Centro de Matemática da Universidade do Porto Centro de Física do Porto

Curso Livre sobre Teoria do Campo

<u>Aviso</u>... Este texto é provisório e destina-se ao uso dos participantes do Curso Livre. Não reclama qualquer tipo de originalidade e pode conter erros. Agradeço qualquer tipo de crítica ou sugestão.

Modelo de Ising

João Nuno Tavares¹

Índice:

1	Modelo de Ising	1
2	Observáveis	4
3	Função de correlação	6
4	Matriz de transferência	7
5	Modelo de Ising 1d. Formalismo operacional	14
6	Tabela de analogias entre EQFT e Mecânica Estatística Clássica	19

1 Modelo de Ising

Consideremos a rede discreta $\Lambda = \mathbf{Z}^d$ e o conjunto:

$$\Omega \stackrel{\text{def}}{=} \{\phi : \Lambda \longrightarrow \{-1, +1\}\}$$
(1.1)

de todas as configurações de spin. Ao valor $\phi(\mathbf{s}) \in \{\pm 1\}$, $\mathbf{s} \in \Lambda$, chamamos o (valor de) spin no sítio \mathbf{s} da rede.

¹Centro de Matemática da Universidade do Porto; jntavar@fc.up.pt; Work supported by *Fundação para a Ciência e a Tecnologia* (FCT) through the *Centro de Matemática da Universidade do Porto* (CMUP). Available as a PDF file from http://www.fc.up.pt/cmup.

Para um subconjunto $V \subset \Lambda$, representámos por $\phi_V : V \to S$, a restrição de ϕ a V, e por Ω_V o conjunto de todas as configurações definidas em V. Quando V é um subconjunto finito com N elementos existem 2^N configurações possíveis em V. O Hamiltoniano é definido por:

$$\mathcal{H}(\phi) \stackrel{\text{def}}{=} -\frac{1}{2} \sum_{\mathbf{r}, \mathbf{s} \in \Lambda} \mathcal{J}(\mathbf{r}, \mathbf{s}) \phi(\mathbf{r}) \phi(\mathbf{s})$$
(1.2)

onde:

$$\mathcal{J}(\mathbf{r}, \mathbf{s}) = \begin{cases} \mathcal{J} & \text{se } \mathbf{r} \in \mathbf{s} \text{ são sítios vizinhos, i.e., } \|\mathbf{r} - \mathbf{s}\| = 1\\ 0 & \text{nos outros casos} \end{cases}$$
(1.3)

Note que a interacção entre spins vizinhos $\mathbf{r}, \mathbf{s} \in \Lambda$, é dada por:

$$-\mathcal{J}\phi(\mathbf{r})\phi(\mathbf{s}) = \begin{cases} -\mathcal{J} & \text{se os spins estão alinhados} \\ +\mathcal{J} & \text{se são opostos} \end{cases}$$

Portanto, se $\mathcal{J} > 0$, obtemos uma energia mais baixa para configurações magnetizadas, i.e., com um grande número de spins alinhados. Em particular, a energia do vácuo, isto é, a energia mínima, é a que corresponde às configurações em que todos os spins estão alinhados - ou $\phi(\mathbf{s}) \equiv -1$ ou $\phi(\mathbf{s}) \equiv +1$, $\forall \mathbf{s} \in \Lambda$. Temos pois duas configurações possíveis (vácuo degenerado).

Quando $\mathcal{J} > 0$ o modelo diz-se ferromagnético e quando $\mathcal{J} < 0$ antiferromagnético. É claro que o modelo é invariante por translacções e admite uma simetria $G = \mathbf{Z}_2$, isto é, \mathcal{H} é invariante pelo grupo com dois elementos: Id e a simetria τ definida por $(\tau \phi)(\mathbf{s}) = -\phi(\mathbf{s})$.

O modelo definido pelo Hamiltoniano:

$$\mathcal{H}(\phi) \stackrel{\text{def}}{=} -\frac{1}{2} \sum_{\mathbf{r}, \mathbf{s} \in \Lambda} \mathcal{J}(\mathbf{r}, \mathbf{s}) \phi(\mathbf{r}) \phi(\mathbf{s}) - \sum_{\mathbf{s} \in \Lambda} B(\mathbf{s}) \phi(\mathbf{s})$$
(1.4)

diz-se o modelo de Ising com campo externo $B : \Lambda \to \mathbb{R}$. Neste caso, o modelo é invariante apenas por translacções. Usualmente $B \equiv \text{constante}$.

Por exemplo, para a rede unidimensional $\Lambda = \mathbf{Z}$, e com condições de fronteira periódicas $\phi(0) = \phi(N), \forall \phi$, o que equivale a considerar uma rede circular Λ_N , com N pontos (o chamado anel de Ising), o Hamiltoniano é dado por:

$$\mathcal{H}(\phi) = -\mathcal{J} \sum_{s=0}^{N-1} \phi(s)\phi(s+1) - \sum_{s=0}^{N-1} B(s)\phi(s)$$
(1.5)

Para a rede bidimensional $\Lambda = \mathbf{Z}^2$, também com condições de fronteira periódicas:

o que equivale a considerar uma rede toroidal com N = mn pontos (o chamado *Toro de Ising*), o Hamiltoniano é dado por:

$$\mathcal{H}(\phi) = -\mathcal{J}\left(\sum_{r=0}^{n-1}\sum_{s=0}^{m-1}\phi(r,s)\phi(r,s+1) + \sum_{s=0}^{m-1}\sum_{r=0}^{n-1}\phi(r,s)\phi(r+1,s)\right) - \sum_{r=0}^{n-1}\sum_{s=0}^{m-1}B(r,s)\phi(r,s)$$
(1.6)

Consideremos agora, para cada valor de $\beta = \frac{1}{T} > 0$, onde T é a temperatura, o estado de equilíbrio definido pela medida de probabilidade de Gibbs:

$$p_{\beta}(\phi) = \frac{e^{-\beta \mathcal{H}(\phi)}}{\mathcal{Z}(\beta)}$$
(1.7)

onde $\mathcal{Z}(\beta)$ é a função de partição do modelo, definida por:

$$\mathcal{Z}_N(\beta) = \mathcal{Z}_N(\beta, \mathcal{J}, B) \stackrel{\text{def}}{=} \sum_{\phi \in \Omega} e^{-\beta \mathcal{H}(\phi)}$$
(1.8)

O sinal – em (1.7), implica que os estados com energia mais baixa são mais prováveis. Um valor pequeno de β (i.e., temperatura elevada) tende a uniformizar a distribuição, tornando todas as configurações sensivelmente equiprováveis, enquanto que um valor elevado de β (i.e., temperatura baixa) tende a acentuar as probabilidades dos estados com energia mais baixa.

O modelo de Ising diz-se exactamente solúvel se pudermos calcular exactamente a sua função de partição \mathcal{Z} . Apesar da sua aparente simplicidade, de momento apenas se sabe que o modelo unidimensional e o modelo bidimensional, na ausência do campo externo B, são exactamente solúveis! É claro que a dificuldade reside no facto de o número total de configurações, 2^N , ser muito grande quando N é grande.

A título de exemplo, analisemos o modelo de Ising unidimensional linear, também chamado cadeia linear de Ising, na ausência do campo B (isto é, fazendo B = 0), e com apenas dois spins (N = 2) (com condições de fronteira livres). Neste caso, há quatro configurações possíveis, que representámos por:

$$\phi_1 = \{\uparrow, \uparrow\} = \{+1, +1\} \qquad \phi_2 = \{\uparrow, \downarrow\} = \{+1, -1\} \\ \phi_3 = \{\downarrow, \uparrow\} = \{-1, +1\} \qquad \phi_4 = \{\downarrow, \downarrow\} = \{-1, -1\}$$

cujas energias são:

$$\mathcal{H}(\phi_1) = \mathcal{H}(\phi_4) = -\mathcal{J}, \quad \mathcal{H}(\phi_2) = \mathcal{H}(\phi_3) = +\mathcal{J}$$

A correspondente função de partição é dada por:

$$\begin{aligned} \mathcal{Z}_2 &= e^{\beta \mathcal{J}} + e^{-\beta \mathcal{J}} + e^{-\beta \mathcal{J}} + e^{\beta \mathcal{J}} \\ &= 2e^K + 2e^{-K}, \quad \text{onde}K = \beta \mathcal{J} \\ &= 4 \cosh(K) \end{aligned}$$
(1.9)

Anàlogamente, para um modelo linear com três spins (N = 3), há $2^3 = 8$ configurações possíveis e um cálculo directo mostra que:

$$\begin{aligned} \mathcal{Z}_3 &= 2e^{2K} + 2e^{-2K} + 4 \\ &= 2(e^K + e^{-K})^2 = 8(\cosh\beta\mathcal{J})^2 \\ &= (e^K + e^{-K})\mathcal{Z}_2 = (2\cosh K)\mathcal{Z}_2 \end{aligned}$$
(1.10)

Esta última relação entre \mathcal{Z}_3 e \mathcal{Z}_2 , sugere a seguinte fórmula de recorrência (para o modelo de Ising linear com condições de fronteira livres):

$$\mathcal{Z}_N = (2\cosh K)\,\mathcal{Z}_{N-1} \tag{1.11}$$

que pode ser verificada com um cálculo simples. Portanto:

$$\mathcal{Z}_N(\beta) = 2^N (\cosh K)^{N-1}, \qquad K = \beta \mathcal{J}$$
(1.12)

2 Observáveis

A função de partição $\mathcal{Z}(\beta) = \sum_{\phi \in \Omega} e^{-\beta \mathcal{H}(\phi)}$ tem uma importância crucial em Mecânica Estatística, já que quantidades observáveis macroscópicas estão genèricamente relacionadas com derivadas de \mathcal{Z} .

Mas antes de vermos isto, convem interpretarmos os modelos que temos vindo a analisar, em particular o modelo de Ising, de um outro ponto de vista. Para cada $\mathbf{s} \in \mathbf{Z}^d$, podemos definir a variável aleatória *spin em* $\mathbf{s}, \phi_{\mathbf{s}} : \Omega \to \mathcal{T}$, através de:

$$\phi_{\mathbf{s}}(\phi) = \phi(\mathbf{s}), \qquad \phi \in \Omega \tag{2.1}$$

Desta forma o modelo é visto como um *campo estocástico* $\{\phi_s\}_{s \in \mathbb{Z}^d}$, definido no espaço de probabilidade Ω , munido da medidade de Gibbs.

Consideremos, em particular, o modelo de Ising, com a distribuição de Gibbs, definida num volume finito $V \subset \Lambda$, usualmente um hipercubo $[0, L]^d$. Podemos então definir:

• Energia livre (de Boltzman) $\mathcal{F}(\beta)$:

$$\mathcal{F}(\beta) = -\frac{1}{\beta} \log \mathcal{Z}(\beta)$$
(2.2)

• Energia livre por spin, no limite termodinâmico, \mathfrak{f}_{∞} :

$$\mathfrak{f}_{\infty}(\beta) = -\frac{1}{\beta} \lim_{|V| \to \infty} \frac{1}{|V|} \log \mathcal{Z}(\beta)$$
(2.3)

Por exemplo, para o modelo de Ising linear, tem-se:

$$\begin{aligned}
\mathfrak{f}_{\infty}(\beta) &= -\frac{1}{\beta} \lim_{N \to \infty} \frac{1}{N} \log \left[2^{N} (\cosh \beta \mathcal{J})^{N-1} \right] \\
&= -\frac{1}{\beta} \log \left(2 \cosh \beta \mathcal{J} \right)
\end{aligned} \tag{2.4}$$

que é uma função analítica de $\beta = 1/T$, para T > 0, o que traduz o facto de que o modelo de Ising linear não exibe transição de fase.

• Energia interna $U = U(\beta, V, B, \mathcal{J}) \dots$ é o valor médio de \mathcal{H} :

$$U = \langle \mathcal{H} \rangle_{\beta} = \frac{1}{\mathcal{Z}(\beta)} \sum_{\phi \in \Omega} \mathcal{H}(\phi) e^{-\beta \mathcal{H}(\phi)}$$
(2.5)

• Spin total ... é a variável aleatória $S = S(\beta, B, V, \mathcal{J}) : \Omega \to \mathbb{R}$, definida por:

$$S = \sum_{\mathbf{s}} \phi_{\mathbf{s}} \qquad \text{isto} \ \acute{\mathbf{e}} \qquad S(\phi) = \sum_{\mathbf{s}} \phi_{\mathbf{s}}(\phi) = \sum_{\mathbf{s}} \phi(\mathbf{s}) \qquad (2.6)$$

• Magnetização em $\mathbf{s} \in V$... é o valor esperado da variável aleatória $\phi_{\mathbf{s}}$:

$$M(\mathbf{s}) = \langle \phi_{\mathbf{s}} \rangle_{\beta} = \frac{1}{\mathcal{Z}(\beta)} \sum_{\phi \in \Omega} \phi(\mathbf{s}) e^{-\beta \mathcal{H}(\phi)}$$
(2.7)

Num modelo de Ising com campo externo variável $B(\mathbf{s})$, e Hamiltoniano:

$$\mathcal{H}(\phi) = -\mathcal{J}\sum_{[\mathbf{ss}']} \phi(\mathbf{s})\phi(\mathbf{s}') - \sum_{\mathbf{s}\in\Lambda} B(\mathbf{s})\phi(\mathbf{s})$$
(2.8)

um cálculo directo mostra que:

$$M(\mathbf{s}) = -\frac{\partial \mathcal{F}}{\partial B(\mathbf{s})}$$
(2.9)

• Magnetização (total) M ... é o valor esperado do spin total S:

$$M = \langle S \rangle_{\beta} = \sum_{\mathbf{s} \in V} M(\mathbf{s}) = \sum_{\mathbf{s} \in V} \langle \phi_{\mathbf{s}} \rangle_{\beta} = \frac{1}{\mathcal{Z}(\beta)} \sum_{\phi \in \Omega} \sum_{\mathbf{s} \in V} \phi(\mathbf{s}) e^{-\beta \mathcal{H}(\phi)}$$
(2.10)

• Magnetização média por spin:

$$m = \frac{M}{|V|} = \frac{1}{|V|} \langle \sum_{\mathbf{s}} \phi_{\mathbf{s}} \rangle_{\beta}$$
(2.11)

Num modelo de Ising com campo externo constante B, e Hamiltoniano:

$$\mathcal{H}(\phi) = -\mathcal{J}\sum_{[\mathbf{ss}']} \phi(\mathbf{s})\phi(\mathbf{s}') - B\sum_{\mathbf{s}\in\Lambda} \phi(\mathbf{s})$$
(2.12)

um cálculo directo mostra que:

$$m = -\frac{1}{|V|} \frac{\partial \mathcal{F}}{\partial B}$$
(2.13)

Consideremos a magnetização média por spin como uma função de $T = 1/\beta$ e B (constante): m = m(T, B). Se, para uma temperatura constante T, o limite de m, quando $B \to 0$, é não nulo:

$$\lim_{B \to 0} m(T, B) \neq 0, \qquad T \text{ constante}$$
(2.14)

diz-se que existe magnetização espontânea à temperatura T. Para modelos de Ising, isto acontece apenas para temperaturas T, inferiores a uma certa temperatura crítica T_c (no modelo de Ising unidimensional $T_c = 0$, como veremos). Para $T > T_c$, $\lim_{B\to 0} m(T, B) = 0$ e não há magnetização espontânea.

O fenómeno de magnetização espontânea, para um certo $T < T_c$, indica que o estado de equilíbrio do sistema não herdou a simetria \mathbb{Z}_2 do Hamiltoniano (recordemos que, para $B = 0, \mathcal{H}$ tem simetria \mathbb{Z}_2 - permuta de spins up \leftrightarrow down). Diz-se portanto que, para $T < T_c$, a simetria foi quebrada espontâneamente. m serve de parâmetro de ordem (local), permitindo distinguir as duas fases do sistema.

Quando $T \to T_c^-$, *m* anula-se. Em muito sistemas físicos, em particular nos modelos de Ising, anula-se como uma potência²:

$$m(T) \sim (T_c - T)^{\beta}$$
, quando $T \to T_c^-$ (2.15)

onde β é o chamado expoente crítico de magnetização. Para o modelo de Ising bidimensional $\beta = 1/8$.

• Magnetização média, no limite termodinâmico:

$$\mathfrak{m}_{\infty} = \lim_{|V| \to \infty} \frac{M}{|V|} \tag{2.16}$$

² Símbolos de Landau:

- f(t) = O(g(t)),quando $t \to a,$ significa que f(t)/g(t) é limitada quando $t \to a.$
- f(t) = o(g(t)), quando $t \to a$, significa que $f(t)/g(t) \to 0$, quando $t \to a$.
- $-f(t) \sim g(t)$, quando $t \to a$, significa que $f(t)/g(t) \to 1$, quando $t \to a$.
- $-f(t) \propto g(t)$ (proporcionalidade assintótica), significa que $f(t) \sim kg(t)$, para alguma constante não nula.

• Susceptibilidade magnética por spin ... indica como a magnetização média (por spin) responde a um campo externo "infinitesimal":

$$\begin{aligned}
\mathfrak{X} & \stackrel{\text{def}}{=} \quad \frac{\partial m}{\partial B} \Big|_{B=0} \\
&= \quad \frac{\beta}{|V|} \left\{ \langle S^2 \rangle_\beta - \langle S \rangle_\beta^2 \right\} \\
&= \quad \frac{\beta}{|V|} \operatorname{Var}(S)
\end{aligned}$$
(2.17)

Esta fórmula mostra que a susceptibilidade magnética é proporcional à variância do spin total e mede as suas flutuações.

3 Função de correlação

Dados dois pontos quaisquer $\mathbf{r}, \mathbf{s} \in \Lambda$, define-se a função de correlação $C_{\beta}(\mathbf{r}, \mathbf{s})$ através de:

$$C_{\beta}(\mathbf{r}, \mathbf{s}) = \langle \phi_{\mathbf{r}} \phi_{\mathbf{s}} \rangle_{\beta} = \frac{1}{\mathcal{Z}(\beta)} \sum_{\phi \in \Omega} \phi(\mathbf{r}) \phi(\mathbf{s}) e^{-\beta \mathcal{H}(\phi)}$$
(3.1)

quer não é mais do que a correlação entre os spins em $\mathbf{r} \in \mathbf{s}$, respectivamente, e portanto mede a influência recíproca entre esses dois spins.

Os spins em **r** e **s** não estão correlacionados quando $\langle \phi_{\mathbf{r}} \phi_{\mathbf{s}} \rangle_{\beta} = \langle \phi_{\mathbf{r}} \rangle_{\beta} \langle \phi_{\mathbf{s}} \rangle_{\beta}$. É por isso preferível medir a correlação entre os spins em **r** e **s**, através da *função de correlação conexa*, covariância ou *função de Green* $G_{\beta}(\mathbf{r}, \mathbf{s})$, definida por:

$$G_{\beta}(\mathbf{r}, \mathbf{s}) = \langle \phi_{\mathbf{r}} \phi_{\mathbf{s}} \rangle_{\beta} - \langle \phi_{\mathbf{r}} \rangle_{\beta} \langle \phi_{\mathbf{s}} \rangle_{\beta}$$
(3.2)

de tal forma que os spins em \mathbf{r} e \mathbf{s} não estão correlacionados quando $G_{\beta}(\mathbf{r}, \mathbf{s}) = 0$.

Quando a distância $|\mathbf{s} - \mathbf{r}|$ cresce é de esperar que a correlação decresça, para $\beta = 1/T$ constante. Por outro lado, a função de correlação $G_{\beta}(\mathbf{r}, \mathbf{s})$, como função da temperatura $T = 1/\beta$, e para uma distância $|\mathbf{s} - \mathbf{r}|$ fixa, aumenta quando $T \to 0$ (ou $\beta \to \infty$).

Num modelo de Ising com campo externo variável B, e Hamiltoniano:

1 0

$$\mathcal{H}(\phi) = -\mathcal{J}\sum_{[\mathbf{ss}']} \phi(\mathbf{s})\phi(\mathbf{s}') - \sum_{\mathbf{s}\in\Lambda} B(\mathbf{s})\phi(\mathbf{s})$$
(3.3)

um cálculo directo mostra que:

$$G_{\beta}(\mathbf{r}, \mathbf{s}) = -\frac{\partial^2 \mathcal{F}}{\partial B(\mathbf{r}) \partial B(\mathbf{s})}$$
(3.4)

É claro que, para o modelo de Ising, $M(\mathbf{s}) = \langle \phi_{\mathbf{s}} \rangle_{\beta} \equiv \mathfrak{m}$, constante $\forall \mathbf{s} \in \Lambda$, e $G_{\beta}(\mathbf{r}, \mathbf{s}) = \langle \phi_{\mathbf{r}} \phi_{\mathbf{s}} \rangle_{\beta} - \mathfrak{m}^2$. Por invariância sob translacções, é claro que:

$$G_{\beta}(\mathbf{r},\mathbf{s}) = G_{\beta}(\mathbf{r}-\mathbf{s})$$

e portanto basta considerar a função:

$$\Gamma(\mathbf{r}) \stackrel{\text{def}}{=} G_{\beta}(\mathbf{0}, \mathbf{r}) = \langle \phi_{\mathbf{0}} \phi_{\mathbf{r}} \rangle_{\beta} - \langle \phi_{\mathbf{0}} \rangle_{\beta} \langle \phi_{\mathbf{r}} \rangle_{\beta}$$
(3.5)

A temperaturas muito elevadas, o que se espera é que as flutuações térmicas dominem a eventual tendência que spins distantes tenham para cooperar. De facto, o que se observa é que, para $T > T_c$, $\Gamma(\mathbf{r})$ decai exponencialmente com a distância entre spins:

$$\Gamma(\mathbf{r}) \sim e^{-\frac{|\mathbf{r}|}{\xi(T)}}, \quad \text{para } T > T_c \in |\mathbf{r}| \text{ grande}$$

$$(3.6)$$

onde $\xi(T)$ representa o comprimento de correlação do sistema. $\xi(T)$ é pois uma medida do tamanho dos agregados de spins que cooperam entre si, i.e., que se correlacionam uns com os outros. Para altas temperaturas, $\xi(T)$, medido em unidades da malha da rede, é aproximadamente 1. Para temperaturas $T < T_c$:

$$\Gamma(\mathbf{r}) \sim \langle \phi_{\mathbf{0}} \rangle_{\beta}^2, \qquad |\mathbf{r}| >> 1$$

Agora já não existem correlações de longo alcance e o sistema aparece magnetizado. Por exemplo, no modelo de Ising $\Gamma(\mathbf{r}) = G(\mathbf{0}, \mathbf{r})$ é exponencialmente pequena.

Na temperatura crítica T_c , $\Gamma(\mathbf{r})$ decai como uma potência da distância $|\mathbf{r}|$ entre spins:

$$\Gamma(\mathbf{r}) \sim |\mathbf{r}|^{-(d-2+\eta)}, \quad \text{para } T = T_c \in |\mathbf{r}| \text{ grande}$$
(3.7)

onde η é um outro expoente crítico (no modelo de Ising 2d, $\eta = 1/4$). Portanto, "apenas na temperatura crítica é que o sistema tem correlações de longo alcance", facto que desempenhará um papel essencial em QFT.

Para que as equações (3.6) e (3.7) sejam compatíveis, é necessário que o comprimento de correlação $\xi(T)$ divirja, quando $T \to T_c^+$, isto é:

$$\xi(T) \sim (T - T_c)^{-\nu}$$
 (3.8)

onde ν é um outro expoente crítico ($\nu = 1$ no modelo de Ising 2d).

Algumas conclusões a tirar:

- Na temperatura crítica T_c , várias funções termodinâmicas exibem um comportamento singular (não analítico).
- Este comportamento singular está relacionado com correlações de longo alcance e com grandes flutuações.
- O comportamento singular pode ser caracterizado por certos expoentes (ou índices) críticos.
- Embora no Hamiltoniano inicial apenas intervêm interacções de curto alcance, podem ocorrer fenómenos cooperativos que provocam correlações de longo alcance.

4 Matriz de transferência

Vamos agora expôr o método da *matriz de transferência* que é o análogo do formalismo operacional em QFT.

Consideremos um intervalo "temporal" limitado $I = [a, b] \subset \mathbb{R}$, e uma subdivisão de I em N subintervalos iguais, cada um com comprimento $\epsilon = \frac{b-a}{N}$. Designemos a rede assim obtida por:

$$\Lambda_{\epsilon} = \{ t_0 = a < t_1 = a + \epsilon < t_2 = a + 2\epsilon < \dots < t_i = a + i\epsilon < \dots < t_N = b \}$$

Suponhámos que a rede original Λ , é do tipo $\Lambda = \Lambda_{\epsilon} \times S$, i.e., é composta por N+1 secções, $S_i = \{t_i\} \times S$, $i = 0, \dots, N$, onde S pode ser um ponto, uma rede linear, plana, etc...

Para cada configuração $\phi \in \Omega$, designemos por:

$$oldsymbol{\sigma}_i = oldsymbol{\phi}ert_{t_i imes \mathcal{S}}$$

a restrição de ϕ à secção S_i , de tal forma que $\sigma_i(\mathbf{s}) = \phi(t_i, \mathbf{s}), \mathbf{s} \in S$, e suponhámos ainda que as interacções ocorrem apenas dentro de cada secção e entre secções vizinhas $S_i \in S_{i+1}$. O Hamiltoniano de uma configuração $\phi = \{\sigma_0, \sigma_1, \dots, \sigma_N\} \in \Omega$ pode então ser escrito na forma:

$$\mathcal{H}(\boldsymbol{\phi}) = \sum_{i=0}^{N-1} \mathcal{E}(\boldsymbol{\sigma}_i, \boldsymbol{\sigma}_{i+1}) + \sum_{i=0}^{N} \mathcal{V}(\boldsymbol{\sigma}_i)$$
(4.1)

Suponhámos, em primeiro lugar, que fixámos as configurações de fronteira $\sigma_0 \in \sigma_N$. A função de partição correspondente é então dada por:

$$\mathcal{Z}(\boldsymbol{\sigma}_{N}|\boldsymbol{\sigma}_{0}) = \sum_{\{\boldsymbol{\sigma}_{1},\dots,\boldsymbol{\sigma}_{N-1}\}} e^{-\beta \left\{\sum_{i=0}^{N} \mathcal{V}(\boldsymbol{\sigma}_{i}) + \sum_{i=0}^{N-1} \mathcal{E}(\boldsymbol{\sigma}_{i},\boldsymbol{\sigma}_{i+1})\right\}} \\
= \sum_{\{\boldsymbol{\sigma}_{1},\dots,\boldsymbol{\sigma}_{N-1}\}} e^{-\beta \mathcal{V}(\boldsymbol{\sigma}_{0})/2} e^{-\beta \left\{\mathcal{V}(\boldsymbol{\sigma}_{0})/2 + \mathcal{E}(\boldsymbol{\sigma}_{0},\boldsymbol{\sigma}_{1}) + \mathcal{V}(\boldsymbol{\sigma}_{1})/2\right\}} e^{-\beta \left\{\mathcal{V}(\boldsymbol{\sigma}_{1})/2 + \mathcal{E}(\boldsymbol{\sigma}_{1},\boldsymbol{\sigma}_{2}) + \mathcal{V}(\boldsymbol{\sigma}_{2})/2\right\}} \dots \\
\dots e^{-\beta \left\{\mathcal{V}(\boldsymbol{\sigma}_{N-1})/2 + \mathcal{E}(\boldsymbol{\sigma}_{N-1},\boldsymbol{\sigma}_{N}) + \mathcal{V}(\boldsymbol{\sigma}_{N})/2\right\}} e^{-\beta \mathcal{V}(\boldsymbol{\sigma}_{N})/2} \\
= e^{-\beta \mathcal{V}(\boldsymbol{\sigma}_{0})/2} \left[\sum_{\{\boldsymbol{\sigma}_{1},\dots,\boldsymbol{\sigma}_{N-1}\}} T(\boldsymbol{\sigma}_{0},\boldsymbol{\sigma}_{1})T(\boldsymbol{\sigma}_{1},\boldsymbol{\sigma}_{2}) \cdots T(\boldsymbol{\sigma}_{N-1},\boldsymbol{\sigma}_{N})\right] e^{-\beta \mathcal{V}(\boldsymbol{\sigma}_{N})/2} \tag{4.2}$$

Por outro lado, se supômos condições de fronteira periódicas $\sigma_0 = \sigma_N$, e se somármos também sobre as configurações $\sigma_0 = \sigma_N$, obtemos para a correspondente função de partição:

$$\mathcal{Z} = \sum_{\{\boldsymbol{\sigma}_{0}, \dots, \boldsymbol{\sigma}_{N-1}\}} e^{-\beta \left\{ \sum_{i=0}^{N-1} \mathcal{E}(\boldsymbol{\sigma}_{i}, \boldsymbol{\sigma}_{i+1}) + \mathcal{V}(\boldsymbol{\sigma}_{i}) \right\}} \\
= \sum_{\{\boldsymbol{\sigma}_{0}, \dots, \boldsymbol{\sigma}_{N-1}\}} e^{-\beta \left\{ \mathcal{V}(\boldsymbol{\sigma}_{0})/2 + \mathcal{E}(\boldsymbol{\sigma}_{0}, \boldsymbol{\sigma}_{1}) + \mathcal{V}(\boldsymbol{\sigma}_{1})/2 \right\}} e^{-\beta \left\{ \mathcal{V}(\boldsymbol{\sigma}_{1})/2 + \mathcal{E}(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}) + \mathcal{V}(\boldsymbol{\sigma}_{2})/2 \right\}} \dots \\
\cdots e^{-\beta \left\{ \mathcal{V}(\boldsymbol{\sigma}_{N-1})/2 + \mathcal{E}(\boldsymbol{\sigma}_{N-1}, \boldsymbol{\sigma}_{0}) + \mathcal{V}(\boldsymbol{\sigma}_{0})/2 \right\}} \\
= \sum_{\{\boldsymbol{\sigma}_{0}, \dots, \boldsymbol{\sigma}_{N-1}\}} T(\boldsymbol{\sigma}_{0}, \boldsymbol{\sigma}_{1}) T(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}) \cdots T(\boldsymbol{\sigma}_{N-1}, \boldsymbol{\sigma}_{0}) \tag{4.3}$$

onde:

$$T(\boldsymbol{\sigma}_{i},\boldsymbol{\sigma}_{i+1}) = \exp -\beta \left\{ \mathcal{E}(\boldsymbol{\sigma}_{i},\boldsymbol{\sigma}_{i+1}) + \frac{\mathcal{V}(\boldsymbol{\sigma}_{i}) + \mathcal{V}(\boldsymbol{\sigma}_{i+1})}{2} \right\}$$
(4.4)

É conveniente interpretar as fórmulas (4.8) e (4.3) com o formalismo seguinte - consideremos um espaço vectorial \mathbf{V} , gerado por todas as configurações possíveis $\boldsymbol{\sigma} : S \to \mathcal{T}$, para as quais usamos a notação de Dirac, notando-as por $|\boldsymbol{\sigma}\rangle$. Neste espaço definimos um operador \mathbf{T} , chamado operador de transição, cuja matriz de transferência, na base $\{|\boldsymbol{\sigma}\rangle\}$, é definida por:

$$\langle \boldsymbol{\sigma} | \mathbf{T} | \boldsymbol{\sigma}' \rangle = T(\boldsymbol{\sigma}, \boldsymbol{\sigma}') = \exp -\beta \left\{ \mathcal{E}(\boldsymbol{\sigma}, \boldsymbol{\sigma}') + \frac{\mathcal{V}(\boldsymbol{\sigma}) + \mathcal{V}(\boldsymbol{\sigma}')}{2} \right\}$$
(4.5)

Com este formalismo a função de partição (4.3) pode ser escrita na forma:

$$\begin{aligned} \mathcal{Z}_{N}(\beta) &= \sum_{\{\boldsymbol{\sigma}_{0}, \cdots, \boldsymbol{\sigma}_{N-1}\}} \langle \boldsymbol{\sigma}_{0} | \mathbf{T} | \boldsymbol{\sigma}_{1} \rangle \langle \boldsymbol{\sigma}_{1} | \mathbf{T} | \boldsymbol{\sigma}_{2} \rangle \cdots \langle \boldsymbol{\sigma}_{N-1} | \mathbf{T} | \boldsymbol{\sigma}_{0} \rangle \\ &= \sum_{\{\boldsymbol{\sigma}_{0}\}} \langle \boldsymbol{\sigma}_{0} | \mathbf{T}^{N} | \boldsymbol{\sigma}_{0} \rangle \\ &= \operatorname{tr} \mathbf{T}^{N} \end{aligned}$$

$$(4.6)$$

obtendo-se assim o importante resultado:

$$\mathcal{Z}_N(\beta) = \operatorname{tr} \mathbf{T}^N \tag{4.7}$$

Anàlogamente, (4.8) pode ser escrita na forma:

$$\begin{aligned} \mathcal{Z}(\boldsymbol{\sigma}_{N}|\boldsymbol{\sigma}_{0}) &= e^{-\beta \mathcal{V}(\boldsymbol{\sigma}_{0})/2} \left[\sum_{\{\boldsymbol{\sigma}_{1},\cdots,\boldsymbol{\sigma}_{N-1}\}} T(\boldsymbol{\sigma}_{0},\boldsymbol{\sigma}_{1})T(\boldsymbol{\sigma}_{1},\boldsymbol{\sigma}_{2})\cdots T(\boldsymbol{\sigma}_{N-1},\boldsymbol{\sigma}_{N}) \right] e^{-\beta \mathcal{V}(\boldsymbol{\sigma}_{N})/2} \\ &= e^{-\beta \mathcal{V}(\boldsymbol{\sigma}_{0})/2} \sum_{\{\boldsymbol{\sigma}_{1},\cdots,\boldsymbol{\sigma}_{N-1}\}} \langle \boldsymbol{\sigma}_{0}|\mathbf{T}|\boldsymbol{\sigma}_{1}\rangle \langle \boldsymbol{\sigma}_{1}|\mathbf{T}|\boldsymbol{\sigma}_{2}\rangle\cdots \langle \boldsymbol{\sigma}_{N-1}|\mathbf{T}|\boldsymbol{\sigma}_{N}\rangle e^{-\beta \mathcal{V}(\boldsymbol{\sigma}_{N})/2} \\ &= \exp\left\{-\beta \frac{\mathcal{V}(\boldsymbol{\sigma}_{0})+\mathcal{V}(\boldsymbol{\sigma}_{N})}{2}\right\} \sum_{\{\boldsymbol{\sigma}_{1},\cdots,\boldsymbol{\sigma}_{N-1}\}} \langle \boldsymbol{\sigma}_{0}|\mathbf{T}|\boldsymbol{\sigma}_{1}\rangle \langle \boldsymbol{\sigma}_{1}|\mathbf{T}|\boldsymbol{\sigma}_{2}\rangle\cdots \langle \boldsymbol{\sigma}_{N-1}|\mathbf{T}|\boldsymbol{\sigma}_{N}\rangle \\ &= \exp\left\{-\beta \frac{\mathcal{V}(\boldsymbol{\sigma}_{0})+\mathcal{V}(\boldsymbol{\sigma}_{N})}{2}\right\} \langle \boldsymbol{\sigma}_{0}|\mathbf{T}^{N-1}|\boldsymbol{\sigma}_{N}\rangle \end{aligned}$$
(4.8)

A matriz **T** é simétrica e portanto diagonalizável com espectro real $\lambda_0 > \lambda_1 \ge \cdots \ge \lambda_D$, onde $D = \dim \mathbf{V}$. Portanto a função de partição (4.7) é dada por:

$$\mathcal{Z}_N(\beta) = \sum_{k=0}^{D} (\lambda_k)^N$$
(4.9)

Além disso, como todas as entradas da matriz **T** são positivas, segue-se, do Teorema de Perron Frobenius³, que o valor próprio máximo λ_0 é não degenerado (o seu espaço próprio tem dimensão 1) e é uma função analítica dos seus argumentos. Em particular, no caso presente, λ_0 é pois uma função analítica de $\beta = 1/T > 0$.

Se agora tomámos o limite termodinâmico parcial, fazendo o número de secções N tender para ∞ , obtemos para a energia livre parcial (por secção):

$$-\beta \mathcal{F}_{D}(\beta) = \lim_{N \to \infty} \frac{\log \mathcal{Z}_{N}(\beta)}{N}$$
$$= \lim_{N \to \infty} \frac{1}{N} \log \left[\lambda_{0}^{N} \left(1 + \sum_{i=1}^{D} (\lambda_{1}/\lambda_{0})^{N} \right) \right]$$
$$= \log \lambda_{0} + \lim_{N \to \infty} \frac{1}{N} \log \left[1 + \sum_{i=1}^{D} (\lambda_{1}/\lambda_{0})^{N} \right]$$
$$= \log \lambda_{0}$$
(4.10)

Para sistemas cuja dimensionalidade q é superior ou igual a 2, devemos calcular um segundo limite, quando $D \to \infty$, para calcular o limite termodinâmico real.

▷ <u>Exemplo</u> 4.1 (Modelo de Ising 2d) ... Como exemplo concreto, consideremos de novo a rede bidimensional quadrada $\Lambda_2 = \{(i, s) \in \mathbb{Z}^2 : 0 \le i \le N-1, 0 \le s \le M-1\}$, com condições de fronteira periódicas:

³Teorema de Perron Frobenius: ".....".

o que equivale a considerar uma rede toroidal com MN pontos (o chamado "Toro de Ising"), com Hamiltoniano:

$$\mathcal{H}(\phi) = -\mathcal{J}\left(\sum_{s=0}^{M-1} \sum_{i=0}^{N-1} \phi(i,s)\phi(i+1,s) + \sum_{i=0}^{N-1} \sum_{s=0}^{M-1} \phi(i,s)\phi(i,s+1)\right) - B\sum_{i=0}^{N-1} \sum_{s=0}^{M-1} \phi(i,s)\phi(i,s+1)\right)$$
(4.11)

Para cada configuração $\phi : \Lambda_N \to \{\pm 1\}$, e cada $i = 0, \dots, N-1$, representemos por σ_i a restrição de ϕ à secção (a coluna) i da rede, de tal forma que:

$$\sigma_i(s) = \phi(i, s), \qquad s = 0, \cdots, M - 1$$
(4.12)

Para cada *i* fixo, existem 2^M configurações σ_i , e portanto o espaço vectorial $\mathbf{V} = \text{span}\{|\sigma\rangle\}$ tem dimensão $D = 2^M$. Cada uma tem a sua própria energia dada por:

$$\mathcal{V}(\sigma_i) = -\mathcal{J} \sum_{s=0}^{M-1} \phi(i,s)\phi(i,s+1) - B \sum_{s=0}^{M-1} \phi(i,s)$$

= $-\mathcal{J} \sum_{s=0}^{M-1} \sigma_i(s)\sigma_i(s+1) - B \sum_{s=0}^{M-1} \sigma_i(s)$ (4.13)

bem como uma energia de interacção com a secção vizinha i + 1, dada por:

$$\mathcal{E}(\sigma_{i}, \sigma_{i+1}) = -\mathcal{J} \sum_{s=0}^{M-1} \phi(i, s) \phi(i+1, s) = -\mathcal{J} \sum_{s=0}^{M-1} \sigma_{i}(s) \sigma_{i+1}(s)$$
(4.14)

O Hamiltoniano (4.11) pode então ser escrito na forma (4.1):

$$\mathcal{H}(\phi) = \sum_{i=0}^{N-1} \left[\mathcal{V}(\sigma_i) + \mathcal{E}(\sigma_i, \sigma_{i+1}) \right]$$
(4.15)

e portanto a função de partição na forma:

$$\mathcal{Z}_N(\beta) = \operatorname{tr} \mathbf{T}^N \tag{4.16}$$

Aqui V é o espaço vectorial gerado pelas possíveis $D = 2^M$ configurações σ_i (para *i* fixo), e a matriz de transferência é a matriz $2^M \times 2^M$, definida por (4.5), isto é:

$$\langle \sigma | \mathbf{T} | \sigma' \rangle = e^{-\beta \{ \mathcal{V}(\sigma)/2 + \mathcal{E}(\sigma, \sigma') + \mathcal{V}(\sigma')/2 \}}$$
(4.17)

onde $\mathcal{V} \in \mathcal{E}$ são dadas por (4.13) e (4.14), respectivamente. Para prosseguir a análise temos que calcular o valor próprio máximo de uma matriz simétrica $2^M \times 2^M$!.

O cálculo anterior pode ser generalizado para dimensões superiores. Assim por exemplo, para redes cúbicas tridimensionais, definimos as configurações σ_j , em cada plano bidimensional, reconstruindo a rede pelas suas secções planas. Agora $\mathcal{V}(\sigma_j)$ será a energia do plano j enquanto que $\mathcal{E}(\sigma_j, \sigma_{j+1})$ representa a energia de interação entre dois planos vizinhos.

▷ **Exemplo 4.2 (O anel de Ising)** ... Para M = 1, temos um anel de Ising, e a matriz **T** é a matriz 2×2 , dada por:

$$\langle \sigma | \mathbf{T} | \sigma' \rangle = e^{\beta \mathcal{J} \sigma \sigma' + \beta B(\sigma + \sigma')/2}$$

= $e^{K \sigma \sigma' + h(\sigma + \sigma')/2}$ onde $\sigma, \sigma' = \pm 1$ (4.18)

isto é:

$$\mathbf{T} = \begin{bmatrix} \langle -1|\mathbf{T}| - 1 \rangle & \langle -1|\mathbf{T}| + 1 \rangle \\ \langle +1|\mathbf{T}| - 1 \rangle & \langle +1|\mathbf{T}| + 1 \rangle \end{bmatrix}$$
$$= \begin{bmatrix} e^{K-h} & e^{-K} \\ e^{-K} & e^{K+h} \end{bmatrix}$$
(4.19)

(onde pusemos $K = \beta \mathcal{J}$ e $h = \beta B$). Os valores próprios são:

$$\lambda_0, \lambda_1 = e^K \cosh(h) \pm \sqrt{e^{2K} \sinh^2(h) + e^{-2K}}$$

Em particular, para h = 0:

$$\lambda_0 = 2 \cosh K, \ \lambda_1 = 2 \sinh K$$

e a função de partição é portanto, por (4.9), igual a:

$$\begin{aligned} \mathcal{Z}_N(K,h=0) &= (\lambda_0)^N + (\lambda_1)^N \\ &= (2\cosh K)^N + (2\sinh K)^N \end{aligned}$$
(4.20)

Se N é muito grande, o primeiro termo é muito maior que o segundo e portanto, no limite termodinâmico, como se viu em (4.10), tem-se que:

$$-\beta \mathfrak{f}_{\infty} = \lim_{N \to \infty} \frac{1}{N} \log \mathcal{Z}_N(K, 0)$$

= $\log \lambda_0$
= $\log(2 \cosh K)$ (4.21)

No caso geral, a energia livre por spin f_{∞} , no limite termodinâmico, é dada por:

$$-\beta \mathfrak{f}_{\infty}(K,h) = \lim_{N \to \infty} \frac{1}{N} \log \mathcal{Z}_{N}(\beta)$$

= $\log \lambda_{0}$
= $\log[e^{K} \cosh(h) + (e^{2K} \sinh^{2}(h) + e^{-2K})^{1/2}]$ (4.22)

Calculemos agora a média de um observável $X_{\mathbf{r}}$, que depende de um sítio fixo $\mathbf{r} \in S_i$ (por exemplo $X_{\mathbf{r}} = \phi_{\mathbf{r}}$), usando o operador de transição $\mathbf{T} : \mathbf{V} \to \mathbf{V}$:

$$\langle X_{\mathbf{r}} \rangle_{\beta} = \frac{1}{\mathcal{Z}(\beta)} \sum_{\phi \in \Omega} X(\mathbf{r}) e^{-\beta \mathcal{H}(\phi)}$$
(4.23)

.

onde $\mathcal{H}(\phi)$, para $\phi = \{\sigma_0, \sigma_1, \cdots, \sigma_{N-1}\} \in \Omega$, é do tipo (4.1):

$$\mathcal{H}(\phi) = \sum_{i=0}^{N-1} \left[\mathcal{V}(\sigma_i) + \mathcal{E}(\sigma_i, \sigma_{i+1}) \right]$$

e estámos a supôr que $\sigma_0 = \sigma_N$ e que $\mathcal{T} \subset \mathbb{R}$.

Procedendo de forma análoga à que foi usada para deduzir (4.8), podemos escrever:

$$\langle X_{\mathbf{r}} \rangle_{\beta} = \sum_{\{\sigma_{0}, \cdots, \sigma_{N-1}\}} X(\mathbf{r}) e^{-\beta \sum_{i=0}^{N-1} \left[\mathcal{V}(\sigma_{i}) + \mathcal{E}(\sigma_{i}, \sigma_{i+1}) \right] }$$

$$= \frac{1}{\mathcal{Z}_{N}} \sum_{\{\sigma_{0}, \cdots, \sigma_{N-1}\}} e^{-\beta \{\mathcal{V}(\sigma_{0})/2 + \mathcal{E}(\sigma_{0}, \sigma_{1}) + \mathcal{V}(\sigma_{1})/2\}} \cdots X(\mathbf{r}) e^{-\beta \{\mathcal{V}(\sigma_{i})/2 + \mathcal{E}(\sigma_{i}, \sigma_{i+1}) + \mathcal{V}(\sigma_{i})/2\}} \cdots$$

$$\cdots e^{-\beta \{\mathcal{V}(\sigma_{N})/2 + \mathcal{E}(\sigma_{N}, \sigma_{1}) + \mathcal{V}(\sigma_{1})/2\}}$$

$$= \frac{1}{\mathcal{Z}_{N}} \sum_{\{\sigma_{0}, \cdots, \sigma_{N-1}\}} \langle \sigma_{0} | \mathbf{T} | \sigma_{1} \rangle \cdots \langle \sigma_{i-1} | \mathbf{T} | \sigma_{i} \rangle X(\mathbf{r}) \langle \sigma_{i} | \mathbf{T} | \sigma_{i+1} \rangle \cdots \langle \sigma_{N-1} | \mathbf{T} | \sigma_{0} \rangle$$

$$(4.24)$$

Se $\mathbf{X}_{\mathbf{r}}: \mathbf{V} \to \mathbf{V}$ é o operador diagonal que representa o observável local $X_{\mathbf{r}}$, de tal forma que:

$$\mathbf{X}_{\mathbf{r}}|\sigma\rangle = X(\mathbf{r})|\sigma\rangle \tag{4.25}$$

podemos escrever (4.24) na forma:

$$\langle X_{\mathbf{r}} \rangle_{\beta} = \mathcal{Z}_{N}^{-1} \sum_{\{\sigma_{0}, \cdots, \sigma_{N-1}\}} \langle \sigma_{0} | \mathbf{T} | \sigma_{1} \rangle \cdots \langle \sigma_{i-1} | \mathbf{T} \mathbf{X}_{\mathbf{r}} | \sigma_{i} \rangle \langle \sigma_{i} | \mathbf{T} | \sigma_{i+1} \rangle \cdots \langle \sigma_{N-1} | \mathbf{T} | \sigma_{0} \rangle$$

$$= \mathcal{Z}_{N}^{-1} \operatorname{tr} \mathbf{T}^{i} \mathbf{X}_{\mathbf{r}} \mathbf{T}^{N-i}$$

e como o traço é cíclico e atendendo a que $\mathcal{Z}=\mathrm{tr}\,\mathbf{T}^N,$ obtemos finalmente:

$$\langle X_{\mathbf{r}} \rangle_{\beta} = \frac{\operatorname{tr}\left(\mathbf{T}^{N}\mathbf{X}_{\mathbf{r}}\right)}{\operatorname{tr}\mathbf{T}^{N}} \tag{4.26}$$

Calculemos agora as funções de correlação usando o operador de transição **T**. Consideremos dois sítios $\mathbf{r} \in S_i$, na secção i, e $\mathbf{s} \in S_{i+n}$, na secção i+n, e calculemos a correlação $\langle \phi_{i,\mathbf{r}}\phi_{i+n,\mathbf{s}}\rangle_{\beta}$, usando o operador $\mathbf{T}: \mathbf{V} \to \mathbf{V}$:

$$\langle \phi_{i,\mathbf{r}}\phi_{i+n,\mathbf{s}}\rangle_{\beta} = \frac{1}{\mathcal{Z}(\beta)} \sum_{\phi \in \Omega} \phi(i,\mathbf{r})\phi(i+n,\mathbf{s})e^{-\beta\mathcal{H}(\phi)}$$
(4.27)

onde $\mathcal{H}(\phi)$, para $\phi = \{\sigma_0, \sigma_1, \cdots, \sigma_{N-1}\} \in \Omega$, é do tipo (4.1):

$$\mathcal{H}(\phi) = \sum_{i=0}^{N-1} \left[\mathcal{V}(\sigma_i) + \mathcal{E}(\sigma_i, \sigma_{i+1}) \right]$$

e estámos a supôr mais uma vez que $\sigma_0 = \sigma_N$ e que $\mathcal{T} \subset \mathbb{R}$.

Procedendo de forma análoga à que foi usada para deduzir (4.8), podemos escrever:

$$\langle \phi_{i,\mathbf{r}}\phi_{i+n,\mathbf{s}}\rangle_{\beta} = \sum_{\{\sigma_0,\cdots,\sigma_{N-1}\}} \sigma_i(\mathbf{r})\sigma_{i+n}(\mathbf{s})e^{-\beta\sum_{i=0}^{N-1} \left[\mathcal{V}(\sigma_i) + \mathcal{E}(\sigma_i,\sigma_{i+1})\right]}$$

$$= \frac{1}{\mathcal{Z}_{N}} \sum_{\{\sigma_{0}, \dots, \sigma_{N-1}\}} e^{-\beta\{\mathcal{V}(\sigma_{0})/2 + \mathcal{E}(\sigma_{0}, \sigma_{1}) + \mathcal{V}(\sigma_{1})/2\}} \cdots \sigma_{i}(\mathbf{r})} e^{-\beta\{\mathcal{V}(\sigma_{i})/2 + \mathcal{E}(\sigma_{i}, \sigma_{i+1}) + \mathcal{V}(\sigma_{i})/2\}} \cdots$$

$$\cdots \sigma_{i+n}(\mathbf{s}) e^{-\beta\{\mathcal{V}(\sigma_{i+n})/2 + \mathcal{E}(\sigma_{i+n}, \sigma_{i+n+1}) + \mathcal{V}(\sigma_{i+n})/2\}} \cdots e^{-\beta\{\mathcal{V}(\sigma_{N-1})/2 + \mathcal{E}(\sigma_{N-1}, \sigma_{0}) + \mathcal{V}(\sigma_{0})/2\}}$$

$$= \frac{1}{\mathcal{Z}_{N}} \sum_{\{\sigma_{0}, \dots, \sigma_{N-1}\}} \langle \sigma_{0} | \mathbf{T} | \sigma_{1} \rangle \cdots \langle \sigma_{i-1} | \mathbf{T} | \sigma_{i} \rangle \sigma_{i}(\mathbf{r}) \langle \sigma_{i} | \mathbf{T} | \sigma_{i+1} \rangle \cdots$$

$$\cdots \langle \sigma_{i+n-1} | \mathbf{T} | \sigma_{i+n} \rangle \sigma_{i+n}(\mathbf{s}) \langle \sigma_{i+n} | \mathbf{T} | \sigma_{i+n+1} \rangle \cdots \langle \sigma_{N-1} | \mathbf{T} | \sigma_{0} \rangle$$

$$(4.28)$$

Definindo um operador diagonal $\mathbf{S}_{\mathbf{r}} : \mathbf{V} \to \mathbf{V}$, através de $\mathbf{S}_{\mathbf{r}} | \sigma \rangle = \sigma(\mathbf{r}) | \sigma \rangle$, podemos escrever (4.28) na forma:

$$\begin{split} \langle \phi_{i,\mathbf{r}}\phi_{i+n,\mathbf{s}}\rangle_{\beta} &= \frac{1}{\mathcal{Z}_{N}}\sum_{\{\sigma_{0},\cdots,\sigma_{N-1}\}} \langle \sigma_{0}|\mathbf{T}|\sigma_{1}\rangle\cdots\langle\phi_{i-1}|\mathbf{TS}_{\mathbf{r}}|\sigma_{i}\rangle\langle\phi_{i}|\mathbf{T}|\sigma_{i+1}\rangle\cdots\\ &\cdots\langle\phi_{i+n-1}|\mathbf{TS}_{\mathbf{s}}|\sigma_{i+n}\rangle\langle\sigma_{i+n}|\mathbf{T}|\sigma_{i+n+1}\rangle\cdots\langle\sigma_{N-1}|\mathbf{T}|\sigma_{0}\rangle\\ &= \frac{1}{\mathcal{Z}_{N}}\mathrm{tr}\,\mathbf{T}^{i}\mathbf{S}_{\mathbf{r}}\mathbf{T}^{n}\mathbf{S}_{\mathbf{s}}\mathbf{T}^{N-(i+n)} \end{split}$$

e como o traço é cíclico e atendendo a que $\mathcal{Z} = \operatorname{tr} \mathbf{T}^N$, obtemos finalmente:

$$\langle \phi_{i,\mathbf{r}}\phi_{i+n,\mathbf{s}} \rangle_{\beta} = \frac{\operatorname{tr}\left(\mathbf{S}_{\mathbf{r}}\mathbf{T}^{n}\mathbf{S}_{\mathbf{s}}\mathbf{T}^{N-n}\right)}{\operatorname{tr}\mathbf{T}^{N}}$$
(4.29)

▷ <u>Exemplo</u> 4.3 ... Como aplicação, analisemos agora o caso do anel de Ising com N spins, com campo externo nulo (h = 0), por simplicidade. Por invariância sob translacções, basta calcular $\langle \phi_0 \phi_n \rangle$. Com o Hamiltoniano dado por (1.5), vem que:

$$\begin{aligned} \langle \phi_0 \phi_n \rangle |_{(K,h=0)} &= \frac{\operatorname{tr} \left(S_0 \mathbf{T}^n S_n \mathbf{T}^{N-n} \right)}{\operatorname{tr} \mathbf{T}^N} \\ &= \dots \\ &= \frac{\operatorname{tanh}^n K + \operatorname{tanh}^{N-n} K}{1 + \operatorname{tanh}^N K} \\ &\to \operatorname{tanh}^n K, \quad \text{quando} \quad N \to \infty \end{aligned}$$
(4.30)

De facto, para h = 0 a matriz de transferência é:

$$\mathbf{T} = \mathbf{T}(K) = \begin{bmatrix} e^{K} & e^{-K} \\ e^{-K} & e^{K} \end{bmatrix} = e^{K}\mathbf{1} + e^{-K}\boldsymbol{\sigma}_{1}$$

onde usámos as chamadas **matrizes de Pauli** $\sigma_1, \sigma_2, \sigma_3$, definidas por:

$$\boldsymbol{\sigma}_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \boldsymbol{\sigma}_2 = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \quad \boldsymbol{\sigma}_3 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
(4.31)

 ${\bf T}$ é simétrica e pode ser diagonalizada pela matriz ortogonal:

$$\mathbf{U} = \frac{1}{\sqrt{2}}(\mathbf{1} + i\boldsymbol{\sigma}_2) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ -1 & 1 \end{bmatrix}$$

obtendo-se:

$$\mathbf{U}\mathbf{T}\mathbf{U}^{-1} = e^{K}\mathbf{1} + e^{-K}\boldsymbol{\sigma}_{3} = 2\begin{bmatrix}\cosh K & 0\\ 0 & \sinh K\end{bmatrix}$$

Por outro lado, o operador de spin é representado pela matriz σ_3 :

$$\mathbf{S}_0 = \mathbf{S}_n = \boldsymbol{\sigma}_3$$

e como:

$$\mathbf{U}\boldsymbol{\tau}_{3}\mathbf{U}^{-1} = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right]$$

obtemos finalmente que:

$$\begin{aligned} \langle \phi_{0}\phi_{n}\rangle|_{(K,h=0)} &= \frac{\operatorname{tr}\left(S_{0}\mathbf{T}^{n}S_{n}\mathbf{T}^{N-n}\right)}{\operatorname{tr}\mathbf{T}^{N}} \\ &= \frac{\operatorname{tr}\left[(\mathbf{U}\boldsymbol{\tau}_{3}\mathbf{U}^{-1})(\mathbf{U}\mathbf{T}\mathbf{U}^{-1})^{n}(\mathbf{U}\boldsymbol{\tau}_{3}\mathbf{U}^{-1})(\mathbf{U}\mathbf{T}\mathbf{U}^{-1})^{N-n}\right]}{\operatorname{tr}\left(\mathbf{U}\mathbf{T}\mathbf{U}^{-1}\right)^{N}} \\ &= \frac{\operatorname{tanh}^{n}K + \operatorname{tanh}^{N-n}K}{1 + \operatorname{tanh}^{N}K} \\ &\to \operatorname{tanh}^{n}K, \quad \text{quando} \quad N \to \infty \end{aligned}$$
(4.32)

Portanto;

$$\Gamma(n) = G_{\beta}(0, n) = \langle \phi_0 \phi_n \rangle = \tanh^n K$$
(4.33)

e o comprimento de correlação é:

$$\xi^{-1} = \lim_{n \to \infty} \left(-\frac{1}{n} \log \Gamma(n) \right)$$
$$= \lim_{n \to \infty} \left(-\frac{1}{n} \log \tanh^n K \right)$$
$$= -\log \tanh K$$

isto é:

$$\xi(T) = \frac{1}{-\log \tanh K}, \qquad K = \mathcal{J}/T$$

Note que $\xi \to \infty$, quando $T \to 0$, o que significa que a transição de fase dá-se à temperatura nula, enquanto que $\xi \to 0$, quando $T \to \infty$.

5 Modelo de Ising 1d. Formalismo operacional

Como vimos, a função de partição pode ser escrita na forma:

$$\mathcal{Z}_N = \operatorname{tr} \mathbf{T}^N$$

Se **T** tiver todos os valores próprios positivos, podemos definir um Hamiltoniano "quântico" $\mathbf{H}: \mathbf{V} \to \mathbf{V}$, através de:

$$\mathbf{T} = e^{-\epsilon \mathbf{H}}$$
(5.1)

onde, por conveniência posterior, se fez intervir o valor ϵ da malha da rede "temporal".

▷ **Exemplo** 5.1 ... Por exemplo, no anel de Ising, supondo que h = 0, por simplicidade, a matriz de transferência é dada por:

$$\mathbf{T} = \begin{bmatrix} e^{K} & e^{-K} \\ e^{-K} & e^{K} \end{bmatrix} = e^{K}\mathbf{1} + e^{-K}\boldsymbol{\sigma}_{1}$$

onde usámos as chamadas matrizes de Pauli $\sigma_1, \sigma_2, \sigma_3$, definidas por:

$$\boldsymbol{\sigma}_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \boldsymbol{\sigma}_2 = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \quad \boldsymbol{\sigma}_3 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
(5.2)

Como os valores próprios são positivos, podemos escrever:

$$\mathbf{\Gamma} = e^{-\epsilon \mathbf{H}} = \mathbf{1} - \epsilon \mathbf{H} + o(\epsilon^2)$$

onde:

$$\mathbf{H} = k_{\epsilon} \mathbf{1} + K_{\epsilon}^* \boldsymbol{\sigma}_1 \tag{5.3}$$

Calculando $-\epsilon \mathbf{H} = \log \mathbf{T}$, concluímos que:

$$k_{\epsilon} = \frac{1}{2\epsilon} \log \frac{\sinh 2K}{2}, \qquad K_{\epsilon}^* = -\frac{\log \tanh K}{2\epsilon}$$
 (5.4)

Para $\epsilon=1,$ a relação entre K e K^* é particularmente importante. Pode ser escrita na forma simétrica:

$$(\sinh 2K^*)\sinh K = 1$$

o que mostra que, se definirmos:

$$K^* = \mathcal{D}(K) \stackrel{\text{def}}{=} -\frac{\log \tanh K}{2}$$
(5.5)

então $\mathcal{D}(\mathcal{D}(K)) = K$, isto é, \mathcal{D} é uma dualidade.

Continuando - uma vez escrita a matriz de transferência na forma $\mathbf{T} = e^{-\epsilon \mathbf{H}}$, a função de partição é dada por:

$$\begin{aligned}
\mathcal{Z}_N &= \operatorname{tr} \mathbf{T}^N = \operatorname{tr} (e^{-\epsilon \mathbf{H}})^N = \operatorname{tr} e^{-N\epsilon \mathbf{H}} & (=e^{-\beta \mathcal{F}_N}) \\
&= \sum_{\alpha} e^{-N\epsilon E_{\alpha}} & (E_0 \le E_1 \le E_2 \le \cdots)
\end{aligned}$$
(5.6)

onde E_{α} representam os valores próprios de **H**, a que chamámos *níveis de energia*, cuja relação com os valores próprios λ_{α} , de **T** é:

$$E_{\alpha} = -\frac{1}{\epsilon} \log \lambda_{\alpha} \tag{5.7}$$

Em particular:

$$E_0 = -\frac{1}{\epsilon} \log \lambda_0$$

é o nível mais baixo da energia ou energia do vácuo.

Definindo o "tamanho" L, do "eixo temporal", por:

$$L = N\epsilon \tag{5.8}$$

de tal forma que $N = L/\epsilon$, podemos ainda escrever:

$$\mathcal{Z} = \sum_{\alpha} e^{-LE_{\alpha}} \tag{5.9}$$

Note que L é o inverso da temperatura L = 1/T. Quando N é muito grande (e ϵ constante), a soma é dominada pela energia do vácuo E_0 , de tal forma que a energia livre é:

$$-\beta \mathcal{F}_N = \log \mathcal{Z}_N = -N\epsilon E_0$$

Em particular a energia livre por spin f_{∞} , no limite termodinâmico, é dada por:

$$-\beta \mathfrak{f}_{\infty}(K,h) = \log \lambda_0 = -\epsilon E_0 \tag{5.10}$$

A primeira correcção, devida ao tamanho do sistema, é dada pelo nível seguinte de energia E_1 e é:

$$-\beta \mathcal{F}_N = \log \mathcal{Z}_N = -N\epsilon E_0 + e^{-N\epsilon(E_1 - E_0)} + \cdots$$
(5.11)

Esta igualdade (5.11) diz-nos que, se o salto de energia⁴:

$$m \stackrel{\text{def}}{=} E_1 - E_0$$

fôr estritamente positivo, então o termo de correcção $e^{-N\epsilon(E_1-E_0)}$ decai exponencialmente com o tamanho do sistema. Esta é a primeira manifestação de uma relação geral entre correlações espaciais e o salto de energia m. No anel de Ising, as correlações são provocadas pelas condições de fronteira periódicas, que relacionam pontos a uma distância $L = N\epsilon$, onde $\epsilon > 0$ é a malha da "rede temporal".

Definindo o comprimento de correlação ou coerência ξ , através de:

$$\xi = \frac{1}{\epsilon(E_1 - E_0)} = \frac{1}{m\epsilon} \tag{5.12}$$

podemos escrever o termo de correcção na forma:

$$e^{-N\epsilon(E_1 - E_0)} = e^{-N/\xi} \tag{5.13}$$

Note que, quando $m \to 0$ (com ϵ fixo), o comprimento de correlação ξ diverge para ∞ , e vice-versa.

No anel de Ising (com h = 0), o comprimento de correlação é:

$$\xi = \frac{1}{\epsilon(E_1 - E_0)} = \frac{1}{-\epsilon(\log \lambda_1 - \log \lambda_0)} = -\frac{1}{\epsilon \log \tanh K}$$
(5.14)

As regiões onde o comprimento de correlação ξ é muito grande adquirem especial significado, porque são estas onde podemos ignorar a existência de uma discretização. Por outras palavras, se olharmos para regiões onde as correlações envolvem distâncias muito superiores à malha da rede ϵ , então a rede fica "escondida" pela escala enorme dos efeitos que estámos a considerar.

Não esqueçamos que um comprimento de correlação ξ muito grande está ligado a uma pequeno salto de energia $m = E_1 - E_0$. Portanto, os sistemas de interesse do ponto de vista da QFT, são aqueles em que $m = E_1 - E_0$ é muito pequeno.

Consideremos agora a média de um observável $X_{\mathbf{r}}$, que depende de um sítio fixo $\mathbf{r} \in S_i$ (por exemplo $X_{\mathbf{r}} = \phi_{\mathbf{r}}$), que, como vimos na secção anterior, é dado por 4.26):

$$\langle X_{\mathbf{r}} \rangle_{\beta} = \frac{\operatorname{tr} \left(\mathbf{T}^{N} \mathbf{X}_{\mathbf{r}} \right)}{\operatorname{tr} \mathbf{T}^{N}} \tag{5.15}$$

⁴energy gap

Substituindo nesta expressão $\mathbf{T}=e^{-\epsilon\mathbf{H}},$ vem que:

$$\langle X_{\mathbf{r}} \rangle_{\beta} = \mathcal{Z}_{N}^{-1} \operatorname{tr} \left(\mathbf{T}^{N} \mathbf{X}_{\mathbf{r}} \right) = \mathcal{Z}_{N}^{-1} \operatorname{tr} \left(e^{-N\epsilon \mathbf{H}} \mathbf{X}_{\mathbf{r}} \right) = \mathcal{Z}_{N}^{-1} \sum_{\alpha} e^{-N\epsilon E_{\alpha}} \langle \alpha | \mathbf{X}_{\mathbf{r}} | \alpha \rangle$$

$$(5.16)$$

onde $\{|\alpha\rangle\}$ representa uma base de vectores próprios de **H**. Quando N é muito grande, a soma é dominada pelo nível mais baixo E_0 , de tal forma que, no limite:

$$\langle X_{\mathbf{r}} \rangle_{\beta} = \langle 0 | \mathbf{X}_{\mathbf{r}} | 0 \rangle \tag{5.17}$$

isto é: no limite termodinâmico, a média de um observável estatístico, é igual ao valor do elemento diagonal do correspondente operador quântico, no estado de vácuo.

Como exemplo, vejámos o valor da magnetização em r, no anel de Ising. Aqui $X_r = \phi_r$ e $\mathbf{X_r} = \boldsymbol{\sigma}_3$. Portanto, por (5.16):

$$\langle \phi_r \rangle = \frac{\operatorname{tr} \left(e^{-N\epsilon \mathbf{H}} \boldsymbol{\sigma}_3 \right)}{\operatorname{tr} \left(e^{-N\epsilon} \mathbf{H} \right)}$$

$$= \frac{\operatorname{tr} \left(e^{-N\epsilon(k_\epsilon \mathbf{1} + K_\epsilon^* \boldsymbol{\sigma}_1)} \boldsymbol{\sigma}_3 \right)}{\operatorname{tr} \left(e^{-N\epsilon(k_\epsilon \mathbf{1} + K_\epsilon^* \boldsymbol{\sigma}_1)} \right)}$$

$$= \frac{\operatorname{tr} \left(e^{-N\epsilon K^* \boldsymbol{\sigma}_1} \boldsymbol{\sigma}_3 \right)}{\operatorname{tr} \left(e^{-N\epsilon K^* \boldsymbol{\sigma}_1} \right)}$$

$$= 0$$

$$(5.18)$$

já que (ver (5.4)):

$$\mathbf{H} = k_{\epsilon} \mathbf{1} + K_{\epsilon}^* \boldsymbol{\sigma}_1 = \frac{1}{2\epsilon} \log \frac{\sinh 2K}{2} \mathbf{1} - \frac{\log \tanh K}{2\epsilon} \boldsymbol{\sigma}_1$$

Calculemos agora $\langle \phi_0 \phi_n \rangle|_{(K,h=0)}$, mas substituindo $\mathbf{T} = e^{-\epsilon \mathbf{H}}$ em (4.29):

$$\langle \phi_0 \phi_n \rangle = \mathcal{Z}_N^{-1} \operatorname{tr} \left(\mathbf{S}_0 \mathbf{T}^n \mathbf{S}_n \mathbf{T}^{N-n} \right) = \mathcal{Z}_N^{-1} \operatorname{tr} \left(\mathbf{S}_0 e^{-n\epsilon \mathbf{H}} \mathbf{S}_n e^{-(N-n)\epsilon \mathbf{H}} \right)$$
(5.19)

Suponhámos que $\{|\alpha\rangle\}$ é uma base de vectores próprios de **H**, de tal forma que:

$$e^{-\epsilon \mathbf{H}} = \sum_{\alpha} |\alpha\rangle \langle \alpha| e^{-\epsilon E_{\alpha}} \qquad \mathbf{e} \qquad \mathbf{1} = \sum_{\alpha} |\alpha\rangle \langle \alpha| \qquad (5.20)$$

e ainda que E_0 e E_1 são não degenerados. Então (5.19) fica na forma:

$$\langle \phi_0 \phi_n \rangle = \mathcal{Z}_N^{-1} \sum_{\alpha} e^{-(N-n)\epsilon E_\alpha} \langle \alpha | \mathbf{S}_0 e^{-n\epsilon \mathbf{H}} \mathbf{S}_n | \alpha \rangle$$
(5.21)

Suponhámos que $\ell = \text{dist}(0, n) = n\epsilon$ está fixa, e consideremos o limite termodinâmico quando $N \to \infty$. Nesse limite, apenas a energia do vácuo, E_0 , contribui, de tal forma que podemos fazer a substituição:

$$e^{-N\epsilon \mathbf{H}} \longrightarrow |0\rangle \langle 0| e^{-\epsilon E_0}$$
 (5.22)

Portanto, nesse limite, a função de correlação simplifica-se na forma:

$$\langle \phi_0 \phi_n \rangle = \langle 0 | \mathbf{S}_0 e^{-n\epsilon (\mathbf{H} - E_0)} \mathbf{S}_n | 0 \rangle$$
(5.23)

Usando novamente o facto de que $1 = \sum_{\alpha} |\alpha\rangle \langle \alpha|$, podemos ainda escrever:

$$\langle \phi_0 \phi_n \rangle = \langle 0 | \mathbf{S}_0 | 0 \rangle \langle 0 | \mathbf{S}_n | 0 \rangle + \sum_{\alpha > 0} \langle 0 | \mathbf{S}_0 | \alpha \rangle e^{-n\epsilon (E_\alpha - E_0)} \langle \alpha | \mathbf{S}_n | 0 \rangle$$
(5.24)

Recordemos agora que $\langle 0|\mathbf{S}_0|0\rangle = \langle \phi_0 \rangle$, $\langle 0|\mathbf{S}_n|0\rangle = \langle \phi_n \rangle$ e ainda a definição de função de correlação conexa ou função de Green:

$$G(0,n) = \langle \phi_0 \phi_n \rangle - \langle \phi_0 \rangle \langle \phi_n \rangle$$

Fazendo as correspondentes substituições, obtemos:

$$G(0,n) = \sum_{\alpha>0} \langle 0|\mathbf{S}_0|\alpha\rangle e^{-n\epsilon(E_\alpha - E_0)} \langle \alpha|\mathbf{S}_n|0\rangle$$
(5.25)

Como E_0 é a energia do vácuo, a soma (5.25) contem exponenciais que decaem quando $n \to \infty$ (com ϵ fixo). No limite, quando $n \to \infty$, apenas a exponencial $e^{-n\epsilon(\mathbf{E}_1 - E_0)}$ contribui. Portanto, se o vácuo e o primeiro estado excitado são não degenerados, obtemos, nesse limite:

$$G(0,n) \longrightarrow \langle 0|\mathbf{S}_0|1\rangle e^{-n\epsilon(E_1 - E_0)} \langle 1|\mathbf{S}_n|0\rangle$$
(5.26)

isto é:

$$G(0,n) \longrightarrow \langle 0|\mathbf{S}_0|1\rangle \langle 1|\mathbf{S}_n|0\rangle e^{-\frac{n}{\xi}}$$
(5.27)

recordando a definição do comprimento de correlação $\xi = \frac{1}{\epsilon(E_1 - E_0)}.$

Em EQFT, o salto de energia $m = E_1 - E_0$ é a massa m do quanta do campo - é a energia de uma partícula em repouso. A relação entre a massa e o comprimento de correlação é pois:

$$\xi = \frac{1}{m\epsilon} \tag{5.28}$$

Quando $\xi \to \infty$, a massa $m \to 0$ (para ϵ constante). Por outras palavras os valores próprios $E_{\alpha}, \alpha \geq 2$, desaparecem no ponto crítico.

6 Tabela de analogias entre EQFT e Mecânica Estatística Clássica

QFT Euclideana		Mecânica Estatística Clássica
Campos quânticos	\leftrightarrow	Variáveis de spin
Fonte	\leftrightarrow	Campo magnético (B-campo)
Acção Euclideana	\leftrightarrow	Energia de configuração
$\exp(-\Delta t H)$	\leftrightarrow	Matriz de Transferência
		no caso de interacções de alcance finito
Integral functional (Feynman)	\leftrightarrow	Soma sobre configurações
Valor esperado do vácuo do campo		Magnetização
Função 2-pontual a momento zero	\leftrightarrow	Susceptibilidae magnética
Massa física (energy gap)		$(\text{comprimento de correlação})^{-1}$
Teoria de massa nula	\leftrightarrow	Teoria crítica
Função $\mathcal Z$ geradora	\leftrightarrow	Função de partição num
de funções de correlação		campo B , dependente da posição
Função W geradora	\leftrightarrow	Energia livre num
de funções conexas de correlação		campo B , dependente da posição
Função geradora	\leftrightarrow	Potencial termodinâmico, função da
de vértices próprios		magnetização

References

- [1] Le Bellac M., "Quantum and Statistical Field Theory." Oxford U.P., Inc., 1998.
- [2] Binney J.J., Dowrick N.J., Fisher A.J., Newman M.E.J., "The Theory of Critical Phenomena." Oxford U.P., Inc., 1993.
- [3] Kogut J.B., "An Introduction to Lattice Gauge Theory and Spin Systems". Reviews of Modern Physics, vol. 51, 1979, 650-714.
- [4] Kadanoff L.P., "Statistical Physics.", World Scientific, 2000.
- [5] Parisi G., "Statistical Field Theory.", Addison-Wesley, 1987.
- [6] Thompson C.J., "Mathematical Statistical Mechanics.", Princeton U. Press, 1972.