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ABSTRACT. In networks of dynamical systems, there are spaces defined in terms of
equalities of cell coordinates which are flow-invariant under any dynamical system
that has form consistent with the given underlying network structure — the net-
work synchrony subspaces. Given a network and one of its synchrony subspaces,
any system with form consistent with the network, restricted to the synchrony
subspace, defines a new system which is consistent with a smaller network, called
the quotient network of the original network by the synchrony subspace. More-
over, any system associated with the quotient can be interpreted as the restriction
to the synchrony subspace of a system associated with the original network. We
call the bigger network a lift of the smaller network and a lift can be interpreted
as resulting from a cellular splitting of the smaller network. In this paper we
address the question of the uniqueness in this lifting process in terms of the net-
works topologies. A lift G of a given network @ is said to be direct when there
are no intermediate lifts of () between them. We provide necessary and sufficient
conditions for a lift of a general network to be direct. Our results characterize
direct lifts using the subnetworks of all spitting cells of @@ and of all splitted cells
of G. We show that G is a direct lift of @ if and only if either the splitted subnet-
work is a direct lift or consists into two copies of the splitting subnetwork. These
results are then applied to the class of regular uniform networks and to the special
classes of ring networks and acyclic networks. We also illustrate that one of the
applications of our results is to the lifting bifurcation problem.

Keywords: Coupled cell network, direct lift.

1. INTRODUCTION

Many real life aplications are modelled through networks of dynamical systems.
See for example Albert and Barabdsi [6] and Strogatz [16]. The study of these
dynamical systems takes into account the internal dynamics of the nodes and the
network structure of the interactions between the nodes. This paper follows the
framework of the theory of coupled cell networks, developed by Stewart, Golubitsky
and co-workers [15, 11] and Field [8]. A network is a graph that encodes information
concerning the types of nodes and the types of interactions between the nodes. A
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coupled cell system associated with a network is a set of dynamical systems (in gen-
eral, we take a set of systems of ordinary differential equations) that has structure
consistent with the network. It is known that this network structure strongly influ-
ences the dynamics of the whole network. Moreover, there are dynamic phenomena
that are intrinsic to the specific topology of the network connections and indepen-
dent of the equations. One such example is the existence of synchrony subspaces,
spaces defined in terms of equalities of cell coordinates, which are flow-invariant
under any dynamical system that has form consistent with the network structure.
These spaces are commonly called network synchrony subspaces. Obviously, these
spaces have a strong impact at the type of dynamics that can be observed. See an
example of that in Aguiar et al. [2] and Field [9], where heteroclinic behaviour can
occur in a robust way in asymmetric networks of dynamical systems. Moreover,
one of the key elements in the occurrence of that phenomena is the existence of the
network synchrony subspaces.

It is shown in [15, 11] that, given a network G and a network synchrony subspace
A, any coupled cell system with form consistent with G, restricted to A, defines a
new coupled cell system which is consistent with a smaller network, called the quo-
tient network, say @), of G by A. Moreover, any coupled cell system associated with
() can be interpreted as the restriction to A of some coupled cell system associated
with G. We also say that G is a lift of (), and in general, there are many networks
G that admit a given network () has a quotient.

In this paper we consider the process of addition of new nodes in networks within
this framework. More precisely, a network G is interpreted as a network that has
been obtained from @ by adding nodes (and arrows) to ) with the rule that G has
to be a lift of @), or equivalently, that ) has to be a quotient of G by some of its
synchrony subspaces. Using the results in [15, 11, 8], it is described in [14, 4, 5, 1, 7]
that this dynamics rule is equivalent to a network rule that we call the lifting process,
which is similar to the cell division in cellular systems, since each additional node in
the bigger network is associated with a unique node in the smaller network. In this
sense, each new node is interpreted as resulting from a node’s splitting in the smaller
network. A lift G of a network @ is resulting from a cellular splitting from some of
the cells of Q) (the splitting cells) and all cells of G that result from these are called
the splitted cells, provided the following Fundamental property of the splittings is
satisfied. Assume that 7 is a cell of () that receives k arrows from a cell j of (). After
the splitting, each splitted cell in G associated with cell i receives k cells from the
set of splitted cells in G associated with the cell j.

The main question we address in this paper concerns the uniqueness in the lifting
process in terms of the networks topologies. Given two networks G and () where
G is a lift of (), we ask if the process is a one step process, or if, otherwise, the
lifting process could be done sequentially in several processes of addition of cells.
A lift G of a given network @ is said to be direct when there are no intermediate
lifts of @) between them (see Definition 2.2 in Section 2). In Section 3 of this work
we provide necessary and sufficient conditions for a lift of a general network to be
direct. Our results characterize direct lifts using the subnetworks S and S’, of all
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spitting cells of @) and of all splitted cells of G, respectively. We show that G is a
direct lift of @ if and only if either S’ consists into two copies of S or S’ is a direct
liftt of S. See Theorems 3.1 and 3.4. These results are specialized to the class of
regular uniform networks in Corollary 3.8 and to the special classes of ring networks
and acyclic networks in Section 4. The lifting bifurcation problem [4, 5] concerns
the comparative study of a bifurcation from a fully synchronous equilibrium in two
different systems: one associated with a given (quotient) network and the other
with a lift of that network. In Section 5 we illustrate one of the usages of the results
obtained in Section 3 to the lifting bifurcation problem.

2. BACKGROUND ON NETWORKS AND LIFTS

Following [15, 11] or [8], networks are graphical representations of coupled cell
systems which are finite collections of individual dynamical systems, or cells, that
are coupled together. These cells are often modelled using systems of ordinary
differential equations. The general theory associates then to each network a class of
admissible vector fields consistent with the network structure. A reqular network is
a network with only one type of cells and edges and where the number of directed
edges to each cell is constant (called the network valency). If the network has more
than one edge type then it is said to be homogeneous when all cells have the same
type and receive the same number of inputs from each arrow type. It follows then,
that an n-cell homogeneous network with s > 2 types of couplings can be interpreted
as the merging of the s n-cell regular networks that are obtained when each arrow
type is considered separately. We refer to these networks as the associated regular
networks.

A polydiagonalis a subspace of the total phase space of the network admissible vec-
tor fields defined by the equalities of certain cell coordinates. A network synchrony
subspace is a polydiagonal that is flow-invariant for every coupled cell system with
structure consistent with the given network. Golubitsky et al. [15, 11] proved that
every coupled cell system associated with a network when restricted to a synchrony
subspace corresponds to a coupled cell system associated with a smaller network,
called the quotient network. If ) is a quotient network of a network G then we also
say that G is a lift of Q.

Example 2.1. Consider the 5-cell network G at the left of figure 1. Any coupled
cell system consistent with the structure of G has the form

i = f(x1; T2, 73)
Ty = f(xe; 71, 73)
(1) i3 = f(rs:T1,72)
Ty = f(24;71,75)
i5 = f(xs5; 71, 74)

where 2; € IR¥, for some k& > 1. Also, f : (]Rk)3 — IRF is a smooth function and
the overbar indicates the invariance of f under permutation of the coordinates. The

space A = {z € (IR":)5 : Ty = X4,T3 = 5} is a synchrony subspace of the network
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F1GURE 1. The 3-cell network () on the right is the quotient network
of the 5-cell network G on the left by the synchrony subspace {z :
To = 1y, x3 = x4} (G is a lift of Q).

G. Restricting the system (1) to A we obtain

i = f(x1; 72, 73)
&y = f(x9; 71, @3)
T3 = f($3;131,372)

which is a coupled cell system associated with the 3-cell bidirectional ring ) at the
right of figure 1. The network @ is the quotient network of G by A. Equivalently,
G is a lift of Q. O

2.1. Lifting by splitting of cells. In [7], a lift G of a network @ is interpreted as
resulting from a cellular splitting from some of the cells of @ (the splitting cells). All
cells of G that result from these are called the splitted cells. Moreover, G is a lift of
Q if and only if the following holds:

Fundamental property of the splittings : Assume that i is a cell that receives
k arrows from a cell j. After the splitting, each splitted cell associated with cell ¢
receives k cells from the set of splitted cells associated with the cell j.

If the network is not regular, then the splitted cells must have the same type of
the corresponding splitting cell and each arrow type must be considered separately.

¢

The 3-cell bidirectional ring () on the right of figure 1 is the quotient network
of the 5-cell regular network G on the left of figure 1 by the synchrony subspace
A ={z: xy = x4,x3 = x5}. We have that G is a lift of @ by splitting both cells 2
and 3 of (), each into exactly two cells: in @, cells 2 and 3 are the splitting cells; in
G, cells 2, 3, 4 and 5 are the splitted cells. In figure 2 we present a 3-cell network
which is not regular and a 5-cell lift that results from the splitting of cell 3 followed
by the splitting of cell 2.

Considering a network and a subset C' of the network set of cells, the subnetwork
consisting of all cells in C' is the digraph whose set of nodes is C' and whose arrows
are all existing arrows in the original network between the cells in C'.

2.2. Direct lifts. There are splittings providing lifts that can be decomposed into
two (or more) sequential splittings. If it is not the case, then we define:



CELLULAR SPLITTING 5

FIGURE 2. A 3-cell network which is not regular (left) and a 5-cell
lift (right). The network on the right results from the splitting of cell
3 followed by the splitting of cell 2.
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FiGURE 3. The 5-cell network on the right is a lift of the 3-cell bidi-
rectional ring on the left which is not direct: the 4-cell network on the

center is a direct lift of the 3-cell network and the 5-cell network is a
direct lift of the 4-cell network.

Definition 2.2. Consider a network G with total phase space P, a synchrony sub-
space A of G and () the corresponding quotient network of G by A. We say that G
is a direct lift of @ if there is no synchrony subspace A’ of G such that A C A’ C P.

O

The 5-cell network G at the left of figure 1 is a direct lift of the 3-cell bidirectional
ring @ on the right — it is shown in [5] that there is no 4-cell lift of @ that lifts to
G. However, the 5-cell lift of @) in figure 3, on the right, is not direct due to the
existence of the intermediate 4-cell network presented in that figure, which is a lift
of @) and a quotient of G. Also, the network at the right of Figure 2 is a lift of the
network on the left which is not direct.

3. DIRECT LIFTS: CHARACTERIZATION

In this section necessary and sufficient conditions are given for a lift of a general
network to be direct. We start by establishing necessary conditions in terms of the
subnetworks of all splitting and splitted cells.

Theorem 3.1. Given a lift G of a network Q, consider the subnetworks S and S’
consisting of all splitting cells and of all splitted cells, respectively. If G is a direct

lift of Q then:

(i) S is strongly connected.
(ii) If #S > 1 then in S’ each cell receives and sends at least one arrow.
(i) If S" is disconnected then S’ consists of two copies of S.
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FIGURE 4. A 3-cell homogeneous network (left) and a 5-cell lift
(right). The subnetwork of all splitting cells is strongly connected.

Proof. (i) The subnetwork S is connected, otherwise the splitting could be divided
into more than one sequential splittings of each connected component separately.
Suppose that this subnetwork is not strongly connected and consider a source C' of
the condensation of S, that is, a strongly connected component whose cells do not
depend on cells from other strongly connected components. All splitted cells asso-
ciated with a fixed splitting cell depend on the same non-splitting cells. Thus, the
splitting can be decomposed into (at least) two splittings: one that splits firstly all
cells outside C' and, after that, another that splits all cells in C. So, the assumption
that S is not strongly connected implies that the splitting can be done sequentially,
contradicting the fact that G is a direct lift of ). Therefore, S is strongly connected.
(ii) Due to (i), each splitted cell receives an arrow from another splitted cell. If
there is more than one splitting cell and if there is a splitted cell not sending an
arrow then the splitting can be done sequentially, splitting firstly the splitting cell
associated with that splitted cell.

(iii) If S” is disconnected then it can be decomposed into (at least) two connected
components. Because S is strongly connected, each connected component has at
least one splitted cell associated with each splitting cell. So, if S’ does not consist
of two copies of S then there is at least one splitting cell that is splitted into more
than two cells. Hence, the splitting can be done sequentially: starting to obtain
two copies of S and then obtaining S’ (which is different from the former because
there is at least one cell that is splitted into more than two cells). This sequence
contradicts the fact that G is a direct lift of ) and so, S” consists of two copies of
S. O

Remark 3.2. (a) Condition (i) of Theorem 3.1 is quite restrictive. See for example
Lemma 4.1.

(b) All types of couplings must be considered together in the analysis of the con-
nectedness of the subnetwork of all splitting cells. For instance, in the splitting
illustrated in figure 4, the subnetwork of all splitting cells is strongly connected. ¢

Example 3.3. In figure 5, we present a 6-cell network @), an 11-cell lift G of () and
the corresponding subnetworks S of all splitting cells and S’ of all splitted cells. A
simple look at these subnetworks allows to verify that S is not strongly connected
and that the splitted cell 6” does not send any arrow. Thus, using Theorem 3.1, G
is not a direct lift of (). We show in figure 6 two lifts G; and G4 of ) such that G
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FIGURE 5. A regular network @, a lift GG of it, and the corresponding
subnetworks S and S’ of all splitting cells and of all splitted cells,
respectively.
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FIGURE 6. A sequence of direct lifts: G; is a direct lift of Q; G5 is a
direct lift of G1; and G is a direct lift of G.

is a direct lift of G5, the network G5 is a direct lift of G; and (G is a direct lift of
. This sequence illustrates the proof of Theorem 3.1. O

The following result characterizes direct lifts using the subnetworks of all spitting
cells and of all splitted cells. It shows that in order to identify direct lifts, there is
no need to compare the entire quotient with the entire lift.

Theorem 3.4. Given a lift G of a network Q, consider the subnetworks S and S’
consisting of all splitting cells and of all splitted cells, respectively. Then the network

G is a direct lift of Q if and only if S" is either two copies of S or S’ is a connected
direct lift of S.

Proof. When S’ is connected, there is an intermediate lift of S between S and S’ if
and only if there is an intermediate lift of () between @) and G. Thus, in this case,
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FIGURE 7. The 5-cell homogeneous network (right) is a direct lift of
the 3-cell homogeneous network (left). Considering each arrow type
separately, the regular lift corresponding to the solid arrow type is a
direct lift of the corresponding regular quotient.

S’ is a direct lift of S if and only if G is a direct lift of ). Assume, now, that S’ is
disconnected. If G is a direct lift of ) then Theorem 3.1 guarantees that S’ consists
of two copies of S. Conversely, if S’ consists of two copies of S then G is a direct
lift of @), obtained with the splitting of each cell in S into exactly two. U

Example 3.5. Taking the networks () and G in Example 3.3 and using Theorem 3.4,
we show in figure 6 a sequence of direct lifts leading from ) to G. The network G is
a direct lift of @) and G5 is a direct lift of G; because, in both cases, the subnetwork of
all splitted cells consists of two copies of the subnetwork of all splitting cells (which
is a trivial strongly connected component, in both cases). Moreover, the network GG
is a direct lift of G5 because the 4-ring is a direct lift of the 2-ring. O

Observe that if G is an homogeneous network with s > 2 different types of arrows
and G, ...,G, are the associated regular networks, then a polydiagonal subspace is
a synchrony subspace of GG if and only if it is a synchrony subspace of G, -+, G.
See Corollary 4.3 of [3].

Theorem 3.6. Let G and ) be two homogeneous networks with s > 2 different
types of arrows where Q) is the quotient network of G by a synchrony subspace S.
Let G, ...,Gy be the associated reqular networks of G, and Q1,...,Qs be the cor-

responding quotient networks of G; by S. If, for some 1 <1 < s, the network G; is
a direct lift of QQ;, then G is a direct lift of Q).

Proof. Trivially, if we consider a synchrony subspace S” of G containing properly S,
then, as S’ is also a synchrony subspace of G; and G; is a direct lift of );, it follows
that S’ is the total phase space of G; (and G). As a consequence, G is a direct lift
of Q. O

In figure 7, it is presented a 3-cell homogeneous network and a 5-cell direct lift of
it. In fact, the 5-cell regular network GG obtained from this lift by considering only
the solid arrow type is precisely the network depicted in figure 1 which as referred
previously is a direct lift of the 3-cell bidirectional ring. Therefore, by Theorem 3.6,
the 5-cell network in figure 7 is a direct lift of the 3-cell homogeneous network in
the same figure.

Remark 3.7. The reciprocal of Theorem 3.6 is false. For example, consider the two
homogeneous networks in figure 8. The 5-cell network is a lift of the 3-cell network
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FIGURE 8. A 3-cell homogeneous network with two arrow types (left)
and a 5-cell direct lift (right). Considering each arrow type separately,
none of the regular lifts is a direct lift of the corresponding regular
quotient.

and results from the splitting of both cells 2 and 3. This lift is direct because neither
cells 2 and 2’ have the same input set, nor do cells 3 and 3’. Thus, the splitting
can not be done sequentially and so the lift is direct. However, considering each
arrow type separately, none of the regular lifts is a direct lift of the corresponding
quotient. O

A network is said to be uniform when it has no loops and no multiple arrows. The
following result is a corollary of Theorems 3.1 and 3.4 applied to regular uniform
networks.

Corollary 3.8. Given a lift G of a reqular uniform network QQ, consider the sub-
networks S and S’ of all splitting cells and of all splitted cells, respectively.
(1) If #S =1 then G is a direct lift of Q if and only if G has exactly one cell

more than Q.
(2) If #S = 2 then G is a direct lift of Q if and only if S’ either consists of two
copies of S oris a (2p)-ring, with p prime.

Proof. The proof follows directly from Theorems 3.1 and 3.4. Recall that the network
@ is uniform and so it has no loops. Also, S is the 2-ring when #5 = 2. O

4. RING NETWORKS AND ACYCLIC NETWORKS

We apply the results of the previous section to characterize the direct lifts of two
classes of networks: rings and acyclic networks.

Rings. For positive integers g and s, the ¢-ring and the (q + s)-chain with feedback
are the networks depicted in figure 9, left and right, respectively.

FIGURE 9. The ¢-ring (left) and the (¢ + s)-chain with feedback (right).

Lemma 4.1. For a positive integer q, a (connected) direct lift of the q-ring is a
(q + 1)-chain with feedback or a (pq)-ring with p prime.
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Proof. Note that for every positive integer ¢, the (t¢)-ring is a lift of the ¢-ring [13].
Among these, the direct lifts are the (pg)-rings, with p prime. In fact, if t = pl,
for some positive integers p and [, with p prime, then we can split all cells of the
(pq)-ring into exactly [ cells and obtain the (plg)-ring, that is, the (¢¢)-ring. Also,
for every positive integer s, the (¢ + s)-chain with feedback is a lift of the g¢-ring.
Among these, only the case s = 1 is direct. Indeed, if s > 1 then the (¢ + s)-chain
with feedback can be lifted from the (¢ + s — 1)-chain with feedback as follows:
in this last network, split cell ¢, which is the unique cell having two outputs, into
exactly two cells in such a way that one of the splitted cells sends an arrow to cell
1 and the other splitted cell sends an arrow to cell (¢ + 1). Thus, the (¢ + 1)-chain
with feedback and the (pg)-rings are direct lifts of the ¢g-ring, with p prime.

Using now condition (i) of Theorem 3.1, we show that the unique forms of (con-
nected) direct lifts of the ¢g-ring are the (¢ + 1)-chains with feedback and the (pq)-
rings, with p prime. Since the subnetwork of all splitting cells S has to be strongly
connected, we have only two possible situations: S either consists of a unique cell or
it is the whole network. In the first case, as we proved in Corollary 3.8, we obtain
only the (¢+ 1)-chain with feedback as direct lift. In the second situation, we obtain
(tq)-rings as possible lifts, for every positive integer t. O

Remark 4.2. The result of Lemma 4.1 can be extended to valency-1 regular net-
works. Indeed, these networks have a unique nontrivial strongly connected com-
ponent, which is a unique g-cycle, with ¢ > 1 [13]. Therefore, they have only two
types of connected direct lifts: those that result from splitting the ¢-cycle into a
(pq)-cycle, with p prime, and those that result from splitting exactly one cell into
two cells (which is equivalent to add a unique vertex with 0 outdegree). O

Directed acyclic networks. A (directed) acyclic network is a network having no
cycles (in particular, it has no self-loops). An example of a connected acyclic network
(a directed tree) is given in figure 10.

F1GURE 10. An acyclic network.

Lemma 4.3. A lift of an acyclic network is acyclic.

Proof. If GG is a lift of an acyclic network ) and it contains a k-cycle, say, i1 —
ig — -+ — 1) — i1, then we obtain the path [i;] — [is] — -+ = [ig] — [i1] in @,
where [i] denotes the splitting cell associated with cell ¢ if this is a splitted cell, and
denotes cell ¢ if this is a non-splitted cell. Moreover, this path contains a p-cycle
with 1 <p < k. If p=1 then @ has a self-loop. Then, if ) is acyclic then G is also
acyclic. O
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Proposition 4.4. Given a lift G of an acyclic network @, if the lift is direct then
the subnetwork S consists of a unique splitting cell.

Proof. If a directed graph is acyclic then it has no strongly connected subnetworks
with more than one vertex. Now, by Theorem 3.1, S is strongly connected. Thus,
S consists into a unique cell. Il

Corollary 4.5. Let G be a lift of an acyclic network Q). Suppose G has n cells and
Q has k cells, where n > k. Then there are networks Gy, = Q,Gri1,--+ ,Gp, = G
such that Gy has k+ j cells and it is a direct lift of Gyyj—1, forj=1,--- ,n—k.

Proof. By Proposition 4.4, for any direct lift of (), the subnetwork S consists of a
unique cell. By Theorem 3.4, S’ has to consist into two copies of S, that is, the
disconnected graph consisting of only two cells. Thus, any direct lift of () has k£ + 1
cells and, by Lemma 4.3 is also acyclic. Now, applying the argument, recursively, it
follows the result. U

Remark 4.6. A similar result can be stated for a lift of a nontrivial valency-1
regular network, that preserves the number of cells in the cycle. O

5. DIRECT LIFTS AND THE LIFTING BIFURCATION PROBLEM

Given an n-cell regular network G, consider a 1-parameter system of ordinary
differential equations

(2) T = F(x,\),

representing a coupled cell system with structure consistent with G' and depending
at a (real) bifurcation parameter \. If k is the dimension of the internal dynamics
then © = (21,...,2,) € (R¥)" and we consider that F : (R¥)" x R — (R*)" is
smooth.

Suppose that there exists a synchronous equilibrium in the fully synchronous sub-
space {x : ¥y = --- = x,}, which we assume, after a change of coordinates, to be
the origin for A = 0, that is, F/(0,0) = 0. Codimension-one local bifurcations of
(2) divide into steady-state and Hopf bifurcations, depending on when the Jacobian
J = (dF) has a zero eigenvalue or a pair of purely imaginary eigenvalues, respec-
tively. Moreover, each of these bifurcation types divide into synchrony-preserving
and synchrony-breaking, depending whether the center subspace is contained or not,
respectively, in the fully synchronous subspace.

The eigenvalues of the Jacobian J are directly related with the eigenvalues of the
network adjacency matrix [12, 10]. More precisely, if u1, ..., i, are the eigenvalues
of the network adjacency matrix then the kn eigenvalues of the Jacobian J are
the union of the eigenvalues of the k x k matrices a + Bu;, for 1 < i < n, where
a is the k x k matrix of the linearized internal dynamics at the origin and S is
the k x k matrix of the linearized coupling at the origin, both matrices found by
differentiating F'. In [10] it is proved that when k > 2, then generically the center
subspace at a synchrony breaking bifurcation is isomorphic to the real part of a
generalized eigenspace of the network adjacency matrix. Note that for k = 1, every
eigenvalue of the Jacobian J has the form a+ Su;, where now «, 5 € IR, and so, two
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eigenvalues o + Bu; and o + Bu; of the Jacobian J lie on the imaginary axis if and
only if the eigenvalues p; and g, of the adjacency matrix have the same real part.

All eigenvalues of the adjacency matrix of a regular network are also eigenvalues
of the adjacency matrix of any of its lifts, including multiplicities [15, 11]. Hence,
if n and m are the number of cells in @) and G, respectively, then all (complex)
eigenvalues of Ag are precisely the n (complex) eigenvalues of Ag together with
more m — n (complex) eigenvalues, to which we call extra eigenvalues.

In [4, 5], it is addressed the issue concerning a comparative study of a bifurcation
from a fully synchronous equilibrium in two different systems: one associated with
a given (quotient) network and the other with a lift of that network. Assuming a
bifurcation occurs for a coupled cell system restricted to a fixed (quotient) network,
examples are given where new bifurcating solution branches occur for some lifts.
Moreover, a necessary condition for that to happen, in the general setup, is the
increasing of the dimension of the center subspace of J comparatively to J|a. It
follows then that the issue of preserving or not the number of eigenvalues of J com-
paratively to J|a in the imaginary axis is so translated, in terms of the preservation
or not of the number of eigenvalues with a specific real part of the network adja-
cency matrices of G and (). From the point of view of bifurcations of coupled cell
networks, it is then of interest to compare the spectrum of the adjacency matrices
of the lifts and of ). Using the results of Section 3, we describe a method for listing
all extra eigenvalues of direct lifts with a prescribed additional number of cells of
regular uniform networks.

We recall a useful result that simplifies the calculation of the extra eigenvalues
by considering just the subnetwork of all splitted cells: Given a lift G of a regular
network (), consider the subnetworks S and S’ of all splitting cells and of all splitted
cells, respectively. It is proved in [7] that the extra eigenvalues of G with respect to
Q are precisely the extra eigenvalues of S” with respect to S.

Our first observation in this section concerns regular networks with common
strongly connected subnetworks:

Proposition 5.1. Regular networks having in common a strongly connected subnet-
work admit lifts with the same extra eigenvalues, including multiplicities. Moreover,
if they have the same strongly connected subnetworks then their direct lifts have
exactly the same extra eigenvalues.

Proof. If two networks have in common a strongly connected subnetwork then it is
possible to split the cells of this subnetwork, in both networks, precisely in the same
way, any finite number of times. The second part follows from the fact that, by
Theorem 3.1, the direct lifts result from the splitting of a unique strongly connected
subnetwork. In both cases, as the extra eigenvalues of G with respect to () are pre-
cisely the extra eigenvalues of S” with respect to S, we have that the corresponding
lifts have the same extra eigenvalues, including multiplicities. O

Example 5.2. Consider the 4-cell and the 10-cell networks of figure 11. There are
lifts of both these two networks which have the same extra eigenvalues. This follows
from the fact that they have common strongly connected subnetworks. Moreover,
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FiGUuRE 11. Regular networks admitting lifts with the same extra
eigenvalues. Moreover, the direct lifts of these networks have precisely
the same extra eigenvalues.

as they have precisely the same strongly connected subnetworks, their direct lifts
also have the same extra eigenvalues, including multiplicities. O

It also follows directly from Corollary 3.8 the next observation:

Corollary 5.3. Given a direct lift G of a regular uniform network @), consider the
subnetworks S and S" of all splitting cells and of all split cells, respectively. We have
that:

(i) If #S =1 then the extra eigenvalue is 0.

(i) If #S = 2 then either S" consists of two copies of S and so the extra eigenvalues
are the roots of x> — 1, or S’ is a (2p)-ring, with p prime, and the extra eigenvalues
are the complex roots of (x?P —1)/(2? —1).

Method for listing all extra eigenvalues in direct lifts. The main results of
Section 3 allow to list all extra eigenvalues of direct lifts of a given regular uniform
network @), considering that it is fixed the maximum number n of additional cells in
these lifts. For each 1 <17 < n, it is possible to obtain all extra eigenvalues of direct
lifts with exactly ¢ cells more than () proceeding as follows:

(1) Consider all possible configurations of strongly connected subnetworks S of
all splitting cells, having at most ¢ cells;

(2) For each configuration distinct from @ (if @ is one of the possible configura-
tions), calculate the corresponding eigenvalues.

(3) For each configuration, find all possible connected direct lifts with exactly 4
additional cells and calculate the corresponding extra eigenvalues.

The eigenvalues obtained in steps (2)-(3) of this method are precisely the extra
eigenvalues of direct lifts having at most n cells more than Q. O

Remark 5.4. Notice that if the number of cells in S is small then the above cal-
culations are simpler. Indeed, for example, due to Corollary 3.8, the case #S5 =1
just leads to one direct lift, and the case #S = 2 just leads to direct lifts with 2 or
2p additional cells, with p prime. Clearly, a higher number of configurations of S
implies a higher number of forms for S" and of calculations that are involved. O

Example 5.5. Consider the 4-cell regular uniform network in figure 12. There
are only two possible forms of nontrivial strongly connected subnetworks, namely,
the two subnetworks that are depicted in the same figure (up to relabeling cells).
Suppose we consider the possible direct lifts of this 4-cell network having at most
three more cells. It is easy to list all possible connected direct lifts of these two
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FIGURE 12. A 4-cell network (left) and the unique two possible forms
of nontrivial strongly connected subnetworks (center and right), up to
relabeling cells.

forms of subnetworks having at most three cells more, and conclude that the extra
eigenvalues are the complex roots of the following polynomials: z, > &1 and 23 £1
and 22 + x + 1. O

List of all extra eigenvalues in lifts of a general regular uniform network.
The previous method also allows to obtain the list of all extra eigenvalues in direct
lifts of a general regular uniform network (admitting that a finite maximum number
of cells is fixed), and thus, it allows to obtain the list of all extra eigenvalues of lifts
of a general regular uniform network. In fact, if G is a lift of @), it is possible to
construct a chain of lifts of @), say G; for t =0,...,k+ 1, where Gg = @, Gy11 =G
and for all 1 < j <k, the network G is a direct lift of G;. Therefore, the extra
eigenvalues of G with respect to () are the union of the extra eigenvalues of G,
with respect to Gj. O
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