

Apresentação no âmbito da disciplina Seminário de Modelação

Métodos de Previsão de Sinistros

Orientador: Margarida Brito - FCUP

Coorientador: Maria do Carmo Guedes - CMUP, Luís Maranhão - AXA

Ana Pinto (up080301013@alunos.fc.up.pt)

Índice

- Contextualização
 - ✓ Solvência I vs Solvência II
 - ✓ Solvência II
- Objetivos
- Indemnizações
- ☐ Triângulo run-off
- Metodologia
 - ✓ Chain Ladder
 - ✓ Mack
 - Exemplo Numérico

2/38

Principais Obrigações

Angariação de contratos de seguros

Regularização dos pagamentos de indemnizações devido à ocorrência de sinistros

Conceito

 Capacidade da seguradora em honrar todos os seus compromissos financeiros futuros

Fatores que influenciam a solvência

- Flutuação de sinistros
- Insolvência do ressegurador
- Reservas mal calculadas
- Gestão ineficiente
- Riscos associados

- Recentes desenvolvimentos em torno do mercado europeu único
- •Ocorrência de diversos escândalos financeiros
- Volatilidade dos mercados financeiros

CRIAÇÃO de NOVAS exigências regulamentares

Objetivo principal: Estabelecer elevados níveis de proteção ao consumidor

Solvência I

Atual Sistema

Baseia-se apenas em fatores quantitativos – não é sensível aos vários fatores de risco que influenciam as empresas

Solvência II

Novo Sistema

Ainda em desenvolvimento, é um projeto de revisão das garantias financeiras para a atividade seguradora

Contextualização

➤ Projeto estruturante de maior importância atualmente em curso sob o ponto de vista da regulação do setor segurador

Objetivo principal

Estabelecer um sistema de solvência coerente que capte adequadamente os riscos assumidos por uma companhia de seguros

- Está a desenvolver uma fórmula standard de determinação dos requisitos de capital das companhias
- ➤ Dá a oportunidade às próprias companhias de seguros de definirem o seu modelo interno de solvência

Previsão da reserva

Visão a <u>CURTO PRAZO</u>(1)

Importância da visão a curto prazo:

- Se a curto prazo uma seguradora não tem um comportamento adequado, então não podemos pensar a longo prazo
- As decisões de gestão, os fechos financeiros, os preços de produtos de seguros, o ajuste nos prémios, ... \rightarrow pensados no final de cada ano
- Relatórios financeiros anuais desempenho de uma companhia de seguros a curto prazo → de interesse e importância para os reguladores, clientes, investidores, agências de rating, ...
- A consistência do desempenho de uma seguradora a curto prazo acabará por ter um impacto na força financeira e na reputação da companhia no mercado segurador

(1) Atualmente é calculada a longo prazo

Contextualização

- Dá uma especial importância a matérias como:
 - ✓ a governação
 - ✓ os mecanismos de controlo interno
 - ✓ sistemas de gestão de riscos
 - √ reforço da transparência e da disciplina de mercado
- Assegura uma maior convergência nos processos de supervisão a nível europeu

Objetivo

Reforço da proteção dos tomadores e beneficiários de contratos de seguros

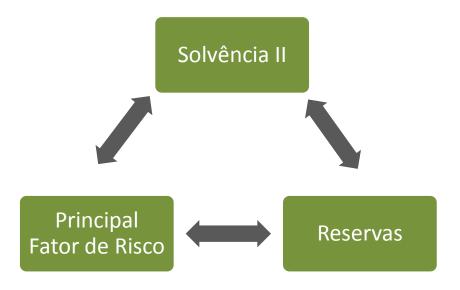
Foi estruturado tendo em conta três objetivos estratégicos:

- Pilar I
 - Requisitos Quantitativos de Capital
- Pilar II
 - Processo de Revisão da Supervisão
- Pilar III
 - Conduta de Mercado

Objetivo

Determinar o montante de capital necessário para cada companhia de seguros, utilizando medidas sensíveis aos riscos assumidos por parte das seguradoras

Avaliação dos ativos, das provisões técnicas e do capital


• Efeito das estratégias de atenuação do risco - resseguro

- Processo de supervisão que irá verificar se o capital exigido no pilar I é adequado
- > Caso se verifiquem determinadas situações de risco, este pilar permite que sejam mais facilmente detetadas
- > O ajuste no requisito de capital permite traduzir com maior veracidade o perfil de risco de uma companhia específica
- Inclui medidas mais qualitativas e princípios relativos ao processo de supervisão

Pilar I – Quantitativo Pilar II – Supervisão Pilar III – Divulgação

Visa estabelecer a informação que as entidades e a supervisão deverão divulgar, quer para o público em geral, quer para efeitos de cooperação entre supervisores, no sentido de aumentar a transparência e disciplina de mercado

Objetivos

- Pesquisa e implementação de métodos adequados num contexto real
- Previsão do comportamento das reservas
- Estimação da volatilidade a curto prazo

Pagamento de indemnizações

- A duração total destes atrasos varia de alguns dias até vários anos
- O tempo total do atraso é desconhecido
- O valor total da indemnização é desconhecida

Indemnizações

- Necessidade de prever o valor das reservas para liquidar indemnizações de anos anteriores
- ☐ A previsão de reservas consiste em várias componentes:
 - ✓ IBNR reservas referentes a sinistros que ocorreram, mas só foram reportadas após a data de contabilidade
 - ✓ **IBNER** reservas referentes a sinistros que foram reportados, mas cuja indemnização só irá ser liquidada após a data de contabilidade

Triângulo run-off

• Consiste em colocar os pagamentos de acordo com o ano em que o sinistro ocorreu e o ano em que o pagamento foi liquidado

Accident						
Year	0	1	2	3	4	
2007	344	828	502	470	361	
2008	310	856	632	559		Dos acide
2009	396	1084	745			em 2
2010	380	1217				correspon
2011	453					indemniza

Dos acidentes ocorridos em 2008, 632 corresponde ao valor das indemnizações que foram pagas em 2010

- Os sinistros ocorridos no ano de 2007 têm de ser pagos através dos prémios arrecadados em 2007
- Podemos esperar que o pagamentos das indemnizações futuras seguem um padrão semelhante às indemnizações de 2007-2011

• **Objetivo**: Prever as indemnizações que serão pagas, ou arquivadas, nos futuros anos civis – completar o triângulo vazio

Accident		D	evelopment Ye	ar		
Year	0	1	2	3	4	
2007	344	828	502	470	361	
2008	310	856	632	559		
2009	396	1084	745			
2010	380	1217				
2011	453					

Total das indemnizações que terão de ser pagas no futuro com os prémios que foram coletados no período 2007-2011

Métodos de previsão

Métodos Determinísticos

- Chain Ladder
- Grossing Up
- Link Ratio

Métodos Estocásticos

- Mack
- Bootstrap
- OdPoisson

- Método mais usual para o cálculo das reservas
- Pressupostos:
 - Frequência de sinistros pode variar ao longo do tempo
 - Independência entre os diversos anos de acidente
 - Assume que os fatores de desenvolvimento s\u00e3o constantes ao longo dos anos de ocorr\u00e9ncia dos sinistros

- \square C_{ik} representa os pagamentos acumulados de indemnizações relativos a sinistros que ocorreram no ano de acidente $i,\ 1\leq i\leq I$, e que foram liquidados ou reportados até ao ano de desenvolvimento $k,\ 1\leq k\leq I$
- \square O Método Chain Ladder consiste em estimar f_k através de:

$$\hat{f}_k = \sum_{j=1}^{l-k} C_{j,k+1} / \sum_{j=1}^{l-k} C_{jk}$$
 $1 \le k \le l-1$

Fator de desenvolvimento: Razão entre os pagamentos acumulados até ao final do ano de desenvolvimento k+1 e os pagamentos acumulados até ao final do ano de desenvolvimento k

Chain Ladder Mack Exemplo Numérico

<u>Triângulo run-off</u> (Pagamentos Acumulados)

i	C _{i1}	C _{i2}	C _{i3}	C _{i4}	C _{i5}	C _{i6}	C _{i7}	C _{i8}	C _{i9}	C _{i10}
1	357848	1124788	1735330	2218270	2745596	3319994	3466336	3606286	3833515	3901463
2	352118	1236139	2170033	3353322	3799067	4120063	4647867	4914039	5339085	
3	290507	1292306	2218525	3235179	3985995	4132918	4628910	4909315		
4	310608	1418858	2195047	3757447	4029929	4381982	4588268			
5	443160	1136350	2128333	2897821	3402672	3873311				
6	396132	1333217	2180715	2985752	3691712					
7	440832	1288463	2419861	3483130						
8	359480	1421128	2864498							
9	376686	1363294								
10	344014									

Fator de desenvolvimento											
k	k 1 2 3 4 5 6 7 8 9										
\hat{f}_k	3.49	1.75	1.46	1.174	1.104	1.086	1.054	1.077	1.018		
	$\frac{C_{15} + C_{25} + C_{35} + C_{45} + C_{55} + C_{65}}{C_{14} + C_{24} + C_{34} + C_{44} + C_{54} + C_{64}} \qquad \frac{C_{19} + C_{29}}{C_{18} + C_{28}}$										

Objetivo: estimar o montante de indemnizações total (ultimate claims amount) para cada ano de acidente i - C_{iI} e estimar a reserva (outstanding claims reserve) R_i para o ano de acidente i=2,...,I:

$$\hat{C}_{iI} = C_{i,I+1-i}\hat{f}_{I+1-i} \dots \hat{f}_{I-1}$$

$$\hat{C}_{iI} = C_{i,I+1-i}\hat{f}_{I+1-i}\dots\hat{f}_{I-1}$$

$$\hat{R}_i = \hat{C}_{iI} - C_{i,I+1-i} = C_{i,I+1-i}(\hat{f}_{I+1-i}\dots\hat{f}_{I-1} - 1)$$

i	C _{i1}	C _{i2}	C _{i3}	C _{i4}	C _{i5}	C _{i6}	C _{i7}	C _{i8}	C _{i9}	C _{i10}
1	357848	1124788	1735330	2218270	2745596	3319994	3466336	3606286	3833515	3901463
2	352118	1236139	2170033	3353322	3799067	4120063	4647867	4914039	5339085	\rightarrow
3	290507	1292306	2218525	3235179	3985995	4132918	4628910	4909315	→	\rightarrow
4	310608	1418858	2195047	3757447	4029929	4381982	4588268	→	→ -	\rightarrow
5	443160	1136350	2128333	2897821	3402672	3873311		→ -	→ -	\rightarrow
6	396132	1333217	2180715	2985752	3691712	→	→ -	→ -	→ -	\rightarrow
7	440832	1288463	2419861	3483130	\rightarrow	→	-	→ -	\rightarrow -	\rightarrow
8	359480	1421128	2864498	→ -	→ ·	→	→ -	→	→ -	\rightarrow
9	376686	1363294	→	→ ·	→	→	→ -	→ -	→ -	\rightarrow
10	344014	→	→ ·	→ ·	—	→	→	-	-	→
		\hat{f}_1	\hat{f}_2	\hat{f}_3	$\hat{f_4}$	\hat{f}_{5}	\hat{f}_6	\hat{f}_7	\hat{f}_8	\hat{f}_{9}

Ano de	Pagamentos	Indemnizações	Reserva
acidente	acumulados	finais	
1	3901463	3901463	0
2	5339085	5435189	96104
3	4909315	5382504	473189
4	4588268	5302160	713892
5	3873311	4860896	987585
6	3691712	5114825	1423113
7	3483130	5665533	2182403
8	2864498	6802561	3938063
9	1363294	5665673	4302379
10	344014	4989575	4645561
Total			18762289

$$\hat{R}_i = \hat{C}_{iI} - C_{i,I+1-i}$$

- \square C_{ik} representa os pagamentos acumulados de indemnizações relativos a sinistros que ocorreram no ano de acidente $i,\ 1\leq i\leq I$, e que foram liquidados ou reportados até ao ano de desenvolvimento $k,\ 1\leq k\leq I$
- \square Consideremos C_{ik} uma variável aleatória em que temos uma observação se $i+k \le I+1 \rightarrow$ triângulo runoff
- Objetivo: estimar o montante de indemnizações total (*ultimate claims amount*) para cada ano de acidente i C_{iI} e estimar a reserva (*outstanding claims reserve*) $R_i = C_{iI} C_{i,I+1-i}$ para o ano de acidente i=2,...,I

 \square O Método consiste em estimar f_k através de:

$$\hat{f}_k = \sum_{j=1}^{l-k} C_{j,k+1} / \sum_{j=1}^{l-k} C_{jk}$$
 $1 \le k \le l-1$

□ e estimar o montante de indemnizações total (ultimate claims amount)

 C_{iI} através de:

$$\hat{C}_{iI} = C_{i,I+1-i}\hat{f}_{I+1-i} \dots \hat{f}_{I-1}$$

 \square ou equivalentemente, a reserva R_i através de:

$$\hat{R}_i = C_{i,I+1-i}(\hat{f}_{I+1-i} \dots \hat{f}_{I-1} - 1)$$

Pressupostos:

 \rightarrow Existem fatores de desenvolvimento $f_1, ..., f_{I-1} > 0$ em que

(1)
$$E(C_{i,k+1}|C_{i1},...,C_{ik}) = C_{ik}f_k$$
 $1 \le i \le I$ $1 \le k \le I-1$

 \rightarrow As variáveis C_{ik} de diferentes anos de acidente são independentes, ou seja:

(2)
$$\{C_{i1}, \dots, C_{iI}\}, \{\{C_{j1}, \dots, C_{jI}\}, i \neq j, \text{s\~ao} \text{ independentes}\}$$

 \rightarrow A Var($C_{i,k+1}/C_{ik}|C_{il}$,..., C_{ik}) deve ser inversamente proporcional a C_{ik} , ou equivalentemente:

(3)
$$Var(C_{i,k+1}|C_{i1},...,C_{ik}) = C_{ik}\sigma_k^2, 1 \le i \le I, 1 \le k \le I-1$$

com parâmetros desconhecidos $\,\sigma_k^2$, $1 \leq k \leq I-1$.

Metodologia

Chain Ladder

Mack

Exemplo Numérico

 \square Este método consiste em estimar σ_k^2 através de:

$$\hat{\sigma}_k^2 = rac{1}{I-k-1} \sum_{i=1}^{I-k} C_{ik} (rac{C_{i,k+1}}{C_{ik}} - \hat{f}_k)^2$$
 , $1 \leq k \leq I-2$

 \square Para σ_{I-1} temos:

 \checkmark Se $\hat{f}_{I-1}=1$ e o desenvolvimento das indemnizações terminar após I-1 anos: $\hat{\sigma}_{I-1}=0$

$$\checkmark \hat{\sigma}_{l-1} = \min (\hat{\sigma}_{l-2}^4 / \hat{\sigma}_{l-3}^2, \min (\hat{\sigma}_{l-3}^2, \hat{\sigma}_{l-2}^2))$$

Metodologia

Chain Ladder

Mack

Exemplo Numérico

<u>Triângulo run-off</u> (Pagamentos Acumulados)

i	C _{i1}	C _{i2}	C _{i3}	C _{i4}	C _{i5}	C _{i6}	C _{i7}	C _{i8}	C _{i9}	C _{i10}
1	357848	1124788	1735330	2218270	2745596	3319994	3466336	3606286	3833515	3901463
2	352118	1236139	2170033	3353322	3799067	4120063	4647867	4914039	5339085	
3	290507	1292306	2218525	3235179	3985995	4132918	4628910	4909315		
4	310608	1418858	2195047	3757447	4029929	4381982	4588268			
5	443160	1136350	2128333	2897821	3402672	3873311				
6	396132	1333217	2180715	2985752	3691712					
7	440832	1288463	2419861	3483130						
8	359480	1421128	2864498							
9	376686	1363294								
10	344014									

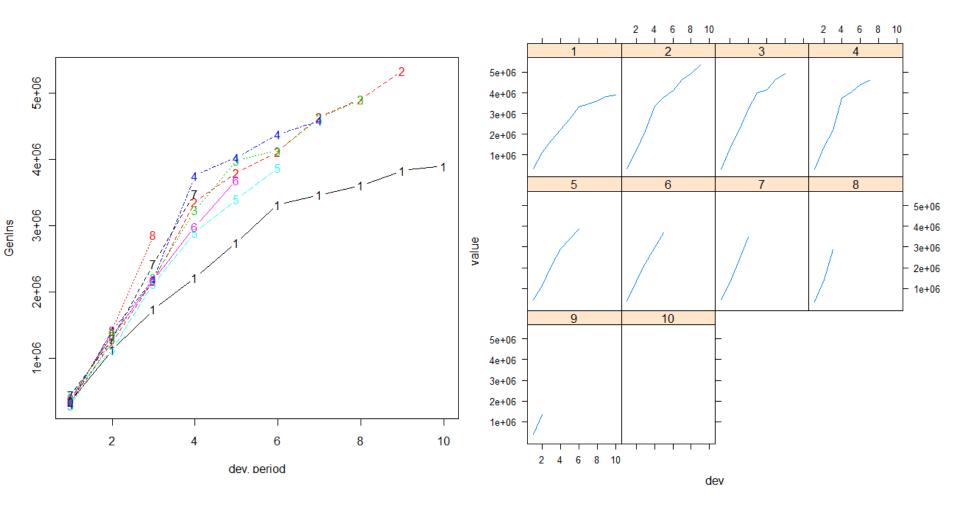
k	1	2	3	4	5	6	7	8	9
$\widehat{\sigma}_k^2/1000$	160	37.7	42.0	15.2	13.7	8.19	0.447	1.15	0.477

Sob as hipóteses (1), (2) e (3), o erro quadrático médio pode ser estimado por:

$$\widehat{mse(\hat{R}_i)} = \hat{C}_{iI}^2 \sum_{k=I+1-i}^{I-1} \frac{\hat{\sigma}_k^2}{\hat{f}_k^2} (\frac{1}{\hat{C}_{ik}} + \frac{1}{\sum_{j=1}^{I-k} C_{jk}})$$

onde $\hat{C}_{ik} = C_{i,I+1-i}\hat{f}_{I+1-i} \cdot ... \cdot \hat{f}_{k-1}$, k > I+1-i, são os valores estimados dos pagamentos futuros C_{ik} e $\hat{C}_{i,I+1-i} = C_{i,I+1-i}$.

Através do resultado anterior, o erro quadrático médio da reserva global pode ser estimada por:


$$\widehat{mse(\hat{R})} = \sum_{i=2}^{I} \{ \left(s.e.(\hat{R}_i) \right)^2 + \hat{C}_{iI} \left(\sum_{j=i+1}^{I} \hat{C}_{jI} \right) \sum_{k=I+1-i}^{I-1} \frac{2 \hat{\sigma}_k^2 / \hat{f}_k^2}{\sum_{n=1}^{I-k} C_{nk}} \}$$

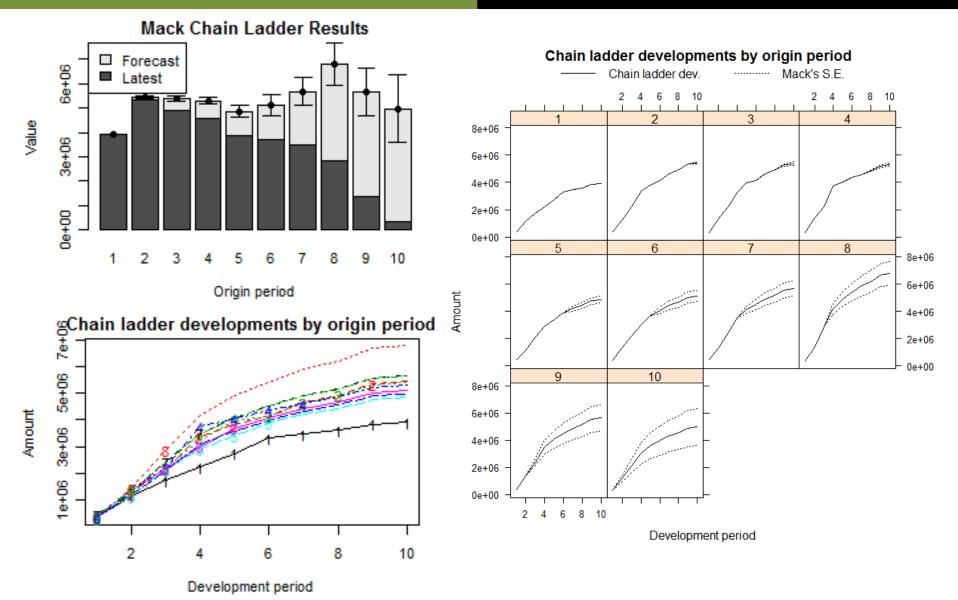
Erro Padrão em % de \hat{R}_i

Ano de acidente	Erro Padrão
i=2	80%
i=3	26%
i=4	19%
i=5	27%
i=6	29%
i=7	26%
i=8	22%
i=9	23%
i=10	29%
Total	13%

$$\widehat{mse(\hat{R}_{i})} = \hat{C}_{il}^{2} \sum_{k=l+1-i}^{l-1} \frac{\hat{\sigma}_{k}^{2}}{\hat{f}_{k}^{2}} (\frac{1}{\hat{C}_{ik}} + \frac{1}{\sum_{j=1}^{l-k} C_{jk}})$$

Exemplo Numérico

Chain Ladder Mack

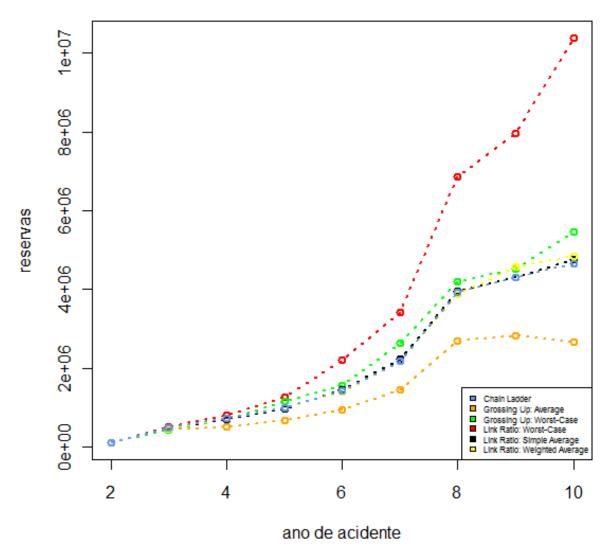

Exemplo Numérico

```
MackChainLadder(Triangle = GenIns, est.sigma = "Mack")
     Latest Dev.To.Date Ultimate
                                   IBNR
                                        Mack.S.E CV(IBNR)
1 3,901,463 1.0000 3,901,463
                                     0
                                              0
                                                    NaN
2 5,339,085 0.9826 5,433,719 94,634 75,535
                                                  0.798
               0.9127 5,378,826 469,511 121,699
3 4,909,315
                                                  0.259
4 4,588,268 0.8661 5,297,906 709,638 133,549
                                                  0.188
5 3,873,311
              0.7973 4,858,200 984,889 261,406
                                                  0.265
6 3,691,712
               0.7223 5,111,171 1,419,459 411,010
                                                  0.290
               0.6153 5,660,771 2,177,641 558,317
7 3,483,130
                                                  0.256
8 2,864,498
              0.4222 6,784,799 3,920,301 875,328
                                                  0.223
9 1,363,294 0.2416 5,642,266 4,278,972 971,258
                                                  0.227
10 344,014
               0.0692 4,969,825 4,625,811 1,363,155
                                                   0.295
                   Totals
Latest:
             34,358,090.00
Dev:
                     0.65
             53,038,945.61
Ultimate:
IBNR:
             18,680,855.61
Mack S.E.: 2,447,094.86
CV(IBNR): 0.130994795509936
```

Metodologia

Chain Ladder Mack

Exemplo Numérico



Metodologia

Chain Ladder Mack Exemplo Numérico

Ano de	Chain Ladder	Grossing Up Arabic method	Grossing Up Arabic method	Link Ratio worst-case	Link Ratio with simple	Link Ratio with
acidente		with averaging	worst-case	estimate	average	weighted
			estimate			average
2	96104	94545	94545	96104	96104	96104
3	473189	413013	424578	520387	461476	466385
4	713892	506411	682574	793770	697417	711182
5	987585	657407	1145882	1251079	968328	979948
6	1423113	941461	1554433	2215027	1436076	1402851
7	2182403	1455378	2642670	3413467	2232686	2187406
8	3938063	2680407	4183971	6846150	3958736	3864208
9	4302379	2810907	4525665	7954820	4306646	4569761
10	4645561	2647412	5467033	10397135	4758058	4843373
Total	18762289	12206941	20721351	33487939	18915527	19121218

Estimativa das reservas pelos diferentes métodos

Trabalho Futuro

- Implementação dos vários métodos
- Comparação dos métodos determinísticos e estocásticos
- Previsão do comportamento das reservas
- Estimação da volatilidade a curto prazo

Referências

- [1] KAAS, Rob; GOOVAERTS, Marc; Dhaene, Jan; DENUIT, Michel. *Modern Actuarial Risk Theory*: Using R, Springer
- [2] MACK, Thomas. (1993), Distribution-Free Calculation of the Standard Error of Chain Ladder Reserve Estimates. ASTIN BULLETIN, Vol. 23, No 2.
- [3] MACK, Thomas. (1999), The Standard Error of Chain Ladder Reserve Estimates: Recursive Calculation and Inclusion of a Tail Factor. ASTIN BULLETIN, Vol. 29, No. 2.
 - [4] http://www.isp.pt