OPERATIONS RESEARCH, Vol. 25, No. 1, January-February 1977

An Algorithm for Two-Dimensional Cutting Problems

NICOS CHRISTOFIDES and CHARLES WHITLOCK
Imperial College, London, England
(Received original January 3, 1974; final, April 7, 1976)

We present a tree-search algorithm for two-dimensional cutting
problems in which there is a constraint on the maximum number of
each type of piece that is to be produced. The algorithm limits the
size of the tree search by deriving and imposing necessary conditions
for the cutting pattern to be optimal. A dynamic programming pro-
cedure for the solution of the unconstrained problem and a node
evaluation method based on a transportation routine are used to
produce upper bounds during the search. The computational per-
formance of the algorithm is illustrated by tests performed on a large
number of randomly generated problems with constraints of varying
“tightness.”" The results indicate that the algorithm is an effective
procedure for solving cutting problems of medium size.

TI—IE PROBLEM of cutting a one-dimensional object (e.g., a length of

some material) into smaller pieces—each piece having a given length
and value—in such a way so as to maximize the total value of pieces cut
is the well-known “knapsack problem.” This problem has been examined
by a number of authors [8, 12, 13], and methods for its solution have
been proposed using either dynamic programming [8] or tree-search tech-
niques [9, 12]. This attention is motivated by many practical problems
that can be formulated as knapsack problems, typical cases being the steel
bar cutting stock problem [6], the vehicle loading problem [3], and the di-
vision of work into time shifts.

The two-dimensional cutting problem requires cutting a plane rectangle
into smaller rectangular pieces of given sizes and values to maximize the
sum of the values of the pieces cut. This version of the problem appears in
the problem of cutting steel or glass plates [10] into required stock sizes to
minimize waste. By taking the value of a piece to be proportional to its
area, we can formulate the waste minimization problem as one of maxi-
mizing the value of the pieces cut. The problem also appears in cutting
wood plates to make furniture and paper board to make boxes.

A special case of the general two-dimensional cutting problem is one in
which all cuts must go from one edge of the rectangle to be cut to the op-
posite edge, i.e., the cut has to be of a “guillotine” type. Some cutting pat-

30

Two-Dimensional Cutting Problems 31

Figure 1(a). Cutting pattern infeasible with guillotine cuts.

terns—e.g., that shown in Figure 1(a)—could not be produced by this
typeof cut. However, the restriction of “guillotine’ cuts appears very often
in practice especially for the cutting of paper and glass. Figure 1(b) shows
a possible cutting pattern using guillotine cuts where the cuts are num-
bered in the order in which they could be made, although other sequences
are obviously also possible. In this paper only “guillotine” type cuts are
considered, and when the word “cut” is used this type of cut is implied.

2

3

Figure 1(b). Cutting pattern made with guillotine cuts.

32 Nicos Christofides and Charles Whitlock

The more general cutting problem appears less frequently in practical
problems and is more difficult to solve.

In practice cutting problems appear in a constrained form, the most
usual constraint being the one that restricts the maximum number of
pieces of each type to be cut. In the one-dimensional problem upper bound
constraints on the variables can easily be included in a dynamie program-
ming algorithm. However, the two-dimensional problem is not amenable
to efficient solution by these means. We present a tree-search algorithm
for the solution of the two-dimensional constrained cutting problem. The
algorithm described limits the size of the tree search by deriving and im-
posing necessary conditions for the cutting pattern to be optimal and by
using the dynamic programming procedure for the unconstrained problem
together with a node evaluation method based on a transportation routine
as subalgorithms to produce upper bounds during the search. The compu-
tational performance of the algorithm is illustrated by tests performed on a
large number of randomly generated problems with constraints of varying
“tightness.” The results indicate that the algorithm is an effective pro-
cedure for solving cutting problems of medium size.

1. PROBLEM

The constrained two-dimensional cutting problem can be defined as
follows. Let a large rectangle Ay = (Lo, Wo) (i.e., of length Ly and width
Wy units) be given, together with a set R of m smaller rectangular pieces
R = {(L, w1), (I, ws), -+, (lm, wm)}, each piece in K having associated
with it a value »; and a maximum number b; of pieces of type 7 that can
be cut from A,. The problem is to find the maximum value of z = 2 e Bty
so that ¢ =< b;, 7 = 1, ---, m, and there exists a series of cuts on A4, so
that &; pieces of type 7 in B can be cut from Ay, the £ being nonnegative
integer variables.

In order to distinguish between the given pieces in set K and the rec-
tangles produced by the cuts on A, at any stage during the cutting process,
we will refer to the former as “pieces” and the latter as ‘rectangles.”
It will be assumed throughout the paper that Lo, Wo, and l;, W, =1, - -+,
m are integers and that the cuts on the rectangles are to be made in integer
steps along the x or y axes. This limitation is not serious since in practice
the actual dimensions can be scaled up. It should also be noted that the
orientation of the pieces is considered to be fixed, i.e., a piece of length
[and width w is not the same as a piece of length w and width [.

2. ENUMERATIVE PROCEDURE

We will first describe a procedure that generates all possible cutting
patterns without duplication and then describe methods for implicitly
enumerating these patterns in a general tree-search algorithm,

Two-Dimensional Cutting Problems 33

All possible cutting patterns can be generated by developing a tree,
where branchings represent cuts on a rectangle, Thus, the branches emanat-
ing from the root-node of the tree correspond to all possible euts on A,,
and each node at the end of a branch represents the rectangles produced
by the corresponding cut on A,.

To generate all possible cutting patterns (including the original uncut
rectangle), we must include among “all possible cuts” an artificial “cut”
that leaves the rectangle intact. This “cut” plays an important role in the
algorithm and will be referred to as a 0-cut. Thus, a rectangle that has
been “cut” by a 0-cut must not be a candidate for future cutting and
must—from that node onward—be considered fixed.

At successive nodes a rectangle is selected from the list of rectangles
represented by a node, and branching oceurs from that node by making all
possible cuts on the chosen rectangle.

Effects of Symmetry

Given a rectangle with dimensions (p, ¢), there are p 4+ ¢ — 1 cuts
that can be made on it—along z = 1, ---, (p — 1), alongy = 1, ---,
(g — 1), and the 0-cut. If, however, all these cuts are made, producing
p + g — 1 branches, then the sets of rectangles represented at successor
nodes will be duplicated at several nodes because of the appearance of
symmetrical cutting patterns. These duplications can easily be removed
as follows.

Given a rectangle (p, ¢), a cut at z = a on (p, g) produces two rectangles
(@, @) and (p — a, q). Clearly, these same two rectangles could have been
produced by a cut at ¢ = p — a, which is symmetrically opposite to the
cut at r = a with respect to (p, ¢). This can be avoided without missing
any unique cutting pattern by making cuts only up to half way along the
z-side of the rectangle. Thus, the range of z-cut is limited instead of 1 =
z=(p—1)tol = z = [p/2] where [p/2] means “the greatest integer
not greater than p/2.” Similarly, the range of the y-cuts can be redefined
tobel = y = [g/2].

Effects of Cut Ordering

Consider a rectangle (p, ¢) and suppose that at some node (p, q) is cut
at r = a, producing two rectangles (a, ¢) and (p — a, ¢). Then suppose
at some successor node (p — a,¢) iscutat b,a < b =[(p — a)/2] pro-
ducing three rectangles (a, q), (b, ¢), (p — @ — b, q) from (p, q). These
same three rectangles could have been produced by first making the cut
z = b on (p, ¢) and then making the cut z = a on (p — b, ¢). This type
of duplication can obviously be removed without missing any unique
cutting patterns by introducing an arbitrary cut ordering so that if a
rectangle is cut at, say, * = «, then all subsequent z-cuts on the two re-
sultant rectangles must be greater than or equal to a. This restriction,

34 Nicos Christofides and Charles Whitlock

together with the restriction imposed by symmetry in the last section, im-
plies that for the larger of the two resultant rectangles, (p — a, q), the
range of z-cuts is now limited to @« = r < [(p — a)/2] and, in particular,
if [(p — @)/2] < a no further z-cut on that rectangle need be made. For
the smaller of the two resultant rectangles, (e, ¢), the restriction imposed
by the cut ordering implies that no further r-cut is possible.

The consequence of cut ordering as explained above is to eliminate from
explicit consideration different sequences of cuts when these lead to the
same final cutting pattern. A similar kind of restriction can be imposed on
the y-cuts.

a
s
2 i
N
R
b

ey 4
e
| M
B
w

N
a
Figure 2(a). Nonnormalized cutting pattern.
Normal Cuts

If a rectangle (p, q) is to be cut by, say, an z-cut at some position z,
then in the final cutting pattern there must be some combination of the
lengths [; of the available pieces, for which w; = ¢, whose sum must be
exactly z. If this were not so (7.e., as shown in Figure 2(a) for the z-cut
marked ¢ — a), then an alternative cut at position z' < z could also lead
to a final cutting pattern (as shown in Figure 2(b)), involving the same
pieces and hence having the same value as the pattern in Figure 2(a).
The pattern of Figure 2(b) will be called normal, and it is apparent that
for any pattern there is a normal equivalent. It should, however, be pointed
out that, contrary to the cut restrictions imposed previously, normality is
a property of a cutting pattern that is relative to the set of pieces avail-
able for cutting. It should also be noted that a direct consequence of nor-
mality is that ‘“waste”—such as the shaded area in Figure 2(b)—is never

Two-Dimensional Cutting Problems 35

cut away by the algorithm but is left attached to a rectangle from which
some piece will later be produced.

Thus, one can (without loss of optimality) limit the z-cuts only to those
values of z leading to normal patterns; and similarly for the y-cuts. The
feasible z-cuts on a rectangle (p, ¢), given the set R of pieces ({;, w;) to be
cut, must then be at values of x that are the elements of some set S°.

The sets S can be calculated for all values of ¢ by a single iterative
equation in one pass. First assume that the m pieces are ordered in non-
decreasing values of w;. We define a function f,(z) as follows.

a
% & N
[
g
»

4

1 ’ \
N
Pt
NS
Ny

al

Figure 2(b). Normalized form of cutting pattern in Figure 2(a).

If there exists one or more integer-valued vectors £ that satisfy
z= ik, 0SESb, (1)
then set f,(z) = w;, where
i* = min [max {3 | & # 0}]. (2)

If no such vector £ satisfying (1) exists, then set f,(z) = .

It follows from the above definition of f,(z) that if fn(z) < ¢, then z is
the sum of lengths I; of some combination of pieces (satisfying the b; con-
straints) all of whose widths w; are less than ¢, and ¢ must therefore be
in the set 8% Thus, once the tableau f.(z) is generated, the sets S can
be produced for any g¢.

The tableaux f,(z), 1 £ r £ m, 0 £ z < L, can be generated simply
by the recursion: fi(z) = min {f;y(x), max {w; min (fia(z — kL)),

36 Nicos Christofides and Charles Whitlock

wherel = k = min{b.;, [/L]}, kinteger, x = [;; fi(z) = fiu(z), 2< k;
and fo(z) = = for all .
The corresponding sets T” for the y-cuts can be generated in a similar

manner.

Description of Enumerative Algorithm

We now desecribe an algorithm that generates all normal cutting patterns
on a rectangle Ay = (Lo, Wy), given a set R of pieces to be cut. In this
algorithm each node represents a state of the rectangle after cutting has
taken place, and a tree branching from one node to another represents a
cut.

The state at a node n is deseribed by the list L of rectangles produced by
the sequence of cuts corresponding to the path that leads from the root
of the tree to node n. In list L each rectangle is represented by a four-part
label (p, q, «, ¥), where p and q are the rectangle’s length and width and
r and y are integers that can take values in the ranges 0 = = = [p/2] + 1,
1=y =1l9/21+ 1.

The meaning of z and y is as follows. If 1 £ = = [p/2], then the next
cut to be considered on rectangle (p, ¢)—if this rectangle is chosen for
cutting—is an z-cut at position z. If z = [p/2] + land 1 = y = [¢/2],
then the next cut to be made on (p, ¢) is a y-cut at position y. If z =
(/2] + 1 and y = [g/2] + 1, all feasible z-cuts and y-cuts on rectangle
(p, ¢) have been performed and the next cut to be made is a 0-cut. If
x = 0, we infer that a 0-cut on (p, ¢) has been made and this rectangle
is not to be cut further by any branching following node n.

A few comments on the mechanics of the search procedure are neces-
sary before the algorithm is described.

(i) Only one rectangle is cut at a node, and the procedure is exhaustive
because of the introduction of the 0-cut, as explained earlier.

(ii) When a rectangle (p, q) is produced by an z-cut, future z-cuts on
(p, q¢) must be at values of r = X, where X is calculated as de-
seribed earlier. Similarly, Y is caleulated if rectangle (p, g) was
produed by a y-cut.

(iii) The state of the search is represented by:

(a) The list L of four-part labels corresponding to rectangles
produced by the cuts so far. This list is updated for forward
and backward branchings.

(b) Say that at node j a rectangle (p;, ¢;) from list L was chosen
for cutting and the four-part label for that rectangle was
(pJs @is 25, ¥5). Then a vector Q(j) of six-part labels (p;, ¢;,
zj, yi, Xj, ¥;) is stored for all 7, 0 < j < n, where X;and ¥;
are as explained in (ii) above.

Two-Dimensional Cutting Problems 37

A diagrammatic description of the algorithm is shown in Figure 3, and
a detailed description is given in the appendix.

3. TREE-SEARCH ALGORITHM

Section 2 gave an enumerative procedure that could generate all normal
cutting patterns with respect to a set B = {(l;, w;), 7 = 1, ---, m} and
maximum numbers by, 7 = 1, ---, m of pieces to be cut. The procedure
generates all cutting patterns without symmetric duplications and without
explicitly considering different sequences of cuts when these lead to the
same cutting pattern. However, up to now no consideration has been given
to the fact that the pieces in R have values v; associated with them, and
the purpose of this section is to examine ways of limiting the tree search
described earlier in order to solve the optimization problem of Section 1.

Upper Bound on Value of Cutting Pattern at Node

In the normalized optimal cutting pattern there is exactly one piece
from the set R fitted into each rectangle of this pattern because (as men-
tioned earlier) the “waste”—i.e., rectangles with nothing fitted in them—
is not cut away by the algorithm itself. Thus, at some node of the tree
when the list of rectangles already cut is given by the set L, let those
rectangles that have had a 0-cut made on them form the subset Hy, € L.
The rectangles in H, will not be cut at any node below the current node
and in the final cutting pattern will have some piece fitted in them. Henee,
an upper bound on the value obtainable from the rectangles in H, can be
obtained at any node of the tree by allocating pieces to these rectangles
from the set R in an optimal fashion. This allocation can be done quite
simply as follows:

Form a matrix [a;] with m rows corresponding to the pieces in B and u
columns corresponding to the w (say) rectangles (pi, gx) in Hy. Set ag =
v, if I; = prand w; £ g and ag = — » otherwise.

The best feasible allocation of pieces to rectangles is then given by a
solution to the transportation problem:

max z = Z:-1 Eg‘-l @ik ik (3)
Z?—l za =1 (4)
Z:—: o = b (5)

za = 0.

The solution to this problem is made very simple by the special structure
of the [a;] matrix, and the problem can be solved by a particularly efficient
version of the transportation routines [2].

The rectangles in L that have not had 0-cuts made on them are liable,
at future branchings, to be cut further into smaller rectangles and hence

38 Nicos Christofides and Charles Whitlock

Initialisation

Put the main reeta:g|e
(Lo W,) inte list L.
Set LEVEL=).

s there
rectangle in L

which has not been
€ut bya O-cur, NO >

2

YES

Call chis rectangle E and
emove it from L .

Forward branching ¥
Set LEVEL =LEVEL+*I,
Make the next cut on E

and add the rectanglefs)

resulting from the cut
into, L.

NO

A

Backtrack
Set LEVEL=LEVEL-].

Remove the rectanglef)
pProduced by the last cut
jon E from list L.

NO

YES

All cuts on E have been completed.
Add E back into L, Call the

rectangle cut at le vel (LEVEL*!)
of the tree the new E.

Figure 3 Flow chart of the algorithm.

Two-Dimensional Cutting Problems 39

may be allocated several pieces from R in the final solution. It is therefore
not possible to use the transportation routine to calculate an upper bound
for these rectangles, as this only allocates one piece per rectangle. How-
ever, an upper bound on the value obtainable from each rectangle in
L — H, can be derived by solving, for every such rectangle, the uncon-
strained two-dimensional cutting problem using the first of the dynamic
programming procedures given by Gilmore and Gomory [8]. The second
method given in [8] is incorrect, as shown in [11].

The procedure for calculating an upper bound at any node is therefore
to solve the transportation problem for all rectangles in H, and to solve
the unconstrained two-dimensional cutting problem for all other rectangles.

If at any node the value z* of the upper bound is greater than the value
z of the best solution so far, and if the number of each piece ¢ used to gen-
erate this value is not greater than the constraint b;, then an improved
solution has been obtained. z* can then replace z, and backtracking can
occur. If on the other hand z* < 2, then further branching from the cur-
rent node can be discountinued and backtracking can again take place.

If neither of these cases occurs, then forward branching can take place
until a terminal node is reached (i.e., a node at which all rectangles in
the list L have had 0-cuts made on them), in which case the value of the
solution of the transportation problem is the value of the cutting pattern
corresponding to that node.

We note that the solution to the unconstrained problems need not be
calculated at each node but that a single dynamic programming table
corresponding to the solution for the initial rectangle (Lo, Wy) and calcu-
lated once at the beginning of the tree search could be used to obtain di-
rectly the unconstrained solutions to any rectangle (p, ¢), 1 = p = L,
1 £ ¢ £ Wyin the list L. The major part of the computation of the upper
bound is therefore the solution of the transportation problem of (3), (4),
and (5), and this solution need take place only at nodes resulting from
some 0-cut, i.e., only when the set H, of rectangles changes.

Branching Strategies

The choice of which rectangle from the list L of available rectangles is
to be cut has been left unspecified. There are many ways in which this
rectangle can be chosen, and a number of these have been tried.

(i) One simple method is to select that rectangle n with the minimum
r-dimension p, and if more than one such rectangle exists, then
choose among these the one with the smallest y-dimension g,.
This corresponds to choosing the “smallest” rectangle; or similarly,
the “largest” rectangle could be chosen.

(ii) An alternative method is to select that rectangle for which the
unconstrained problem gives the highest value. This is another
simple and computationally inexpensive method since the value

40 Nicos Christofides and Charles Whitlock

of the unconstrained solution is used in the calculation of the
bounds.

(iii) A slightly more complex branching strategy that aims to obtain a
feasible solution early on in the search is as follows. At each node
of the tree the number ;" of pieces of type i that have been allo-
cated to rectangles by the transportation subroutine is available.
Also available is the number ;" of pieces of type 7 used by all the
unconstrained dynamic programming solutions to the rectangles
still available for cutting (i.e., the ones that have not as yet had
a 0-cut made on them). If r; = r’ + ,-‘,”, then obviously »; > b;
for at least one 7 = 1, ---, m; otherwise, a feasible solution would
have been obtained and backtracking would have occurred. Let
i* be that piece ¢ for which (r; — b;) is maximum. It is then rea-
sonable to try to reduce the number of pieces used for any type ¢
for which r; > b; and in particular that of type i* since this would
produce the largest step toward feasibility. With this in mind, one
could then choose to cut the rectangle that uses the largest number
of pieces of type 7* in the unconstrained solution. One hopes that,
after this rectangle is cut, fewer pieces of type ¢* will be used.

The computational results given in the next section have been obtained
from a computer program using branching strategy (iii).

4. COMPUTATIONAL RESULTS

The algorithm deseribed in the last two sections was tested on a large
number of randomly generated two-dimensional cutting problems and, as
can be seen from Table I, the method can be used to solve practical prob-
lems of quite reasonable size. This algorithm has solved actual wood cut-
ting problems in the manufacture of furniture.

The random problems were produced as follows. Given the initial rec-
tangle A, with area ay = Lo+ Wy, then m random numbers a;, 7 = 1, - - -, m,
corresponding to the areas of the m rectangles in R, were generated by
sampling from the uniform distribution in the range 0 to 0.25 ao. The =
dimensions [; of the rectangles in B were generated by sampling from the
uniform distribution in the range 0 to «; and rounded upward to the nearest
integer, and the y dimensions w; were then calculated using the formula
w; = a;/l;, again rounding the number upward.

The values v; of the rectangles in B were generated using the function:
v; = T, where r; i a uniformly distributed random number in the range
1 to 3. Once more the values »; were rounded upward.

The constraints b; on each piece in R were deliberately chosen so that the
unconstrained solution obtained from the dynamic program was infeasible.
Table I gives details of the size of the problems tested and the time needed
for their solution. The computer code was written in FORTRAN IV for

Two-Dimensional Cutting Problems 4]

TABLE 1
PERFORMANCE OF ALGORITHM
Times 1

No. of No. of nodes in tree
m (Lo, Wo) |problems {CC 7600 wes)

hved | e Av. | Min. | Max. | Av. | Min
5 (40, 70) 4 1.1 0.96 0.79 1141 835 654
5 (53, 65) 3 0.79 0.73 0.76 194 131 85
5 (50, 100) 6 2.32 1.60 1.31 1943 1024 170
6 (15, 10) 4 14.31 7.15 1.25 | 11051 5310 1085
7 (40, 70) 4 15.28 7.48 1.18 | 18013 8866 1109
10 (40, 70) 6 25.43 15.290 0.7 18602 12175 230
20 (40, 70) 5 181.0 130.18 | 66.14 | 57284 | 38807 | 22184

the CDC 7600 computer and was run using the FTN compiler of that
machine. The total memory requirements of the code used for the solution
of all problems in Table I was 30 K words.

Table II gives the exact details of three of the problems solved, includ-

TABLE II
DeraiLs or THrReEE TesT PROBLEMS

Problem No. 1. Initial rectangle 4, = (15, 10), m = 7

Details of pieces:
Dimension vector: |l;, wi] = [(8,4), (3,7), (8,2), (3,4), 3,3), 3,2), (2,1)]
Value vector: [vi] = [66, 35, 24, 17, 11, 8, 2]
Constraint vector: [b;] = [2,1,3,5,2,2, 1]
Solution value: constrained by [b;], 244 (unconstrained, 249)
Solution time: 247 sec. Number of nodes in tree: 3,794

Problem No. 2. Initial rectangle 4, = (40, 70), m = 10

Details of pieces:
Dimension vector: [l;, wi] = [(21,22), (31, 13), (9, 35), (9,24), (30,7), (11,13),
(10, 14), (14, 8), (12, 8), (13, 7)]
Value vector: [v:] = [582, 403, 315, 216, 210, 143, 140, 110, 94, 90]
Constraint vector: [b;) = [1,1,3,3,2,3,1,3, 3, 3]
Solution value: constrained by [b;], 2892 (unconstrained, 3006)
Solution time: 24.07 sec. Number of nodes in tree: 18,602

Problem No. 8. Initial rectangle 4, = (40, 70), m = 20

Details of pieces:

Dimension vector: [l;, wi] = [(31, 43), (30, 41), (29, 39), (28, 38), (27, 37), (26, 36),
(25, 35), (24, 34), (33, 23), (22, 32), (31, 21), (29, 18), (17, 27), (15, 24), (16, 25),
(15, 24), (23, 14), (21, 12), (19, 11), (9, 17)]

Value vector: [v;] = [500, 480, 460, 440, 420, 410, 400, 380, 360, 340, 320, 300, 280, 240,
260, 240, 220, 180, 160, 140)

Constraint vector: [b;] = [4,2,4,4,3,4,3,4,4,3,3,3,2,2,4,1,4,3,4,1]

Solution value: constrained by [b;], 1860 (unconstrained, 2240)

Solution time: 66.14 sec. Number of nodes in tree: 22,184

42 Nicos Christofides and Charles Whitlock

ing the sizes, values, and constraints of the pieces in R, and the values of
the constrained and unconstrained solutions. Figure 4 shows the cut-
ting pattern that gives the constrained optimal solution to problem 2 in

Table II.
70

a

Py

I~

P~y

e

N

N

N

218

©24) (21,22) »

\.

N

(9,35) 2

N

N

[~

b

(13) ma3)
(9,24)
(3113
G0,7)
(10,14)
(30,7)
(12, 8) (14,8) (14,8)
© 40

Figure 4. Optimal cutting pattern for Problem 2.

APPENDIX

Let ¢; be the number of pieces of type 7 in R used in the upper bound
calculation deseribed in Section 3. Thus, ¢; is the sum of the number of
pieces used in the solution of the transportation problem for H, and the
number of pieces used in the dynamic programming solution for the re-

Two-Dimensional Cutting Problems 43

maining rectangles. The description of the complete algorithm, including
the calculation of the bounds, is then as follows:
Initialization:
1.1 Set:n = 1, L = {(Lo, Wo, 1, 1)}, 2 = 0.
Calculation of the bound:
2.1 Calculate the value of 2* and ¢;, ¢ = 1, - - -, m for the list L.
2.2 If 2* < 2, set K = 0 and go to 6.1; otherwise, continue.
23 Ifb; = ¢, foralli =1, ---, m,set 2 = 2% K = 0 and go to 6.1;
otherwise, continue.
Choose a rectangle for cutting:
2.4 Choose a rectangle (pa, @n, Zn, ¥a) from the list L with =z, = 0. If
none exists set K = 0 and go to 6.1; otherwise, set K = 1 and go
to step 2.5.
2.5 80t Xy = p,a0d ¥V, = 9.
2.6 Bet Q(n) = (Pay Gny Tny Yn, X, Yu) and L = L — {(pn, ny Tn, ¥n)}.
Forward branching (z-cut):
3.1 Bet ¢ = 2,.
32 If x = [pa/2] + 1, set x, = = + 1 and go to 4.1.
3.3 If € 8™, go to 3.4; otherwise, set: z = z + 1 and go to 3.2.
3.4 Set L = L U{(z, gu, 2,1), (pa — z, gu, , 1)}.
35 8Setx, =2z+4+ 1,n=n -+ 1, and go to 2.1.
Forward branching (y-cut):
41 Set y = Y.
42 If y = [g./2] + 1, go to 5.1.
43 If y € T™ go to 4.4; otherwise, set ¥ = y + 1 and go to 4.2.
44 Set L = LU{(pn, y, 1, 4), (P, & — ¥, 1, y)}.
45 Set y. = y+ 1,n = n + 1 and go to 2.1.
Forward branching (0-cut):
5.1 Set L = L U{(pn, gn, 0, yn)}.
52 Setr, = 0,n = n+ 1 and go to 2.1.
Backtracking:
6.1 If n = 1, stop; all normal cutting patterns have been generated.
6.2 If K = 0, go to 6.4.
6.3 L = L U{(pa, gn, Xa, Y2)}.
6.4 Setn =n — 1.
6.5 If . > [pa/2] + 1, go to 6.5.2. If 2, = 0, go to 6.5.3; otherwise,
continue.
(Last cut made was an z-cut):
6.5.1 SetL =L — {(2a — 1, quytn — 1,1). (pn — Zn + 1, gy 2o — 1,1)}
and go to 3.1.
(Last eut made was a y-cut):
6.5.2 SetL = L — {(Pmy¥n — L1, ¥n — 1),(Pny@n — ta+ 1,1, 4a — 1)}
and go to 4.1.

44 Nicos Christofides and Charles Whitlock

(Last cut made was a 0-cut):
6.5.3 Set L = L — {(Pn, gn, 0, %n)}, K = 1 and go to 6.1.

ACKNOWLEDGMENT

The authors wish to thank the two referees for their useful suggestions.

REFERENCES

1. R. Arr, “An Approach to the Two-Dimensional, Irregular Cutting Stock
Problem,” I.B.M. Cambridge Scientific Centre Report, No. 320-2006, 1966.

2. J. F. DesLER, AnD 8. L. Hakmr, “A Graph-Theoretic Approach to a Class of
Integer-Programming Problems,” Opns. Res. 17, 1017-1033 (1969).

3. 8. Emon anp N. Curistorines, “The Loading Problem,” Management Sei.
17, 259-268 (1971).

4. L. F. Escupero aNp E. GarBayo, “The Cutting Stock Problem: Application
of Combinational Techniques and Mixed Integer Programming,” presented
at 8th Mathematical Programming Symposium, Stanford University, August
1973.

5. P. M. Guare anp L. E. Wavrers, “A Branch-and-Bound Algorithm for the
Multi-Dimensional Knapsack Problem,” presented at a joint meeting of
the 33rd national meeting of the Operations Research Society of America,
and American meeting of the Institute of Management Science, 1968.

6. P. C. Gimore axp R. E. Gomory, “A Linear Programming Approach to the
Cutting-Stock Problem,” Opns. Res. 9, 849-859 (1961).

7. P. C. Giumore anp R, E. Gomory, “Multistage Cutting Problems of Two and
More Dimensions,” Opns. Res. 13, 94-120 (1965).

8 P. C. Gizmore axp R. E. Gomory, “The Theory and Computation of Knap-
sack Functions,” Opns. Res. 15, 1045-1075 (1967).

9. H. GrReeNBERG AND R. L. HecericH, “A Branch Search Algorithm for the
Knapsack Problem,” Management Sei. 16, 327-332 (1970).

10. 8. Hanx, “On the Optimal Cutting of Defective Glass Sheets,” I.B.M. New
York Scientific Center Report No. 320-2916, 1967.

11. J. C. Herz, “A Recursive Computing Procedure for Two-Dimensional Stock
Cutting,” IBM J. Res. Dev. 16, 462-469 (1972).

12. G. InearGrora aNp J. Korsh, “Reduction Algorithm for 0-1 Single Knapsack
Problems,” Management Sci. 20, 460-463 (1973).

13. H. M. Sawkiy anp C. A, DeKruyver, “The knapsack Problem: A Survey,”
Nav. Res. Log. Quart. 22, 127-144 (1975).

Copyright 1977, by INFORMS, all rights reserved. Copyright of Operations Research is the
property of INFORMS: Institute for Operations Research and its content may not be copied or
emailed to multiple sites or posted to a listserv without the copyright holder's express written
permission. However, users may print, download, or email articles for individual use.

