ is nondegenerate for Σ.

Suppose that the hypotheses of the Equivariant Hopf Theorem hold, and the isotropy
subgroup Σ ⊂ Γ× S1 has p-determined stability. Let k ≥ p and assume that f(x, λ) =

f̃(x, λ) + o(‖x‖k) where f̃ commutes with Γ× S1 and is nondegenerate for Σ. Then for
λ sufficiently near 0, the stabilities of a periodic solution of ẋ = f(x, λ) with isotropy
Σ are given by the same expressions in the coefficients of f as those that define the
stability of a solution of the truncated Birkhoff normal form ẋ = f̃(x, λ) with isotropy
subgroup Σ (see [16, Theorem XVI 11.2]). As it has been said there always exists a

polynomial change putting f in the form f̃(x, λ) + o(‖x‖k). Thus, if the p-determined
stability condition holds, the stability analysis for f is completed.

3. C-Axial Subgroups of SN × S1

Recalling (1) and (3), we consider the following action of SN × S1 on CN,0:

(6) (σ, θ)(z1, . . . , zN) = eiθ
(
zσ−1(1), . . . , zσ−1(N)

)

where (σ, θ) ∈ SN × S1 and (z1, . . . , zN) ∈ CN,0. In order to apply the Equivariant
Hopf Theorem we require information on the C-axial isotropy subgroups (this is, on
the isotropy subgroups with two-dimensional fixed-point subspace) of SN × S1 for this
action. In this section we recall the classification obtained by Stewart [22] of the C-axial
isotropy subgroups of SN × S1. We use then the form of such isotropy subgroups to
obtain the isotypic decomposition of CN,0 under the action of each of these groups. We
recall that if Σ ⊆ SN × S1, we can decompose CN,0 into isotypic components

(7) CN,0 = U1 ⊕ · · · ⊕ Ur

where each Uj is the isotypic component of type Vj for the action of Σ on CN,0. Here
V1, . . . , Vr are distinct Σ-irreducible spaces. Thus if W is a Γ-invariant subspace of CN,0

and Σ-isomorphic to Vj then W ⊆ Uj. These decompositions will play an important role
at the calculation of the stability of the periodic solutions guaranteed by the Equivariant
Hopf Theorem

3.1. C-Axial Subgroups of SN × S1. Isotropy subgroups of SN × S1 (acting on the
SN -simple space CN,0) are of the type Hθ = {(h, θ(h)) : h ∈ H} where H ⊆ SN and
θ : H → S1 is a group homomorphism (see [16, Definition XVI 7.1, Proposition XVI
7.2]). Also the C-axial subgroups are maximal with respect to fixing a complex line
Cz = {µz : µ ∈ C}, where z 6= 0. A vector z such that the isotropy subgroup Σz

in SN × S1 fixes only Cz is called an axis. Stewart [22] computes the C-axial isotropy
subgroups, up to conjugacy, by describing the axes, that is, the orbit representatives.

Theorem 3.1 (Stewart [22]). Suppose that N ≥ 2. Then the axes of SN × S1 acting
on CN,0 have orbit representatives as follows:
Type I
Let N = qk + p where 2 ≤ k ≤ N, q ≥ 1, p ≥ 0. Let ξ = e2πi/k and set

(8) z =


1, . . . , 1︸ ︷︷ ︸

q

; ξ, . . . , ξ︸ ︷︷ ︸
q

; ξ2, . . . , ξ2

︸ ︷︷ ︸
q

; . . . ; ξk−1, . . . , ξk−1

︸ ︷︷ ︸
q

; 0, . . . , 0︸ ︷︷ ︸
p


 .
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Type II
Let N = q + p, 1 ≤ q < N/2 and set

(9) z =


1, . . . , 1︸ ︷︷ ︸

q

; a, . . . , a︸ ︷︷ ︸
p




where a = −q/p.

Proof. See Stewart [22, Theorem 7]. ¤

Next we consider the corresponding isotropy subgroups as in [22]. For type I we have
C-axial subgroups Hθ = Σz where

(10) Σz = S̃q o Zk × Sp
def
= ΣI

q,p.

Here o denotes the wreath product (see Hall [18, p. 81]) and the tilde indicates that Zk

is twisted into S1. Let

(11) K = ker(θ) = S1
q × · · · × Sk

q × Sp,

where Sj
q is the symmetric group on Bj = {(j− 1)q +1, . . . , jq} and Sp is the symmetric

group on B0 = {kq + 1, . . . , N}. Now we have the action of the twist in each of the
k blocks of q elements. Let α = (1, q + 1, 2q + 1, . . . , (k − 1)q + 1). Then ΣI

q,p is
generated by (α, 2π/k) and K.

For the type II, the isotropy subgroup is

(12) Σz = Sq × Sp
def
= ΣII

q

where the respective factors are the symmetric groups on {1, . . . , q} and {q + 1, . . . , N}.
Table 1 lists the C-axial isotropy subgroups of SN × S1 acting on CN,0 and the

corresponding fixed-point subspaces.

Remark 3.2. In terms of all-to-all coupled nonlinear cells (systems of ordinary differen-
tial equations), one interpretation is that solutions with ΣI

q,p-symmetry have k groups,
each group comprising q cells with the same waveform and the same phase, and one
group of p cells also with the same waveform and the same phase. Cells from the k
groups oscillate identically except for phase shifts of jT/k, for j = 0, 1, . . . , k and T
is the period, between each group. Cells in the group of p cells oscillate with kth the
frequency of the cells of the other groups. Solutions with ΣII

q correspond to two groups
consisting of p and q cells. At each group, cells have the same waveform and same phase.
Each group oscillates with a different wave form. ♦

Example 3.3. We apply Theorem 3.1 to the cases N = 4 and N = 5.
(i) For N = 4, note that the number of partitions of an element of C4,0 into k blocks of
q equal elements each, plus a group of p null elements with 4 = kq +p (where 2 ≤ k ≤ 4,
q ≥ 1 and p ≥ 0) is four: thus we obtain, up to conjugacy, four isotropy subgroups of type
I. Now if 4 = q + p where 1 ≤ q < 2 then q = 1, p = 3 and so we get, up to conjugacy,
one isotropy subgroup of type II. See Table 2 for the C-axial isotropy subgroups of
S4 × S1, the corresponding generators and the fixed-point subspaces. Observe that we
have used Table 1 with the triplets (q, k, p) and the pairs (q, p) corresponding to each
isotropy subgroup of a given form as follows:

(13)
Σ1 : q = k = 2, p = 0; Σ2 : q = 1, k = 2, p = 2;
Σ3 : q = 1, k = 3, p = 1; Σ4 : q = 1, k = 4, p = 0;
Σ5 : q = 1, p = 3 .
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Isotropy
Subgroup Fixed-Point Subspace

ΣI
q,p = S̃q o Zk × Sp






z1, . . .︸ ︷︷ ︸

q

; ξz1, . . .︸ ︷︷ ︸
q

; . . . ; ξk−1z1, . . .︸ ︷︷ ︸
q

; 0, . . . , 0︸ ︷︷ ︸
p


 : z1 ∈ C





N = kq + p, 2 ≤ k ≤ N,
q ≥ 1, p ≥ 0

ΣII
q = Sq × Sp






z1, . . . , z1︸ ︷︷ ︸

q

; −q

p
z1, . . . ,−q

p
z1

︸ ︷︷ ︸
p


 : z1 ∈ C





N = q + p, 1 ≤ q < N
2

Table 1. C-axial isotropy subgroups of SN × S1 acting on CN,0 and
fixed-point subspaces. Here ξ = e2πi/k .

Isotropy Generators Orbit Fixed-Point
Subgroup Representative Subspace

Σ1 = S̃2 o Z2 ((1423), π), ((13)(24), π) (1, 1,−1,−1) {(z1, z1,−z1,−z1) : z1 ∈ C}

Σ2 = Z̃2 × S2 (34), ((12), π) (1,−1, 0, 0) {(z1,−z1, 0, 0) : z1 ∈ C}

Σ3 = Z̃3

(
(123), 2π

3

)
(1, ξ, ξ2, 0)

{
(z1, ξz1, ξ

2z1, 0) : z1 ∈ C
}

Σ4 = Z̃4

(
(1234), π

2

)
(1, i,−1,−i) {(z1, iz1,−z1,−iz1) : z1 ∈ C}

Σ5 = S3 (23), (24) (1,−1
3 ,−1

3 ,−1
3)

{
(z1,−1

3z1,−1
3z1,−1

3z1) : z1 ∈ C
}

Table 2. C-axial isotropy subgroups of S4×S1 acting on C4,0, generators,
orbit representatives and fixed-point subspaces. Here ξ = e2πi/3.

(ii) For N = 5 we have five isotropy subgroups of type I and two of type II. See Table 3.
Specifically, we have that Σi, i = 1, . . . , 5 are of the form ΣI

q,p and Σ6, Σ7 are of the form

ΣII
q with:

(14)

Σ1 : q = k = 2, p = 1; Σ2 : q = 1, k = 2, p = 3;
Σ3 : q = 1, k = 3, p = 2; Σ4 : q = 1, k = 4, p = 1;
Σ5 : q = 1, k = 5, p = 0; Σ6 : q = 2, p = 3;
Σ7 : q = 1, p = 4 .

♦
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Isotropy Generators Fixed-Point
Subgroup Subspace

Σ1 = S̃2 o Z2 (12), (34), ((13)(24), π) {(z1, z1,−z1,−z1, 0) : z1 ∈ C}

Σ2 = Z̃2 × S3 (34), (35), ((12), π) {(z1,−z1, 0, 0, 0) : z1 ∈ C}

Σ3 = Z̃3 × S2 (45),
(
(123), 2π

3

) {
(z1, ξz1, ξ

2z1, 0, 0) : z1 ∈ C
}

, ξ = e2πi/3

Σ4 = Z̃4

(
(1234), π

2

) {(z1, iz1,−z1,−iz1, 0) : z1 ∈ C}

Σ5 = Z̃5

(
(12345), 2π

5

) {
(z1, ξz1, ξ

2z1, ξ
3z1, ξ

4z1) : z1 ∈ C
}

, ξ = e2πi/5

Σ6 = S2 × S3 (12), (34), (35)
{
(z1, z1,−2

3z1,−2
3z1,−2

3z1) : z1 ∈ C
}

Σ7 = S4 (23), (24), (25)
{
(z1,−1

4z1,−1
4z1,−1

4z1,−1
4z1) : z1 ∈ C

}

Table 3. C-axial isotropy subgroups of S5×S1 acting on C5,0, generators
and fixed-point subspaces.

3.2. Isotypic decomposition of CN,0 under the action of the C-Axial Subgroups
of SN × S1. For the two types of isotropy subgroups ΣI

q,p and ΣII
q , we decompose CN,0

into subspaces, each of which is invariant under a different representation of the corre-
sponding isotropy subgroup. The isotypic components for the action of ΣI

q,p and ΣII
q on

CN,0 are listed in Table 4.
Specifically, for ΣI

q,p = S̃q o Zk × Sp we form the isotypic decomposition

(15) CN,0 = W0 ⊕W1 ⊕W2 ⊕W3 ⊕
k−1∑
j=2

Pj

where W0 = Fix(ΣI
q,p),W1 and the k − 2 subspaces Pj, j = 2, · · · , k − 1 are complex

one-dimensional subspaces, invariant under ΣI
q,p. Moreover, W2 and W3 are complex

invariant subspaces of dimension respectively p− 1 and k(q − 1).

Note that if p = 0 we have ΣI
q,p = S̃q o Zk and then W1, W2 do not occur in the isotypic

decomposition of CN,0 for the action of ΣI
q,p. Moreover, we only have the occurrence

of W2 in the isotypic decomposition if p ≥ 2. Furthermore, we only have the isotypic
component W3 if q ≥ 2 and Pj if k ≥ 3.

For ΣII
q = Sq × Sp we form the isotypic decomposition

(16) CN,0 = W0 ⊕W1 ⊕W2

where W0 = Fix(ΣII
q ) and W1,W2 are complex invariant subspaces of dimension respec-

tively q − 1 and p − 1 that are the sum of two isomorphic real absolutely irreducible
representations of dimension respectively q − 1 and p− 1 of ΣII

q .
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Type of
Isotropy Isotypic components
Subgroup

ΣI
q,p W0 = {(z1, . . . , z1︸ ︷︷ ︸

q

; ξz1, . . . , ξz1︸ ︷︷ ︸
q

; . . . ; ξk−1z1, . . . , ξ
k−1z1︸ ︷︷ ︸

q

; 0, . . . , 0︸ ︷︷ ︸
p

) : z1 ∈ C}

(N = kq + p
2 ≤ k ≤ N
q ≥ 1, p ≥ 0) W1 = {(z1, . . . , z1︸ ︷︷ ︸

kq

;−kq

p
z1, . . . ,−kq

p
z1

︸ ︷︷ ︸
p

) : z1 ∈ C} (if p ≥ 1)

W2 = {(0, . . . , 0; z1, . . . , zp−1,−z1 − · · · − zp−1︸ ︷︷ ︸
p

) : z1, . . . , zp−1 ∈ C} (if p ≥ 2)

W3 = {(z1, . . . , zq−1, zq︸ ︷︷ ︸
q

; . . . ; zq(k−1)+1, . . . , zkq−1, zkq︸ ︷︷ ︸
q

; 0, . . . , 0︸ ︷︷ ︸
p

)} (if q ≥ 2)

Pj = {(z1, . . .︸ ︷︷ ︸
q

; ξjz1, . . .︸ ︷︷ ︸
q

; . . . ; ξj(k−1)z1, . . .︸ ︷︷ ︸
q

; 0, . . . , 0︸ ︷︷ ︸
p

) : z1 ∈ C} (if k ≥ 3)

for j = 2, . . . , k − 1

ΣII
q

(N = q + p
1 ≤ q < N

2

)
W0 =






z1, . . . , z1︸ ︷︷ ︸

q

; −q

p
z1, . . . ,−q

p
z1

︸ ︷︷ ︸
p


 : z1 ∈ C





W1 = {(z1, . . . , zq−1,−z1 − · · · − zq−1, 0, . . . , 0) : z1, . . . , zq−1 ∈ C} (if q ≥ 2)

W2 = {(0, . . . , 0, zq+1, . . . , zN−1,−zq+1 − · · · − zN−1) : zq+1, . . . , zN−1 ∈ C} (if p ≥ 2)

Table 4. Isotypic components of CN,0 for the action of ΣI
q,p and ΣII

q .
Here, in W3 we have zq = −z1−· · ·−zq−1, . . . , zkq = −zq(k−1)+1−· · ·−zkq−1

and z1, . . . , zq−1, . . . , zq(k−1)+1, . . . , zkq−1 ∈ C.

Example 3.4. We return to the cases N = 4 and N = 5.
(i) Recalling Table 2, equation (13) and Table 4, for the three isotropy subgroups Σi,
for i = 2, 3, 4, of S4 × S1, the isotypic decomposition takes, respectively, the form

C4,0 = W0 ⊕W1 ⊕W2, C4,0 = W0 ⊕W1 ⊕ P2, C4,0 = W0 ⊕ P2 ⊕ P3

where W0 = Fix(Σi),W1,W2, P2 and P3 are the complex one-dimensional isotypic com-
ponents for the action of Σi on C4,0. For Σ1 and Σ5 we obtain that C4,0 = W0⊕W3 and
C4,0 = W0 ⊕W2, where W3,W2 are complex two-dimensional invariant subspaces. See
Table 5.
(ii) For N = 5, we recall Table 3 for the C-axial subgroups of S5 × S1, equation (14)
and Table 4. We have that Σi, for i = 1, . . . , 5 are of the form ΣI

q,p and Σ6, Σ7 are of the

form ΣII
q . We decompose C5,0 into isotypic components for the action of each isotropy

subgroup Σi, see Table 6. ♦
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Isotropy subgroup and Isotypic components of C4,0

Orbit Representative

Σ1 = S̃2 o Z2 W0 = Fix(Σ1) = {(z1, z1,−z1,−z1) : z1 ∈ C}
z = (z1, z1,−z1,−z1) W3 = {(z1,−z1, z2,−z2) : z1, z2 ∈ C}

Σ2 = Z̃2 × S2 W0 = Fix(Σ2) = {(z1,−z1, 0, 0) : z1 ∈ C}
z = (z1,−z1, 0, 0) W1 = {(z1, z1,−z1,−z1) : z1 ∈ C}

W2 = {(0, 0, z1,−z1) : z1 ∈ C}

Σ3 = Z̃3 W0 = Fix(Σ3) =
{
(z1, ξz1, ξ

2z1, 0) : z1 ∈ C
}

z = (z1, ξz1, ξ
2z1, 0) W1 = {(z1, z1, z1,−3z1) : z1 ∈ C}

P2 =
{
(z1, ξ

2z1, ξz1, 0) : z1 ∈ C
}

Σ4 = Z̃4 W0 = Fix(Σ4) = {(z1, iz1,−z1,−iz1) : z1 ∈ C}
z = (z1, iz1,−z1,−iz1) P2 = {(z1,−z1, z1,−z1) : z1 ∈ C}

P3 = {(z1,−iz1,−z1, iz1) : z1 ∈ C}

Σ5 = S3 W0 = Fix(Σ5) =
{(

z1,−1
3z1,−1

3z1,−1
3z1

)
: z1 ∈ C

}
z =

(
z1,−1

3z1,−1
3z1,−1

3z1

)
W2 = {(0, z2, z3,−z2 − z3) : z2, z3,∈ C}

Table 5. Isotypic decomposition of C4,0 for the action of each of the
isotropy subgroups listed in Table 2. Here ξ = e2πi/3.

Remark 3.5. Ashwin and Swift [4] present a framework for analysing arbitrary net-
works of identical dissipative oscillators assuming weak coupling. When every oscillator
is connected to every other one with equal coupling, the network has SN -symmetry.
Assume a SN -symmetric network of N identical oscillators, each having an asymptot-
ically stable limit cycle, with coupling parameter ε. For ε = 0 the dynamics of the
system reduces to a linear flow on an N -torus TN which is normally hyperbolic, and
hence persists for ε 6= 0. For weak coupling the equations can be averaged, leading to
a SN × T1-equivariant flow on the torus TN . In [4], the authors classify the possible
spatio-temporal symmetry groups of any periodic oscillation by computing all isotropy
subgroups for the action of SN ×T1 on TN . These groups (up to conjugacy) are in one-
to-one correspondence with the ways of writing N = m(k1+ · · ·+kl) with integers m ≥ 1
and k1 ≥ k2 ≥ · · · ≥ kl ≥ 1. They also compute the stability and predict the generic
bifurcations of some of the periodic orbits (which can have submaximal symmetry). Now
the action of SN ×T1 on TN can be seen as a linear action of SN ×T1 on CN , restricted
to TN . It follows then that some of the groups described by [4], not necessarily maximal,
are in correspondence with the maximal groups ΣI

q,0 (for k1 = q, l = 1, N = mq) and

ΣII
q (for m = 1, k1 = q, k2 = p = N − q) of SN × S1 (action on CN,0) obtained by

Stewart [22]. Moreover, for those groups, the description of the stability patterns that is
made by [4] using the symmetry properties is equivalent to the one we obtain considering
the decomposition of the space into isotypic components. In future work we plan to look
for solutions with submaximal symmetry, where we hope that some of work done in [22]
can be used. ♦
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Isotropy subgroup and Isotypic components of C5,0

Orbit Representative

Σ1 = S̃2 o Z2 W0 = Fix(Σ1) = {(z1, z1,−z1,−z1, 0) : z1 ∈ C}
z = (z1, z1,−z1,−z1, 0) W1 = {(z1, z1, z1, z1,−4z1) : z1 ∈ C}

W3 = {(z1,−z1, z2,−z2, 0) : z1, z2 ∈ C}

Σ2 = Z̃2 × S3 W0 = Fix(Σ2) = {(z1,−z1, 0, 0, 0) : z1 ∈ C}
z = (z1,−z1, 0, 0, 0) W1 =

{
(z1, z1,−2

3z1,−2
3z1,−2

3z1) : z1 ∈ C
}

W2 = {(0, 0, z1, z2,−z1 − z2) : z1 ∈ C}

Σ3 = Z̃3 × S2 W0 = Fix(Σ3) =
{
(z1, ξz1, ξ

2z1, 0, 0) : z1 ∈ C
}

z = (z1, ξz1, ξ
2z1, 0, 0) W1 =

{
(z1, z1, z1,−3

2z1,−3
2z1) : z1 ∈ C

}
W2 = {(0, 0, 0, z1,−z1) : z1 ∈ C}

ξ = e2πi/3 P2 =
{
(z1, ξ

2z1, ξ
4z1, 0, 0) : z1 ∈ C

}

Σ4 = Z̃4 W0 = Fix(Σ4) =
{
(z1, ξz1, ξ

2z1, ξ
3z1, 0) : z1 ∈ C

}
z = (z1, ξz1, ξ

2z1, ξ
3z1, 0) W1 = {(z1, z1, z1, z1,−4z1) : z1 ∈ C}

ξ = i P2 =
{
(z1, ξ

2z1, ξ
4z1, ξ

6z1, 0) : z1 ∈ C
}

P3 =
{
(z1, ξ

3z1, ξ
6z1, ξ

9z1, 0) : z1 ∈ C
}

Σ5 = Z̃5 W0 = Fix(Σ5) =
{
(z1, ξz1, ξ

2z1, ξ
3z1, ξ

4z1) : z1 ∈ C
}

z = (z1, ξz1, ξ
2z1, ξ

3z1, ξ
4z1) P2 =

{
(z1, ξ

2z1, ξ
4z1, ξ

6z1, ξ
8z1) : z1 ∈ C

}
ξ = e2πi/5 P3 =

{
(z1, ξ

3z1, ξ
6z1, ξ

9z1, ξ
12z1) : z1 ∈ C

}
P4 =

{
(z1, ξ

4z1, ξ
8z1, ξ

12z1, ξ
16z1) : z1 ∈ C

}

Σ6 = S2 × S3 W0 = Fix(Σ6) =
{(

z1, z1,−2
3z1,−2

3z1,−2
3z1

)
: z1 ∈ C

}
z =

(
z1, z1,−2

3z1,−2
3z1,−2

3z1

)
W1 = {(z1,−z1, 0, 0, 0) : z1, z2,∈ C}
W2 = {(0, 0, z1, z2,−z1 − z2) : z1, z2,∈ C}

Σ7 = S4 W0 = Fix(Σ7) =
{(

z1,−1
4z1,−1

4z1,−1
4z1,−1

4z1

)
: z1 ∈ C

}
z =

(
z1,−1

4z1,−1
4z1,−1

4z1,−1
4z1

)
W2 = {(0, z2, z3, z4,−z2 − z3 − z4) : z2, z3, z4,∈ C}

Table 6. Isotypic decomposition of C5,0 for the action of each of the
isotropy subgroups listed in Table 3.

4. Periodic Solutions with Maximal Isotropy

Consider the system of ODEs

(17)
dz

dt
= f(z, λ),

where f : CN,0×R → CN,0 is smooth, commutes with Γ = SN and (df)0,λ has eigenvalues
σ(λ)± iρ(λ) with σ(0) = 0, ρ(0) = 1 and σ′(0) 6= 0.

Our aim is to study periodic solutions of (17) obtained by Hopf bifurcation from the
trivial equilibrium. Note that we are assuming that f satisfies the conditions of the
Equivariant Hopf Theorem.

By Theorem 3.1 we have (up to conjugacy) the C-axial subgroups of SN × S1. See
Table 1. Therefore, we can use the Equivariant Hopf Theorem to prove the existence of
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periodic solutions with these symmetries for the bifurcation problem (17) with symmetry
Γ = SN .

As stated in Section 2, periodic solutions of (17) of period 2π/(1 + τ) are in one-to-
one correspondence with the zeros of g(z, λ, τ), the reduced function obtained by the
Lyapunov-Schmidt procedure where τ is the period-perturbing parameter. Assuming
that f commutes with Γ× S1, g(z, λ, τ) has the explicit form

(18) g(z, λ, τ) = f(z, λ)− (1 + τ)iz.

(see [16, Theorem XVI 10.1]). Throughout denote by ν(λ) = µ(λ)− (1 + τ)i. If z(t) is
a periodic solution of (17) with λ = λ0 and τ = τ0, and (z0, λ0, τ0) is the corresponding
solution of (18), then there is a correspondence between the Floquet multipliers of z(t)
and the eigenvalues of (dg)(z0,λ0,τ0) such that a multiplier lies inside (respectively outside)
the unit circle if and only if the corresponding eigenvalue has negative (respectively
positive) real part (see [16, Corollary XVI 10.2]). So, we determine the orbital stability
of each type of bifurcating periodic orbit by calculating the eigenvalues of (dg)(z0,λ0,τ0)

(to the lowest order in z) that are not forced by the symmetry to be zero.
As g commutes with Γ×S1, it maps Fix(Σ) into itself (where Σ is either of type ΣI

q,p or

ΣII
q described in Table 1). By the Equivariant Hopf Theorem, for each of the conjugacy

classes ΣI
q,p and ΣII

q , we have a distinct branch of periodic solutions of (17) that are in

correspondence with the zeros of g with isotropy ΣI
q,p and ΣII

q . These zeros are found by

solving g|Fix(ΣI
q,p) = 0 and g|Fix(ΣII

q ) = 0 (and Fix(ΣI
q,p), Fix(ΣII

q ) are two-dimensional).

Note that to find the zeros of g, it suffices to look at representative points on Γ × S1

orbits.
Let Σz0 ⊂ Γ be the isotropy subgroup of z0. Then, for σ ∈ Σz0 we have

(dg)z0σ = σ(dg)z0 .

That is, (dg)z0 commutes with the isotropy subgroup Σ of z0. For the two types of
isotropy subgroups ΣI

q,p and ΣII
q , it is possible to put the Jacobian matrix (dg)z0 into

block diagonal form. We do this using the isotypic decomposition of CN,0 for the action
of each C-axial ΣI

q,p and ΣII
q on CN,0 obtained in Section 3.2 and listed in Table 4.

We recall that each isotypic component is invariant under a different representation of
the corresponding isotropy subgroup Σz0 and so it is left invariant by (dg)z0 . (See for
example [16, Theorem XII 3.5].)

We organize the rest of this section in the following way. Below we present the general
form of a SN ×S1-equivariant bifurcation problem, up to degree 5. Using that we obtain
the form of g in (18). Then we describe the branching equations and the stability of
the periodic solutions of (17) obtained by Hopf bifurcation from the trivial equilibrium
guaranteed by the Equivariant Hopf Theorem – Theorem 4.1.

General Form of a SN ×S1-equivariant Hopf Bifurcation Problem. We present
the general form of the SN × S1-equivariant bifurcation problem (17), up to degree 5,
leaving the details to Appendix A. Our stability results stated in Theorem 4.1 below
show that the degree 5 terms of f in (17) are necessary to describe the stability of some
of the periodic solutions guaranteed by the Equivariant Hopf Theorem.

If we suppose that the Taylor series of degree five of f around z = 0 commutes also
with S1, then we can write

(19)
f(z) = (f1(z), f1((12)z), . . . , f1((1N)z))

= (f1(z1, . . . , zN , λ), f1(z2, z1, . . . , zN , λ), . . . , f1(zN , z2, . . . , z1, λ))
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where

f1(z1, . . . , zN , λ) = µ(λ)z1 + f
(3)
1 (z1, . . . , zN , λ) + f

(5)
1 (z1, . . . , zN , λ) + · · ·

and

f
(3)
1 (z1, . . . , zN , λ) = A1

[
|z1|2z1 − 1

N

∑N
k=1 |zk|2zk

]
+

A2 z1

∑N
k=1 z2

k + A3 z1

∑N
k=1 |zk|2

f
(5)
1 (z1, . . . , zN , λ) = A4

[
|z1|4z1 − 1

N

∑N
k=1 |zk|4zk

]
+ A5z1

∑N
i=1 |zi|4+

A6z1

∑N
i=1 z2

i

∑N
j=1 z2

j + A7z1

∑N
i=1 |zi|2

∑N
j=1 |zj|2+

A8

[
z2
1

∑N
j=1 |zj|2zj − 1

N

∑N
i=1 z2

i

∑N
j=1 |zj|2zj

]
+

A9

[
z3
1

∑N
j=1 z2

j − 1
N

∑N
k=1 z3

k

∑N
j=1 z2

j

]
+

A10

[
z1

∑N
i=1 |z2

i |
∑N

j=1 z2
j

]
+ A11z1

∑N
i=1 |z2

i |z2
i +

A12

[
z2

1

∑N
j=1 z3

j − 1
N

∑N
i=1 z2

i

∑N
j=1 z3

j

]
+

A13

[
|z1|2

∑N
k=1 |zk|2zk − 1

N

∑N
i=1 |zi|2

∑N
j=1 |zj|2zj

]
+

A14

[
|z1|2z1

∑N
k=1 |zk|2 − 1

N

∑N
i=1 |zi|2zi

∑N
j=1 |zj|2

]
+

A15

[
|z1|2z1

∑N
k=1 z2

k − 1
N

∑N
i=1 |zi|2zi

∑N
j=1 z2

j

]

with zN = −z1 − · · · − zN−1. The coefficients Ai, for i = 1, . . . , 15 are complex smooth
functions of λ, µ(0) = i and Re(µ′(0)) 6= 0. Suppose that Re(µ′(0)) > 0. Rescaling λ if
necessary we can suppose that

Re(µ(λ)) = λ + · · ·
where + · · · stands for higher order terms in λ. Thus the trivial solution of (17) is stable
for λ negative and unstable for λ positive (near zero).

Throughout, subscripts r and i on the coefficients A1, . . . , A15 refer to real and imag-
inary parts.

Stability Result. The main result of this paper is the following theorem which we
prove in Section 6:

Theorem 4.1. Consider the system (17) where f is as in (19) and N ≥ 4. Assume
that Re(µ′(0)) > 0, such that the trivial equilibrium is stable if λ < 0 and it is unstable if
λ > 0 (near the origin). For each type of the isotropy subgroups of the form ΣI

q,p and ΣII
q

listed in Table 1, consider the corresponding isotypic decomposition of CN,0 presented in
Table 4. Let ∆0, . . . , ∆r be the functions of A1, . . . , A15 evaluated at λ = 0 and listed in:
Table 8; Table 9 if the isotropy subgroup has type ΣI

p,q for k = 2, k = 3 or ΣII
q ; Table 10

if the isotropy subgroup has type ΣI
p,q, for 3 < k ≤ N . Then:

(1) For each Σi the corresponding branch of periodic solutions is supercritical if ∆0 <
0 and subcritical if ∆0 > 0. Table 7 lists the branching equations.

(2) For each Σi, if ∆j > 0 for some j = 0, . . . , r, then the corresponding branch of
periodic solutions is unstable. If ∆j < 0 for all j, then the branch of periodic
solutions is stable near λ = 0 and z = 0.

The application of this result to study Hopf bifurcation with SN -symmetry for a
specific value of N consists mainly into the following steps:

(i) To consider the general form of the Hopf bifurcation problem with SN × S1-
symmetry (17) where f is given by (19).

(ii) To enumerate the C-axial subgroups of SN × S1 using Table 1.
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Isotropy Subgroup Branching Equations

ΣI
q,p, 2 < k ≤ N λ = − (A1r + kqA3r)|z|2 + · · ·

N = kq + p,
q ≥ 1, p ≥ 0

ΣI
q,p , k = 2 λ = − [A1r + 2q(A2r + A3r)]|z|2 + · · ·

N = 2q + p,
q ≥ 1, p ≥ 0

ΣII
q λ = − A1r

[
1− q

N

(
1− q2

p2

)]
|z|2−

N = q + p, (A2r + A3r)q
(
1 + q

p

)
|z|2 + · · ·

1 ≤ q < N
2

Table 7. Branching equations for SN Hopf bifurcation. Subscript r on
the coefficients refer to the real part and + · · · stands for higher order
terms.

Isotropy Subgroup ∆0

ΣI
q,p, 2 < k ≤ N A1r + kqA3r

N = kq + p, q ≥ 1, p ≥ 0

ΣI
q,N−2q, k = 2 A1r + 2q(A2r + A3r)

N = 2q + p, q ≥ 1, p ≥ 0

ΣII
q A1r

[
1− q

N

(
1− q2

p2

)]
+ (A2r + A3r)q

(
1 + q

p

)

N = q + p, 1 ≤ q < N
2

Table 8. Stability for SN Hopf bifurcation in the direction of W0 =
Fix(Σ). For each group, the corresponding branch of periodic solutions is
supercritical if ∆0 < 0 and subcritical if ∆0 > 0.

(iii) For each C-axial subgroup Σ:
(c.i) To describe the isotypic decomposition for its action on CN,0 according Ta-

ble 4.
(c.ii) Using Table 7, to obtain the equation of the branch of periodic solutions with

Σ-symmetry for the Hopf bifurcation problem guaranteed by the Equivariant
Hopf Theorem. The criticality of the branch is given by the sign of ∆0 listed
in Table 8: it is supercritical if ∆0 < 0 and subcritical if ∆0 > 0.

(c.iii) To enumerate the functions of the coefficients A1, . . . , A15 evaluated at λ = 0
of f that determine the stability of the corresponding periodic solutions (near
the origin): using Table 8, Table 9 (if the isotropy subgroup has type ΣI

p,q

for k = 2, k = 3 or ΣII
q ) and Table 10 (if the isotropy subgroup has type
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ΣI
p,q, for 3 < k ≤ N). Observe that in Tables 9 and 10, we consider only

the expressions determining the stability in the directions of the isotypic
components that occur in the isotypic decomposition of CN,0 under the action
of Σ. If ∆j < 0 for all j, then the branch of periodic solutions is stable near
λ = 0 and z = 0. If for some j we have ∆j > 0 then the branch of periodic
solutions is unstable. In particular, if the branch is subcritical (∆j > 0),
then the solutions are unstable.

5. Two examples: N = 4 and N = 5

In this section we apply the results of sections 3 and 4 to study Hopf bifurcation with
SN -symmetry for the special cases N = 4 and N = 5.

When N = 4, we show that the directions in which we need the fifth degree truncation
of the vector field do not appear in the isotypic decomposition for the action of each
C-axial group on C4,0. This means this is the case (in fact the only one for values of
N ≥ 4) where the degree three truncation of the vector field determines generically the
stability of the solutions guaranteed by the Equivariant Hopf Theorem.

When N = 5, we have that the directions in which we need the degree five truncation
of the vector field are present in the isotypic decomposition for some of the C-axial
isotropy subgroups. Moreover, the degree five terms determine completely the stability
of the periodic solutions guaranteed by the Equivariant Hopf Theorem.

5.1. S4 Hopf Bifurcation. We consider the action of S4 × S1 on C4,0 given by (6) for
N = 4. We study Hopf bifurcation with S4-symmetry by considering

(20)
dz

dt
= f(z, λ),

where f : C4,0 × R → C4,0 is smooth, commutes with S4 and (df)0,λ has eigenvalues
σ(λ) ± iρ(λ) with σ(0) = 0, ρ(0) = 1 and σ′(0) 6= 0. Assuming that f also commutes
with S1 we obtain the general form of f given by (19) with N = 4.

Example 3.3 describes the C-axial subgroups of S4 × S1: we obtain four isotropy
subgroups of the type ΣI

q,p and one of type ΣII
q – see Table 2. Moreover, recall the

correspondence between the notation of Table 1 and the C-axial subgroups Σi of S4×S1

given by (13). Now in Table 5, we have the isotypic decomposition of C4,0 for the action
of each of these isotropy subgroups.

The Equivariant Hopf Theorem guarantees that for each C-axial group we have a
branch of periodic solutions with that symmetry of (20) obtained by Hopf bifurcation
from the trivial equilibrium (since we are assuming that f satisfies the conditions of the
Equivariant Hopf Theorem). For each value of p, q and k (if applicable) associated with
Σi, using Table 7, we get the branching equations listed on Table 11. We compute now
from Tables 8, 9 and 10 the criticality and the stability of the solutions guaranteed by
the Equivariant Hopf Theorem.

The expressions for ∆0 for each isotropy subgroup follow from (13) and Table 8. We
obtain now the expressions for ∆1, . . . , ∆r. For the groups Σ1, Σ2, Σ3 and Σ5 in Table 5,
we apply Table 9: note for example that Σ1 is ΣI

p,q with q = k = 2 and p = 0. This

corresponds to an isotropy subgroup ΣI
p,q with k = 2 on Table 9. Since p = 0 we get

∆1, ∆2 from the last two expressions associated with the stability in the directions of
the isoypic component W3. Now Σ2 is ΣI

p,q with q = 1, k = 2, p = 2, the group Σ3 is

ΣI
p,q with q = 1, k = 3, p = 1, and Σ5 is ΣII

q with q = 1 and p = 3.

For the group Σ4 in Table 5, which is ΣI
p,q with q = 1, k = 4, p = 0, we use

now Table 10. Note that as q = 1, we have that W3 does not occur in the isotypic
decomposition of C4,0 for its action. See Table 12 for the complete stability analysis
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Isotropy Isotypic ∆1, . . . ,∆r

Subgroup Component

ΣI
p,q, k = 2 W1





(
1− 4q

N

)
A1r − 2qA2r,

−
∣∣∣
(
1− 4q

N

)
A1 − 2qA2

∣∣∣
2
+

∣∣∣
(
1− 2q

N

)
A1 + 2qA2

∣∣∣
2

(if p ≥ 1)

N = 2q + p

q ≥ 1, p ≥ 0 W2




−A1r − 2qA2r,

− (|A1 + 2qA2|2 − |2qA2|2
) (if p ≥ 2)

W3





A1r − 2qA2r,

− (|A1 − 2qA2|2 − |A1 + 2qA2|2
) (if q ≥ 2)

ΣI
p,q, k = 3 W1





(
1− 6q

N

)
A1r,

−|
(
1− 6q

N

)
A1|2 + |A1|2

(if p ≥ 1)

N = 3q + p W2

{
A1r,
−|A1|2 (if p ≥ 2)

q ≥ 1, p ≥ 0 W3 −
(
−3q + 6q

N

)
Re(A1A12) (if q ≥ 2)

P2

{
A1r + 6A2r

− (|A1 + 6A2|2 − |
(
1− 3

N

)
A1|2

)

ΣII
q W1





(
1 + q

N − q3

Np2

)
A1r − q

(
1 + q

p

)
A2r

−
∣∣∣
(
1 + q

N − q3

Np2

)
A1 − q

(
1 + q

p

)
A2

∣∣∣
2
+

∣∣∣A1 + q
(
1 + q

p

)
A2

∣∣∣
2

(if q ≥ 2)

N = q + p

1 ≤ q ≤ N
2 W2





(
−1 + q

N − q3

Np2 + 2q2

p2

)
A1r − q

(
1 + 1

p

)
A2r

−
∣∣∣
(
−1 + q

N − q3

Np2 + 2q2

p2

)
A1 − q

(
1 + 1

p

)
A2

∣∣∣
2
+

∣∣∣ q2

p2 A1 + q
(
1 + q

p

)
A2

∣∣∣
2

(if p ≥ 2)

Table 9. Stability for SN Hopf bifurcation in the directions of each iso-
typic component.

and Appendix B for the bifurcation diagrams (for the periodic solutions with C-axial
symmetry).

Remark 5.1. (i) The stability of the periodic solutions guaranteed by the Equivariant
Hopf Theorem obtained in Table 12 depends only on the coefficients A1, A2, A3 of the
degree three truncation of the vector field f given by (19) for N = 4.
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Isotropy Isotypic ∆1, . . . ,∆r

Subgroup Component

ΣI
p,q, 3 < k ≤ N W1





(
1− 2kq

N

)
A1r,

−|
(
1− 2kq

N

)
A1|2 + |A1|2

(if p ≥ 1)

N = kq + p

q ≥ 1, p ≥ 0 W2





A1r,

−|A1|2
(if p ≥ 2)

W3

{
the fifth degree truncation is too degenerate
to determine the stability in the directions in W3

(if k ≥ 4, q ≥ 2)

P2





A1r

−
(
|A1|2 − |

(
1− kq

N

)
A1|2

)

Pk−1





A1r + 2kqA2r,

−(|A1 + 2kqA2|2 − |A1|2)
(if k ≥ 4)

Pj (j = 3, . . . , k − 2)




−Re(A1ξ1) + Re(2A1A4 + kqA1A14) (if k ≥ 5)

−Re(A1ξ2) + Re(2A1A4 + kqA1A14) (if k ≥ 6)

Table 10. Stability for SN Hopf bifurcation in the directions of each
isotypic component. Here ξ1 = 2A4 + 3kqA12 + q(kq − 1)

(
2− 2kq

N

)
A13 +

kqA14+q(kq−1)
(
1− 2kq

N

)
A14+2q(kq−1)A15 and ξ2 = ξ1−3kqA12−kqA14.

(ii) Observe that periodic solutions with Σ3-symmetry are always unstable since gener-
ically ∆2 = |A1|2 > 0. If A1r > 0, then solutions with symmetry Σ4 are unstable and if
A2r < 0, then solutions with symmetry Σ2 are also unstable. ♦
Periodic solutions with submaximal isotropy. We look now for possible branches of pe-
riodic solutions that can bifurcate for the system (20) (with N = 4) with submaximal
isotropy.

We have that the groups Z̃2 and S2 listed in Table 13 are submaximal isotropy sub-
groups of S4 × S1. In fact, using the results of Ashwin and Podvigina [3] (see remark
below), these are the only isotropy subgroups of S4 × S1 with fixed-point subspace of
complex dimension 2

As it was stated before, when f is supposed to commute also with S1, then the problem
of finding periodic solutions of ż = f(z, λ) can be transformed to the problem of finding
the zeros of g(z, λ, τ) = 0 where g = f − (1+ τ)iz. However, for the branches of periodic
solutions with submaximal isotropy that are found here, we can no longer guarantee that
they exist for (20) if f commutes only with S4 (even with the third order Taylor series
commuting with S1). These solutions branches are guaranteed only for the third order
truncation with which we work from now on. Consider the truncation of f as in (19)
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Isotropy Subgroup Branching Equations

Σ1 λ = − (A1r + 4A2r + 4A3r) |z|2 + · · ·

Σ2 λ = − (A1r + 2A2r + 2A3r) |z|2 + · · ·

Σ3 λ = − (A1r + 3A3r) |z|2 + · · ·

Σ4 λ = − (A1r + 4A3r) |z|2 + · · ·

Σ5 λ = −1
3

(
7
3
A1r + 4A2r + 4A3r

)
|z|2 + · · ·

Table 11. Branching equations for S4 Hopf bifurcation. Subscript r on
the coefficients refer to the real part and + · · · stands for higher order
terms.

(with N = 4) of degree three and the respective reduced vector field g = f − (1 + τ)iz
of the same degree.

Let ∆ = Z̃2. We study g|Fix(∆). Consider the normalizer of ∆ in S4 × S1, NS4×S1(∆),
defined by

NS4×S1(∆) = {γ ∈ S4 × S1 : γ∆γ−1 = ∆} .

Now NS4×S1(∆) is the largest subgroup of S4 × S1 acting on Fix(∆). (See for example
Chossat and Lauterbach [5, Lemma 2.1.9].) Thus g|Fix(∆) is NS4×S1(∆)-equivariant.
Easy computations show that

NS4×S1(∆) ∼= D4 × S1 .

One way of proving this is the following. We recall that the isotropy subgroups ∆ ⊆
Γ × S1 are always of the form Gθ = {(g, θ(g)) ∈ Γ × S1 : g ∈ G} where G ⊆ Γ and
θ : G → S1 is a group homomorphism. Denote by K = Ker(θ). Now by Golubitsky and
Stewart [15, Lemma 2.5], we have that NΓ×S1(Gθ) = C(G, K) × S1 where C(G,K) =

{γ ∈ Γ : γgγ−1g−1 ∈ K, ∀g ∈ G}. Taking Gθ = ∆ = Z̃2 = {Id, ((13)(24), π)}, the
projection of Gθ into S4 is the group G = {Id, (13)(24)}, and θ is the homomorphism
θ : G → S1 (with trivial kernel) such that θ((13)(24)) = π. It follows then that for this
case

C(G, K) = {Id, (24), (12)(34), (1432), (13)(24), (1234), (14)(23), (13)} ∼= D4 .

When we restrict g to Fix(Z̃2) = {(z1, z2,−z1,−z2) : z1, z2 ∈ C}, we obtain the fol-
lowing D4 × S1-equivariant system:

(21)
ż1 = z1 (λ + iω + A(|z1|2 + |z2|2) + B|z1|2) + Cz1z

2
2

ż2 = z2 (λ + iω + A(|z1|2 + |z2|2) + B|z2|2) + Cz2z
2
1

where (z1, z2) ∈ C2, A = 2A3, B = A1 + 2A2 and C = 2A2. This is the normal form for
the generic Hopf bifurcation problem with symmetry D4 studied by Swift [23].

The nontrivial solutions in the space Fix(Z̃2) with maximal isotropy are the solutions

with symmetry S̃2 o Z2, Z̃4, Z̃2×S2 (recall Table 2), corresponding, respectively, to zeros
of type z1 = z2 , z1 = iz2 and z1 = 0. Note that for solutions corresponding to the
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Isotropy ∆0 ∆1, . . . , ∆r

Subgroup

A1r − 4A2r

Σ1 A1r + 4A2r + 4A3r − (|A1 − 4A2|2 − |A1 + 4A2|2
)

−A1r − 2A2r

Σ2 A1r + 2A2r + 2A3r − (|A1 + 2A2|2 − |2A2|2
)

−A2r

− (
4|A2|2 − |12A1 + 2A2|2

)

−A1r

Σ3 A1r + 3A3r |A1|2
A1r + 6A2r

− (|A1 + 6A2|2 − |14A1|2
)

A1r

Σ4 A1r + 4A3r −|A1|2
A1r + 8A2r

− (|A1 + 8A2|2 − |A1|2
)

−5A1r − 12A2r

Σ5
7
3A1r + 4A2r + 4A3r −

(
|5A1 + 12A2|2 − |A1 + 12A2|2

)

Table 12. Stability for S4 Hopf bifurcation. For each Σi, the correspond-
ing branch of periodic solutions is supercritical if ∆0 < 0 and subcritical
if ∆0 > 0. If ∆j > 0 for some j = 0, . . . , r, then the corresponding branch
of periodic solutions is unstable. If ∆j < 0 for all j, then the solutions are
stable near λ = 0 and z = 0. Note that solutions with Σ3-symmetry are
always unstable.

Isotropy Subgroup Generators Fixed-Point Subspace

∆1 = Z̃2 ((13)(24), π) {(z1, z2,−z1,−z2) : z1, z2 ∈ C}

∆2 = S2 (23) {(z1, z2, z2,−z1 − 2z2) : z1, z2 ∈ C}

Table 13. Generators and fixed-point subspaces corresponding to the
isotropy subgroups of S4 × S1 with fixed-point subspaces of complex di-
mension two.
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isotropy subgroup Z̃2 × S2 we have that (z1, 0,−z1, 0) is conjugated to (z1,−z1, 0, 0).
Their stability properties are studied in [14], [16] and [23].

By [23], in addition to these periodic solutions, there can be a fourth branch of periodic

solutions to (21) with z1 6= z2 and z1z2 6= 0. Thus, these correspond to Z̃2-symmetric
solutions of (20) where f is as in (19) (with N = 4) truncated to the third order.
Moreover, this solution branch exists if

∣∣Re[2(A1 + 2A2)A2]
∣∣ < |2A2|2 < |A1 + 2A2|2

and the solutions are generically unstable.

Remark 5.2. In [3], Ashwin and Podvigina considered Hopf bifurcation with the group
O of rotational symmetries of the cube. The group O is isomorphic to S4 and it has two
non-isomorphic real irreducible representations of dimension three. In [3] they consider
the irreducible representation of O corresponding to rotational symmetries of a cube
in R3 = W . When studying Hopf bifurcation, they take two copies of this irreducible
representation. Specifically, they consider the action of O×S1 on W ⊕W generated by:

(22)
ρ111(z1, z2, z3) = (z2, z3, z1)
ρ001(z1, z2, z3) = (z2,−z1, z3)
γθ(z1, z2, z3) = eiθ(z1, z2, z3) (θ ∈ S1).

Although the permutation group S4 is isomorphic to the group of rotations of a cube,
the action of O on W and the natural action of S4 on R4,0 are not isomorphic. Recall
that R4,0 = {(x1, x2, x3, x4) ∈ R4 : x1 +x2 +x3 +x4 = 0}. However, the action of O×S1

on W ⊕W and the action of S4 × S1 on C4,0 are isomorphic (see [3]). Thus from the
point of view of Hopf bifurcation, the two non-isomorphic actions of S4 give rise to the
same results.

In [3], the isotropy lattice for the action of O×S1 on C3 is obtained and the isotropy
subgroups with fixed-point subspaces of complex dimension two have normalizers given,
respectively, by D4×S1 and D2×S1. These are in correspondence with the normalizers

of Z̃2 and S2 for the action of S4 × S1 on C4,0 considered here.
♦

5.2. S5 Hopf Bifurcation. We consider the action of S5 × S1 on C5,0 given by (6) for
N = 5. We study Hopf bifurcation with S5-symmetry by considering

(23)
dz

dt
= f(z, λ),

where f : C5,0 × R → C5,0 is smooth, commutes with S5 and (df)0,λ has eigenvalues
σ(λ) ± iρ(λ) with σ(0) = 0, ρ(0) = 1 and σ′(0) 6= 0. Assuming that f also commutes
with S1 we obtain the general form of f given by (19) with N = 5.

Example 3.3 describes the C-axial subgroups of S5×S1 acting on C5,0, together with
their generators and fixed-point subspaces, given by Table 3: we have used Table 1 where
Σi, i = 1, . . . , 5 are of the form ΣI

q,p and Σ6, Σ7 are of the form ΣII
q . The correspondence

between the notation of Table 1 and the C-axial subgroups Σi of S5 × S1 is given by
(14). Table 6 gives the isotypic decomposition of C5,0 for each of the isotropy subgroups
Σi listed in Table 3.

Proceeding the same way that we did for N = 4 we get Tables 14 and 15, which
give respectively the branching equations and the stability for Hopf bifurcation with
S5-symmetry. Note that in particular it follows that solutions with Σ3 and with Σ4-
symmetry are always unstable.
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Isotropy Subgroup Branching Equations

Σ1 λ = −(A1r + 4A2r + 4A3r)|z|2 + · · ·

Σ2 λ = −(A1r + 2A2r + 2A3r)|z|2 + · · ·

Σ3 λ = −(A1r + 3A3r)|z|2 + · · ·

Σ4 λ = −(A1r + 4A3r)|z|2 + · · ·

Σ5 λ = −(A1r + 5A3r)|z|2 + · · ·

Σ6 λ = −1
3

(
7
3A1r + 10A2r + 10A3r

) |z|2 + · · ·

Σ7 λ = −1
4

(
13
4 A1r + 5A2r + 5A3r

) |z|2 + · · ·

Table 14. Branching equations for S5 Hopf bifurcation. Subscript r on
the coefficients refer to the real part and + · · · stands for higher order
terms.

6. Proof of Theorem 4.1

In this section we prove the main result of this paper, Theorem 4.1. We consider
the system (17) where f is as in (19). Assume that Re(µ′(0)) > 0, such that the
trivial equilibrium is stable if λ < 0 and it is unstable if λ > 0 (near the origin). Thus f
satisfies the conditions of the Equivariant Hopf Theorem. It follows that for each C-axial
subgroup Σ of SN × S1 in Table 1, we have a branch of periodic solutions to (17) with
that symmetry obtained by Hopf bifurcation from the trivial equilibrium. Moreover,
since we are assuming that f in (19) commutes also with S1, as stated in Section 2,
periodic solutions of (17) of period 2π/(1+ τ) are in one-to-one correspondence with the
zeros of g(z, λ, τ), where

(24) g(z, λ, τ) = f(z, λ)− (1 + τ)iz.

is the explicit form of the reduced function obtained by the Lyapunov-Schmidt procedure.
Here τ is the period-perturbing parameter. Throughout denote by ν(λ) = µ(λ)−(1+τ)i.

In order to determine the stability of such solutions, we recall that there is a corre-
spondence between the Floquet multipliers of z(t) and the eigenvalues of (dg)(z0,λ0,τ0), if
z(t) is a periodic solution of (17) with λ = λ0 and τ = τ0, and (z0, λ0, τ0) is the corre-
sponding solution of (18): a multiplier lies inside (respectively outside) the unit circle if
and only if the corresponding eigenvalue has negative (respectively positive) real part.
So, we determine the stability of each type of bifurcating periodic orbit by calculating
the eigenvalues of (dg)(z0,λ0,τ0) (to the lowest order in z). Let Σz0 ⊂ Γ be the isotropy
subgroup of z0.

Now for each C-axial subgroup Σz0 of SN × S1 in Table 1, we have that g maps
Fix(Σz0) into itself since g commutes with SN × S1. Periodic solutions of (17) with
Σz0-symmetry are in correspondence with the zeros of g with isotropy Σz0 which are
obtained by solving g|Fix(Σz0 ) = 0. Note that to find the zeros of g, it suffices to look at

representative points on SN × S1 orbits. We obtain Table 7.
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Isotropy ∆0 ∆1, . . . , ∆r

Subgroup

Σ1 A1r + 4A2r + 4A3r −3
5A1r − 4A2r

− (| − 3
5A1 − 4A2|2 − |15A1 + 4A2|2

)
A1r − 4A2r

− (|A1 − 4A2|2 − |A1 + 4A2|2
)

1
5A1r − 2A2r

Σ2 A1r + 2A2r + 2A3r − (|15A1 − 2A2|2 − |35A1 + 2A2|2
)

−A1r − 2A2r

− (|A1 + 2A2|2 − |2A2|2
)

−A1r

Σ3 A1r + 3A3r − (|A1 + 6A2|2 − |25A1|2
)

|A1|2
A1r + 6A2r

A1r

−|A1|2

−|A1|2
Σ4 A1r + 4A3r −A1r

A1r

− (|A1 + 8A2|2 − |A1|2
)

A1r + 8A2r

−|A1|2
A1r

Σ5 A1r + 5A3r −Re[A1(ξ1 − ξ2)]
A1r + 10A2r

− (|A1 + 10A2|2 − |A1|2
)

11
3 A1r − 10A2r

Σ6
7
3A1r + 10A2r + 10A3r − (|13

(
11
3 A1 − 10A2

) |2 − |A1 + 10
3 A2|2

)
1
3A1r − 8A2r

− (|13
(

1
3A1 − 8A2

) |2 − |13
(

4
3A1 + 10A2

) |2)

Σ7
13
4 A1r + 5A2r + 5A3r Re(−55

80A1 − 5
4A2)

− (| − 55
80A1 − 5

4A2|2 − | 1
16A1 + 5

4A2|2
)

Table 15. Stability for S5 Hopf bifurcation. Here ξ1 = 2A4 + 10A14 and
ξ2 = 2A4 +5A11 +5A14. For each Σi, the corresponding branch of periodic
solutions is supercritical if ∆0 < 0 and subcritical if ∆0 > 0. If ∆j > 0 for
some j = 0, . . . , r, then the corresponding branch of periodic solutions is
unstable. If ∆j < 0 for all j, then the solutions are stable near λ = 0 and
z = 0. Note that solutions with Σ3 and Σ4 symmetry are always unstable.
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The Jacobian (dg)z0 commutes with Σz0 . Now using the isotypic decomposition of
CN,0 for the action of each C-axial Σz0 obtained in Table 4, we have that each isotypic
component is left invariant by (dg)z0 . Thus it is possible to put the Jacobian matrix
(dg)z0 into block diagonal. That is, the stability of the periodic solutions is determined
by the restrictions of (dg)z0 to each of the isotypic components of CN,0 for the action of
Σz0 .

Also note that as the group action forces some of the Floquet multipliers to be equal
to one, it also forces the corresponding eigenvalues of (dg)(z0,λ0,τ0) to be equal to zero.
(Recall [16, Theorem XVI 6.2].) The eigenvectors associated with these eigenvalues are
the tangent vectors to the orbit of SN × S1 through z0. If the solution z0 has symmetry
Σz0 , then the group orbit has the dimension of (Γ× S1) /Σz0 and so the number of zero
eigenvalues of (dg)(z0,λ0,τ0) forced by the group action is

dΣz0
= 1− dim(Σz0)

since dim (SN × S1) = 1. The groups Σz0 = ΣI
q,p and Σz0 = ΣII

q are discrete, then there
is one eigenvalue forced by the symmetry to be zero (this is, we get dΣz0

= 1).
To compute the eigenvalues it is convenient to use the complex coordinates. We take

co-ordinate functions on CN : z1, z1, z2, z2, . . . , zN , zN . These correspond to a basis B
for CN with elements denoted by b1, b1, b2, b2, . . . , bN , bN .

Recall that an R-linear mapping on C ≡ R2 has the form

(25) ω 7→ αω + βω

where α, β ∈ C. The matrix of this mapping in these coordinates,

(26) M =

(
α β
β α

)
,

has
tr(M) = 2Re(α), det(M) = |α|2 − |β|2.

The eigenvalues of this matrix are

tr(M)

2
±

√(
tr(M)

2

)2

− det(M).

If one eigenvalue is zero, then det(M) = 0 and the sign of the other eigenvalue (if it is
not zero) is given by the sign of the real part of α. If M has no zero eigenvalues, then
the eigenvalues have negative real part if and only if the determinant is positive and the
trace is negative.

(
ΣI

q,p = S̃q o Zk × Sp, where N = qk + p, 2 ≤ k ≤ N, q ≥ 1, p ≥ 0
)

The fixed-point subspace of ΣI
q,p = S̃q o Zk × Sp is

Fix
(
ΣI

q,p

)
= {(z, . . . , z︸ ︷︷ ︸

q

; ξz, . . . , ξz︸ ︷︷ ︸
q

; . . . ; ξk−1z, . . . , ξk−1z︸ ︷︷ ︸
q

; 0, . . . , 0︸ ︷︷ ︸
p

) : z ∈ C}

where ξ = e2πi/k. Using the equation (18) where f is as in (19), after dividing by z we
have if k 6= 2

ν(λ) + (A1 + kqA3)|z|2 + · · · = 0

where + · · · denotes terms of higher order in z and z, and taking the real part of this
equation, we obtain,

λ = −(A1r + kqA3r)|z|2 + · · ·
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It follows that if A1 + kqA3 < 0, then the branch bifurcates supercritically.
In the particular case k = 2 we have

ν(λ) + [A1 + 2q(A2 + A3)]|z|2 + · · · = 0

and taking the real part of this equation,

λ = −[A1r + 2q(A2r + A3r)]|z|2 + · · ·
where the functions Air for i = 1, 2, 3 are evaluated at λ = 0. It follows in this case that
if A1r + 2q(A2r + A3r) < 0, then the branch bifurcates supercritically.

Throughout we denote by (z0, λ0, τ0) a zero of g(z, λ, τ) = 0 with z0 ∈ Fix(Σ). Specif-
ically, we wish to calculate (dg)(z0,λ0,τ0).

Recall the generators for ΣI
q,p given in Section 3. With respect to the basis B, any

“real” matrix commuting with ΣI
q,p = S̃q o Zk × Sp has the form

(dg)(z0,λ0,τ0) =




M1 M3 M4 . . . Mk+1 Mk+2

M ξ2

k+1 M ξ2

1 M ξ2

3 . . . M ξ2

k M ξ2

k+2
...

. . .
...

M ξ2(k−1)

3 . . . M ξ2(k−1)

1 M ξ2(k−1)

k+2

Mk+3 M ξ2

k+3 M ξ4

k+3 . . . M ξ2(k−1)

k+3 Mk+4




where M1 commutes with Sq, Mk+4 commutes with Sp and the other matrices are defined
below.

Suppose M is a square matrix of order a with rows l1, . . . , la and commuting with
Sa. It follows then that M = (l1, (12) · l1, · · · , (1a) · l1)t, where if l1 = (m1, . . . , ma) then
(1i) · l1 = (mi, m2, . . . ,mi−1,m1,mi+1, . . . , ma). Moreover, l1 is invariant under Sa−1 in
the last a− 1 entries and so it has the following form: (m1,m2, . . . , m2). Applying this
to M1 and Mk+4 we get

M1 =




C1 C2 . . . C2

C2 C1 . . . C2
...

. . .
...

C2 C2 . . . C1


 , Mk+4 =




Ck+4 Ck+5 . . . Ck+5

Ck+5 Ck+4 . . . Ck+5
...

. . .
...

Ck+5 Ck+5 . . . Ck+4


 ,

where M1 is a 2q × 2q matrix and Mk+4 is a 2p× 2p matrix.
The other symmetry restrictions on the Mi, for i = 3, . . . , k + 3, imply that each have

one identical entry,

Mi =




Ci . . . Ci

. . .
Ci . . . Ci


 .

Note that each Mi for i = 1, . . . , k+1 is a 2q×2q matrix and Mk+2,Mk+3 are, respectively,
2q × 2p and 2p× 2q matrices. Furthermore, we have

M ξj

1 =




Cξj

1 Cξj

2 . . . Cξj

2

Cξj

2 Cξj

1 . . . Cξj

2
...

. . .
...

Cξj

2 Cξj

2 . . . Cξj

1




for j = 2, . . . , 2(k − 1) and
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M ξj

l =




Cξj

l Cξj

l . . . Cξj

l

Cξj

l Cξj

l . . . Cξj

l
...

. . .
...

Cξj

l Cξj

l . . . Cξj

l




for l = 3, . . . , k + 3 and j = 2, . . . , 2(k − 1).
Now, each Ci is of the type

Ci =

(
ci c′i
c′i ci

)
, Cξj

i =

(
ci ξjc′i

ξ
j
c′i ci

)

for i = 1, . . . , k + 3, j = 2, . . . , 2(k − 1) and

Ck+2 =

(
ck+2 c′k+2

c′k+2 ck+2

)
, Ck+4 =

(
ck+4 c′k+4

c′k+4 ck+4

)
, Ck+5 =

(
ck+5 c′k+5

c′k+5 ck+5

)
,

where

c1 = ∂g1

∂z1
, c′1 = ∂g1

∂z1
, c2 = ∂g1

∂z2
, c′2 = ∂g1

∂z2
,

c3 = ∂g1

∂zq+1
, c′3 = ∂g1

∂zq+1
, . . . ck+1 = ∂g1

∂zq(k−1)+1
, c′k+1 = ∂g1

∂zq(k−1)+1
,

ck+2 = ∂g1

∂zkq+1
, c′k+2 = ∂g1

∂zkq+1
, ck+3 =

∂gkq+1

∂z1
, c′k+3 =

∂gkq+1

∂z1
,

ck+4 = ∂gN

∂zN
, c′k+4 = ∂gN

∂zN
, ck+5 = ∂gN

∂zN−1
, c′k+5 = ∂gN

∂zN−1
,

calculated at (z0, λ0, τ0).
Throughout we denote by (dg)(z0,λ0,τ0)|Wk the restriction of (dg)(z0,λ0,τ0) to the subspace

Wk. And we recall the isotypic decomposition of CN,0 for the action of ΣI
q,p given by

(15) with the components listed in Table 4.
We begin by computing (dg)(z0,λ0,τ0)|W0 where

W0 = {(z1, . . . , z1︸ ︷︷ ︸
q

; ξz1, . . . , ξz1︸ ︷︷ ︸
q

; · · · ; ξk−1z1, . . . , ξ
k−1z1︸ ︷︷ ︸

q

; 0, . . . , 0︸ ︷︷ ︸
p

) : z1 ∈ C}.

The tangent vector to the orbit of Γ× S1 through z0 is the eigenvector

(iz, . . . , iz︸ ︷︷ ︸
q

; iξz, . . . , iξz︸ ︷︷ ︸
q

; · · · ; iξk−1z, . . . , iξk−1z︸ ︷︷ ︸
q

; 0, . . . , 0︸ ︷︷ ︸
p

).

Note that

d

dt
(eitz, . . . , eitz, . . . , eitξk−1z, . . . , eitξk−1z)

∣∣
t=0

= (iz, . . . , iz, . . . , iξk−1z, . . . , iξk−1z).

Now since g(Fix(ΣI
q,p)) ⊆ Fix(ΣI

q,p) we have that g(Fix(ΣI
q,p)) is two-dimensional.

Thus, (dg)(z0,λ0,τ0)|W0 is as in (25) and the matrix of this mapping has the form (26).
The matrix (dg)(z0,λ0,τ0)|W0 has a single eigenvalue equal to zero and the other is given
by

2Re(α) = 2Re(A1 + kqA3)|z|2 + · · ·
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if k ≥ 3, whose sign is determined by A1r + kqA3r if it is assumed nonzero (where
A1r + kqA3r is calculated at zero). In the particular case k = 2, the nonzero eigenvalue
is given by

2Re(α) = 2Re[A1 + 2q(A2 + A3)]|z|2 + · · ·
whose sign is determined by A1r + 2q(A2r + A3r) if it is assumed nonzero (where A1r +
2q(A2r + A3r) is calculated at zero).

We compute (dg)(z0,λ0,τ0)|W1 where

W1 = {(z1, . . . , z1︸ ︷︷ ︸
kq

;−kq

p
z1, . . . ,−kq

p
z1)

︸ ︷︷ ︸
p

: z1 ∈ C}.

We have
(
(dg)(z0,λ0,τ0)|W1

)
z → αz + βz where

α = c1 + (q − 1)c2 + qc3 − 2qc4,
β = c′1 + (q − 1)c′2 + qc′3 − 2qc′4,

for k = 2. Recall that this case is special case since the branching equation is different
from the one we obtain for k ≥ 3. Thus, we study this case separately. We get for k = 2
(see [20, Chapter 4, Section 4, p.71] for the explicit expressions for c1, . . . , c4, c

′
1, . . . , c

′
4)

that

tr((dg)(z0,λ0,τ0)|W1) = 2Re
[(

1− 4q
N

)
A1 − 2qA2

] |z|2 + · · · ,

det((dg)(z0,λ0,τ0)|W1) =
(∣∣(1− 4q

N

)
A1 − 2qA2

∣∣2 −
∣∣(1− 2q

N

)
A1 + 2qA2

∣∣2
)
|z|4 + · · · .

If k ≥ 3 we have

α = c1 + (q − 1)c2 + qc3 + · · ·+ qck+1 − kqck+2,
β = c′1 + (q − 1)c′2 + qc′3 + · · ·+ qc′k+1 − kqc′k+2.

and we get

tr((dg)(z0,λ0,τ0)|W1) = 2Re
[(

1− 2kq
N

)
A1

] |z|2 + · · · ,

det((dg)(z0,λ0,τ0)|W1) =
(∣∣(1− 2kq

N

)
A1

∣∣2 − |A1|2
)
|z|4 + · · · .

(see [20, Chapter 4, Section 4, p.72] for the explicit expressions for c1, . . . , ck+2, c
′
1, . . . , c

′
k+2).

We compute now (dg)(z0,λ0,τ0)|W2 where

W2 = {(0, . . . , 0; z1, . . . , zp−1,−z1 − · · · − zp−1)︸ ︷︷ ︸
p

: z1, . . . , zp−1 ∈ C}.

Recall that we only have this isotypic component in the decomposition of CN,0 for the
action of ΣI

q,p when p > 1. Recall (11). The action of K ⊂ ΣI
q,p on W2 decomposes in

the following way:

W2 = W 1
2 ⊕W 2

2

where

W 1
2 = {(0, . . . , 0; x1, . . . , xp−1,−x1 − · · · − xp−1)︸ ︷︷ ︸

p

: x1, . . . , xp−1 ∈ R},

W 2
2 = {(0, . . . , 0; ix1, . . . , ixp−1,−ix1 − · · · − ixp−1)︸ ︷︷ ︸

p

: x1, . . . , xp−1 ∈ R}.
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Moreover, the actions of K on W 1
2 and on W 2

2 are K-isomorphic and K-absolutely
irreducible. Thus, it is possible to choose a basis of W2 such that (dg)(z0,λ0,τ0)|W2 in the
new coordinates has the form

(27)

(
a Id(p−1)×(p−1) b Id(p−1)×(p−1)

c Id(p−1)×(p−1) d Id(p−1)×(p−1)

)

where Id(p−1)×(p−1) is the (p− 1)× (p− 1) identity matrix. Furthermore, the eigenvalues

of (27) are the eigenvalues of

(
a b
c d

)
each with multiplicity p− 1.

With respect to the basis B′ of W2 given by

bkq+1 − bN , bkq+1 − bN , bkq+2 − bN , bkq+2 − bN , . . . , bN−1 − bN , bN−1 − bN ,

we can write (dg)(z0,λ0,τ0)|W2 in the following block diagonal form

(dg)(z0,λ0,τ0)|W2 = diag(Ck+4 − Ck+5, . . . , Ck+4 − Ck+5).

The eigenvalues of (dg)(z0,λ0,τ0)|W2 are the eigenvalues of Ck+4 − Ck+5, each with mul-
tiplicity p − 1. The eigenvalues of Ck+4 − Ck+5 have negative real part if and only
if

tr(Ck+4 − Ck+5) < 0 and det(Ck+4 − Ck+5) > 0.

If k = 2 then

tr((dg)(z0,λ0,τ0)|W2) = 2Re (−A1 − 2qA2) |z|2 + · · · ,

det((dg)(z0,λ0,τ0)|W2) =
(|A1 + 2qA2|2 − |2qA2|2

) |z|4 + · · · .

Moreover, if k ≥ 3 we have

tr((dg)(z0,λ0,τ0)|W2) = 2Re (A1) |z|2 + · · · ,

det((dg)(z0,λ0,τ0)|W2) = |A1|2 |z|4 + · · · .

(see [20, Chapter 4, Section 4, p.73] for the explicit expressions for ck+4, ck+5, c
′
k+4, c

′
k+5

in both cases).
We compute now (dg)(z0,λ0,τ0)|W3 where

W3 = {(z1, . . . , zq−1, zq︸ ︷︷ ︸
q

; . . . ; zq(k−1)+1, . . . , zkq−1, zkq︸ ︷︷ ︸
q

; 0, . . . , 0︸ ︷︷ ︸
p

) : z1, . . . , zkq ∈ C}

with zq = −z1 − · · · − zq−1, . . . , zkq = −zq(k−1)+1 − · · · − zkq−1. Recall that we only have
this isotypic component in the decomposition of CN,0 for the action of ΣI

q,p when q ≥ 2.
With respect to the basis B′ of W3 given by

b1 − bq, b1 − bq, . . . , bq−1 − bq, bq−1 − bq,

bq+1 − b2q, bq+1 − b2q, . . . , b2q−1 − b2q, b2q−1 − b2q,

· · · ,

bq(k−1)+1 − bkq, bq(k−1)+1 − bkq, . . . , bkq−1 − bkq, bkq−1 − bkq,

we can write (dg)(z0,λ0,τ0)|W3 in the following block diagonal form:

(dg)(z0,λ0,τ0)|W3 = diag(C1 − C2, . . .︸ ︷︷ ︸
q−1

; Cξ2

1 − Cξ2

2 , . . .︸ ︷︷ ︸
q−1

; . . . ; Cξ2(k−1)

1 − Cξ2(k−1)

2 , . . .︸ ︷︷ ︸
q−1

).
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Note that we have tr(Cξj

1 − Cξj

2 ) = tr(C1 − C2) and det(Cξj

1 − Cξj

2 ) = det(C1 − C2).
We get for k = 2

tr(C1 − C2) = 2Re (A1 − 2qA2) |z|2 + · · · ,

det(C1 − C2) =
(|A1 − 2qA2|2 − |A1 + 2qA2|2

) |z|4 + · · · .

Furthermore, for k ≥ 3 we have

det(C1 − C2) = 0.

Thus, the degree three truncation is too degenerate (it originates a null eigenvalue which
is not forced by the symmetry of the problem). We consider now the degree five trunca-
tion and we get that k = 3 is a particular case. Note that the fifth degree truncation of
the branching equations are different in the cases k = 3 and k > 3, thus, we get different
expressions for the derivatives. We study the case k = 3 first. We have

tr(C1 − C2) = 2Re (A1) |z|2 + · · · ,

det(C1 − C2) = |A1 + (2A4 − 3qA12 + 3qA14)|z|2|2 |z|4−∣∣A1 + (2A4 − 6q
N

A12 + 3qA14)|z|2
∣∣2 |z|4 + · · · =(−3q + 6q

N

)
2Re

(
A1A12

) |z|6 + · · · .

Now, for k > 3 we get that det(C1−C2) = 0. In this case, when k > 3 and when this
component appears in the isotypic decomposition of CN,0 for the action of ΣI

q,p, the five
degree truncation is too degenerate in order to determine the stability of the system.
See [20, Chapter 4, Section 4, p.75 and p.76] for the explicit computation of c1, c2, c

′
1, c

′
2.

We compute now (dg)(z0,λ0,τ0)|Pj where

Pj = {(z1, . . . , z1︸ ︷︷ ︸
q

; ξjz1, . . . , ξ
jz1︸ ︷︷ ︸

q

; . . . ; . . . , ξj(k−1)z1︸ ︷︷ ︸
q

; 0, . . . , 0︸ ︷︷ ︸
p

) : z1 ∈ C}

and 2 ≤ j ≤ k − 1. We have
(
(dg)(z0,λ0,τ0)|Pj

)
z → αz + βz where

α = c1 + (q − 1)c2 + qξjc3 + · · ·+ qξ(k−1)jck+1,

β = c′1 + (q − 1)c′2 + qξjc′3 + · · ·+ qξ(k−1)jc′k+1.

When we substitute the expressions for the derivatives (see [20, Chapter 4, Section 4,
p.76 to p.78] for the explicit computations) we get that the case k = 3 is a particular
case. If j = 2 and k ≥ 4 we have

tr
(
(df)(z0,λ0,τ0)|P2

)
= 2Re (A1) |z|2 + · · · ,

det
(
(df)(z0,λ0,τ0)|P2

)
=

(
|A1|2 −

∣∣(1− kq
N

)
A1

∣∣2
)
|z|4 + · · · ,

but it the particular case k = 3 it follows that

tr
(
(df)(z0,λ0,τ0)|P2

)
= 2Re (A1 + 6A2) |z|2 + · · · ,

det
(
(df)(z0,λ0,τ0)|P2

)
=

(
|A1 + 6A2|2 −

∣∣(1− 3
N

)
A1

∣∣2
)
|z|4 + · · · .

Consider now j = k − 1. It follows that

tr
(
(df)(z0,λ0,τ0)|Pk−1

)
= 2Re (A1 + 2kqA2) |z|2 + · · · ,

det
(
(df)(z0,λ0,τ0)|Pk−1

)
= (|A1 + 2kqA2|2 − |A1|2) |z|4 + · · · .
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Moreover, if we consider 2 < j ≤ k − 2, then we obtain that det
(
(df)(z0,λ0,τ0)|Pj

)
= 0.

Thus, we need to consider the five degree truncation of (19). We have for j = k − 2
(note that we only have this isotypic component when k ≥ 5) that

tr
(
(df)(z0,λ0,τ0)|Pk−2

)
= 2Re (A1) |z|2 + · · · ,

det
(
(df)(z0,λ0,τ0)|Pk−2

)
= (|A1 + ξ1|z|2|2 − |A1 + (2A4 + kqA14)|z|2|2) |z|4 + · · ·
= [2Re(A1ξ1)− 2Re(2A1A4 + kqA1A14]|z|6 + · · · ,

where
ξ1 = 2A4 + 3kqA12 + q(kq − 1)

(
2− 2kq

N

)
A13 + kqA14+

+q(kq − 1)
(
1− 2kq

N

)
A14 + 2q(kq − 1)A15.

Furthermore, for 3 ≤ j ≤ k − 3 (note that we only have this isotypic component when
k ≥ 6) we get

tr
(
(df)(z0,λ0,τ0)|Pj

)
= 2Re (A1) |z|2 + · · · ,

det
(
(df)(z0,λ0,τ0)|Pj

)
= (|A1 + ξ2|z|2|2 − |A1 + (2A4 + kqA14)|z|2|2) |z|4 + · · ·
= [2Re(A1ξ2)− 2Re(2A1A4 + kqA1A14]|z|6 + · · · ,

with

ξ2 = ξ1 − 3kqA12 − kqA14.

(
ΣII

q = Sq × Sp, where N = q + p, 1 ≤ q < N
2

)

The fixed-point subspace of ΣII
q = Sq × Sp is

Fix
(
ΣI

q,p

)
=






z, . . . , z︸ ︷︷ ︸

q

; −q

p
z, . . . ,−q

p
z

︸ ︷︷ ︸
p


 : z ∈ C





.

Using the equation (18) where f is as in (19), after dividing by z we have

ν(λ) + A1

[
1− q

N

(
1− q2

p2

)]
|z|2 + (A2 + A3)q

(
1 +

q

p

)
|z|2 + · · · = 0

where + · · · denotes terms of higher order in z and z, and taking the real part of this
equation, we obtain,

λ = − A1r

[
1− q

N

(
1− q2

p2

)]
|z|2 − (A2r + A3r)q

(
1 +

q

p

)
|z|2 + · · · .

It follows that if A1r

[
1− q

N

(
1− q2

p2

)]
|z|2 + (A2r + A3r)q

(
1 + q

p

)
< 0, then the branch

bifurcates supercritically.

Let ΣII
q = Sq×Sp be the isotropy subgroup of z0 =

(
z, . . . , z; − q

p
z, . . . ,− q

p
z
)
. Recall

the generators for ΣII
q given in Section 3.

Suppose M is a square (q + p)× (q + p) matrix with rows l1, . . . , lq, lq+1, . . . , lq+p and
commuting with Sq × Sp. Then

M = (l1, (12) · l1, . . . , (1q) · l1; lq+1, (q + 1 q + 2) · lq+1, . . . , (q + 1 q + p) · lq+1)

where if l1 = (m1, . . . , mq+p) then

(1i) · l1 = (mi,m2, . . . ,mi−1,m1,mi+1, . . . , mq+p).
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Moreover, l1 is Sq−1 × Sp-invariant and lq+1 is Sq × Sp−1-invariant. Applying this to
(dg)(z0,λ0,τ0) we have

(dg)(z0,λ0,τ0) =




C1 C6 C2 C2

. . . . . .
C6 C1 C2 C2

C3 C3 C4 C5

. . . . . .
C3 C3 C5 C4




where Ci for i = 1, . . . , 5 are the 2× 2 matrices

Ci =

(
ci c′i
c′i ci

)

and

c1 = ∂g1

∂z1
, c′1 = ∂g1

∂z1
, c6 = ∂g1

∂z2
, c′6 = ∂g1

∂z2
, c2 = ∂g1

∂zq+1
, c′2 = ∂g1

∂zq+1
,

c3 = ∂gq+1

∂z1
, c′3 = ∂gq+1

∂z1
, c4 = ∂gq+1

∂zq+1
, c′4 = ∂gq+1

∂zq+1
, c5 = ∂gq+1

∂zq+2
, c′5 = ∂gq+1

∂zq+2
,

calculated at (z0, λ0, τ0).
Recall the isotypic decomposition of CN,0 for the action of ΣII

q given by (16) with the
components listed in Table 4.

We begin by computing (dg)(z0,λ0,τ0)|W0. In coordinates z, z we have ((dg)(z0,λ0,τ0)|W0)z =
αz + βz where

α = c1 + (q − 1)c6 − [q(N − q)/p]c2,
β = c′1 + (q − 1)c′6 − [q(N − q)/p]c′2.

The tangent vector to the orbit of Γ× S1 through z0 is the eigenvector
(

iz, . . . , iz,−i
q

p
z, . . . ,−i

q

p
z

)
.

Note that

d

dt

(
eitz, . . . , eitz,−eit q

p
z, . . . ,−eit q

p
z

) ∣∣
t=0

=

(
iz, . . . , iz,−i

q

p
z, . . . ,−i

q

p
z

)
.

The matrix (dg)(z0,λ0,τ0)|W0 has a single eigenvalue equal to zero and the other is

2Re(α) = 2Re

[
A1

(
1− q

N
+

q3

Np2

)
+ (A2 + A3)q

(
1 +

q

p

)]
|z|2 + · · ·

whose sign is determined by

A1r

[
1− q

N

(
1− q2

p2

)]
+ (A2r + A3r)q

(
1 +

q

p

)

if it is assumed nonzero (where A1r, A2r, A3r are calculated at zero).
We compute now (dg)(z0,λ0,τ0)|W1 where

W1 =






z1, . . . , zq−1,−z1 − · · · − zq−1; 0, . . . , 0︸ ︷︷ ︸

p


 : z1, . . . , zq−1 ∈ C



 .

The action of ΣII
q on W1 decomposes in the following way

W1 = W 1
1 ⊕W 2

1
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where

W 1
1 =






x1, . . . , xq−1,−x1 − · · · − xq−1; 0, . . . , 0︸ ︷︷ ︸

p


 : x1, . . . , xq−1 ∈ R



 ,

W 2
1 =






ix1, . . . , ixq−1,−ix1 − · · · − ixq−1; 0, . . . , 0︸ ︷︷ ︸

p


 x1, . . . , xq−1 ∈ R



 .

Moreover, the actions of ΣII
q on W 1

1 and on W 2
1 are ΣII

q -isomorphic and are ΣII
q -absolutely

irreducible. Thus, it is possible to choose a basis of W1 such that (dg)(z0,λ0,τ0)|W1 in the
new coordinates has the form

(28)

(
a Id(q−1)×(q−1) b Id(q−1)×(q−1)

c Id(q−1)×(q−1) d Id(q−1)×(q−1)

)

where Id(q−1)×(q−1) is the (q− 1)× (q− 1) identity matrix. Furthermore, the eigenvalues

of (28) are the eigenvalues of

(
a b
c d

)
each with multiplicity q − 1.

With respect to the basis B′ of W1 given by

b1 − bq, b1 − bq, b2 − bq, b2 − bq, . . . , bq−1 − bq, bq−1 − bq

we can write (dg)(z0,λ0,τ0)|W1 in the following block diagonal form

(dg)(z0,λ0,τ0)|W1 = diag(C1 − C6, C1 − C6, . . . , C1 − C6).

The eigenvalues of (dg)(z0,λ0,τ0)|W1 are the eigenvalues of C1−C6, each with multiplicity
q − 1. The eigenvalues of C1 − C6 have negative real part if and only if

tr(C1 − C6) < 0 and det(C1 − C6) > 0.

We get

tr((dg)(z0,λ0,τ0)|W1) = 2Re

[(
1 +

q

N
− q3

Np2

)
A1 − q

(
1 +

q

p

)
A2

]
|z|2 + · · · ,

det((dg)(z0,λ0,τ0)|W1) =

∣∣∣∣
(

1 +
q

N
− q3

Np2

)
A1 − q

(
1 +

q

p

)
A2

∣∣∣∣
2

|z|4−

∣∣∣∣A1 + q

(
1 +

q

p

)
A2

∣∣∣∣
2

|z|4 + · · · ,

(see [20, Chapter 4, Section 4, p.81] for the explicit expressions for c1, c6, c
′
1, c

′
6).

We compute now (dg)(z0,λ0,τ0)|W2 where

W2 = {(0, . . . , 0, zq+1, . . . , zN−1,−zq+1 − · · · − zN−1) : zq+1, . . . , zN−1 ∈ C} .

The action of ΣII
q on W2 decomposes in the following way

W2 = W 1
2 ⊕W 2

2
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where

W 1
2 =






0, . . . , 0︸ ︷︷ ︸

q

, xq+1, . . . , xN−1,−xq+1 − · · · − xN−1,


 : xq+1, . . . , xN−1 ∈ R



 ,

W 2
2 =






0, . . . , 0︸ ︷︷ ︸

q

, ixq+1, . . . , ixN−1,−ixq+1 − · · · − ixN−1,


 : xq+1, . . . , xN−1 ∈ R



 .

Moreover, the actions of ΣII
q on W 1

2 and on W 2
2 are ΣII

q -isomorphic and are ΣII
q -absolutely

irreducible. Thus, it is possible to choose a basis of W2 such that (dg)(z0,λ0,τ0)|W2 in the
new coordinates has the form

(29)

(
a Id(N−q−1)×(N−q−1) b Id(N−q−1)×(N−q−1)

c Id(N−q−1)×(N−q−1) d Id(N−q−1)×(N−q−1)

)

where Id(N−q−1)×(N−q−1) is the (N − q − 1)× (N − q − 1) identity matrix. Furthermore,

the eigenvalues of (29) are the eigenvalues of

(
a b
c d

)
each with multiplicity N − q − 1.

With respect to the basis B′ of W2 given by

bq+1 − bN , bq+1 − bN , bq+2 − bN , bq+2 − bN , . . . , bN−1 − bN , bN−1 − bN ,

we can write (dg)(z0,λ0,τ0)|W2 in the following block diagonal form

(df)(z0,λ0,τ0)|W2 = diag(C4 − C5, C4 − C5, . . . , C4 − C5).

The eigenvalues of (dg)(z0,λ0,τ0)|W2 are the eigenvalues of C4−C5, each with multiplicity
N − q − 1. The eigenvalues of C4 − C5 have negative real part if and only if

tr(C4 − C5) < 0 and det(C4 − C5) > 0.

We have

tr((dg)(z0,λ0,τ0)|W2) = 2Re

[(
−1 +

q

N
− q3

Np2
+

2q2

p2

)
A1 − q

(
1 +

1

p

)
A2

]
|z|2 + · · · ,

det((dg)(z0,λ0,τ0)|W2) =

∣∣∣∣
(
−1 +

q

N
− q3

Np2
+

2q2

p2

)
A1 − q

(
1 +

1

p

)
A2

∣∣∣∣
2

|z|4−

∣∣∣∣
q2

p2
A1 + q

(
1 +

q

p

)
A2

∣∣∣∣
2

|z|4 + · · · ,

(see [20, Chapter 4, Section 4, p.82] for the explicit expressions for c4, c5, c
′
4, c

′
5).

Appendix A. Equivariant Vector Field

In this section we compute the general form of a SN×S1- equivariant Hopf bifurcation
problem, up to degree 5, given by (19) of Section 4. We follow Dias, Matthews and
Rodrigues [6, Section 7] and Rodrigues [20, Section 4].

Theorem A.1 ([6]). Consider the action of SN × S1 on CN,0 defined by (6) and the
following functions Hi : CN,0 → CN,0, for i = 1, . . . , 15:

Hi(z) = (hi(z), hi((12)z), . . . , hi((1N)z))
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where z = (z1, . . . , zN) ∈ CN,0 and

h1(z) = |z1|2z1 − 1
N

N∑

j=1

|zj |2zj , h2(z) = z1

N∑

j=1

z2
j , h3(z) = z1

N∑

j=1

|zj |2;

h4(z) = |z1|4z1 − 1
N

N∑

i=1

|zi|4zi, h5(z) =
N∑

i=1

|zi|4z1,

h6(z) =
N∑

i=1

z2
i

N∑

j=1

z2
j z1, h7(z) =

(
N∑

i=1

|zi|2
)2

z1,

h8(z) =
N∑

j=1

|zj |2zj z2
1 −

1
N

N∑

j=1

|zj |2zj

N∑

i=1

z2
i , h9(z) =

N∑

j=1

z2
jz

3
1 −

1
N

N∑

j=1

z2
j

N∑

i=1

z3
i ,

h10(z) =
N∑

i=1

|zi|2
N∑

j=1

z2
j z1, h11(z) =

N∑

i=1

|zi|2z2
i z1,

h12(z) =
N∑

j=1

z3
j z2

1 −
1
N

N∑

j=1

z3
j

N∑

i=1

z2
i , h13(z) =

N∑

j=1

|zj |2zj |z1|2 − 1
N

N∑

j=1

|zj |2zj

N∑

i=1

|zi|2,

h14(z) =
N∑

j=1

|zj |2|z1|2z1 − 1
N

N∑

j=1

|zj |2
N∑

i=1

|zi|2zi, h15(z) =
N∑

j=1

z2
j |z1|2z1 − 1

N

N∑

j=1

z2
j

N∑

i=1

|zi|2zi .

Then:
(i) If N ≥ 4, the functions Hi for i = 1, 2, 3 constitute a basis of the complex vector
space of the SN × S1-equivariant functions with homogeneous polynomial components of
degree 3;
(ii) If N ≥ 6, the functions Hi for i = 4, . . . , 15 constitute a basis of the complex vector
space of the SN × S1-equivariant functions with homogeneous polynomial components of
degree 5.

Proof. See [6, Section 7]. We outline the proof for completeness. We start by making
two observations. The first is that the SN ×S1-equivariant functions with homogeneous
polynomial components of degree k are obtained by restriction to CN,0 and projection
onto CN,0 of the SN × S1-equivariant functions from CN to CN with homogeneous
polynomial components of degree k. Also note that with respect to the direct sum
decomposition of CN into SN -invariant spaces,

CN = {(z, z, . . . , z) : z ∈ R} ⊕CN,0,

the projection vector of z = (z1, . . . , zN) ∈ CN onto CN,0 is:

z − 1

N
(z1 + · · ·+ zN) (1, . . . , 1) .

Thus given a SN × S1-equivariant function f : CN → CN where f = (f1, . . . , fN) for
fi : CN → C, the restriction of f to CN,0 and projection onto CN,0 is given by

f |CN,0 − 1

N

N∑
i=1

fi|CN,0 (1, . . . , 1) .

The second observation is that if f : CN → CN is SN × S1-equivariant, then the
equivariance of f under SN is equivalent to the invariance say of the first component f1

under SN−1 in the last N − 1 coordinates z2, . . . , zN , and then

(30) f(z) = (f1(z), f1 ((12)z) , . . . , f1 ((1N)z)) .

That is,

f(z) = (f1(z1, z2, . . . , zN−1, zN), f1(z2, z1, . . . , zN−1, zN), . . . , f1(zN , z2, . . . , zN−1, z1)) .
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This follows from the equivariance conditions

(31) f ((1i)(z1, z2, . . . , zN)) = (1i)f (z1, z2, . . . , zN)

for i = 2, 3, . . . , N . Note that for each i, the equality (31) implies that fi(z) = f1((1i)z).
Now for example if we take i = 2 in (31), we obtain f1 ((1q)z) = f1 ((1q)(12)z) for
any q ≥ 3 and so f1(y) = f1 ((1q)(12)(1q)y) = f1 ((2q)y). Thus f1 is SN−1-invariant
in the last N − 1 coordinates. Obviously if we take f as in (30) where f1 satisfies this
SN−1-invariance condition then f is SN -equivariant.

Now using the S1-equivariance, for z = (z1, . . . , zN), taking z = (z1, . . . , zN) and using
multi-indices, we have that f1 can be written as

f1(z) =
∑

aαβzαzβ

where each aαβ ∈ C and α, β ∈ (
Z+

0

)N
and satisfies

(32) f1(e
iθz) = eiθf1(z)

(
θ ∈ S1, z ∈ CN

)
.

Thus each aαβ = 0 unless |α| = |β|+ 1. The rest of the proof consists in characterizing
the first component f1. That is, we describe the homogeneous polynomials of degree
k, for k = 3, 5, that are SN−1-invariant in the last N − 1-coordinates z2, . . . , zN and
are S1-equivariant. Specifically, we consider the SN × S1-equivariants where the first
component is an homogeneous polynomial of degree k which can be written as

za
1z1

bp(z2, . . . , zN)

where a, b ∈ Z+
0 , a + b ≥ 0, p is SN−1-invariant and satisfies (32).

As an example, for the degree three polynomials, we consider f1 given by monomials
of the following types: z2

1z1 = z1|z1|2, z2
1

∑N
j=2 zj, z1z1

∑N
j=2 zj, z1p(z2, . . . , zN) where

p(z2, . . . , zN) has degree two in z, z and it is SN−1 × S1-invariant, z1p(z2, . . . , zN) where
p(z2, . . . , zN) has degree two in z2, . . . , zN , it is SN−1-invariant and does not depend
on the zj and p(z2, . . . , zN) where p is SN−1-invariant and satisfies (32). This way we
obtain eleven SN × S1-equivariant functions from CN to CN . A list with the eleven
equivariants may be found in [20, Theorem 4.2]. Now we restrict to CN,0 and project
onto CN,0 the SN × S1-equivariant functions from CN to CN . Note that if z ∈ CN,0

then z1 + · · ·+ zN = 0 and z1 + · · ·+ zN = 0.
For the equivariants under SN × S1 with homogeneous components of degree 5, there

are 52 and a list can be found at [20, Theorems 4.5]. See [20, Theorems 4.2, 4.5-4.6,
4.10] for details. ¤

Remark A.2. (i) The complex vector space of SN ×S1-equivariants with homogeneous
polynomial components of degree one has dimension one and so is generated for example
by the identity on CN,0. To see that, note that the first component f1 of any given f
has to be a linear combination of the monomials z1 and z2 + · · ·+zN which are invariant
under SN−1 in the last N − 1 coordinates and satisfy (32). Equivalently, it is a linear
combination of z1 and z1 + z2 + · · ·+ zN . Now at restriction to CN,0 we obtain only z1.
(ii) For N = 5 we have

H12(z) = 30H4(z)− 9
2
H5(z) + 3

4
H6(z) + 3

2
H7(z)− 3H8(z)− 3

2
H9(z)+

3
2
H10(z)− 3H11(z)− 6H13(z)− 9H14(z)− 9

2
H15(z)

where z = (z1, z2, z3, z4, z5) ∈ C5,0 and so we obtain (over the complex field) only eleven
linearly independent S5×S1-equivariants with homogeneous polynomial components of
degree five. ♦
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Figure 1. Regions of the (A3r, A2r)-parameter space defined by the lines
corresponding to the equations (34). Here we assume A1r < 0. Lines
are labelled according to which of the corresponding expressions on (34)
vanishes on them.

Appendix B. Bifurcation diagrams for N = 4

In this section we present the bifurcation diagrams concerning the periodic solutions
with maximal isotropy for Hopf bifurcation with S4-symmetry (note that we do not in-
clude in the diagrams the possible periodic solutions with submaximal isotropy obtained
in Section 5).

For N = 4 the solution stabilities depend on the following coefficients

(33) A1, A2, A3r

of the degree three truncation of the vector field f (see Section 5).
Recall the stability results for these solutions summarized in Table 12. From this we

obtain the following non-degeneracy conditions:

(34)

(a) A1r + 4A2r + 4A3r 6= 0, (b) A1r − 4A2r 6= 0,
(c) |A1 − 4A2|2 − |A1 + 4A2|2 6= 0, (d) A1r + 2A2r + 2A3r 6= 0,
(e) A1r + 2A2r 6= 0, (f) |A1 + 2A2|2 − 4|A2|2 6= 0,
(g) A2r 6= 0, (h)

(
4|A2|2 − |12A1 + 2A2|2

) 6= 0,
(i) A1r + 3A3r 6= 0, (j) A1r + 4A3r 6= 0,
(k) A1r + 6A2r 6= 0, (l) A1r 6= 0,
(n) A1r + 8A2r 6= 0, (o) |A1 + 8A2|2 − |A1|2 6= 0,
(p) 7

3
A1r + 4A2r + 4A3r 6= 0, (q) 5A1r + 12A2r 6= 0,

(r) |5A1 + 12A2|2 − |A1 + 12A2|2 6= 0, (s) |A1 + 6A2|2 − |14A1|2 6= 0 .

The inequalities (34) divide the parameter space (33) into regions characterized by
(possibly) distinct bifurcation diagrams. In Figures 1 and 2 we assume, respectively,
A1r < 0 and A1r > 0 and we consider the various regions of the (A2r, A3r)-parameter
space defined by (34).
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Figure 2. Regions of the (A3r, A2r)-parameter space defined by the lines
corresponding to the equations (34). Here we assume A1r > 0. Lines
are labelled according to which of the corresponding expressions on (34)
vanishes on them.

Figures 3-4 show the bifurcation diagrams corresponding to the regions of parameter
space of Figure 1. An asterisk on solution indicates that it is possible for the solution
to be unstable, depending on the sign of

(35)

(∗) |A1 − 4A2|2 − |A1 + 4A2|2,
(∗∗) |A1 + 2A2|2 − 4|A2|2 and 4|A2|2 − |12A1 + 2A2|2,
(∗ ∗ ∗) |A1 + 8A2|2 − |A1|2,
(∗ ∗ ∗∗) |5A1 + 12A2|2 − |A1 + 12A2|2 .

Furthermore, note that the Σ3 solution is never stable.
On Figures 5-6 we show the bifurcation diagrams concerning regions of the parameter

space of Figure 2.
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