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Abstract: In this paper the best heuristic methods known up to now are compared to solve the flow shop 
sequencing problem and we improve the complexity of the best one. Next, this problem is applied to taboo 
search, a new technique to solve combinatorial optimization problems, and computational experiments are 
reported. Finally a parallel taboo search algorithm is presented and experimental results show that this 
heuristic allows very good speed-up. 
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1. Introduction 

First, we try to answer the question: "What  is 
the problem?". Although many researchers have 
been working on the flow shop sequencing prob- 
lem for many years, we found nowhere any results 
about the distribution of the objective function 
and the distribution of the optima of this function. 
In effect, such an approach gives an intuitive idea 
about the problem and is important to allow the 
reader to judge the quahty of heuristic methods 
used for this problem. 

Then we compare the classical heuristics and 
improve the complexity of the best one. But this 
one does not give very good solutions on average 
(less than one or two percent above the optimal 
solution). So we propose a heuristics improving 
the mean quality of solutions when running longer, 
based on taboo search technique. As this tech- 
nique has been recently developed, we do not only 
give the best implementation we found, but some 
variants of this method too. 

Received November 1988; revised May 1989 

Finally, we propose two parallel versions of 
taboo search, in order to reduce the unavoidable 
expansive calculation times needed by this method. 

2. The flow shop sequencing problem 

The flow shop sequencing problem is a produc- 
tion planning problem: n jobs (items, tasks . . . )  
have to be processed in the same sequence on m 
machines; the processing time of job i on machine 
j is given by t~j (i = 1 . . . . .  n; j = 1 . . . . .  m). These 
times are fixed, non negative and some of them 
may be zero if some job is not processed on a 
machine. 

The problem consists of minimizing the time 
between the beginning of the execution of the first 
job on the first machine and the completion of the 
execution of the last job on the last machine; this 
time is called makespan. For this problem the 
following assumptions are made: 

- Every job has to be processed at most once 
on machine 1, 2 . . . . .  m (in this order). 

- Every machine processes only one job at a 
time. 
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- Every job is processed at most on one ma- 
chine at a time. 

- The operations are not preemptable. 
- The set-up times of the operations are in- 

cluded in the processing time and do not 
depend on the sequence. 

- The operating sequences of the jobs are the 
same on every machine and the common 
sequence has to be determined. 

This problem is NP-hard and can be solved 
exactly only for small sizes [2]. It consists of 
finding a sequence o that minimizes the makespan 
M(a) .  So the number of possible schedules is n! 

2.1. Some observations on small problems 

First we give in Figure 1 the distribution of all 
the possible makespans obtained by complete enu- 

meration of 500 problems with 9 jobs and 10 
machines. This distribution is given relatively to 
the optimal solution. The processing times were 
randomly uniformly generated (integers between 1 
and 100). We choose this problem size because it 
is possible to calculate M ( a )  for every solution o 
in a reasonable calculation time. 

We can observe that the distribution is not 
symmetrical. Less than 0.02% of the M(o )  are 
between M(oopt) and 1.01 • M(oopt) (where Oop t is 
an optimal schedule). So finding a solution at 1% 
above the optimal one is generally very hard, but a 
random solution is in mean only at 20% above the 
optimum. Then we give in Figure 2 the distribu- 
tion of the optimal makespans M(oopt) for these 
problems. 

This distribution seems to be almost symmetri- 
cal and its range (for these 500 problems) is con- 
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tained in an interval of 20% around the mean. The 
mean value of the makespan is 1016.1 and the 
value of the standard deviation is 62.1. A X 2 test 
does neither confirm nor refute that this distribu- 
tion is Gaussian. So, speaking of the mean make- 
span given by a heuristic seems to be a meaningful 
measure. 

provement of solutions is less than 1% and the 
calculation time becomes as important as NEH's 
one for the other heuristics. 

4. An improvement of NEH heuristics 

We will first recall the NEH algorithm. 

3. Comparison of classical heuristics 

Many heuristics have been proposed to solve 
the flow shop problem; we compare in Table 1 the 
quality of the solutions and the complexity of 
some of them. One can find the descriptions of 
these methods in [1] for Gupta, Johnson, Palmer 
and CDS (algorithm of Campbell, Dudek and 
Smith), in [3] for RA (rapid access procedure), and 
in [8] for NEH (algorithm of Nawaz, Enscore and 
Ham). 

The complexity includes the computation of the 
makespan. The quality of the solutions is given in 
percent above the mean of the optima (for the 
9-job 10-machine problems) or of the makespan 
obtained after 1000 iterations of taboo heuristics. 

NEH appears to be the best polynomial heuris- 
tics in practice. The heuristics RA or Palmer may 
also be useful when short computation times are 
required. Other results about these heuristics are 
discussed in [9]. Note that the new method de- 
scribed below [7] permitted us to reduce the com- 
plexity of the NEH Algorithm from o(nam) to 
O(n2m). 

Naturally, descent algorithms may be applied 
to the solutions given by these heuristics, but one 
cannot give the complexity anymore and the im- 
provements are small: for NEH, the mean im- 

Table 1 
Comparison of the classical heuristics 

Complexity Quality 

Problems - 500 100 100 100 50 50 
Jobs n 9 10 20 20 40 50 
Machines m 10 10 10 20 10 10 

Gupta n log(n)+nm 13.4 12.8 19.6 18.8 18.9 17.1 
Johnson n log(n)+nm 10.9 11.8 16.7 16.8 17.3 16.3 
RA n log(n)+ nm 8.5 9.1 12.5 13.4 13.5 11.2 
Palmer n l o g ( n ) + n m  8.3 9.0 13.3 12.5 10.9 10.7 
CDS nm 2 + mn log(n) 4.5 5.2 9.7 8.6 9.9 9.3 
N E H  n2m 2.1 2.2 3.9 3.8 2.6 2.1 

NEH algorithm 
(1) Order the n jobs by decreasing sums of 

processing times on the machines. 
(2) Take the first two jobs and schedule them 

in order to minimize the partial makespan as if 
there were only these two jobs. 

(3) F o r k = 3  t o n  do: 
(4) Insert the k-th job at the place, among the 

k possible ones, which minimizes the partial 
makespan. 

The complexity of step (1) is O(n log(n)); that 
of step (2) is O(rn). In order to calculate one 
partial makespan in step (4) one needs O(km) 
operations. However, it is possible to calculate the 
k makespans of this step in O(km): 

Algorithm 
Determining M,, the makespan after insertion 

of job k at the i-th place. 
(1) Compute the earliest completion time e~j of 

the i-th job on the j- th machine; the starting time 
of the first job on the first machine is 0 (see Figure 
3(a)), 

eoj = O, eio = O, 

e i j  = max{ei.~_l, ei-l , j  } + t i j  

( i = 1  . . . . .  k - l )  ( j = l  . . . . .  m).  

(2) Compute the tail q~j, i.e. the duration be- 
tween the starting time of the i-th job on the j- th 
machine and the end of the operations (Figure 
3(b)), 

qkj=O, q~,m÷l =O, 

q~j = max(qi,j+l,  qi+l,j } + tij 

( i = k - 1  . . . .  ,1) ( j = m  . . . . .  1). 

(3) Compute the earliest relative completion 
time f/j on the j-th machine of job k inserted at 
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Figure 3. Illustration of the algorithm: Insertion of job 5 at the 
third place 

the i-th position (Figure 3(c)), 

L0 -- 0, 

f/j = max{ f~ j_ l ,  ei-l , j}  + tkj 

(i = 1 , . . . ,  k )  ( j = l  . . . . .  m) .  

(4) The value of the partial makespan M i when 
adding job k at the i-th position is 

n i = max)  ( f i j  + qij ) 

(i  = 1 , . . . ,  k )  ( j = l  . . . . .  m) .  

All these steps can be executed in time O(km).  
Consequently, step (4) of the N E H  algorithm has 
a complexity of O(km).  We conclude that the 
N E H  algorithms runs in time O(nEm). 

Let us briefly describe taboo search techniques, 
before presenting how they can be applied to the 
flow shop problem; this technique is exposed in 
[4]. An application to the flow shop problem is 
proposed in [9]. 

Taboo search may be useful to find a good, or 
possibly optimal solution of problems which are 
of the type 

minimize c ( x )  

subject to x ~ X. 

Where c (x )  is any function of a discrete varia- 
ble x, and X is the set of feasible solutions. A step 
of taboo search starts with the current feasible 
solution x ~ X to which is applied a function 
m E M ( x )  that transforms x into x ' ,  a new feasi- 
ble solution ( x ' =  m(x)) .  This transformation is 
called a move, and ( x ' :  x '  = m ( x ) ;  x, x '  ~ X; 
m ~ M(x)}  is called the neighbourhood of x. 

In order to avoid as much as possible cycling, 
an element t is associated with m and x; this 
element defines a set of moves that are taboo 
(forbidden) now; it is stored in a set T called 
taboo list. In particular t forbids to apply m '  to x '  
which would transform x '  back to x; but t may 
forbid other moves too. The elements of T define 
all taboo moves that cannot be applied to the 
current solution; in practice, the size of T cannot 
increase indefinitely and has to be bounded by a 
parameter  s, called taboo list size. If  I T I = s, 
before adding t to T, one must remove an ele- 
ment, generally the oldest one. 

An application of taboo search is characterized 
by: 

(1) The set M ( x )  of moves applicable to a 
feasible solution x ( neighbourhood ). 

(2) The type of the elements of the set T which 
define the taboo moves (taboo list). 

(3) The size s of the set T (taboo list size). 
(4) A stopping condition. 
The generic procedure of taboo search tech- 

niques is: 
(0) Start with any feasible solution x0, an 

empty taboo list T. Let x*  = x 0, c* = C(Xo) and 
k = 0. (x*  is the best solution found up to now 
and c* the value of the objective function for this 
solution.) 

(1) In M(Xk)  choose m, a move transforming 
x k that minimizes c ( m ( x k )  ) and that is not for- 
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bidden by the elements of T. The move can be 
chosen by complete or partial examination of 

M(Xk) .  Let Xk+ 1 = m(Xk).  
(2) If C(Xk+1)< C*, let c * =  c(xk+ 1) and x*  

-~- X k +  1 . 

(3) If IT I = s remove the oldest element of T; 
add the element t defined by m and xk+ 1. Incre- 
ment k by 1. 

(4) Go back to (1) if the stopping condition 
(optimum reached, k larger than a fixed l imi t . . . )  
is not satisfied. 

5.1. Applications of taboo search techniques 

The objective function of our flow shop prob- 
lem is the makespan and the set of feasible solu- 
tions is any permutation o of { 1 . . . . .  n ): 

minimize M ( o )  

subject to o: permutations of 1 . . . . .  n. 

For this problem, the neighbourhood may be 
defined in several ways: 

(1) Exchange two adjacent jobs placed at the i-th 
and the (i + 1)-th position. A move m is entirely 
defined by i. The size of the neighbourhood is 
I M ( o )  I = n - 1. Our experiments show that these 

moves are bad, both for quality of schedules and 
global calculation time. 

(2) Exchange the jobs placed at the i-th and the 
k-th position. A move m is entirely defined by i 
and k. The size of the neighbourhood is l n (n  - 1). 
The evaluation of all the makespans o ' ,  neighbour 
of o, can be executed in time O(n3m). Reference 
[9] proposes this kind of neighbourhood. Our ex- 
periments show that such a neighbourhood is not 
better than the next one to find good schedules 
with taboo search techniques; furthermore, the 
complexity of each single step is higher. 

(3) Remove the job placed at the i-th position 
and put it at the k-th position. A move m is en- 
tirely defined by i and k. The size I M(o)  [ of this 
neighbourhood is ( n -  1) 2. The evaluation of all 
the makespans can be executed in time O(n2m), 
using the insertion algorithm described in the NEH 
heuristics. We choose this type of neighbourhood 
because of the efficiency of the moves, both for 
quality and computation times 

Next we have to define how to examine the 
neighbourhood before choosing a move leading to 
the next step: 

(a) Examine the neighbours and take the first 
which improves the current solution. If there is no 
move that improves the solution (or if all improv- 
ing moves are taboo) then one has to examine the 
whole neighbourhood. For this method, the mean 
calculation time of a step is less than the one 
needed for method (c). But this time is not con- 
stant, and the steps are not as good. [9] proposes 
this examination. 

(b) Examine fixed number of moves that are 
not taboo, randomly generated. This method is 
useful for problems for which the size of the 
neighbourhood is very large: but our experiments 
have shown that it does not suit for middle-size 
flow shop problems. 

(c) Examine the entire neighbourhood and take 
the best move that is not taboo. This method 
needs more (but constant) calculation time for 
each step than partial enumeration, but the moves 
are better. If one wants to examine the neighbour- 
hood in parallel, this method allows to balance 
very well the work between the processors. 

The taboo fist may also be of several types: 
(i) Prevent a job from returning to a fixed 

place before one has made s steps (s: length of the 
taboo list). In this case, s is a sensitive parameter; 
[9] proposes to fix it at the value of 7. 

(ii) Prevent the new makespan from coming 
back to a makespan that was already obtained in 
the s previous steps. If s varies in an acyclic way 
(by example if s simply grows) then cycling is well 
prevented. 

These two taboo lists are good but the last one 
avoids the use of another parameter called aspira- 
tion level (i.e. a taboo move is allowed if it im- 
proves the objective function of more than a value, 
the aspiration level, which has to be defined and 
depends on m and o). We have chosen the latter 
type of taboo list. 

5.2. Performances of taboo search 

In order to evaluate the performances of taboo 
search, we have first randomly generated 200 flow 
shop problems of 9 jobs and 10 machines, for 
which the optimal makespan was known. Then we 
have solved these problems 100 times with taboo 
search, starting from various initial solutions. We 
have done the same with 8 problems given by [2] 
of various sizes (11 jobs × 5 machines, 13 x 4, 
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12 × 5 ,  1 4 x 4 ,  1 0 × 6 ,  8 x 9 ,  7 x 7  and 8 ×  8). We 
can make the following remarks: 

(1) There are a few problems that are very easy 
to solve (always less than 15 iterations) and a few 
ones that are much more difficult (sometimes more 
than 800 iterations). 

(2) For a fixed problem, the number  of itera- 
tions (steps or moves) can be very variable. (From 
10 to 800 iterations, depending on the starting 
point.) 

In Figure 4 we give the empirical distribution 
of the CPU time required by a resolution on a Vax 

8600. This distribution is tabulated for two types 
of neighbourhood examination: 

(1) Best move. All the neighbours are evaluated 
and the best becomes the next current solution. 

(2) First move improving the current solution. 

The examination of the neighbours is stopped 
when a non taboo move leads to a better solution 
than the current one. 

The second rule of examination is slightly bet- 
ter than the first one. The mean resolution time is 
546 ms. for the first one versus 675 ms. for the 
second one but the mean number  of iterations is 
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higher: 29 versus 24. However, these measures 
may be meaningless, because of the extent be- 
tween the extremities of the distribution's curve. 

However, for practical problems, one cannot 
know, and even characterize the optimal make- 
span; so determining a good stopping condition of 
taboo search is not trivial. We have tried three 
stopping conditions: 

(1) Stop if the number of iterations is greater 
than k, an a priori fixed constant. The taboo 
search completes in time O(kn2m) with this stop- 
ping condition. In Figure 5 and 6, the evolution of 
the mean makespan is plotted as a function of the 
number of steps of taboo search. There were 100 
problems of the following size: 10 jobs × 10 ma- 
chines, 20 × 5, 20 × 10 and 20 X 20, and 50 prob- 
lems of 30 x 10, 40 x 10 and 50 x 10. All these 
problems were randomly generated, the processing 
times of the jobs on the machines being uniformly 
distributed integers between 1 and 100. The taboo 
list size was growing from 7 (for the first itera- 
tions) to 100 (for the last ones). The curve of the 
evolution of the makespan may be interpreted as 
follows: for the first iterations ( <  n), taboo search 
is the same as an improving heuristics which goes 
into a local minimum. Then taboo search goes 
from a local minimum to another one and the 
improvements become less and less frequent (in an 
over exponential way). 

(2) Stop if the number of iterations without 
improving the best solution is greater than a con- 

stant a priori fixed. We compare in Figure 7 the 
evolution of the makespan as a function of the 
total number of iterations (stopping condition 1) 
and this evolution, function of the number of 
iterations without improving the best solution. We 
can see that this second stopping condition pro- 
vides a more regular progression of the mean 
makespan. In fact this curve is more or less the 
same than the first one but without the pre- 
hminary way down to a local minimum; it is 
important to mention that both evolutions of 
makespan, function of CPU time provide the same 
curve, whichever stopping condition is chosen. 
The duration of taboo search, for this second 
stopping condition depends on the problem and 
on the initial solution. 

(3) We have seen that the number of iterations 
needed to find the optimal solution of the flow 
shop problem (and other ones too, see [6]) de- 
pends strongly on the initial solution; what is 
more, one continues working even if one has the 
optimal solution, because one cannot characterize 
it. In order to reduce useless work, the following 
algorithm may provide good results: Let p be a 
fixed number of processes; each of them executes 
independently a taboo search with a different ini- 
tial solution. After a while (which has to be de- 
fined), the processes have to be stopped and their 
respective best solutions compared. If two or more 
of them are the best of all, then the algorithm 
ends; otherwise, the processes continue their taboo 
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searches from where they are and so on. Some 
simulations (200 problems, 10 jobs × 10 machines 
and p = 4  processes) of this algorithm on a 
sequential machine show us that the mean of the 
total CPU time is more or less the same as with 
the previous algorithm, with stopping condition 
(2). The longer the time between comparisons is, 
the better the solutions are. For this algorithm, the 
solutions (schedules) may not be the same, even if 
the makespans are equal. This algorithm may not 
end (because of cycling), consequently another 
stopping condition has to be added, for example: 
stop if the number of comparisons without impro- 
ving the best makespan is greater than a constant. 

6. Parallelization of  taboo search 

The third stopping condition leads to a trivial 
parallelization; it is well adapted for small num- 
bers of processes (typically from 3 to 6) but there 
is a limit to the speed-up due to the way down to 
the first local minimum; and at this limit, the 
algorithm becomes a simple improving heuristics 
which needs no taboo list at all! 

Another approach of parallelization is the fol- 
lowing: we have remarked that the time needed to 
evaluate the value of the makespans of the 
neighbourhood is almost the entire calculation 
time; in order to speed up the algorithm, one has 

to reduce this calculation time. This may be real- 
ized by parallelizing the search of the best 
neighbour: each processor inspects only a fraction 
of the neighbourhood. Then, the best allowed 
moves are compared and the best of all is chosen 
(see Figure 8). In order to do a step of taboo 
search, the algorithm then becomes (for processes 
without common memory): 

(Assume that the master process has a current 
move and that each slave process has the same 
current solution, taboo list, and so on, but a 
different subset of neighbours to examine.) 

Master process  
(M.1) Send to every slave process the current 

move. 
(M.2) Wait the best moves of each slave process 

and choose among them the best of all. Go 
back to (M.1) unless a stopping condition is 
satisfied. 

"~ Pnaposition of move 
Master ~ 

\ X  Mo~e,o • " ) 
~ o perform 

Figure 8. Exchange of information between the master and the 
slave processes 
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Slave process 
(S.1) Wait for a move, given by the master pro- 

cess, perform it and update the taboo list. 
(S.2) Try all the moves among the partial 

neighbourhood; choose the best non taboo 
one and send it to the master process. Go 
back to (S.1). 

The work done by each slave process is very 
long, if it is compared to the work of the master 
process, and, in practice, the master process and 
one slave process run on the same processor. With 
this technique, we could work 1.92 and 1.99 times 
faster with 2 processors than with only one, for 
problems of 10 machines and respectively 10 and 
40 jobs. 

For our experiments of parallelization, we used 
two 32-bits transputers (one T414 and one T800 
which has the same integer calculation power). In 
very few words, a transputer is a microprocessor 
equipped with 4 bidirectional communication 
links, especially designed to create multiprocessor 
networks with distributed memory (MIMD ma- 
chines); the synchronizations between processors 
are made by the messages. Readers are referred to 
[5] for more details. Figure 9 represents the mean 
evolution of the makespan as a function of CPU 
time for 100 problems, 10 jobs and 10 machines. 
This evolution is given for: 

(1) The sequential algorithm, run on a T414 
transputer. 

(2) The sequential algorithm, programmed in 
Pascal and run on a Vax 8600. 

(3) The parallel algorithm, run on two trans- 
puters (T414 and T800). 

It is interesting to mention that two transputers 
have a calculation power comparable with a mini- 
computer, for well parallelizable algorithms. 

7. Conclusions 

In this paper, we have first presented the em- 
pirical profile of randomly generated instances of 
the flow shop problem; then, we have shown that 
NEH was the best heuristics among the classical 
ones. A new method permitted us to reduce its 
complexity to O(n2m). 

The problem may be solved efficiently by a 
taboo search technique, and we can get better 
solutions than NEH. The optimality of the solu- 
tions cannot be proved, but we found every time 
the optimal solution of the problems for which the 
exact solution was known, if we allowed sufficient 
CPU time. 

Such a technique is very flexible and more 
general flow shop problems for which the already 
existing heuristics are not designed may be treated 
without great changes (set-up, processing times 
not f ixed. . . ) .  However, we have remarked that 
flow shop problems with ordering that can vary 
on each machine cannot be treated with exactly 
the same taboo search technique; some refine- 
ments have to be introduced. 

Unfortunately, taboo search needs great calcu- 
lation times; in order to reduce them, we have 
presented two methods of parallelization that can 
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Figure 9. Evolution of the makespan function of the CPU time of several machines 
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be simultaneously applied. These methods may 
lead to a parallelization with O(n) processors. 
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