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A New Multiperiod Stage Definition for the
Multistage Benders Decomposition Approach
Applied to Hydrothermal Scheduling

Tiago Norbiato dos Santos and Andre Luiz Diniz, Member, IEEE

Abstract—Multistage Benders decomposition (MSBD), also
known as dual dynamic programming, is a well-established tech-
nique to solve hydrothermal scheduling problems, especially for
predominantly hydro systems. The MSBD methodology solves
the problem by iterative forward and backward recursions, ap-
proximating the cost-to-go function for each stage by Benders
cuts, as opposed to traditional dynamic programming approaches
that discretize the state space at each time-step. The classical
definition of the stages in the MSBD approach is to assign a stage
for each time period. In this paper, we propose a new strategy to
decompose the problem, where each stage comprises all variables
and constraints of several time periods.

Numerical results of the application of this strategy to the short-
term hydrothermal scheduling problem confirm the advantages of
this strategy in terms of CPU time, as compared to the classical
stage definition approach. We show that there is an “optimal aggre-
gation factor,” which best balances the trade-off between solving a
“larger number of shorter subproblems” and solving a ‘“‘smaller
number of larger subproblems.” The primal and dual solutions re-
lated to different aggregation factors are also compared, and the
stability of the results is confirmed. Extensions of the proposed
strategy to stochastic problems are discussed.

Index Terms—Benders decomposition, dynamic programming,
linear programming, power generation scheduling.

NOMENCLATURE

Future system costs as a piecewise linear
function of the vector of storages in the
reservoirs at the end of last time period 7'

o’ ()

aP () Current piecewise linear approximation for
the future cost function for each stage p in the

Benders decomposition approach.

Piecewise linear generation cost function for
thermal plant 7.

D! Demand of area ¢ at time period ¢.
0¥ Set of thermal plants belonging to area ¢.
v, Set of hydro plants belonging to area 4.
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GT! Generation of thermal plant ¢ at time period ¢.

GH! Generation of hydro plant ¢ at time period ¢.

HPF;(-) Piecewise linear production function for hydro
plant 4.

It Natural inflow to hydro plant ¢ at time period £.

Intﬁj Energy interchange from area ¢ to area j at time
period ¢ (negative values for flow from j to 7).

M; Set of hydro plants immediately upstream plant
1.

NA Number of areas.

NH Number of hydro plants.

NT Number of thermal plants.

Q; Set of areas directly connected to area 7.

P Number of stages in the MSBD approach.

Q! Turbined outflow of hydro plant ¢ at time period
t.

St Spillage of hydro plant 7 at time period ¢.

T Number of time periods (time-steps).

V! Storage of hydro plant ¢ at the end of time
period ¢t.

1. INTRODUCTION

HE operation planning of hydrothermal systems, usually
T called hydrothermal coordination (HTC), is a very com-
plex optimization problem. Decisions to be made are coupled in
time, as future reservoirs storages depend on the previous opera-
tion of the system. Generations of hydro and thermal plants must
be coordinated, not only because of system constraints such as
satisfaction of demand and reserve but also because of plant op-
eration characteristics, such as hydro plants in cascade. In addi-
tion, uncertainties of both demand and hydrological conditions
have to be managed.

The HTC problem is usually solved by decomposition of the
original problem into long-, medium-, and short-term problems
[1], [2], each one considering the appropriate aspects for its
time-step and horizon of study. In general, uncertainties are
modeled accurately in the long run, while system constraints are
more detailed in the short-term horizon. Coordination among
the models can be done either by setting targets [1] or by giving
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economic signs [2] to the downward models, in order to guar-
antee a proper system optimization.

One of the most used tools to solve the HTC problem, es-
pecially in predominantly hydro systems, is multistage Benders
decomposition (MSBD), also known as dual dynamic program-
ming approach [3]. The usual definition of stages in the MSBD
approach is to assign a stage for each time-step.

The main contribution of this paper is to propose an alter-
native strategy to decompose the HTC problem when solving
it by an MSBD approach. Instead of the usual decomposing of
the problem into one stage for each time-step [4], in our ap-
proach each stage comprises variables and constraints of several
time-steps. The advantage of this approach is that it allows ex-
ploring the best trade-off between solving a “larger number of
shorter stages” and solving a “shorter number of larger stages.”
There is an optimal aggregation factor that yields the least CPU
time to solve the overall problem, as can be seen in the nu-
merical results presented to solve the deterministic short-term
hydrothermal scheduling problem (STHTS) with 168 hourly
time-steps.

This paper is organized as follows. In Section II, we formulate
the STHTS problem considered in this paper, and discuss two
approaches that can be applied to solve the general hydrothermal
scheduling problem via Benders decomposition: a two stage and
a multistage approach. In Section III, we describe the classical
MSBD approach. In Section IV we propose a new definition of
stages for the MSBD strategy in a deterministic framework. In
Section V, we assess the performance of our approach to solve
the STHTS problem and perform sensitivity analysis for some
study cases based on the real Brazilian system. In Section VI,
we discuss extensions of the proposed approach to the stochastic
case. Finally, in Section VII we state the conclusions of this
paper and discuss some future work.

II. SHORT-TERM HYDROTHERMAL SCHEDULING PROBLEM

There are many different formulations for the short-term
scheduling problem, depending on which variables are consid-
ered (e.g., whether unit commitment decisions are included or
not) and which constraints are taken into account (e.g., type of
modeling for the electrical network, set of thermal operating
constraints, representation of the hydro plants production func-
tion, and so on). For a bibliographic survey, we refer to [5].

Because of the computational burden involved in solving a
full 168-h scheduling problem taking into account accurately
all system components and constraints, the short-term planning
can be decomposed in two problems as follows:

* aone-week-ahead scheduling problem, with an hourly dis-
cretization and a continuous formulation [6], [7]. In this
problem, the aim is to provide a proper transition between
the midterm planning and the day-ahead scheduling. For
example, in Brazil, there are water delay times of several
days, which cannot be taken into account properly neither
in the midterm planning (due to weekly time-steps) nor in
the one-day-ahead problem (due to its short time horizon);

e a one-day-ahead unit commitment problem, where the
status (on/off) of the units along the next day are deter-
mined, and the system is represented as accurately as
possible. Ideally, this problem should have a nonlinear
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Targets / water values
from mid-term planning

.

1-week ahead scheduling
(piecewise linear / Continuous formulation)

day ahead days 2
1 2 168 hours
-water values at the end of the day
and/ or
- min/max storage for reservoirs at the end of the day
and / or

- min/max average generation targets for the day ahead

day ahead |

1 24 hours
1-day ahead scheduling

(nonlinear, unit commitment decisions)

Fig. 1. Decomposition of the short-term planning into one-week-ahead and
one-day-ahead scheduling problems.

formulation (e.g., nonlinear transmission losses [8], an ac
model for the electrical network [9], quadratic thermal
generation costs [9], nonlinear hydro production function
for the hydro plants [10], [11]), and take into account all
hydro and thermal unit commitment related aspects (e.g.,
start-up costs [9], forbidden zones [10], [12] and ramping
constraints [12]).

The integration between the two models—which are intended
to be run on a daily basis—is illustrated in Fig. 1.

In this paper, we consider the one-week-ahead scheduling
problem with a continuous formulation and a cost minimiza-
tion objective function. This problem will be denoted in the se-
quel as short-term hydrothermal scheduling problem (STHTS).
We consider a “forecast” unit commitment for the next week,
based upon maintenance scheduling and the load profile along
the days. In order to avoid elimination of potential candidate so-
lutions to the optimum, we only consider an “off” status for a
unit for those hours of the day where the unit should be clearly
shutdown, according to historical data and the information pro-
vided by the utilities.

Based on the results of this problem, water values and/or min-
imum/maximum generation targets are set to hydro and thermal
units for the one-day-ahead scheduling problem, which will de-
termine the status and the generation of the units for the next
day.

We consider a multiarea system with NA areas, NT thermal
plants, and NH hydro plants. The number of time periods is 7.
The problem is formulated as a linear program, as follows:

minimize Z Z ¢; (GT;) + T (v )

t g

S.t.

> GTi+ > GH+ Y Intj, = Dj, 2)

JEP 1€W, 1€y,

Vit (Qi+58) - > (QL+SL)=V""+1 3
meM;

GH} = HPF; (V;'~', V. QL. S}) )
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GH; < GH; < GH; (5a)
Qi<Qi<Qi (5b)
Vi<Vi<Vi (5¢)
0< 8 <S; (5d)
GT; < GT < GT; (5e)
Inty;, < Inty, < Intj, (5)

where i = 1,...NT,k,l = 1,...NA,t =
1,...T.

Thermal generation costs are modeled by piecewise linear
functions ¢;( - ). Hydro generation costs are evaluated implic-
itly by a multivariate future cost function o'( - ). This function
is computed by a midterm model and expresses the expected
costs of thermal generation and energy deficit in the future as a
function of the vector VI := {V.T i = 1,...,NH} of storages
in the reservoirs at the end of the time horizon [2].

Equation (2) is the load supply constraint for each area &, con-
sidering energy interchanges between areas. Equation (3) cor-
responds to the water balance equation for each hydro plant at
each time period. Equation (4) describes the generation of the
hydro plant as a piecewise linear function of the storage V' in the
reservoir, the turbined outflow @, and the spillage S. A detailed
description of this function is given in [13]. Finally, (5a)—(5f)
state lower and upper bound for each set of variables.

Since the planning horizon is short (one week), we consider
the problem as deterministic, which is a common assumption in
short-term planning [5], [6], [8], [14]. Stochastic formulations
of the short-term planning can be found in [9] (line contingen-
cies), [15] (unit outages), and [16] (uncertainty on demand and
streamflows). In Section VI we discuss extensions of the pro-
posed approach to the stochastic case.

1,...NH,j =

A. Benders Decomposition Applied
to Hydrothermal Scheduling

Among several optimization techniques applied to hy-
drothermal scheduling, Benders decomposition [17] has
presented very good results so far for large-scale systems
[2]1-[4], [8], [9], [18]-[20]. This technique has been applied
based on two different approaches, as follows.

1) Two-Stage Approach: This strategy is usually applied
when integer variables are introduced in the problem. The hier-
archy of problems is defined by a high-level master problem that
in general deals with integer variables, and several low-level
subproblems. Examples of this approach can be found in [8],
[9], and [18].

2) Multistage Approach: This strategy is referred to in this
work as MSBD, and is also known as dual dynamic program-
ming [3]. In this approach, applied previously to the long- and
midterm operation planning [2], [3], [19], [20], a time decompo-
sition is employed, and the subproblem for each stage ¢ becomes
a master problem for the subproblems from stages ¢ + 1 to 7T'.
This strategy requires the problem to be convex, as in (1)-(5f).
In the applications mentioned above, a stochastic problem was
addressed due to the much more extended planning horizon as
compared to the one considered in this paper.
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III. CLASSICAL SOLUTION STRATEGY BY MSBD

In this section we summarize the classical MSBD solution
strategy. For more details we refer to [3] and [4].

Denoting by (-, -) the inner product between two vectors, the
deterministic STHTS problem can be formulated in an abstract
way as

T
min Z(ct./ 2ty + o (2T)
t=1

st. Bzl y Azt <plt=1,...T
>0, t=1,...T (6)

where 2¢ is the vector of decision variables for time period #
(e.g., hydro generation, thermal generation, storage in the reser-
voirs), with associated cost vector c¢'; B, A* and b' define the
set of constraints for time period ¢, which may couple variables
from different time periods. In this paper only a lag-one depen-
dency among time periods is considered, in hydro balance con-
straints (3) and in the hydro plants production function (4). Both
constraints link storage V*~! at the end of time period ¢ — 1
to variables from time period ¢. In more complex formulations,
higher lag dependencies may occur, for example, if we consider
water delay times between cascaded reservoirs.

The MSBD methodology uses a time decomposition to ob-
tain nested subproblems, each one representing a “stage” in a
dynamic programming framework. The classical definition of
stages in the MSBD approach [3]—which has been used by all
works so far that applied such methodology (e.g., [2]-[4], [19],
[20])—consists in one stage for each time period ¢. Therefore,
the number of stages corresponds to the total number of periods
T, and the subproblem [t] of each stage ¢ includes the variables
and constraints related to period ¢, as follows:

min{c’, z') + o' (2")
st Azt <b' - E'FTN (1]
zt >0 ™)

where '~ is the vector of state variables for subproblem [t].

In the MSBD approach, contrary to Bellman’s traditional dy-

namic programming approach [21], the future cost function for
each stage ¢ is approximated by applying Benders cuts, in an
iterative procedure composed of successive forward and back-
ward runs. The term (") in the objective function of (7) is
the approximation of the future cost function for time period ¢
at the current iteration.

Each iteration of the MSBD consists of:

*) a forward simulation, from stages 1 to 7', where values of
state variables for each stage are obtained from the solution
#'~1 of the previous stage;

*) a backward recursion from stage 7' — 1 to 1, using as state
variables for each stage ¢ the same solution £*~! obtained
at the latest forward run. During this process, a new Ben-
ders cut to refine the future cost function for each stage t—1
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=1 | Initialization
k=k+1

yes Forward simulation
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|
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Fig. 2. Flow chart of the MSBD approach to solve the deterministic STHTS
problem.

is obtained from the solution obtained for time period ¢, as
follows:

Ow?
Ozt—1

at—l Z wt* + < (i‘t_l), $t—1 _ i‘t_1> (8)
where w™* = (ct, ™) + of(x™*) is the optimal value for sub-
problem ¢ at current iteration, with optimal solution x**; the first
term defining w™ corresponds to Z* in Fig. 2 and is the cost as-
sociated to variables of the current time period; the second term
in w'* is the future cost of stage t; '~ is the vector of state vari-
ables for stage ¢ at current iteration (obtained from the solution
of stage ¢ — 1 in the forward simulation), and (dw?)/(dx?~1)(*)
is the vector of partial derivatives of w’ with respect to the state
variables of subproblem ¢.

Equation (8) defines a multivariate linear cut to the future
cost function of stage ¢ — 1, as a function of state variables
x'~! to subproblem [t]. For the STHTS problem formulated in
this paper, the state variables 2!~! are the storages V! in the
reservoirs at the end of time period ¢ — 1.

Denoting by [t]*) the subproblem for time period # at itera-
tion k, the flow chart of Fig. 2 illustrates the MSBD strategy for
this deterministic case.

In each forward simulation, the upper bound Z for the op-
timal solution Z* of the problem is updated. The total cost of
the subproblem for the first stage at the end of each backward
recursion gives an updated lower bound Z. In this deterministic
version of MSBD, the solution procedure stops when the rela-
tive difference (Z — Z)/Z is within a certain tolerance ¢. In the
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stochastic version [3], a sample of scenarios can be generated
by a Monte Carlo simulation, and the procedure stops when the
difference between Z and Z falls within a certain confidence
interval.

IV. PROPOSED MULTIPERIOD STAGE DEFINITION
FOR THE MSBD APPROACH

In the classical MSBD approach presented in the previous
section, the number of stages grows linearly with the size of
the planning horizon. An example is the 168-stage problem for
the hourly short-term scheduling problem within a one-week
horizon. Numerical experience by the authors for solving this
problem has shown that a very large number of stages leads
to too many MSBD iterations and may slow down the con-
vergence process. Such difficulty takes place especially when
constraints coupling several time periods are introduced in the
problem—as, for example, extended water delay times between
hydro plants in cascade and total weekly or monthly genera-
tion targets to hydro/thermal plants. Another negative effect of
a large number of iterations for convergence is that accumula-
tion of Benders cuts—some of them very similar—may cause
numerical difficulties in solving subproblem [¢] for each stage.

In order to decrease the number of stages of the
problem—and, as a consequence, speed up the convergence of
the MSBD and avoid numerical difficulties—we propose a new
decomposition scheme, where each stage comprises variables
and constraints for several time periods.

A. Stage Definition

The set {1,...,T} of time periods is partitioned into P
stages. The first and last time periods of stage p are denoted
by t, and ¢,, respectively. The boundary conditions are
t1 = land fp = T, and the general rule is t,41 = 7, + 1.
This approach is illustrated in Fig. 3, for an example with
T = 12 and four time periods per stage. In this case,
P =3ty =131y = 45ty = 558y = 8513 = 953 = 12.

In this new decomposition approach, we denote the average
number K of time periods per stage (K = T/ P) as “aggrega-
tion factor.”

The subproblem for each stage p is denoted by [p] and its
formulation includes the variable and constraints related to all
time periods from ¢,, to ¢,,. The formulation for each subproblem
[p] in the lag-one dependency problem (1) is

ty
min Z(ct7xt) + a?(z')
t=t,
st Alz' <b' - B3 t=t, [p]
Alat + B2t~ <, t=t,+1,...,t
' >0, t,

We emphasize that the proposed strategy does not lead to a
loss in accuracy in the time discretization of the problem, which
is still subdivided into T hourly time periods. The difference be-
tween the proposed approach and the classical stage definition
approach is that, in our approach, constraints related to consec-
utive time periods may be gathered together in the same stage,
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Stage 1 (p =1) Stage 2 (p =2) Stage 3 (p =3=P)
14.5 TH8M 9OH1I0H11H 12

Fig. 3. Example of a multiperiod stage definition for the MSBD approach.

2 Pl B e B Xt Xz
4 4 %4 AP 2

lya S | A (A t, tp+1 e
Stage p-1 Stage p

Fig. 4. State variables of the MSBD approach with the new stage definition,
for a problem with lag-one dependency among time periods.

which means, in the same linear programming subproblem. In
the same way, nothing is lost in terms of system representation
and constraints modeling, since in the proposed approach we
still have, for example, 1" hydro balance (3) and 7" hydro gener-
ation functions (4), one for each time-step.

B. Solution Strategy by MSBD

The solution strategy by MSBD with this new structure of
stages is similar to the procedure shown in Fig. 2. The two
main differences between the new approach and the classical
approach are:

* in this new approach, the vector of state variables for
stage p is composed only by decision variables for
time period #,_1. All constraints that include variables
:L’E, :L’tp—*l"'l,...,mtp—l_l appear in the same linear
program of stage p — 1, as illustrated in Fig. 4. For this
reason, such variables are no longer state variables for
the next stage in the iterative procedure shown in Fig. 2.
As a result, the number of state variables of the MSBD
approach is dramatically reduced with this new definition
of stages;

 in the MSBD strategy, a future cost function (FCF) is ob-
tained at the end of each stage. So, in this new approach,
we obtain a FCF only for those time periods located at the
end of each stage, rather than a FCF for each time period.

The Benders cuts for the FCF of stage p— 1 become a function
only of variables tp_1:

owP Py Py
— ("), 2" — 2"
ozt™™

where the optimal value and derivatives for each subproblem are
indexed by the stage p rather than by the time period ¢ as in (6).

Oép_l Z (Up* +<

C. Discussion

A careful implementation of the multiperiod MSBD approach
proposed in this paper must take into account the following as-
pects:
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Fig. 5. Number of iterations and CPU time. Cases A (left) and B (right).

* the time periods for which one would like to have an FCF
must match the end of some stage. For example, in the inte-
grated short-term planning shown in Fig. 1, it is necessary
to have an FCF at the end of the first day, to be used as input
data to perform the one-day-ahead scheduling planning,
where unit commitment decisions will be determined;

* the increase in the aggregation factor K (the number of
time periods per stage) yields a reduction in the number
of iterations for convergence of the MSBD approach (see
results in Figs. 5 and 6). However, the CPU time to solve
each subproblem at each iteration also increases with K,
as the linear program of each stage becomes larger. So, the
definition of K must take into account the performance of
the solver employed to solve these linear programs;

* we have considered so far a uniform value of K along the
entire planning horizon, which means that all stages com-
prise an equal number of time periods. However, experi-
ence in the implementation of the MSBD approach with
the classical stage definition shows that subproblems re-
lated to peak hours take a longer time to be solved. This oc-
curs, for example, when security constraints are introduced
in the problem [22], as the number of binding constraints
is greater in these peak-hour subproblems. Thus, in order
to improve the performance of our proposed approach, a
nonuniform definition of stages may be employed, where
a larger number of time periods per stage can be used at
lower load level hours.

V. NUMERICAL RESULTS

We considered the STHTS problem (1)—(5f) for a one-week
horizon, discretized in hourly time periods (7" = 168). This
choice of T' is very suitable for the sensitivity study to be per-
formed, as 168 is a factor of 1, 2, 3, 4, 6, 8, 12, 14, 21, 24, 28,
42, 56, 84, and 168.

The study case is based on real data for the operation of
the Brazilian system performed by the Brazilian Independent
System Operator in November 2006. The system comprises 111
hydro plants (49 reservoirs and 62 run-off-the-river plants) and
49 thermal plants. System data can be obtained at http://www.
ons.org.br. We used the IBM OSL package [23] to solve the
linear programs of each stage. Tests were performed on a Pen-
tium 4-3.00 GHz/504 MB RAM computer.

A. Consistency Analysis

In a first step, the aim is to perform a consistency analysis
of the MSBD approach with the new stage definition proposed
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TABLE I
CONSISTENCY ANALYSIS OF THE MSBD APPROACH
WITH A NEW STAGE DEFINITION
- CPU time

k Z 4 (hh:mm:ss)

1 47,207,316.6 47,207,316.6 03:03:54
2 47,207,316.6 47,207,316.6 01:29:51
3 47,207,316.6 47,207,316.6 00:56:35
4 47207,316.6 47207,316.6 00:48:42
6 47,207,316.6 47,207,316.6 00:33:15
7 47,207,316.6 47,207,316.6 00:30:20
8 47,207,316.6 47,207,316.6 00:26:53
12 47,207,316.6 47,207,316.6 00:25:44
14 47,207,316.6 47,207,316.6 00:20:16
21 47,207,316.6 47,207,316.6 00:19:47
24 47,207,316.6 47,207,316.6 00:20:59
28 47207,316.6 47,207,316.6 00:21:00
42 47207,319.9 47207,317.5 02:12:46
56 47,207,316.6 47,207,316.6 05:20:02
84 47,207,316.7 47,207,316.6 06:39:34
168 47,207,316.6 01:59:39

in this paper. For this reason, an extremely small tolerance for
convergence of the MSBD iterative procedure of Fig. 2 was con-
sidered (¢ = 107%%).

Performance results for each value of K are shown in Table I,
which lists the lower (Z) and upper bounds (Z) obtained at the
end of the process, as well as the CPU time to achieve the stop-
ping criteria. As the STHTS problem to be solved is the same
for all cases, the optimal value does not vary with the aggrega-
tion factor K adopted. This was confirmed by our results, up
to nine significant digits. The only exceptions—highlighted in
bold font—were for K = 42 and k = 84. In these cases, numer-
ical difficulties to solve some subproblems were reported by the
OSL solver. We note that, for K = 168, the overall problem is
solved with no decomposition (all 168 time periods are gathered
in a same linear program), and in this case, the Benders decom-
position procedure is not employed.

CPU times decrease fast as the value of K is increased, up to
the value K = 21, which is the one that yielded the best per-
formance. The CPU time for K = 21 is about one-ninth of the
CPU time to solve the problem by the classical stage definition
when Benders decomposition is employed (K = 1) and about
one sixth of the time to solve the problem as a single linear pro-
gram (K = 168). For values of K greater or equal than 42, CPU
times increase in a very fast rate. It is interesting to note that for
K = 168, the CPU time is smaller than for 42 < k£ < 168. This
suggests that, when the linear subproblems become very large,
it may be more advantageous to solve the STHTS problem as a
unique linear program, instead of applying the MSBD approach
with a small number of stages.

B. Trade-Off Analysis

As discussed earlier, the use of an aggregation factor K in
the definition of stages introduces a trade-off between the re-
duction in the number of iterations of the MSBD approach and
the increase in the CPU time to solve each linear subproblem. To
better assess this trade-off, we considered four additional study
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TABLE II
ADDITIONAL STUDY CASES FOR THE TRADE-OFF ANALYSIS

Case Additional constraints introduced

Additional generation limits constraints for thermal and
hydro plants

B | Case A + minimum outflow constraints for hydro plants

Case A + maximum storage constraints for flood control
purposes

D | All constraints for cases A, B and C

Hl CPU Time # Iterations

50000 250

20000 200

45000 B0

__ 40000 200 00000 0

3 o0 w0 3o %
g 2 2 .,
5 25000 £ £ eo0000 {002
o 20000 wg S 80 3
& 000 § B 0 60 5
‘;ggg I 50 x 20000 ;g =

0 llllll-ll”” 0 ol iansnen  FTRTNN,

13 6 8 W 24 42 84 168 13 6 8 W 24 42 84 g8

# time steps per stage (K) # time steps per stage (K)

Fig. 6. Number of iterations and CPU time. Cases C (left) and D (right).

cases, labeled from A to D, where additional operation con-
straints were introduced in the STHTS problem, as described
in Table II. In these study cases, the tolerance for convergence
was increased to 1074%.

We show in Figs. 5 and 6 the number of iterations and CPU
times for cases A to D.

The general behavior was similar to all study cases: an almost
monotonic reduction in the number of iterations as the value of
K increases, and an asymmetric “U” shaped behavior for the
CPU time, with sudden increases when K is near to 24 or 28.
The CPU time for the strategy with no decomposition (K =
168) was smaller than those for large values of K, except for
case A.

Comparing the results of these study cases to the results of
the previous section, we conclude that, as the complexity of the
problem increases (due to the inclusion of several additional
operation constraints), the optimal aggregation factor (which we
will denote as K*) decreases. From cases A to D, such value
K* was around 12 and 14. We conclude that a large number of
variables and constraints for each time period discourages larger
aggregations, as the linear program of each stage becomes very
large.

Table III reports, for each study case, the CPU times obtained
with K = 168, K = 1, K = K™ and with the value of K that
yielded the worst results.

The average reduction in CPU time of the best aggregation
strategy ranged from 2 to 8 times [if compared to the classical
stage definition (K = 1)] and from 4 to 19 times [if compared
to the single linear program approach (K = 168)].

C. Stability of Primal and Dual Solutions

In this section, we compare the solutions obtained with dif-
ferent aggregation factors for the problem in Section V-A. Three
aggregation factors were considered: the classical approach
(K = 1), the “non-decomposition” approach (K = 168), and
the approach that yielded the least CPU time. We compared the
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Fig. 7. Cumulative distribution of differences in final storage of the reservoirs,
for the base-case with variants K = 1, K’ = 12, and K = 168.
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Fig. 8. Cumulative distribution of differences in hydro generation, for the base-
case with variants X' = 1, K = 12, and K = 168.

values of: storage in the reservoirs at the end of the week; hydro
generations along the week; and system marginal costs along
the week. The compared values were rounded to a precision of
0.01 (in % or MW, depending on the case), which is the one
used by the Brazilian Independent System Operator to assess
the results of the model.

1) Comparison of Storages: Fig.7 shows the cumulative dis-
tribution of percentage differences in the storages of all 49 reser-
voirs in the configuration, between the K = 1 and K = 12
variants (on the left), and between the two extreme alternatives
K = 1and K = 168 (on the right). The remaining hydro plants
operate as run-off-the river units.

The difference was zero (within the considered precision) for
40 plants in Fig. 7(a) and for 44 plants in Fig. 7(b). For the other
reservoirs, differences were always lower than 0.20%, except for
one reservoir, where the difference was near 0.80%.

2) Comparison of Hydro Generations: The same type of
comparison is shown in Fig. 8 for the hydro generation values.
The cumulative distribution was computed considering all NH x
T generation values that comprise all plants and time periods.

In both graphs, 98% of the differences were null. The largest
difference was approximately 170 MW, in a hydro plant whose
capacity is 1200 MW.

variables. However, differences are not so high, since the largest
ones are lower than 0.24%.

These comparative results show that the final solution ob-
tained by the DDP approach is not so much dependent on the
aggregation factor applied in the proposed approach to solve the
problem. In the case the optimality criteria for convergence of
the DDP approach is decreased to values lower than 10~%%, we
except the differences to be even lower.

D. Analysis of “Bang-Bang” Behavior

Asdescribed in Section II, the proposed model for the STHTS
problem is intended to be run previously to the model for the
one-day-ahead scheduling problem for each day. In order to pro-
vide a proper integration between these two models, it is im-
portant to obtain for the STHTS problem a solution that is not
so far from a feasible scheduling for the one-day-ahead sched-
uling problem, regarding the unit commitment constraints. This
way, we could consider that the water values and/or operation
targets set by the STHTS problem to the one-day-ahead sched-
uling problem are realistic.

In particular, we are interested in analyzing the bang-bang
behavior of the generation of the hydro plants, which may occur
when the STHTS problem is formulated by linear programming.
We show in Figs. 10 and 11 the generation along the week for
Itaipu and Xing6 hydro plants, two plants that are crucial to
follow the daily load curve. Itaipu is the largest hydro plant of
the system (12600 MW of installed capacity), located in the
largest Brazilian river basin (Parand) in the south part of the
country. Xing6 is located in the Sdo Francisco river basin and
is important to follow the load curve for the Northeast region
of the country. The commitment status assumed for all units of
these plants during the whole week was “on.”

The hourly variations in the generation of both hydro plants
are quite acceptable as a reference for the unit commitment
problem. For Itaipu hydro plant, the unit commitment problem
would probably handle the decrease in the generation in the first
day by shutting down some of their units in the morning.

The average hourly percentage variation in the generation
values per hydro plant (considering in this computation all hydro
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Fig. 11. Generation of Xingé hydro plant along the week.
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Fig. 12. Generation of Passo Fundo hydro plant along the week.

plants of the system) was about 15%, which is also a reasonable
value. We note that the hydro production function is not mod-
eled by a simple linear function, but rather by a detailed piece-
wise linear function [13] that becomes closer to the actual non-
linear function. In this sense, the bang-bang behavior is highly
reduced, as suggested by the sensitivity analysis presented in
[24] when the number of breakpoints is increased.

For the two plants presented above, the generation profile
could be obtained by keeping all units on during the whole week
and adjusting their generation levels. We show in Fig. 12 a dif-
ferent pattern that occurred for Passo Fundo hydro plant, which
has only two units and a total capacity of 226 MW.

The generation of this plant was null for some time periods
and there was a bang-bang behavior between minimum and
maximum generation at some hours. Even though the STHTS
already indicates commitment/decommitment operations for
the units of this plant, the final decision is left for the unit
commitment problem, since it would consider the trade-off
between the benefits of the generation of this plant and the cost
associated with several startups during the day.

We note that such behavior was found for very few—and
small—hydro plants of the system.
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Fig. 13. New stage definition for the stochastic MSBD approach with a sce-
nario tree representation.

VI. EXTENSIONS TO THE STOCHASTIC CASE

In this section, we discuss extensions of the proposed aggre-
gation approach to stochastic problems. We consider two basic
approaches to model the uncertain variables.

A. Scenario Tree Representation

In this approach, it is assumed that all possible realizations
of the stochastic variables are represented by a scenario tree
[16]. We propose for this case to perform a “scenario/period”
aggregation approach. As a result, we would obtain a new outer
tree whose nodes are sub-trees of the original tree, as illustrated
in Fig. 13.

B. Monte Carlo Simulation

In this case, the optimization problem can be represented by
the scheme shown in Fig. 14, where a sample of parallel sce-
narios is generated. In the backward run, we solve n subprob-
lems at each node, corresponding to all different realizations of
the stochastic variables considered at each time period. Details
of this algorithm are given in [3].

Two alternatives are considered for the extension of the ag-
gregation approach to this stochastic problem. The first alterna-
tive—indicated by letter “A” in Fig. 14—is to aggregate sub-
problems for each scenario. However, in this case, we could
have difficulties in representing the stochastic process, because
in a hazard-decision approach, it is assumed that at the begin-
ning of each time period, there is a perfect knowledge of the
uncertainty in this period, but not in the subsequent periods of
the same stage. For this reason, we have to represent combina-
tions of possible realizations of uncertain variables for all time
periods within the stage. The second alternative—indicated by
letter “B” in Fig. 14—is to aggregate different subproblems for
each time period. In this case, we would solve simultaneously
several independent subproblems, one for each scenario.
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Fig. 14. Representation of the optimization problem when the stochastic
process is represented by a Monte Carlo approach.

C. Discussion

The consideration of uncertainties is much more important in
the midterm and long-term planning, since the impact of inflow
and load forecast errors are smaller in the short-term planning.

For example, in Brazil, it is very difficult to foresee the water
inflows seven days ahead. However, since the dispatch problem
presented in this paper is intended to be solved by the indepen-
dent system operator (ISO) on a daily basis, only the operation
of the first day will be used by the ISO in the system operation.
The operation of the next days will be determined again when
the problem is run for the following days of the week, with new
inflow forecasts. In this sense, the ISO will always use for the
day-ahead the results obtained considering the one-day-ahead
forecast for this day, where errors are much smaller.

The drawback of the aforementioned procedure is that some
volatility could occur if the one-day-ahead forecast differs sig-
nificantly from the 2, 3, . .. 7-day-ahead forecasts for a specific
day. For this reason, the best approach would be to solve a sto-
chastic version of the problem. However, due to the high CPU
time already involved in solving the deterministic version of the
problem (almost one hour for case D), we left this alternative as
a future research.

VII. CONCLUSION

This paper proposed a new decomposition of the determin-
istic short-term hydrothermal scheduling problem, to be em-
ployed in an MSBD framework. In the classical MSBD ap-
proach, each stage is related to a single time period. By con-
trast, in our approach, each stage comprises all variables and
constraints for several time periods. The distribution of time pe-
riods along the stages is defined by an aggregation factor K.
We analyzed the trade-off between the two main effects of the
increase in the value of K': the reduction in the number of iter-
ations for convergence of the MSBD approach and the increase
in the CPU time to solve the linear program for each stage.

Results confirmed the advantages of the new decomposition
in terms of CPU time. In our studies, reductions in the overall
CPU time to solve the problem depended on the case, with
a minimum reduction of two times as compared to the clas-
sical MSBD approach and four times as compared to the single
linear program approach. Sensitivity analysis on the value of K
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showed that there is an “optimal aggregation factor” K* that
yields the least CPU time. We also showed that such value K*
depends on the size and complexity of the problem: larger and
more complex problems result in lower values of K*.

One important aspect that should be taken into account is the
trade-off between the software development cost for improving
the solving strategy and the monetary cost of acquiring better
hardware that can provide much lower CPU times by means of
faster processor and smarter memory handling techniques. In
particular, nowadays linear programming solvers have been able
to efficiently handle very large size problems.

However, we consider that there is still much room for the ap-
plication of the proposed approach, since: 1) in the short-term
scheduling problem, decisions should be made in a very short
time window; therefore, it is important to solve the problem as
fast as possible; 2) there are several aspects of the short-term
problem that could yet be included in the problem formulation,
which could cause the problem to be even larger and more dif-
ficult to be solved as a single linear program. Finally, uncertain-
ties on the model can be considered, leading to more complex
stochastic formulations as discussed in this paper.
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