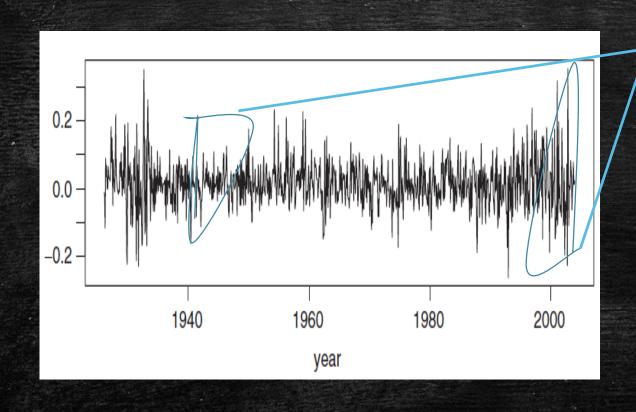
José Felix Mavungo Engenharia Matemática

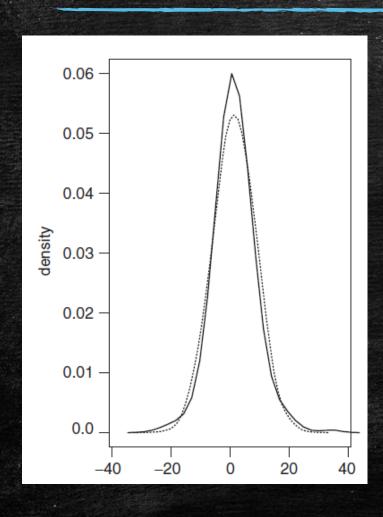

Constrained Nonlinear Programming for Volatility Estimation with GARCH Models

Orientadora: Maria Eduarda Silva Co-orientadora: Maria do Carmo Miranda Guedes

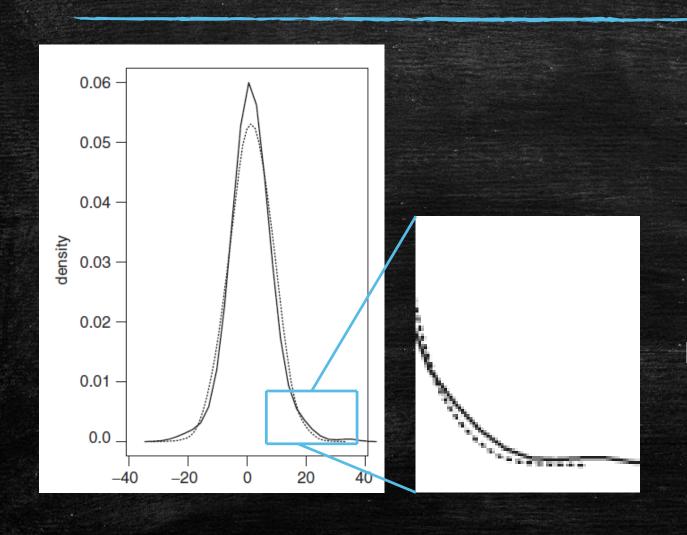
Volatilidade

 É uma medida de tendência de um mercado ou um ativo variar dentro de um período de tempo.

Gráfico dos resíduos do "stock" da IBM a partir de Janeiro de 1926 a Dezembro de 2003

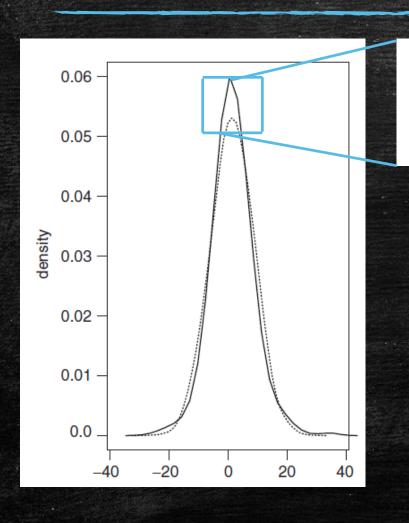


Aglomeração da volatilidade (Volatility Clustering)


Modelo de diagonal VECH

 Modelo proposto por Bollerslev, Engle, Wooldridge (1988), onde assumem covariâncias constantes para fins de solvabilidade.

Comparação das densidades empíricas e normal dos "stock" da IBM



Comparação das densidades empíricas e normal dos "stock" da IBM

Distribuição leptocúrtica

Comparação das densidades empíricas e normal dos "stock" da IBM.

Mistura de distribuições com variâncias diferentes

Modelo BEEK

 Modelo proposto por Baba, Engle, Kraft e Kroner (1989), onde asseguram que a matriz de covariância seja definida positiva.

Objectivo

 Resolver o problema da estimação do modelo GARCH multivariado como um problema de otimização não linear com restrições.

Processo estocástico

Seja $Y=\{Y_t,t\in\mathbb{Z}^+\}$ um processo estocástico, a função autoregressiva para os retornos usada foi ,

$$Y_t = \Phi_1 Y_{t-1} + \Phi_2 Y_{t-2} + \dots + \Phi_m Y_{t-m} + \epsilon_t$$

onde ϵ_t é um ruido branco satisfazendo $E(\epsilon_t|\epsilon_{t-1})$ = 0 e $\epsilon_{t-1}=\{\epsilon_{t-1},\epsilon_{t-2},\ldots\}$.

Inovações: Modelo GARCH

$$E(\varepsilon_t^2 | \varepsilon_{t-1}) = h_t = \sum_{i=1}^q \alpha_i \varepsilon_{t-1} + \sum_{j=1}^p \beta_j h_{t-1}$$

$$\sum_{i=1}^{q} \alpha_i + \sum_{j=1}^{p} \beta_j < 1$$

$$\max -\frac{T}{2} \log 2\pi - \frac{1}{2} \sum_{t=1}^{T} \log h_t - \frac{1}{2} \sum_{t=1}^{T} \frac{{\varepsilon_t}^2}{h_t}$$

Problema de Otimização

$$\max -\frac{1}{2} \sum_{t=1}^{T} \log h_t - \frac{1}{2} \sum_{t=1}^{T} \frac{{\varepsilon_t}^2}{h_t}$$

$$h_t = c + \sum_{i=1}^{q} \alpha_i \varepsilon_{t-1} + \sum_{j=1}^{p} \beta_j h_{t-1}$$

$$\sum_{i=1}^{m} \Phi_i Y_{t-i} + \varepsilon_t = y_t \ \forall \ t = 1, \dots, T$$

$$\sum_{i=1}^{q} \alpha_i + \sum_{j=1}^{p} \beta_j < 1$$

$$h_t \ge 0 \quad \forall t = 1, ..., T$$

$$c \ge 0$$

$$\alpha_i \ge 0 \quad \forall i = 1, ..., q$$

$$\beta_j \ge 0 \quad \forall j = 1, ..., p$$

Problema de estimação não linear com restrições

$$\max -\frac{1}{2} \sum_{t=1}^{T} (\log \det H_t + \varepsilon_t^T H_t^{-1} \varepsilon_t)$$

$$vech(H_t) = vech(C) + \sum_{i=1}^{q} A_i vech(\varepsilon_{t-i}\varepsilon_{t-i}^T) + \sum_{j=1}^{p} \beta_j vech(H_{t-j})$$

$$\forall t = 1, ..., T$$

$$\sum_{i=1}^{m} \Phi_{li} Y_{l,t-1} + \varepsilon_{lt} = y_{lt} \ \forall \ t = 1, ..., T, l = 1, ..., n$$

$$H_{t \geq 0} \quad \forall \ t = 1, ..., T$$

Modelo de Diagonal VECH

$$\max -\frac{1}{2} \sum_{t=1}^{T} (\log \det H_t + \varepsilon_t^T H_t^{-1} \varepsilon_t)$$

$$H_{t} = C + A \odot \varepsilon_{t-i} \varepsilon_{t-i}^{T} + B \odot H_{t-j}$$
$$\forall t = 1, ..., T$$

$$\sum_{i=1}^{m} \Phi_{li} Y_{l,t-1} + \varepsilon_{lt} = y_{lt} \ \forall \ t = 1, ..., T, l = 1, ..., n$$

$$H_{t \geq 0} \quad \forall \ t = 1, ..., T$$

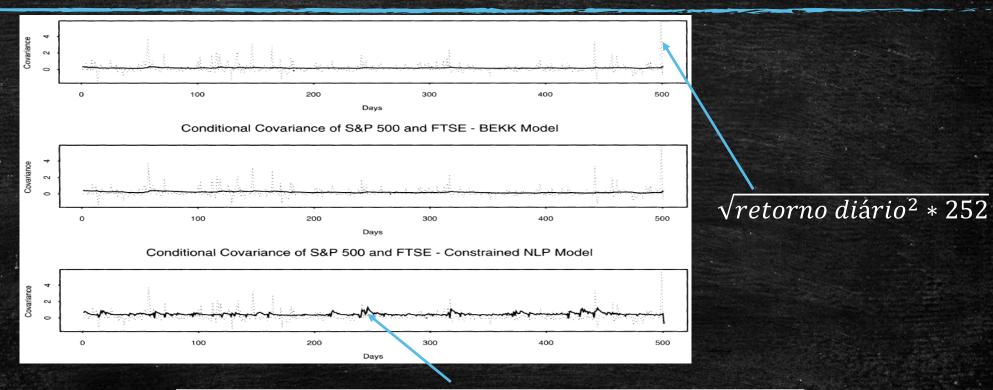
Modelo BEKK

$$\max -\frac{1}{2} \sum_{t=1}^{T} (\log \det H_t + \varepsilon_t^T H_t^{-1} \varepsilon_t)$$

$$H_{t} = C^{T}C + A^{T}\varepsilon_{t-i}\varepsilon_{t-i}A + B^{T}H_{t-j}B$$

$$\sum_{i=1}^{m} \Phi_{li} Y_{l,t-1} + \varepsilon_{lt} = y_{lt} \ \forall \ t = 1, \dots, T, l = 1, \dots, n$$

$$H_{t \geqslant 0} \quad \forall \ t = 1, \dots, T$$


Resultados com o modelo univariado sobre S&P 500

Method	С	α_1	eta_1	Log-likelihood value
Constrained NLP	0.00201931	0.978463	0.0180615	-2179.67
(St. Err.)	(0.0015)	(0.00784)	(0.00103)	
SPLUS	0.00285	0.97250	0.02204	-2181.8
(St. Err.)	(0.000762)	(0.003177)	(0.0034232)	

Resultados com o modelo multivariado sobre S&P 500 e FTSE 100

Coefficients	Constrained NLP	D-VECH	BEKK
C11	-0.198775	0.021812	0.126516
11	(0.00597)	(0.07542)	(0.026245)
C12	1.24346	0.016743	0.005078
[]	(0.00471)	(0.010096)	(0.018835)
C22	-0.121942	0.005688	0.059896
{{	(0.00211)	(0.001437)	(0.009138)
a ₁₁	0.20436	0.04509	0.196017
11	(0.00036)	(0.009925)	(0.024318)
a ₁₂	-0.384304	0.026886	-0.013858
{ }	(1.27×10^{-9})	(0.011565)	(0.024476)
a ₂₁			-0.003001
			(0.016084)
a ₁₃	0.17964		1
11	(0.000106)		i l
a ₁₃	0.17964	Į.	1
	(0.000106)	}	1
a ₂₂	0.959926	0.033912	0.171552
[]	(0.000824)	(0.005841)	(0.017128)
a ₂₃	-0.382031		1
83	(0.000346)	1	i i
a ₃₃	0.248888	1	1
11	(0.0001308)	ł	1
b ₁₁	0.396459	0.930056	0.971880
11	(0.01033)	(0.016520)	(0.007864)
b ₁₂	2.11141	0.885738	0.001883
11	(0.01133)	(0.062685)	(0.005981)
b ₂₁		!	0.003817
		i	(0.004755)
b ₁₃	-0.446092	i	1 1
11	(0.002658)	1	1 1
b ₂₂	-8.53698	0.954386	0.980089
11	(0.11985)	(0.007181)	(0.004033)
b ₂₃	1.62468	1	1
11	(0.007876)	ì	1
b ₃₃	0.509248	1	1
11	(0.004097)		1 1
Log-likelihood	-2572.48	-3453.05	-3461.91
AIC	5176.96	6924.1	6945.82
SIC	5261.01	6971.91	7004.26

Variância condicional para S&P 500 e FTSE.

 $\sqrt{(variância condicional obtida das estimações<math>*252)}$

Conclusão

 Os resultados mostraram que problema não linear é um exercício que vale apenas para o problema de estimação GARCH e que o mesmo é um competidor significante para as representações VECH e BEEK.

Bibliografia

 Aslihan Altay-Salih, Mustafa Ç. Pinar and Sven Leyffer, Constrained Nonlinear Programming for Volatility Estimation with GARCH Models, SIAM Review Vol. 45, No. 3 (Sep., 2003), pp. 485-503

Referências

- Bollerslev, R.F. Engle, and J Wooldridge (1988), A capital asset pricing model with time varying covariances, J. Polit. Econ., 96, pp. 116-131.
- Baba, R.F. Engle, D. Kraft, and K.F. Kroner (1989), Multivariate Simultaneous Gener alized ARCH, manuscript, Department of Economics, University of California at San Diego.