
European Journal of Operational Research 47 (1990) 65-74 65
North-Holland

Theory and Methodology

Some efficient heuristic methods
for the flow shop sequencing problem

E. T A I L L A R D
Department of Mathematics, Ecole polytechnique f~dbrale de Lausanne, 1015 Lausanne, Switzerland

Abstract: In this paper the best heuristic methods known up to now are compared to solve the flow shop
sequencing problem and we improve the complexity of the best one. Next, this problem is applied to taboo
search, a new technique to solve combinatorial optimization problems, and computational experiments are
reported. Finally a parallel taboo search algorithm is presented and experimental results show that this
heuristic allows very good speed-up.

Keyworfls: Flow shop, taboo search techniques, parallel algorithm, combinatorial optimization

1. Introduction

First, we try to answer the question: "What is
the problem?". Although many researchers have
been working on the flow shop sequencing prob-
lem for many years, we found nowhere any results
about the distribution of the objective function
and the distribution of the optima of this function.
In effect, such an approach gives an intuitive idea
about the problem and is important to allow the
reader to judge the quahty of heuristic methods
used for this problem.

Then we compare the classical heuristics and
improve the complexity of the best one. But this
one does not give very good solutions on average
(less than one or two percent above the optimal
solution). So we propose a heuristics improving
the mean quality of solutions when running longer,
based on taboo search technique. As this tech-
nique has been recently developed, we do not only
give the best implementation we found, but some
variants of this method too.

Received November 1988; revised May 1989

Finally, we propose two parallel versions of
taboo search, in order to reduce the unavoidable
expansive calculation times needed by this method.

2. The flow shop sequencing problem

The flow shop sequencing problem is a produc-
tion planning problem: n jobs (items, tasks . . .)
have to be processed in the same sequence on m
machines; the processing time of job i on machine
j is given by t~j (i = 1 n; j = 1 m). These
times are fixed, non negative and some of them
may be zero if some job is not processed on a
machine.

The problem consists of minimizing the time
between the beginning of the execution of the first
job on the first machine and the completion of the
execution of the last job on the last machine; this
time is called makespan. For this problem the
following assumptions are made:

- Every job has to be processed at most once
on machine 1, 2 m (in this order).

- Every machine processes only one job at a
time.

0377-2217/90/$3.50 © 1990 - Elsevier Science Publishers B.V. (North-Holland)

66 E. Taillard / Heuristic methods for the flow shop sequencing problem

0.06-

0.05

~ 0.04

~'~ 0.03'

:~ 0.02,

~ O.Ol

0.00
1.10 1.20 1.30 1.40 1.50

Relative makespan (opt = 1)
Figure 1. Empirical distribution of the makespans

i

1.60

- Every job is processed at most on one ma-
chine at a time.

- The operations are not preemptable.
- The set-up times of the operations are in-

cluded in the processing time and do not
depend on the sequence.

- The operating sequences of the jobs are the
same on every machine and the common
sequence has to be determined.

This problem is NP-hard and can be solved
exactly only for small sizes [2]. It consists of
finding a sequence o that minimizes the makespan
M(a) . So the number of possible schedules is n!

2.1. Some observations on small problems

First we give in Figure 1 the distribution of all
the possible makespans obtained by complete enu-

meration of 500 problems with 9 jobs and 10
machines. This distribution is given relatively to
the optimal solution. The processing times were
randomly uniformly generated (integers between 1
and 100). We choose this problem size because it
is possible to calculate M (a) for every solution o
in a reasonable calculation time.

We can observe that the distribution is not
symmetrical. Less than 0.02% of the M(o) are
between M(oopt) and 1.01 • M(oopt) (where Oop t is
an optimal schedule). So finding a solution at 1%
above the optimal one is generally very hard, but a
random solution is in mean only at 20% above the
optimum. Then we give in Figure 2 the distribu-
tion of the optimal makespans M(oopt) for these
problems.

This distribution seems to be almost symmetri-
cal and its range (for these 500 problems) is con-

70

60

50

.~4o

:~ 30

20

10

0
840 860 880 900 920 940 960 980 100010201040106010801100112011401160118012001220

Makespan

Figure 2. Distribution of the optimal makcspans

E. Taillard / Heuristic methods for the flow shop sequencing problem 67

tained in an interval of 20% around the mean. The
mean value of the makespan is 1016.1 and the
value of the standard deviation is 62.1. A X 2 test
does neither confirm nor refute that this distribu-
tion is Gaussian. So, speaking of the mean make-
span given by a heuristic seems to be a meaningful
measure.

provement of solutions is less than 1% and the
calculation time becomes as important as NEH's
one for the other heuristics.

4. An improvement of NEH heuristics

We will first recall the NEH algorithm.

3. Comparison of classical heuristics

Many heuristics have been proposed to solve
the flow shop problem; we compare in Table 1 the
quality of the solutions and the complexity of
some of them. One can find the descriptions of
these methods in [1] for Gupta, Johnson, Palmer
and CDS (algorithm of Campbell, Dudek and
Smith), in [3] for RA (rapid access procedure), and
in [8] for NEH (algorithm of Nawaz, Enscore and
Ham).

The complexity includes the computation of the
makespan. The quality of the solutions is given in
percent above the mean of the optima (for the
9-job 10-machine problems) or of the makespan
obtained after 1000 iterations of taboo heuristics.

NEH appears to be the best polynomial heuris-
tics in practice. The heuristics RA or Palmer may
also be useful when short computation times are
required. Other results about these heuristics are
discussed in [9]. Note that the new method de-
scribed below [7] permitted us to reduce the com-
plexity of the NEH Algorithm from o(nam) to
O(n2m).

Naturally, descent algorithms may be applied
to the solutions given by these heuristics, but one
cannot give the complexity anymore and the im-
provements are small: for NEH, the mean im-

Table 1
Comparison of the classical heuristics

Complexity Quality

Problems - 500 100 100 100 50 50
Jobs n 9 10 20 20 40 50
Machines m 10 10 10 20 10 10

Gupta n log(n)+nm 13.4 12.8 19.6 18.8 18.9 17.1
Johnson n log(n)+nm 10.9 11.8 16.7 16.8 17.3 16.3
RA n log(n)+ nm 8.5 9.1 12.5 13.4 13.5 11.2
Palmer n l o g (n) + n m 8.3 9.0 13.3 12.5 10.9 10.7
CDS nm 2 + mn log(n) 4.5 5.2 9.7 8.6 9.9 9.3
N E H n2m 2.1 2.2 3.9 3.8 2.6 2.1

NEH algorithm
(1) Order the n jobs by decreasing sums of

processing times on the machines.
(2) Take the first two jobs and schedule them

in order to minimize the partial makespan as if
there were only these two jobs.

(3) F o r k = 3 t o n do:
(4) Insert the k-th job at the place, among the

k possible ones, which minimizes the partial
makespan.

The complexity of step (1) is O(n log(n)); that
of step (2) is O(rn). In order to calculate one
partial makespan in step (4) one needs O(km)
operations. However, it is possible to calculate the
k makespans of this step in O(km):

Algorithm
Determining M,, the makespan after insertion

of job k at the i-th place.
(1) Compute the earliest completion time e~j of

the i-th job on the j- th machine; the starting time
of the first job on the first machine is 0 (see Figure
3(a)),

eoj = O, eio = O,

e i j = max{ei.~_l, ei-l , j } + t i j

(i = 1 k - l) (j = l m).

(2) Compute the tail q~j, i.e. the duration be-
tween the starting time of the i-th job on the j- th
machine and the end of the operations (Figure
3(b)),

qkj=O, q~,m÷l =O,

q~j = max(qi,j+l, qi+l,j } + tij

(i = k - 1 ,1) (j = m 1).

(3) Compute the earliest relative completion
time f/j on the j-th machine of job k inserted at

68 E. Taillard / Heuristic methods for the flow shop sequencing problem

e21 5. Taboo search techniques

- I ' 1 2 1 3 1 4

7-r-] I 2 I

e 22

[a)

3 [4]

q31
Dt

q32

'111

-I 1

K
g =

f31 q31

I 2 c)

f32 q32
Time

Figure 3. Illustration of the algorithm: Insertion of job 5 at the
third place

the i-th position (Figure 3(c)),

L0 -- 0,

f/j = max{ f~ j_ l , ei-l , j} + tkj

(i = 1 , . . . , k) (j = l m) .

(4) The value of the partial makespan M i when
adding job k at the i-th position is

n i = max) (f i j + qij)

(i = 1 , . . . , k) (j = l m) .

All these steps can be executed in time O(km).
Consequently, step (4) of the N E H algorithm has
a complexity of O(km). We conclude that the
N E H algorithms runs in time O(nEm).

Let us briefly describe taboo search techniques,
before presenting how they can be applied to the
flow shop problem; this technique is exposed in
[4]. An application to the flow shop problem is
proposed in [9].

Taboo search may be useful to find a good, or
possibly optimal solution of problems which are
of the type

minimize c (x)

subject to x ~ X.

Where c (x) is any function of a discrete varia-
ble x, and X is the set of feasible solutions. A step
of taboo search starts with the current feasible
solution x ~ X to which is applied a function
m E M (x) that transforms x into x ' , a new feasi-
ble solution (x ' = m(x)) . This transformation is
called a move, and (x ' : x ' = m (x) ; x, x ' ~ X;
m ~ M(x)} is called the neighbourhood of x.

In order to avoid as much as possible cycling,
an element t is associated with m and x; this
element defines a set of moves that are taboo
(forbidden) now; it is stored in a set T called
taboo list. In particular t forbids to apply m ' to x '
which would transform x ' back to x; but t may
forbid other moves too. The elements of T define
all taboo moves that cannot be applied to the
current solution; in practice, the size of T cannot
increase indefinitely and has to be bounded by a
parameter s, called taboo list size. If I T I = s,
before adding t to T, one must remove an ele-
ment, generally the oldest one.

An application of taboo search is characterized
by:

(1) The set M (x) of moves applicable to a
feasible solution x (neighbourhood).

(2) The type of the elements of the set T which
define the taboo moves (taboo list).

(3) The size s of the set T (taboo list size).
(4) A stopping condition.
The generic procedure of taboo search tech-

niques is:
(0) Start with any feasible solution x0, an

empty taboo list T. Let x* = x 0, c* = C(Xo) and
k = 0. (x* is the best solution found up to now
and c* the value of the objective function for this
solution.)

(1) In M(Xk) choose m, a move transforming
x k that minimizes c (m (x k)) and that is not for-

E. Taillard / Heuristic methods for the flow shop sequencing problem 6 9

bidden by the elements of T. The move can be
chosen by complete or partial examination of

M(Xk) . Let Xk+ 1 = m(Xk).
(2) If C(Xk+1)< C*, let c * = c(xk+ 1) and x*

-~- X k + 1 .

(3) If IT I = s remove the oldest element of T;
add the element t defined by m and xk+ 1. Incre-
ment k by 1.

(4) Go back to (1) if the stopping condition
(optimum reached, k larger than a fixed l imi t . . .)
is not satisfied.

5.1. Applications of taboo search techniques

The objective function of our flow shop prob-
lem is the makespan and the set of feasible solu-
tions is any permutation o of { 1 n):

minimize M (o)

subject to o: permutations of 1 n.

For this problem, the neighbourhood may be
defined in several ways:

(1) Exchange two adjacent jobs placed at the i-th
and the (i + 1)-th position. A move m is entirely
defined by i. The size of the neighbourhood is
I M (o) I = n - 1. Our experiments show that these

moves are bad, both for quality of schedules and
global calculation time.

(2) Exchange the jobs placed at the i-th and the
k-th position. A move m is entirely defined by i
and k. The size of the neighbourhood is l n (n - 1).
The evaluation of all the makespans o ' , neighbour
of o, can be executed in time O(n3m). Reference
[9] proposes this kind of neighbourhood. Our ex-
periments show that such a neighbourhood is not
better than the next one to find good schedules
with taboo search techniques; furthermore, the
complexity of each single step is higher.

(3) Remove the job placed at the i-th position
and put it at the k-th position. A move m is en-
tirely defined by i and k. The size I M(o) [of this
neighbourhood is (n - 1) 2. The evaluation of all
the makespans can be executed in time O(n2m),
using the insertion algorithm described in the NEH
heuristics. We choose this type of neighbourhood
because of the efficiency of the moves, both for
quality and computation times

Next we have to define how to examine the
neighbourhood before choosing a move leading to
the next step:

(a) Examine the neighbours and take the first
which improves the current solution. If there is no
move that improves the solution (or if all improv-
ing moves are taboo) then one has to examine the
whole neighbourhood. For this method, the mean
calculation time of a step is less than the one
needed for method (c). But this time is not con-
stant, and the steps are not as good. [9] proposes
this examination.

(b) Examine fixed number of moves that are
not taboo, randomly generated. This method is
useful for problems for which the size of the
neighbourhood is very large: but our experiments
have shown that it does not suit for middle-size
flow shop problems.

(c) Examine the entire neighbourhood and take
the best move that is not taboo. This method
needs more (but constant) calculation time for
each step than partial enumeration, but the moves
are better. If one wants to examine the neighbour-
hood in parallel, this method allows to balance
very well the work between the processors.

The taboo fist may also be of several types:
(i) Prevent a job from returning to a fixed

place before one has made s steps (s: length of the
taboo list). In this case, s is a sensitive parameter;
[9] proposes to fix it at the value of 7.

(ii) Prevent the new makespan from coming
back to a makespan that was already obtained in
the s previous steps. If s varies in an acyclic way
(by example if s simply grows) then cycling is well
prevented.

These two taboo lists are good but the last one
avoids the use of another parameter called aspira-
tion level (i.e. a taboo move is allowed if it im-
proves the objective function of more than a value,
the aspiration level, which has to be defined and
depends on m and o). We have chosen the latter
type of taboo list.

5.2. Performances of taboo search

In order to evaluate the performances of taboo
search, we have first randomly generated 200 flow
shop problems of 9 jobs and 10 machines, for
which the optimal makespan was known. Then we
have solved these problems 100 times with taboo
search, starting from various initial solutions. We
have done the same with 8 problems given by [2]
of various sizes (11 jobs × 5 machines, 13 x 4,

70 E. Taillard / Heuristic methods for the flow shop sequencing problem

1.00"

0.90"

0.80

0.70

0.60
1

0.50 -

0.40'

0.30

0.20'

0.10'

0.00
.01

solution

. i i i ,

.1 1 10 100

CPU Time (See. V a x 8 6 0 0)

Figure 4. CPU time to find the optimal makespan (9 jobs, 10 machines)

12 × 5 , 1 4 x 4 , 1 0 × 6 , 8 x 9 , 7 x 7 and 8 × 8). We
can make the following remarks:

(1) There are a few problems that are very easy
to solve (always less than 15 iterations) and a few
ones that are much more difficult (sometimes more
than 800 iterations).

(2) For a fixed problem, the number of itera-
tions (steps or moves) can be very variable. (From
10 to 800 iterations, depending on the starting
point.)

In Figure 4 we give the empirical distribution
of the CPU time required by a resolution on a Vax

8600. This distribution is tabulated for two types
of neighbourhood examination:

(1) Best move. All the neighbours are evaluated
and the best becomes the next current solution.

(2) First move improving the current solution.

The examination of the neighbours is stopped
when a non taboo move leads to a better solution
than the current one.

The second rule of examination is slightly bet-
ter than the first one. The mean resolution time is
546 ms. for the first one versus 675 ms. for the
second one but the mean number of iterations is

°4..a

1.20"

1.15

1.10

1.05

1.00

. I0 Jobs

\\\ . 0,o s

" ~ ~ 30 Jobs

,

" N". . \ 5OJobs

10 100

Number of iterations

Figure 5. Evolution of the makespan: 10 machines

. ." 7 , . - . . ;

1000

E. Taillard / Heuristic methods for the flow shop sequencing problem 71

1.20

1.15

1.10

1,05

1.00

.............. 5 Machines

~ . ~ X 10 Machines

" ~ N ~ ~ 20 Machines

. i i i

10 100 1000

Number of iterations
Figure 6. Evolution of the makespan: 20 jobs

higher: 29 versus 24. However, these measures
may be meaningless, because of the extent be-
tween the extremities of the distribution's curve.

However, for practical problems, one cannot
know, and even characterize the optimal make-
span; so determining a good stopping condition of
taboo search is not trivial. We have tried three
stopping conditions:

(1) Stop if the number of iterations is greater
than k, an a priori fixed constant. The taboo
search completes in time O(kn2m) with this stop-
ping condition. In Figure 5 and 6, the evolution of
the mean makespan is plotted as a function of the
number of steps of taboo search. There were 100
problems of the following size: 10 jobs × 10 ma-
chines, 20 × 5, 20 × 10 and 20 X 20, and 50 prob-
lems of 30 x 10, 40 x 10 and 50 x 10. All these
problems were randomly generated, the processing
times of the jobs on the machines being uniformly
distributed integers between 1 and 100. The taboo
list size was growing from 7 (for the first itera-
tions) to 100 (for the last ones). The curve of the
evolution of the makespan may be interpreted as
follows: for the first iterations (< n), taboo search
is the same as an improving heuristics which goes
into a local minimum. Then taboo search goes
from a local minimum to another one and the
improvements become less and less frequent (in an
over exponential way).

(2) Stop if the number of iterations without
improving the best solution is greater than a con-

stant a priori fixed. We compare in Figure 7 the
evolution of the makespan as a function of the
total number of iterations (stopping condition 1)
and this evolution, function of the number of
iterations without improving the best solution. We
can see that this second stopping condition pro-
vides a more regular progression of the mean
makespan. In fact this curve is more or less the
same than the first one but without the pre-
hminary way down to a local minimum; it is
important to mention that both evolutions of
makespan, function of CPU time provide the same
curve, whichever stopping condition is chosen.
The duration of taboo search, for this second
stopping condition depends on the problem and
on the initial solution.

(3) We have seen that the number of iterations
needed to find the optimal solution of the flow
shop problem (and other ones too, see [6]) de-
pends strongly on the initial solution; what is
more, one continues working even if one has the
optimal solution, because one cannot characterize
it. In order to reduce useless work, the following
algorithm may provide good results: Let p be a
fixed number of processes; each of them executes
independently a taboo search with a different ini-
tial solution. After a while (which has to be de-
fined), the processes have to be stopped and their
respective best solutions compared. If two or more
of them are the best of all, then the algorithm
ends; otherwise, the processes continue their taboo

72 E. Taillard / Heuristic methods for the flow shop sequencing problem

B

1.15] ~

Total number of iterations

1.10' ~ Number of iterations without improvement

1.05

1 . 0 0 i i i
10 100 1000

Iteration
Figure 7. Stopping condition: Evolution of the makespan (20 jobs, 10 machines)

searches from where they are and so on. Some
simulations (200 problems, 10 jobs × 10 machines
and p = 4 processes) of this algorithm on a
sequential machine show us that the mean of the
total CPU time is more or less the same as with
the previous algorithm, with stopping condition
(2). The longer the time between comparisons is,
the better the solutions are. For this algorithm, the
solutions (schedules) may not be the same, even if
the makespans are equal. This algorithm may not
end (because of cycling), consequently another
stopping condition has to be added, for example:
stop if the number of comparisons without impro-
ving the best makespan is greater than a constant.

6. Parallelization of taboo search

The third stopping condition leads to a trivial
parallelization; it is well adapted for small num-
bers of processes (typically from 3 to 6) but there
is a limit to the speed-up due to the way down to
the first local minimum; and at this limit, the
algorithm becomes a simple improving heuristics
which needs no taboo list at all!

Another approach of parallelization is the fol-
lowing: we have remarked that the time needed to
evaluate the value of the makespans of the
neighbourhood is almost the entire calculation
time; in order to speed up the algorithm, one has

to reduce this calculation time. This may be real-
ized by parallelizing the search of the best
neighbour: each processor inspects only a fraction
of the neighbourhood. Then, the best allowed
moves are compared and the best of all is chosen
(see Figure 8). In order to do a step of taboo
search, the algorithm then becomes (for processes
without common memory):

(Assume that the master process has a current
move and that each slave process has the same
current solution, taboo list, and so on, but a
different subset of neighbours to examine.)

Master process
(M.1) Send to every slave process the current

move.
(M.2) Wait the best moves of each slave process

and choose among them the best of all. Go
back to (M.1) unless a stopping condition is
satisfied.

"~ Pnaposition of move
Master ~

\ X Mo~e,o • ")
~ o perform

Figure 8. Exchange of information between the master and the
slave processes

E. Taillard / Heuristic methods for the flow shop sequencing problem 73

Slave process
(S.1) Wait for a move, given by the master pro-

cess, perform it and update the taboo list.
(S.2) Try all the moves among the partial

neighbourhood; choose the best non taboo
one and send it to the master process. Go
back to (S.1).

The work done by each slave process is very
long, if it is compared to the work of the master
process, and, in practice, the master process and
one slave process run on the same processor. With
this technique, we could work 1.92 and 1.99 times
faster with 2 processors than with only one, for
problems of 10 machines and respectively 10 and
40 jobs.

For our experiments of parallelization, we used
two 32-bits transputers (one T414 and one T800
which has the same integer calculation power). In
very few words, a transputer is a microprocessor
equipped with 4 bidirectional communication
links, especially designed to create multiprocessor
networks with distributed memory (MIMD ma-
chines); the synchronizations between processors
are made by the messages. Readers are referred to
[5] for more details. Figure 9 represents the mean
evolution of the makespan as a function of CPU
time for 100 problems, 10 jobs and 10 machines.
This evolution is given for:

(1) The sequential algorithm, run on a T414
transputer.

(2) The sequential algorithm, programmed in
Pascal and run on a Vax 8600.

(3) The parallel algorithm, run on two trans-
puters (T414 and T800).

It is interesting to mention that two transputers
have a calculation power comparable with a mini-
computer, for well parallelizable algorithms.

7. Conclusions

In this paper, we have first presented the em-
pirical profile of randomly generated instances of
the flow shop problem; then, we have shown that
NEH was the best heuristics among the classical
ones. A new method permitted us to reduce its
complexity to O(n2m).

The problem may be solved efficiently by a
taboo search technique, and we can get better
solutions than NEH. The optimality of the solu-
tions cannot be proved, but we found every time
the optimal solution of the problems for which the
exact solution was known, if we allowed sufficient
CPU time.

Such a technique is very flexible and more
general flow shop problems for which the already
existing heuristics are not designed may be treated
without great changes (set-up, processing times
not f ixed. . .) . However, we have remarked that
flow shop problems with ordering that can vary
on each machine cannot be treated with exactly
the same taboo search technique; some refine-
ments have to be introduced.

Unfortunately, taboo search needs great calcu-
lation times; in order to reduce them, we have
presented two methods of parallelization that can

1.05 ' \ \

1.04'

1 Transputer
1.o3.

..... Vax 8600

1.02 2 Transputers

1 . 0 1

1 . 0 0 , -'~-.
.1 1 10

CPU Time (Seconds)

Figure 9. Evolution of the makespan function of the CPU time of several machines

74 E. Taillard / Heuristic methods for the flow shop sequencing problem

be simultaneously applied. These methods may
lead to a parallelization with O(n) processors.

References

[1] Baker, K.R., Introduction to Sequencing and Schedufing,
Wiley, New York, 1974.

[2] Carlier, J., "Probirmes d'ordonnancement h contraintes de
ressources: algorithmes et complexitr", M&hodologie et
architecture des systrmes informatiques, Institut de Pro-
grammation, Universit6 Pierre et Marie Curie, Paris, 1984.

[3] Dannenbring, D.G., "An evaluation of flow shop sequenc-
ing heuristics", Management Science 23/11 (1977) 1174
-1182.

[4] Glover, F., "Tabu search - Part I", ORSA Journal on
Computing 1/3 (1989) 190-206.

[5] INMOS Limited, IMS T414 Transputer, Engineering Data,
INMOS Limited, 1000 Aztec West, Aldmondsbury, Bristol
BS 124 SQ.

[6] Mohr, Th., "Parallel tabu search algorithms for the graph
coloring problem", OR working paper no 88/11, Ecole
Polytechnique Frdrrale de Lausanne, Drpartement de
Mathrmatiques, Lausanne, 1988.

[7] Mohr, Th., Private communication.
[8] Nawaz, M., Enscore Jr., E., and Ham, I., "A heuristic

algorithm for the m-machine, n-job flow-shop sequencing
problem", OMEGA, The International Journal of Manage-
ment Science 11/1 (1983) 91-95.

[9] Widmer, M., and Hertz, A., "A new heuristic method for
the flow shop sequencing problem", European Journal of
Operational Research 41 (1989) 186-193.

