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Abstract

The aim of this paper is to study Hopf bifurcation with S3-symmetry assuming
Birkhoff normal form. We consider the standard action of S3 on R

2 obtained from the
action of S3 on R

3 by permutation of coordinates. This representation is absolutely
irreducible and so the corresponding Hopf bifurcation occurs on R

2 ⊕R
2. Golubitsky,

Stewart and Schaeffer (Singularities and Groups in Bifurcation Theory: Vol. 2. Ap-
plied Mathematical Sciences 69, Springer-Verlag, New York 1988) and Wood (Hopf
bifurcations in three coupled oscillators with internal Z2 symmetries, Dynamics and

Stability of Systems 13, 55-93, 1998) prove the generic existence of three branches of
periodic solutions, up to conjugacy, in systems of ordinary differential equations with
S3-symmetry, depending on one real parameter, that present Hopf bifurcation. These
solutions are found by using the Equivariant Hopf Theorem. We describe the most
general possible form of a S3 × S

1-equivariant mapping (assuming Birkhoff normal
form) for the standard S3-simple action on R

2 ⊕ R
2. Moreover, we prove that gene-

rically these are the only branches of periodic solutions that bifurcate from the trivial
solution.
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1 Introduction

The object of this paper is to study Hopf bifurcation with S3-symmetry assuming Birkhoff
normal form. We consider the standard action of S3 on the two-dimensional irreducible space

U =
{
(x1, x2, x3) ∈ R3 : x1 + x2 + x3 = 0

} ∼= R2

defined by

σ · (x1, x2, x3) =
(
xσ−1(1), xσ−1(2), xσ−1(3)

)
(σ ∈ S3, (x1, x2, x3) ∈ U)

Note that any S3-irreducible space is S3-isomorphic to U . Moreover the standard action
of D3 on C is isomorphic to the above action of S3 on U .

Since U is S3-absolutely irreducible, the corresponding Hopf bifurcation occurs on

V =
{
(z1, z2, z3) ∈ C3 : z1 + z2 + z3 = 0

} ∼= U ⊕ U ∼= R2 ⊕ R2

Suppose we have a system of ordinary differential equations (ODEs)

ẋ = f(x, λ) (1.1)

where x ∈ V, λ ∈ R is the bifurcation parameter, and f : V × R → V is smooth and
commutes with S3:

f(σ · x, λ) = σ · f(x, λ) (σ ∈ S3, x ∈ V, λ ∈ R)

With these conditions
f(0, λ) ≡ 0

Assume that (df)(0,0) has an imaginary eigenvalue, say i, after rescaling time if necessary.
Golubitsky et al. [3] and Wood [7] prove the generic existence of three branches of periodic
solutions, up to conjugacy, of (1.1) bifurcating from the trivial solution. These solutions are
found by using the Equivariant Hopf Theorem (Golubitsky et al. [3] Theorem XVI 4.1). They
thus correspond to three (conjugacy classes of) isotropy subgroups of S3 ×S1 (acting ov V ),
each having a two-dimensional fixed-point subspace. In this paper we prove in Theorem 5.2
that if we assume (1.1) satisfying the conditions of the Equivariant Hopf Theorem and f is in
Birkhoff normal form then the only branches of small-amplitude periodic solutions of period
near 2π of (1.1) that bifurcate from the trivial equilibrium are the branches of solutions
guaranteed by the Equivariant Hopf Theorem.

This paper is organized in the following way. In Section 2 we start by reviewing a few
concepts and results related with the general theory of Hopf bifurcation with symmetry –
we follow the approach of Golubitsky et al. [3]. In Section 3 we recall the conjugacy classes
of S3 × S1 (with action on V ) obtained by Golubitsky et al. [3] (see also Wood [7]). There
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are five conjugacy classes and three of them correspond to isotropy subgroups with two-
dimensional subspaces. The next step is to find the general form of the vector field f of
(1.1). We assume that f is in Birkhoff normal form to all orders and so f commutes also
with S1. Specifically, we choose coordinates such that

θ · z = eiθz
(
θ ∈ S1, z ∈ V

)

We show in Section 4.1 that the standard action of D3×S1 on C2 considered by Golubitsky et
al. [3] is isomorphic to the action of S3 × S1 on V (Lemma 4.1). In that way we can
use an appropriate isomorphism between C2 and V and convert the invariant theory of
D3 × S1 on C2 (obtained by Golubitsky et al. [3]) into the invariant theory of S3 × S1 on
V (Proposition 4.2). We describe then in Theorem 4.4 and Corollary 4.6 the most general
possible form of a S3 × S1-equivariant mapping f in (1.1): we obtain generators for the
ring of the invariants and generators for the module of the equivariants over the ring of the
invariants. Finally, in Theorem 5.2 of Section 5, we prove that generically the only branches
of small-amplitude periodic solutions of (1.1) that bifurcate from the trivial equilibrium are
those guaranteed by the Equivariant Hopf Theorem. The proof of this theorem relies mostly
in the general form of f and the use of Morse Lemma.

We end this introduction by pointing out a few remarks. The main results of this paper
are Theorem 4.4 and Theorem 5.2. The first one describes the S3 × S1-invariant theory
and relied upon the establishment of an appropriate isomorphism between S3 and D3-simple
spaces. The second result proves the nonexistence of branches of periodic solutions of S3-
bifurcation problems that are not guaranteed by the Equivariant Hopf Theorem. For n > 3,
the groups Dn and Sn are not isomorphic. However, we hope that our approach for S3 will
be useful when considering Sn, for n > 3. In particular, we predict that the methods of
the proof of Theorem 5.2 can be followed once the fifth order truncation of the Taylor series
of a general Sn-bifurcation problem in Birkhoff normal form is obtained. Finally, the proof
of Theorem 5.2 relied upon Morse Lemma and the general form of the vector field. Both
of these ingredients are available in the Dn-case, for n ≥ 3. Thus the method we followed
should work for n = 3 using the appropriate coordinates for the D3-simple space, and we
believe that can be adapted to the Dn case for general n.

2 Background

We say that a system of ordinary differential equations (ODEs)

ẋ = f(x, λ), f(0, 0) = 0 (2.2)

where x ∈ Rn, λ ∈ R is the bifurcation parameter and f : Rn × R → Rn is a smooth
function undergoes a Hopf bifurcation at λ = 0 if (df)0,0 has a pair of simple purely imaginary
eigenvalues. Here (df)0,0 denotes the n×n Jacobian matrix of derivatives of f with respect to
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the variables xj, evaluated at (x, λ) = (0, 0). Under additional hypotheses of nondegeneracy,
the standard Hopf Theorem implies the occurrence of a branch of periodic solutions. See for
example Golubitsky and Schaeffer [1] Theorem VIII 3.1. However the presence of symmetry
in (2.2) imposes restrictions on the corresponding imaginary eigenspace that may complicate
the analysis, and in general the standard Hopf Theorem does not apply directly. We outline
the concepts and results involved in the study of (2.2) in presence of symmetry. We follow
Golubitsky et al. [3] Chapter XVI. See also Golubitsky and Stewart [2] Chapter 4.

Let Γ be a compact Lie group with a linear action on V = Rn and suppose that f
commutes with Γ (or it is Γ-equivariant):

f(γ · x, λ) = γ · f(x, λ) (γ ∈ Γ, x ∈ V, λ ∈ R)

We are interested in branches of periodic solutions of (2.2) where f commutes with a group
Γ occurring by Hopf bifurcation from the trivial solution (x, λ) = (0, 0).

Conditions for imaginary eigenvalues

Let W be a subspace of V . We say that W is Γ-invariant if γw ∈ W for all γ ∈ Γ and for
all w ∈ W . Moreover, if the only Γ-invariant subspaces of W are {0} and W , then W is said
to be Γ-irreducible. The space V is Γ-absolutely irreducible if the only linear mappings on V
that commute with Γ are the scalar multiples of the identity. It is a well-known result that
the absolute irreducibility of V implies the irreducibility of V ([3] Lema XXII 3.3).

Let V and W be real vector spaces of the same dimension, and Γ and ∆ isomorphic
Lie groups. Suppose we have an action denoted by · of Γ on V and an action of ∆ on W
denoted by ∗. We say that these actions are isomorphic if there exists a linear isomorphism
L : V → W such that for all γ ∈ Γ there exists a unique γ

′ ∈ ∆ such that

L (γ · x) = γ′ ∗ L(x) (2.3)

for all x ∈ V .
We are interested in periodic solutions of (2.2) when (df)(0,0) has a pair of imaginary

eigenvalues +ωi. As we said before the symmetry Γ of f imposes restrictions on the corre-
sponding imaginary eigenspace Eωi. Specifically, it must contain a Γ-simple subspace W of
V ([3] Lemma XVI 1.2) that is either:
(a) W ∼= W1 ⊕ W1 where W1 is absolutely irreducible for Γ; or
(b) W is irreducible but non-absolutely irreducible for Γ.
Moreover, generically the imaginary eigenspace itself is Γ-simple and coincides with the corre-
sponding real generalized eigenspace of (df)(0,0). By rescaling time and choosing appropriate
coordinates we may assume that ω = 1 and

(df)0,0|Ei
=

(
0 −Idm×m

Idm×m 0

)
≡ J

where 2m = dim Ei. See [3] Proposition XVI 1.4 and Lemma XVI 1.5.
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Spatio-temporal symmetries

The method for finding periodic solutions to such a system rests on prescribing in advance
the symmetry of the solutions we seek. Before we describe precisely what we mean by a
symmetry of a periodic solution we recall a few definitions.

The orbit of the action of Γ on x ∈ V is defined to be

Γx = {γ · x : γ ∈ Γ}

and the isotropy subgroup of x ∈ V is the subgroup Σx of Γ defined by

Σx = {γ ∈ Γ : γ · x = x}

Points on the same group orbit have isotropy subgroups that are conjugate. Later we use
this property to simplify the calculations of the isotropy lattice of (an action of) a group.

Note that if f as above is Γ-equivariant and if x(t) is a solution of (2.2), then γ · x(t) is
also a solution of (2.2). In particular, if f vanishes on x ∈ V , then it vanishes on the orbit
Γx. Further, if the fixed-point subspace of Σ ∈ Γ is

Fix(Σ) = {x ∈ V : γ · x = x, ∀γ ∈ Σ}

then
f (Fix (Σ)) ⊆ Fix (Σ)

To see this note that if x ∈ Fix(Σ) and σ ∈ Σ then σ · f(x) = f(σ · x) = f(x) and so
f(x) ∈ Fix(Σ). As a consequence if x(t) is a solution of (2.2) then the isotropy subgroup of
x(t) is the isotropy subgroup of x(0) for all t ∈ R. In particular we can find an equilibrium
solution with isotropy subgroup Σ by restricting the original vector field f to the subspace
Fix(Σ).

We describe now what we mean by a symmetry of a periodic solution x(t) of (2.2).
Suppose that x(t) is 2π-periodic in t (if not, we can rescale time to make the period 2π).
Let γ ∈ Γ. Then γ ·x(t) is another 2π-periodic solution of (2.2). If γ ·x(t) and x(t) intersect
then the uniqueness of solutions implies that the trajectories must be identical. So either
the two trajectories are identical or they do not intersect.

Suppose that the trajectories are identical. Then uniqueness of solutions implies that
there exists θ ∈ S1 (we identify the circle group S1 with R/2πZ) such that

γ · x(t) = x(t − θ)

We call (γ, θ) ∈ Γ×S1 a spatio-temporal symmetry of the solution x(t). Denote the space of
2π-periodic mappings by C2π. Note that S1 acts on C2π. This action of S1 is usually called
the phase-shift action. The collection of all symmetries of x(t) forms a subgroup

Σx(t) = {(γ, θ) ∈ Γ × S1 : γ · x(t) = x(t − θ)}
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Moreover if we consider the natural action of Γ × S1 on C2π given by

(γ, θ) · x(t) = γ · x(t − θ)

where the Γ-action is induced from its spatial action on V and the S1 action is by phase
shift, then Σx(t) is the isotropy subgroup of x(t) with respect to this action.

The Equivariant Hopf Theorem

We consider (2.2) where f commutes with a compact Lie group Γ and we assume the generic
hypothesis that L = (df)0,0 has only one pair of imaginary eigenvalues, say +i. Taking
into account that we seek periodic solutions with period approximately 2π, we can apply a
Liapunov-Schmidt reduction preserving symmetries that will induce a different action of S1

on a finite-dimensional space, which can be identified with the exponential of L|Ei
= J acting

on the imaginary eigenspace Ei of L. Moreover the reduced equation of f commutes with
Γ× S1. See [3] Lemma XXVI 3.2. The basic idea is that small-amplitude periodic solutions
of (2.2) of period near 2π correspond to zeros of a reduced equation φ(x, λ, τ) = 0 where
τ is the period-perturbing parameter. To find periodic solutions of (2.2) with symmetries
Σ is equivalent to find zeros of the reduced equation restricted to Fix(Σ). See [3] Chap-
ter XVI Section 4.

Consider (2.2) where f : Rn × R → Rn is smooth and commutes with a compact Lie
group Γ and make the generic hypothesis that Rn is Γ-simple. Choose coordinates so that

(df)(0,0) = J

where m = n/2. The eigenvalues of (df)0,λ are σ(λ)+iρ(λ) where σ(0) = 0 and ρ(0) = 1
([3] Lemma XVI 1.5). Suppose that

σ′(0) 6= 0. (2.4)

Consider the action of S1 on Rn defined by:

θ · x = eiθJx
(
θ ∈ S1, x ∈ Rn

)

The following result states that for each isotropy subgroup of Γ × S1 with two-dimensional
fixed-point subspace there exists a unique branch of periodic solutions of (2.2) with that
symmetry:
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Theorem 2.1 (Equivariant Hopf Theorem) Let the system of ordinary differential equa-
tions (2.2) where f : Rn × R → Rn is smooth, commutes with a compact Lie group Γ and
satisfies

(df)0,0 =

(
0 −Idm×m

Idm×m 0

)
≡ J (2.5)

and (2.4) where σ(λ)+iρ(λ) are the eigenvalues of (df)0,λ. Suppose that Σ ⊆ Γ × S1 is an
isotropy subgroup such that

dim Fix(Σ) = 2

Then there exists a unique branch of small-amplitude periodic solutions to (2.2) with period
near 2π, having Σ as their group of symmetries.

Proof: See Golubitsky et al. [3] Theorem XVI 4.1. 2

A tool for seeking periodic solutions that are not guaranteed by the Equivariant Hopf
Theorem and also for calculating the stabilities of the periodic solutions is to use a Birkhoff
normal form of f : by a suitable coordinate change, up to any given order, the vector field f
can be made to commute with Γ and S1 (in the Hopf case). This result is the equivariant
version of the Poincaré-Birkhoff Normal Form Theorem ([3] Theorem XVI 5.1).

Throughout this paper, we assume that the original vector field is in Birkhoff normal
form (it commutes with Γ × S1 where Γ = S3). Under this hypothesis is valid the following
result:

Theorem 2.2 Let the system of ordinary differential equations (2.2) where the vector field
f : Rn×R → Rn is smooth, commutes with a compact Lie group Γ and satisfies (df)0,0 = J
as in (2.5). Suppose that f in (2.2) is in Birkhoff normal. Then it is possible to perform a
Liapunov-Schmidt reduction on (2.2) such that the reduced equation φ has the form

φ(v, λ, τ) = f(v, λ) − (1 + τ)Jv

where τ is the period-scaling parameter.

Proof: See [3] Theorem XVI 10.1. 2

Invariant theory

We finish this section by recalling a few results about invariant theory of compact groups.
Let Γ be a compact Lie group and V a finite-dimensional (real) vector space. A function
f : V → R is said to be Γ-invariant if

f(γ · x) = f(x) (γ ∈ Γ, x ∈ V )
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The Hilbert-Weyl Theorem ([3] Theorem XII 4.2) implies that there always exist finitely
many Γ-invariant polynomials u1, . . . , us such that every Γ-invariant polynomial function f
has the form

f(x) = p(u1(x), . . . , us(x)) (x ∈ V )

for some polynomial function p. We denote by P(Γ) the set of all Γ-invariant polynomials
from V to R. This is a ring under the usual polynomial operations and the set {u1, . . . , us}
is said to be a Hilbert basis of that ring. Schwarz [6] proves that if {u1, . . . , us} is a Hilbert
basis for the ring P(Γ) and f : V → R is a smooth Γ-invariant function then there exists a
smooth function h : Rs → R such that

f(x) = h(u1(x), . . . , us(x)) (x ∈ V )

(see [3] Theorem XII 4.3). The set of all Γ-equivariant polynomial mappings is a module
over the ring P(Γ) and the Hilbert-Weyl Theorem also implies that there exists a finite-set
of Γ-equivariant polynomial mappings X1, . . . ,Xt that generate the module over the ring
P(Γ). That is, every Γ-equivariant polynomial mapping g : V → V has the form

g = f1X1 + · · · + ftXt

where each polynomial function fj : V → R is Γ-invariant. See [3] Theorem XII 5.2. The
generalization of this result to the module of the smooth Γ-equivariant mappings is due to
Poénaru [4]. See [3] Theorem XII 5.3.

3 The action of S3 × S1

Let Γ = S3 be the group of bijections of the set {1, 2, 3} under composition and let us
consider the natural action of S3 on C3. That is,

σ · (z1, z2, z3) = (zσ−1(1), zσ−1(2), zσ−1(3))
(
σ ∈ S3, (z1, z2, z3) ∈ C3

)
(3.6)

The decomposition of C3 into irreducible subspaces for this action of S3 is

C3 ∼= C3
0 ⊕ V1

where
C3

0 = {(z1, z2, z3) ∈ C3 : z1 + z2 + z3 = 0}
and

V1 = {(z, . . . , z) : z ∈ C} ∼= C

Note that the space C3
0 is S3-simple:

C3
0

∼= R3
0 ⊕ R3

0
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where
R3

0
∼= R2

is S3-absolutely irreducible and the action of S3 on V1 is trivial.
Throughout this paper let V = C3

0. Suppose we have a system of ODEs

ẋ = f (x, λ) (3.7)

where x ∈ V , λ ∈ R is the bifurcation parameter and f : V × R → V is smooth and
commutes with S3. Note that since Fix(S3) = {0} then

f(0, λ) ≡ 0

We suppose that (df)0,0 has eigenvalues +i. Our aim is to study the generic existence of
branches of periodic solutions of (3.7) near the bifurcation point (x, λ) = (0, 0). We assume
that f is in Birkhoff normal form and so f also commutes with S1, where θ ∈ S1 acts on V
by

θ · z = eiθz
(
θ ∈ S1, z ∈ V

)
(3.8)

Remarks 3.1 (i) Note that any (real) two-dimensional S3-irreducible space is isomorphic
to C3

0.
(ii) We show in Section 4.1 that the action of D3 × S1 on C2 considered in [3] is isomorphic
to the above action of S3 × S1 on V = C3

0 (see Lemma 4.1). Along this paper we often
make reference to the results obtained by Golubitsky et al. [3] Chapter XVIII where they
study Hopf bifurcation with Dn ×S1 (the case we are interested is n = 3) and to the results
obtained by Wood [7] related to Hopf bifurcation with S3 × S1. 3

We continue by studying the (conjugacy classes of) isotropy subgroups for the above
action of S3 × S1 on V .

The isotropy lattice

Consider the subgroups of S3 × S1 defined by

Z̃3 = 〈((123) , 2πi/3)〉, Z̃2 = 〈((12), π)〉, S1 × S2 = 〈((23), 0)〉 (3.9)

In the next proposition we describe the isotropy subgroups of S3 × S1 and the respective
fixed-point subspaces.

Proposition 3.2 ([3, 7]) Let V = C3
0 and consider the action of S3 × S1 on V given by

(3.6) and (3.8). Then there are five conjugacy classes of isotropy subgroups for the action
of S3 × S1 on V . They are listed, together with their orbit representatives and fixed-point
subspaces in Table 1.
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Orbit representative Isotropy subgroup Fixed-point subspace

(0, 0, 0) S3 × S1 {(0, 0, 0)}(
a, ei 2π

3 a, ei 4π
3 a

)
, a > 0 Z̃3

{(
w, ei 2π

3 w, ei 4π
3 w

)
: w ∈ C

}

(a,−a, 0), a > 0 Z̃2 {(w,−w, 0) : w ∈ C}
(2a,−a,−a), a > 0 S1 × S2 {(2w,−w,−w) : w ∈ C}

(a, b,− (a + b)), a > b > 0 1 {(w1, w2,− (w1 + w2)) : w1, w2 ∈ C}

Table 1: Orbit representatives, isotropy subgroups and fixed-point subspaces of S3 × S1

acting on V . The groups Z̃3, Z̃2 and S1 × S2 are defined in (3.9).

Proof: See Golubitsky et al. [3] (p.368-370) (and recall Remark 3.1) or Wood [7] (Propo-
sition 3.2.1, p.19). 2

Up to conjugacy, we have three isotropy subgroups with two-dimensional fixed-point sub-
spaces: Z̃3, Z̃2 and S1 × S2. It follows from the Equivariant Hopf Theorem (Theorem 2.1),
that there are (at least) three branches of periodic solutions occurring generically in Hopf bi-
furcation with S3-symmetry (or equivalently, with D3-symmetry). That is, to each isotropy
subgroup Σ of S3 × S1 with two-dimensional fixed-point subspace corresponds a unique
branch of periodic solutions of (3.7) with period near 2π and with symmetry Σ, obtained by
bifurcation from the trivial equilibrium (assuming that f satisfies the conditions of the cited
theorem). Let us notice, however, that the periodic solutions whose existence is guaranteed
by the Equivariant Hopf Theorem are not necessarily the only periodic solutions that bifur-
cate from (0, 0). In the Section 5 we prove in Theorem 5.2. that generically these are the
only branches of periodic solutions of (3.7) assuming that f is in Birkhoff normal form.

4 Invariant theory for S3 × S1

In order to look for periodic solutions of (3.7) we calculate now the general form of a S3×S1-
equivariant bifurcation problem. In Theorem 4.4 we obtain a Hilbert basis for the ring of the
invariant polynomials V → R and a module basis for the equivariant mappings V → V with
polynomial components for the action of the group S3×S1 on V considered in Section 3. For
that we show in Section 4.1 that the action of D3 ×S1 on C2 considered in [3] is isomorphic
to the action of S3 × S1 on V – Lemma 4.1. In particular we can use the isomorphism
between C2 and V obtained in this lemma to convert the invariant theory of D3 ×S1 on C2

into the invariant theory of S3 × S1 on V (Proposition 4.2). We then recall the invariant
theory for D3 × S1 obtained in [3] and conclude with Theorem 4.4.
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4.1 Isomorphic actions of D3 × S1 and S3 × S1

Consider the action of D3 × S1 on C2 defined by

γ · (z1, z2) = (eiγz1, e
−iγz2) (γ ∈ Z3)

k · (z1, z2) = (z2, z1)
θ · (z1, z2) =

(
eiθz1, e

iθz2

)
(θ ∈ S1)

(4.10)

for (z1, z2) ∈ C2. Here Z3 = 〈2π
3
〉 and D3 = 〈2π

3
, k〉.

The following results (Lemma 4.1 and Proposition 4.2) are presumably well known, but
we provide a simple self-contained proof.

Lemma 4.1 The action of D3×S1 on C2 as in (4.10) is isomorphic to the action of S3×S1

on V = C3
0 as defined in (3.6) and (3.8).

Proof: Consider the following bases B1 and B2 of C2 and V , respectively, over the field
C:

B1 = ((1, 0), (0, 1))

B2 =
((

ei 2π
3 , 1, ei 4π

3

)
,
(
1, ei 2π

3 , ei 4π
3

))
(4.11)

and define the C-linear isomorphism L : C2 → V by

L(1, 0) =
(
ei 2π

3 , 1, ei 4π
3

)

L(0, 1) =
(
1, ei 2π

3 , ei 4π
3

)

Let z = (z1, z2) ∈ C2 and let us denote the actions of D3 × S1 on C2 and S3 × S1 on V by ·
and ∗ respectively. Then for θ ∈ S1 we have

L
((

2π
3

, θ
)
· (z1, z2)

)
= ((123) , θ) ∗ L (z1, z2)

L ((k, θ) · (z1, z2)) = ((12) , θ) ∗ L (z1, z2)

Therefore the actions of D3 × S1 on C2 and S3 × S1 on V are isomorphic (recall (2.3)). 2

Let
B3 = ((1, 0,−1), (0, 1,−1)) (4.12)

be another basis of V (over the complex field). Then the matrix of the C-linear isomorphism
L : C2 → V with respect to the bases B1 and B3 is

A =

[
ei 2π

3 1

1 ei 2π
3

]
(4.13)

and the matrix of L−1 with respect to the bases B3 and B1 is

A−1 = −
√

3

3

[
ei π

2 ei 5π
6

ei 5π
6 ei π

2

]
(4.14)
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Proposition 4.2 Consider A and A−1 as in (4.13) and (4.14) and let us denote by Z ≡[
Z1

Z2

]
and z ≡

[
z1

z2

]
the coordinates of Z ∈ C2 and z ∈ V with respect to the bases B1

and B3 defined by (4.11) and (4.12), respectively. Then:
(i) A polynomial P : C2 → R is D3×S1-invariant if and only if the polynomial P ′ : V → R
defined by

P ′ (z) ≡ P
(
A−1z

)
(4.15)

is S3 × S1-invariant.
(ii) A function f : C2 → C2 with polynomial components is D3 ×S1-equivariant if and only

if f̃ : V → V defined by
f̃ (z) ≡ Af

(
A−1z

)
(4.16)

is S3 × S1-equivariant.

Proof: If we take Z ≡
[

Z1

Z2

]
, the action of the elements

(
2π
3

, θ
)

and (k, θ) of D3 × S1 on

C2 is given by

(
2π

3
, θ

)
· Z = M1Z, where M1 = eiθ

[
ei 2π

3 0

0 ei 4π
3

]
(4.17)

(k, θ) · Z = M2Z, where M2 = eiθ

[
0 1
1 0

]
(4.18)

Similarly, if z ≡
[

z1

z2

]
, the action of the elements ((123), θ) and ((12), θ) of S3 ×S1 on V is

defined by

((123), θ) ∗ z = N1z, where N1 = eiθ

[
−1 −1
1 0

]
(4.19)

((12), θ) ∗ z = N2z, where N2 = eiθ

[
0 1
1 0

]
(4.20)

With this notation, by Lemma 4.1 the following equalities are valid:

AM1 = N1A and AM2 = N2A. (4.21)

Consequently
M1A

−1 = A−1N1 and M2A
−1 = A−1N2. (4.22)

Let us prove (i). Let P : C2 → R be a D3 × S1-invariant polynomial and let us define
P ′ : V → R by P ′ (z) ≡ P (A−1z). Then for i = 1, 2 we have

P ′ (Niz) = P
(
A−1 (Niz)

)
= P

(
Mi

(
A−1z

))
= P

(
A−1z

)
= P ′ (z)
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and so P ′ is S3 × S1-invariant. Suppose now that polynomial P : C2 → R is such that P ′

defined as in (4.15) is S3 × S1-invariant. As

P (Z) = P
(
A−1AZ

)
,

then for i = 1, 2 it follows that

P (MiZ) = P
(
A−1A (MiZ)

)
= P

(
A−1 (NiAZ)

)
= P ′ (Ni (AZ)) = P ′ (AZ) = P (Z)

and P is D3 × S1-invariant.
The proof of (ii) is similar. 2

4.2 Invariant theory for D3 × S1

Recall the action of D3 × S1 on (z1, z2) ∈ C2 defined by (4.10). In the next proposition we
get a Hibert basis for the ring of the D3 × S1-invariant polynomials and a module basis for
the D3 × S1-equivariant smooth mappings (over the ring of the D3 × S1-invariant smooth
functions):

Proposition 4.3 ([3]) (a) Every smooth D3 × S1-invariant function f : C2 → R has the
form

f(z1, z2) = h(P1, P2, P3, P4)

where
P1 = |z1|2 + |z2|2, P2 = |z1|2|z2|2, P3 = (z1z2)

3 + (z1z2)
3

P4 = i (|z1|2 − |z2|2)
(
(z1z2)

3 − (z1z2)
3) (4.23)

and h : R4 → R is smooth.
(b) Every smooth D3 × S1-equivariant function f : C2 → C2 has the form

f(z1, z2) = A

[
z1

z2

]
+ B

[
z2
1z1

z2
2z2

]
+ C

[
z2

1z
3
2

z2
2z

3
1

]
+ D

[
z4
1z

3
2

z4
2z

3
1

]

where A, B, C, D are complex-valued D3 × S1-invariant smooth functions.

Proof: See Golubitsky et al. [3] Proposition XVIII 2.1 when n = 3. 2
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4.3 Invariant theory for S3 × S1

We can use now Proposition 4.2 and Proposition 4.3 to describe the invariant theory for
S3 × S1:

Theorem 4.4 Let z ≡
[

z1

z2

]
denote the coordinates of z ∈ V with respect to the basis B3

(recall (4.12)). Then:
(i) Every S3 × S1-invariant polynomial f : V → R has the form

f(z) = h (N, P, S, T )

where

N = 2|z1|2 + 2|z2|2 + z1z2 + z1z2

P = |z1|4 + |z2|4 + |z1|2|z2|2 + 2Re (z1z2) (|z1|2 + |z2|2) + 2Re (z2
1z

2
2)

S = 6Re (z2
1z

2
2) (|z1|2 + |z2|2) + 4Re (z3

1z
3
2) + 9|z1|4|z2|2 + 9|z1|2|z2|4+

−2|z1|6 − 2|z2|6 + 6Re (z1z2) [6|z1|2|z2|2 − |z1|4 − |z2|4]

T = Im (z1z2) (|z2|2 − |z1|2)
[
2Re (z1z2) (|z1|2 + |z2|2) + 2Re (z1z2)

2 + 3|z1|2|z2|2
]

and h : R4 → R is polynomial.
(ii) Every S3×S1-equivariant function with polynomial components g : V → V has the form

g(z) = Ag1(z) + Bg2(z) + Cg3(z) + Dg4(z)

where

g1(z) =

[
z1

z2

]
, g2(z) =

[
|z1|2z1 + z2

1z2 + 2z1|z2|2 − z1z
2
2

|z2|2z2 + z1z
2
2 + 2|z1|2z2 − z2

1z2

]

g3(z) =

[
z1 (z1 + 2z2) (z3

2 − z3
1) + 3z2

1z2 (z2
2 − z2

1) + 3z1z
2
2z2 (2z1 + z2)

z2 (2z1 + z2) (z3
1 − z3

2) + 3z1z
2
2 (z2

1 − z2
2) + 3z2

1z1z2 (z1 + 2z2)

]

g4(z) =

[
g̃4 (z1, z2)
g̃4 (z2, z1)

]

g̃4 (z1, z2) = (z3
1 − z3

2) (6z2
1z

2
2 + 4z1z

3
2 − z4

1) + 3z1z2 (z2 (z4
1 − z4

2) − z1z
4
2)

+6|z1|2|z2|2 (3|z1|2z2 − 2|z2|2z2 + 2z2
1 (z1 + z2))

and A, B, C, D are S3 × S1-invariant polynomials from V to C.
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Proof: We begin by proving (i). By Proposition 4.3 the polynomials P1, P2, P3, P4 as in
(4.23) form a Hilbert basis for the ring of the D3 × S1-invariant polynomials. By Proposi-
tion 4.2 (i), the polynomials defined by

N = 3P1 (A−1z) , P = 9P2 (A−1z)

S = 27P3 (A−1z) e T = −9
2
P4 (A−1z)

are S3×S1-invariants and form a Hilbert basis for the ring of the S3×S1-invariant polynomials
(for the action on V ). Taking A−1 as in (4.14) we obtain the polynomials N, P, T, S as stated
in the proposition.

The proof of (ii) is analogous. Again, we use Proposition 4.2 (ii) and Proposition 4.3. 2

Remark 4.5 A function f = (f1, f2, f3) from V to V that commutes with S3 × S1 has the
form

f(z1, z2, z3) =




f1 (z1, z2, z3)
f1 (z2, z1, z3)
f1 (z3, z2, z1)




Note that from f ((1i) · (z1, z2, z3)) = (1i) ·f(z1, z2, z3) for i = 2, 3 and for all (z1, z2, z3) ∈ V ,
it follows that f2(z1, z2, z3) = f1(z2, z1, z3) and f3(z1, z2, z3) = f1(z3, z2, z1). 3

Corollary 4.6 Let z = (z1, z2, z3) ∈ V and so z3 = −z1 − z2, and let

u1 = z1z1, u2 = z2z2, e u3 = z3z3

Then:
(i) Every smooth function f̃ : V → R invariant under S3 × S1 has the form

f̃ (z1, z2, z3) = h̃
(
Ñ , P̃ , S̃, T̃

)

where
Ñ = u1 + u2 + u3

P̃ = u2
1 + u2

2 + u2
3

S̃ = u3
1 + u3

2 + u3
3 + 6u1u2u3

T̃ = Im (z1z2) [u1u2 (u2 − u1) + u2u3 (u3 − u2) + u1u3 (u1 − u3)]

(4.24)

and h̃ : R4 → R is smooth.
(ii) Every S3 × S1-equivariant and smooth function g̃ : V → V can be written as

g̃(z) = AX1 + BX2 + CX3 + DX4
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where

X1 =




z1

z2

z3


 , X2 =




2z1u1 − (z2u2 + z3u3)
2z2u2 − (z1u1 + z3u3)
2z3u3 − (z2u2 + z1u1)


 , X3 =




2z1u
2
1 − (z2u

2
2 + z3u

2
3)

2z2u
2
2 − (z1u

2
1 + z3u

2
3)

2z3u
2
3 − (z2u

2
2 + z1u

2
1)




X4 =




(z3

1 − z3
2) (6z2

1z
2
2 + 4z1z

3
2 − z4

1) + 6u1u2 (3u1z2 − 2z2
1z3 − 2u2z2) + 3z1z2 (z4

1z2 + z4
2z3)

(z3
2 − z3

1) (6z2
1z

2
2 + 4z3

1z2 − z4
2) + 6u1u2 (3u2z1 − 2z2

2z3 − 2u1z1) + 3z1z2 (z1z
4
2 + z4

1z3)
(z3

3 − z3
2) (6z2

2z
2
3 + 4z3

2z3 − z4
3) + 6u2u3 (3u3z2 − 2z2

3z1 − 2u2z2) + 3z2z3 (z2z
4
3 + z4

2z1)





(4.25)
and A, B, C, D are S3 × S1-invariant and smooth functions from V to C.

Proof: By Schwarz and Poénaru Theorems (see Schwarz [6] or [3] Theorem XII 4.3 and

Poénaru [4] or [3] Theorem XII 5.3) we may suppose that f̃ is polynomial and g̃ has poly-
nomial components. As |z3|2 = |z1 + z2|2 = |z1|2 + |z2|2 + z1z2 + z1z2 then

2Re(z1z2) = z1z2 + z1z2 = |z3|2 − |z1|2 − |z2|2 = u3 − u1 − u2

2Re(z2
1z

2
2) = z2

1z
2
2 + z2

1z
2
2 = u2

1 + u2
2 + u2

3 − 2u1u3 − 2u2u3

2Re(z3
1z

3
2) = z3

1z
3
2 + z3

1z
3
2 = u3

3 − u3
1 − u3

2 − 3u1u
2
3 − 3u2u

2
3+

+3u2
1u3 + 3u2

2u3 + 3u1u2u3

(4.26)

Consider the polynomials N , P , S and T as defined in Theorem 4.4. Using the equalities
(4.26) we obtain

N = u1 + u2 + u3

P = u2
1 + u2

2 + u2
3 − u1u2 − u1u3 − u2u3

S = 2u3
1 + 2u3

2 + 2u3
3 − 3u1u2 (u1 + u2) − 3u2u3 (u2 + u3)

−3u1u3 (u1 + u3) + 12u1u2u3

T = Im (z1z2) [u1u2 (u2 − u1) + u2u3 (u3 − u2) + u1u3 (u1 − u3)]

Let Ñ , P̃ , S̃, T̃ be the S3 × S1-invariant polynomials defined in (4.24). Then

N = Ñ , P =
3

2
P̃ − 1

2
Ñ2, S = 3S̃ − Ñ3, T = T̃

By Theorem 4.4 the polynomials N, P, S, T form a Hilbert basis for the ring of the S3 × S1-
invariant polynomials. Therefore Ñ , P̃ , S̃, T̃ also form a Hilbert basis for this ring.

We prove now (ii). Let g1, g2, g3, g4 be as in Theorem 4.4. Replacing −z1 − z2 by z3 in
each one of the gi we obtain through routine calculations

g1 =

[
z1

z2

]
, g2 =

[
2z1u2 − z2

1z3 − z1z
2
2

2u1z2 − z2
2z3 − z2

1z2

]
,

g3 =

[
(z2

3 − z2
2) (z3

2 − z3
1) + 3z2z

2
1 (z2

2 − z2
1) + 3z1z

2
2 (z2

3 − z2
1)

(z2
3 − z2

1) (z3
1 − z3

2) + 3z1z
2
2 (z2

1 − z2
2) + 3z2z

2
1 (z2

3 − z2
2)

]
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and

g4 =

[
(z3

1 − z3
2) (6z2

1z
2
2 + 4z1z

3
2 − z4

1) + 6u1u2 (3u1z2 − 2z2
1z3 − 2u2z2) + 3z1z2 (z4

1z2 + z4
2z3)

(z3
2 − z3

1) (6z2
1z

2
2 + 4z2z

3
1 − z4

2) + 6u1u2 (3u2z1 − 2z2
2z3 − 2u1z1) + 3z1z2 (z4

2z1 + z4
1z3)

]

We obtain the S3 × S1-equivariant functions X̃i from gi (for i = 1, 2, 3, 4) keeping the com-
ponents of gi and considering the third component as described in Remark 4.5:

X̃1 =




z1

z2

z3


 , X̃2 =




2z1u2 − z2
1z3 − z1z

2
2

2z2u1 − z2
2z3 − z2z

2
1

2z3u2 − z2
3z1 − z3z

2
2




X̃3 =




(z2
3 − z2

2) (z3
2 − z3

1) + 3z2z
2
1 (z2

2 − z2
1) + 3z2

2z1 (z2
3 − z2

1)
(z2

3 − z2
1) (z3

1 − z3
2) + 3z1z

2
2 (z2

1 − z2
2) + 3z2

1z2 (z2
3 − z2

2)
(z2

1 − z2
2) (z3

2 − z3
3) + 3z2z

2
3 (z2

2 − z2
3) + 3z2

2z3 (z2
1 − z2

3)




and

X̃4 =




(z3

1 − z3
2) (6z2

1z
2
2 + 4z1z

3
2 − z4

1) + 6u1u2 (3u1z2 − 2z2
1z3 − 2u2z2) + 3z1z2 (z4

1z2 + z4
2z3)

(z3
2 − z3

1) (6z2
1z

2
2 + 4z3

1z2 − z4
2) + 6u1u2 (3u2z1 − 2z2

2z3 − 2u1z1) + 3z1z2 (z1z
4
2 + z4

1z3)
(z3

3 − z3
2) (6z2

2z
2
3 + 4z3

2z3 − z4
3) + 6u2u3 (3u3z2 − 2z1z

2
3 − 2u2z2) + 3z2z3 (z2z

4
3 + z1z

4
2)





Consider Ñ , P̃ , S̃, T̃ , X1, X2, X3 and X4 as in (4.24) and (4.25). Note that X̃1 = X1 and

X̃4 = X4. Routine calculations show that

X̃2 = 2ÑX1 − X2, X̃3 =
(
2Ñ2 − 3P̃

)
X1 − 2ÑX2 + 3X3

By Theorem 4.4 the S3 × S1-equivariant functions Xj : V → V and iXj : V → V for
j = 1, . . . , 4, generate the module of the S3 × S1-equivariant functions over the ring of the
S3 × S1-invariants. 2

5 Hopf bifurcation with S3-symmetry

In Section 3 we determined the conjugacy classes of isotropy subgroups for the action of
S3×S1 on V = C3

0 (Proposition 3.2). Up to conjugacy, we have three isotropy subgroups with

two-dimensional fixed-point subspaces: Z̃3, Z̃2 and S1 × S2. It follows from the Equivariant
Hopf Theorem, that there are (at least) three branches of periodic solutions corresponding
to each one of these isotropy subgroups of S3 × S1 occurring generically in Hopf bifurcation
with S3-symmetry. We prove in Theorem 5.2 that generically these are the only branches
of periodic solutions obtained through bifurcation from the trivial equilibrium in bifurcation
problems with S3-symmetry and assuming Birkhoff normal form.
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Suppose that the function f : V × R → V is S3 × S1-equivariant and smooth, and
satisfies the conditions of the Equivariant Hopf Theorem. Thus we assume that

(df)0,λ(z) = µ(λ)z (5.27)

where µ is a smooth function from R to C such that

µ(0) = i ∧ Re(µ′(0)) 6= 0 (5.28)

From Theorem 2.2 the small-amplitude periodic solutions of the equation

ż = f(z, λ) (5.29)

of period near 2π are in one to one correspondence with the zeros of the equation

g(z, λ, τ) = 0 (5.30)

where g = f − (1 + τ)iz and τ is the period-scaling parameter. From Corollary 4.6 and
Remark 4.5 the general form of f = (f1, f2, f3) is

f1(z1, z2, z3, λ) = µ(λ)z1 + Az1 + BX2,1 + CX3,1 + DX4,1

f2(z1, z2, z3, λ) = f1(z2, z1, z3, λ)
f3(z1, z2, z3, λ) = f1(z3, z2, z1, λ)

(5.31)

where

X2,1 = 2z1u1 − (z2u2 + z3u3)
X3,1 = 2z1u

2
1 − (z2u

2
2 + z3u

2
3)

X4,1 = (z3
1 − z3

2) (6z2
1z

2
2 + 4z1z

3
2 − z4

1) + 6u1u2 (3u1z2 − 2z2
1z3 − 2u2z2) + 3z1z2 (z4

1z2 + z4
2z3)

and A, B, C and D are smooth S3 × S1-invariant functions from V × R to C (thus they
may depend on λ). Since we are assuming (5.27) it follows that A(0, λ) ≡ 0. Recall that
uj = zjzj for j = 1, 2, 3.

Lemma 5.1 Consider f as in (5.31). Let z3 = −z1 − z2 where (z1, z2) =
(
r1e

iφ1 , r2e
iφ2

)

with r1, r2 ∈ R and φ = φ2 − φ1. Then we can write the first two components of f as

[
r1e

iφ1h(r1, r2, φ, λ)
r2e

iφ2h(r2, r1,−φ, λ)

]

where h is a smooth function from R4 to C.
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Proof: Let Ñ , P̃ , S̃, T̃ , X1, X2, X3 and X4 be as in the Corollary 4.6. Taking z3 = −z1−z2,
(z1, z2) =

(
r1e

iφ1 , r2e
iφ2

)
and φ = φ2 − φ1 we can write each of the invariant polynomials in

the form

Ñ = 2r2
1 + 2r2

2 + 2r1r2 cos φ

P̃ = r4
1 + r4

2 + (r2
1 + r2

2 + 2r1r2 cos φ)
2

S̃ = r6
1 + r6

2 + (r2
1 + r2

2 + 2r1r2 cos φ)
3
+ 6r2

1r
2
2 (r2

1 + r2
2 + 2r1r2 cos φ)

T̃ = r1r
2
2 sin φ

(
2r4

1r2 (1 + 2 cos2 φ) − r2
1 (r1r2 + r2

2) (r1 + 2r2 cos φ)2

+ (2r5
1 + 4r3

1r
2
2 − 2r4

1r
2
2(r1 + 2r2 cos φ)3) cos φ

)

and the first two components of Xj for j = 2, 3, 4 as
[

Xi,1

Xi,2

]
=

[
r1e

iφ1hi(r1, r2, φ)
r2e

iφ2hi(r2, r1,−φ)

]
(5.32)

where

h2(r1, r2, φ) = 3r2
1 + (i sin(2φ) + 2 + cos(2φ)) r2

2 + (3 cosφ + i sin φ) r1r2

h3(r1, r2, φ) = (9 cos φ + 3i sin φ + cos(3φ) + i sin(3φ)) r1r
3
2 + 3r4

1

+ (5 cos φ + i sin φ) r3
1r2 + (6 + 4 cos(2φ) + 2i sin(2φ)) r2

1r
2
2

+ (3 + 2 cos(2φ) + 2i sin(2φ)) r4
2

h4(r1, r2, λ) = (30 cosφ + i(3 sin(3φ) + 6 sin φ) + 5 cos(3φ))r3
1r

3
2 − r6

1

−(21 cos φ + 9i sin φ)r1r
5
2 − (3i sin(2φ) + 4 + 3 cos(2φ))r6

2

+(9 cos(2φ) + 12 + 3i sin(2φ))r4
1r

2
2

(5.33)

It follows the result if we consider (5.31). 2

Theorem 5.2 Consider the system (5.29) with f as in (5.31) where A(0, λ) ≡ 0 and
µ : R → C is smooth and satisfies (5.28). Generically (5.29) admits only branches of

periodic solutions that bifurcate from (0, 0) with symmetry (conjugate to) S1 × S2, Z̃2, Z̃3.

Proof: Consider the Taylor expansion of f as in (5.31) around z = 0 and recall Corol-
lary 4.6. Then we can write f in the form

f1(z1, z2, z3, λ) =
[
µ(λ) + a

(
|z1|2 + |z2|2 + |z3|2

)]
z1

+b
(
2|z1|2 z1 − |z2|2 z2 − |z3|2z3

)
+ terms of degree ≥ 5

f2(z1, z2, z3, λ) = f1(z2, z1, z3, λ)

f3(z1, z2, z3, λ) = f1(z3, z2, z1, λ),

(5.34)
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were µ(0) = i, Re(µ′(0)) 6= 0 and a, b are smooth complex-valued functions of λ.
Consider g = f − (1 + τ)iz as in (5.30) and so the first two coordinates of g are:

g1(z, λ, τ) =
[
ν + a

(
|z1|2 + |z2|2 + |z3|2

)]
z1

+b
(
2|z1|2 z1 − |z2|2 z2 − |z3|2z3

)
+ terms of degree ≥ 5

g2(z, λ, τ) =
[
ν + a

(
|z1|2 + |z2|2 + |z3|2

)]
z2

+b
(
2|z2|2 z2 − |z1|2 z1 − |z3|2z3

)
+ terms of degree ≥ 5

(5.35)

where ν = µ(λ) − (1 + τ)i.
We have that FixV (S3) = {0}, consequently f(0, λ) ≡ 0. Therefore (0, λ) is an equilib-

rium point of (5.29) for all values of λ. Since we are assuming that (df)0,λ(z) = µ(λ)z, where
µ(0) = i and Re (µ′ (0)) 6= 0, the stability of this equilibrium varies when λ crosses zero.

The space V is S3-simple and we are ssuming (5.27) and (5.28) and so the conditions

of the Equivariant Hopf Theorem are satisfied. Since the isotropy subgroups S1 × S2, Z̃2

and Z̃3 have two-dimensional fixed-point subspaces, by the Equivariant Hopf Theorem the
system (5.29) admits branches of periodic solutions with symmetry S1 × S2, Z̃2, Z̃3 and
conjugate to these groups by bifurcation from (z, λ) = (0, 0). Moreover, these correspond to
zeros of (5.30) with the corresponding symmetry. We study now the existence of branches
of periodic solutions of (5.29) with trivial symmetry that bifurcate from (0, 0). For that we
look for branches of zeros (z1, z2) of (5.35) with z1z2 6= 0. These satisfy

g1(z, λ, τ)

z1
= 0

g2(z, λ, τ)

z2

= 0

(5.36)

Taking z3 = −z1 − z2, (z1, z2) =
(
r1e

iφ1, r2e
iφ2

)
and φ = φ2 −φ1, by Lemma 5.1 we can write

the first two components of f in the form

[
r1e

iφ1h(r1, r2, φ, λ)
r2e

iφ2h(r2, r1,−φ, λ

]

and so (5.36) can be writen as





ν + ((2a + 3b) cos φ + ib sin φ)r1r2 + (2a + 3b)r2
1

+(2a + 2b + b cos(2φ) + ib sin(2φ))r2
2 + P1(r1, r2, φ, λ) = 0

ν + ((2a + 3b) cos φ − ib sin φ)r1r2 + (2a + 3b)r2
2

+(2a + 2b − ib sin(2φ) + b cos(2φ))r2
1 + P1(r2, r1,−φ, λ) = 0

(5.37)

where P1 is smooth (whose Taylor expansion around (r1, r2) = (0, 0) has terms (in r1 and
r2) of degree greater or equal to 4). Recall (5.35).
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Taking the difference of the equations of (5.37) we obtain

b
[(

2 sin2 φ + i sin(2φ)
)
r2
1 +

(
i sin(2φ) − 2 sin2 φ

)
r2
2 + 2i sin φ r1r2

]

+P1(r1, r2, φ, λ) − P1(r2, r1,−φ, λ) = 0
(5.38)

Consider the generic hypothesis
b(0) 6= 0

and let

P2(r1, r2, φ, λ) =
P1(r1, r2, φ, λ) − P1(r2, r1,−φ, λ)

2b

Then equation (5.38) is equivalent to

sin2 φ
(
r2
1 − r2

2

)
+ i sin φ

(
cos φ(r2

1 + r2
2) + r1r2

)
+ P2(r1, r2, φ, λ) = 0 (5.39)

and so the real and imaginary parts of (5.39) should verify:
{

sin2 φ (r2
1 − r2

2) + Re (P2 (r1, r2, φ, λ)) = 0
sin φ (cos φ r2

1 + cos φ r2
2 + r1r2) + Im (P2 (r1, r2, φ, λ)) = 0

(5.40)

The degree two truncation of the system (5.40) is equivalent to

[
r1, r2

]
A

[
r1

r2

]
= 0,

[
r1, r2

]
B

[
r1

r2

]
= 0 (5.41)

where

A =

[
sin2 φ 0

0 − sin2 φ

]
, B =




sin φ cosφ
sin φ

2
sin φ

2
sin φ cos φ




Note that

det A = − sin4 φ, det B = sin2 φ

(
cos2 φ − 1

4

)

We study now the existence of smooth branches of zeros of the system (5.40) by bifurca-
tion from (0, 0). We use (5.41) in some cases.
(i) We begin with the cases where det(A) < 0 and det(B) < 0. Let φ be such that sin φ 6= 0
and cos2 φ < 1

4
. The system (5.41) is equivalent to

{
(r1 − r2) (r1 + r2) = 0
cos φ r2

1 + r1r2 + cos φ r2
2 = 0.

(5.42)

which admits only the solution (r1, r2) = (0, 0). Moreover the system




(r1 − r2) (r1 + r2) +
Re (P2 (r1, r2, φ, λ))

sin2 φ
= 0

cos φ r2
1 + r1r2 + cos φ r2

2 +
Im (P2 (r1, r2, φ, λ))

sin φ
= 0

(5.43)
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is equivalent to (5.40). The solutions in R2 of the first equation of (5.42) correspond to the
points of the lines r1 = r2 and r1 = −r2. Denote those lines by l1 and l2. The solutions
of the second equation of (5.42) correspond to the points of two lines l3, l4, whose slopes
are distinct from the slopes of the lines l1 and l2. So (0, 0) is the only solution of (5.42).
Moreover (r1, r2) = (0, 0) is a critical nondegenerate point of each one of the functions

h1(r1, r2) = (r1 − r2)(r1 + r2), h2(r1, r2) = cos φ r2
1 + r1r2 + cos φ r2

2

h3(r1, r2) = h1(r1, r2) +
Re (P2(r1, r2, φ, λ))

sin2 φ
, h4(r1, r2) = h2(r1, r2) +

Im (P2(r1, r2, φ, λ))

sin φ

By Morse Lemma (see for example Poston and Stewart [5] Theorem 4.2) the solutions of each
one of the equations of (5.43) correspond to smooth curves, say c1, c2 and c3, c4, tangent in
(0, 0) to each one of the lines l1, l2 and l3, l4. Therefore, in a sufficiently small neighborhood
of the origin, the system (5.43) admits only the trivial solution (r1, r2) = (0, 0).
(ii) We consider now the case where det(A) < 0 and det(B) = 0. Let φ be such that sin φ 6= 0
and cos2 φ = 1

4
. If φ = 2

3
π the system (5.41) is equivalent to

{
(r1 − r2) (r1 + r2) = 0

(r1 − r2)
2 = 0

We obtain the solutions such that r1 = r2 (and φ = 2π
3

). These solutions correspond to

the periodic solutions with symmetry Z̃3 of (5.29) whose existence is guaranteed by the
Equivariant Hopf Theorem (when f is truncated to the third order). Consider now the
system 





(r1 − r2) (r1 + r2) +
4

3
Re

(
P2

(
r1, r2,

2

3
π, λ

))
= 0

(r1 − r2)
2 − 4

√
3

3
Im

(
P2

(
r1, r2,

2

3
π, λ

))
= 0

(5.44)

As the Equivariant Hopf Theorem guarantees that if φ = 2
3
π the system (5.44) still admits

the solution r1 = r2 then there are smooth functions P̃i (r1, r2, λ) for i = 1, 2 (whose Taylor
expansion around (r1, r2) = (0, 0) has terms in r1, r2 of degree greater or equal to three) such
that the system (5.44) is equivalent to





(r1 − r2)
(
r1 + r2 + P̃1 (r1, r2, λ)

)
= 0

(r1 − r2)
(
r1 − r2 + P̃2 (r1, r2, λ)

)
= 0

(5.45)

and so for (r1, r2) sufficiently close to (0, 0) this system admits only the solutions with r2 = r1.

These correspond to the branch of periodic solutions of (5.29) with symmetry Z̃3 guaranteed
by the Equivariant Hopf Theorem. When φ = 4

3
π the situation is similar.
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For the cases φ = π
3

and φ = 5
3
π we observe the following. We have that

(z1, z2) =
(
r1e

iφ1 , r2e
i(φ1+ 2π

3
)
)

=
(
r1e

iφ1 ,−r2e
i(φ1+

5π
3
)
)

(z1, z2) =
(
r1e

iφ1 , r2e
i(φ1+ 4π

3
)
)

=
(
r1e

iφ1 ,−r2e
i(φ1+

π
3
)
)

Therefore the solutions (r1, r2) of the system (5.40) with φ = 2π
3

correspond to the solutions
(r1,−r2) of the system (5.40) with φ = 5π

3
. Similarly, the solutions (r1, r2) of (5.40) with

φ = 4π
3

correspond to the solutions (r1,−r2) of the system (5.40) with φ = π
3
. Therefore

from the cases φ = π
3

and φ = 5π
3

we do not obtain new solutions (besides the solutions with

symmetry conjugate to Z̃3).
(iii) We study now the cases where det A < 0 and det B > 0. That is, we consider values of
φ such that sin φ 6= 0 and cos2 φ > 1

4
. Again we consider the system (5.43). The point (0, 0)

is a nondegenerate critical point of the function defined by h(r1, r2, φ) = cos φ r2
1 + r1r2 +

cos φ r2
2 + Im(P2(r1,r2,φ))

sinφ
. In these conditions, Morse Lemma guarantees that the solutions of

the second equation of the system (5.43) in a sufficiently small neighborhood of (0, 0) are in
one to one correspondence with the solutions of the equation cos φ r2

1 +r1r2+cos φ r2
2 = 0. As

det B > 0 we conclude that (5.43) in a sufficiently small neighborhood of the origin admits
only the solution (r1, r2) = (0, 0).
(iv) We consider now the cases where det(A) = det(B) = 0. That is, φ = 0 or φ = π.
Let f be as in (5.31) and g = f − (1 + τ)iz. By Lemma 5.1, if we take z3 = −z1 − z2,
(z1, z2) =

(
r1e

iφ1 , r2e
iφ2

)
and φ = φ2 − φ1 we obtain a function g̃ = (g̃1, g̃2, g̃3) such that

g̃1 (r1, r2, φ, φ1, λ, τ) = (ν + A) r1e
iφ1 + BX2,1 + CX3,1 + DX4,1

g̃2 (r1, r2, φ, φ2, λ, τ) = (ν + A) r2e
iφ2 + BX2,2 + CX3,2 + DX4,2

(5.46)

where ν = µ(λ)− (1+ τ)i and A, B, C, D are written in the new coordinates. Taking φ = 0
in (5.32) and (5.33) we obtain

(
X2,1

r1eiφ1

)
φ=0

=
(

X2,2

r2eiφ2

)
φ=0

= 3 (r2
1 + r2

2 + r1r2)(
X3,1

r1eiφ1

)

φ=0
= h3(r1, r2, 0) = 3r4

1 + 5r4
2 + 5r3

1r2 + 10r1r
3
2 + 10r2

1r
2
2(

X3,2

r2eiφ2

)

φ=0
= h3(r2, r1, 0)

(
X4,1

r1eiφ1

)
φ=0

= h4(r1, r2, 0) = 21r4
1r

2
2 + 35r3

1r
3
2 − r6

1 − 21r1r
5
2 − 7r6

2(
X4,2

r2eiφ2

)

φ=0
= h4(r2, r1, 0)

and so (
eg1(r1,r2,φ,φ1,λ,τ)

r1eiφ1

)
φ=0

= ν + Aφ=0 + 3Bφ=0 (r2
1 + r2

2 + r1r2)+

+Cφ=0 (3r4
1 + 5r4

2 + 5r3
1r2 + 10r1r

3
2 + 10r2

1r
2
2)+

+Dφ=0 (21r4
1r

2
2 + 35r3

1r
3
2 − r6

1 − 21r1r
5
2 − 7r6

2)
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(
eg2(r1,r2,φ,φ2,λ,τ)

r2eiφ2

)

φ=0
= ν + Aφ=0 + 3Bφ=0 (r2

1 + r2
2 + r1r2)+

+Cφ=0 (5r4
1 + 3r4

2 + 10r2
1r

2
2 + 10r3

1r2 + 5r1r
3
2)+

+Dφ=0 (21r2
1r

4
2 + 35r3

1r
3
2 − r6

2 − 21r5
1r2 − 7r6

1)

Then the equation
(

g̃1 (r1, r2, φ, φ1, λ, τ)

r1eiφ1

)

φ=0

−
(

g̃2 (r1, r2, φ, φ2, λ, τ)

r2eiφ2

)

φ=0

= 0 (5.47)

can be written as

(r2 − r1) (r1 + 2r2)(2r1 + r2)(r1 + r2)
(
C + 3(r2

1 + r2
2 + r1r2)D

)
φ=0

= 0 (5.48)

where C, D are smooth S3 × S1-invariant functions. Assuming the generic hypothesis

C(0) 6= 0

from (5.48) we obtain only branches of solutions of (5.30) corresponding to the branches of

periodic solutions of (5.29) with symmetry (conjugate to) Z̃2 and S1 × S2. We recall that

Fix
(
Z̃2

)
= {(w,−w, 0) : w ∈ C}

So, periodic solutions of (5.29) with symmetry Z̃2 correspond to zeros of (5.30) where

(r1 = r2 and φ = π) or (r1 = −r2 and φ = 0)

From there the factor r1 + r2 in the equation (5.48). In the case of S1 × S2, we have that

Fix(S1 × S2) = {(2w,−w,−w) : w ∈ C}

Periodic solutions of (5.29) with symmetry S1 × S2 or conjugate to S1 × S2 correspond to
zeros of (5.30) where

(r1 = 2r2 and φ = π) or (r1 = −2r2 and φ = 0)
(r2 = 2r1 and φ = π) or (r2 = −2r1 and φ = 0)
(r1 = −r2 and φ = π) or (r1 = r2 and φ = 0)

So, we have the factors r1 + 2r2, r2 + 2r1 and r1 − r2 in the equation (5.48). The case φ = π
is similar.
(v) Finally, we study the cases where z1 = 0 and z2 6= 0. Let Ñ , P̃ , S̃, T̃ , X1, X2, X3 and

X4 be as in Corollary 4.6. In that case Ñ = 2|z2|2, P̃ = |z2|4, S̃ = −2|z2|6, T̃ = 0 and

X1 =




0
z2

−z2


 , X2 =




0
z2|z2|2
−z2|z2|2


 , X3 =




0
−z2|z2|4
z2|z2|4


 , X4 =




0
−z2|z2|6
z2|z2|6




24



Replacing in the system (5.30) where g = f − (1 + τ)iz and f appears in (5.31) we obtain

g1(z, λ, τ) = 0
g2(z, λ, τ) = z2 (ν + h(z2, λ))

where h is smooth and ν = µ(λ)− (1 + τ)i. In this case we obtain zeros corresponding to a

branch of periodic solutions with symmetry conjugate to Z̃2.
If z2 = 0 and z1 6= 0 the situation is similar to the previous one.
From the study (i)-(v) we conclude that the system (5.29) generically only admits branches

of periodic solutions guaranteed by the Equivariant Hopf Theorem. 2
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