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Abstract. In this paper we present a linearization of the Lerman clustering in-
dex for determining the number of clusters in a data set. Our goal was to apply
the linearized index to large data sets containing both numerical and categorical
values. The initial index, which was based on the set of pairs of objects, had a
complexity O(n?). In this work its complexity is reduced to O(n), and so, we can
apply it to large data sets frequently encountered in Data Mining applications. The
clustering algorithm used is an extention of the k-means algorithm to domains with
mixed numerical and categorical values (Huang (1998)). The quality of the index
is empirically evaluated on some data sets, both artificial and real.

1 Introdution

Due to the size of the data sets often used in Data Mining, the time consuming
to evaluate a clustering index is a crucial problem. Therefore, if n is the
number of data points to be clustered, a complexity redution from O(n?) to
O(n) is a very important task. Our aim is to write the Lerman index in such
a way that its complexity becomes O(n). We will first begin by remembering
the earlier Lerman index expression (Lerman 1973, 1981, 1983); after that we
will present the general principle of the redution and then, we will supply the
explicite adaptation in the case where the data points can have an euclidean
representation. We will finish by extending the new index to the case of mixed
categorical and numerical variables.

2 Classical form of the index

Let us consider the simplified classic formula of the Lerman index. Let E
be a finite set of cardinal n and S a similarity measure defined on it. Let
F = P,(FE) represent the set of pairs or subset with two elements of E. The
values of S can be defined by the table

{S)Ip € F} (1)
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of dimension n(n — 1)/2.

Let w(E) be a partition of E into k clusters

W(E):{El,EQ,...,El,...,Ek}, (2)

whose adequacy with the similarity measure S is to be evaluated.

Regarding the table (1), we can calculate its mean u(S) and its variance
a%(S):

WS) = s AWl € F 3)

2 2 2
o*(8) = oy IS0 —wSN b e F)
= 2 S ISP e F) - W) @)

nin —1)
On the other hand, the partition (2) can be represented as a subset of F:
Rx(E) = 3 P2 (B) (5)
1<I<k

which defines the set of pairs put together by the partition 7(E). We can
also designate by

S(B) = Y ExE (6)
1<I<' <k
the complementary set in F' of R(w). The expression E; x Ey represents

the set of non-ordered pairs {z,y} where z € Ej and y € Ep, 1 <l <l' < k.

Let us now designate by

r = card(R(w(E))) = Z — (7
1<i<k
and
s = card(S(w(E))) = Z ng X ny (8)
1<i<l<k

where n; = card(E;),1 <1< k.

Before proceeding, the similarity S is normalized in the following way:
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_ 5() —m9)

In these conditions, the formula for the simplified form of the index is (see
references above):

C(r,S) )} (10)

- \/%/f S {e(p)lp € R(r
c®)p € F} (1)

= ﬁ > A{ew)

where f =r + s = card(F) and e(p) = 1(p € R(w)).

3 Adaptation of the index for Euclidean data

Let us suppose that E can be represented by a set of points in an euclidean
space. Let d be the metric distance, I = {1,2,...,4,...,n} the index set of
E and I; the subset of I containing the indexes of the cluster E;, 1 <1 < k.

Instead of working with the table of similarity indices (1), we will consider
from now on a table containing the distances between the elements of E:

{d®(i,d")|(i,i") € I x I} (12)

This table has dimension n2. In these conditions, the expressions stated
so far, wich were based on unordered pairs, can be now expressed by using
the ordered pairs.

W(P) = o SUPGGi) € Tx T} (13)

o'(@) = 5 Y[ — @] |G,#) € Tx 1) (14)

The set of ordered pairs of objects that are clustered together is defined
by:

R(n(E) = Y E xE (15)
1<i<k
and those pairs of objects that are in different clusters by:
Sl(’iT(E)) = Z El X Ell (16)
1<IAI <k

In these conditions, we have:
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r" = card(R'(m(E))) = Z n? (17)
1<I<k
and
s' = card(S'(m Z ng X ny (18)
1<I#U <k

For an ordered pair ¢ = (z,y), the normalized index related to ¢(p) is:

& (z,y) — p'(d)

‘0= =20 (19)
and the index corresponding to (10) becomes:
') = Y y)l(a9) € R((E)}  (20)

r! x ' [n?

Let us remark that the index (20) can also be expressed by the formula:

C'(m,d*) = z Z{c z,9)|(z,y) € E; x E;} (21)

! 2
vas xs/n 1<I<k

4 Linear adaptation of the index for Euclidien data

We will start by expressing the basic formula that precisely allows the desired
reduction in complexity. Let

{M;|i e I} (22)

represent a cloud of n data points. We suppose, for simplification, that
these points share the same weight; the generalization for different weights is
immediate. Let G be the centroid of the cloud of points:

1
==Y "M, (23)
N er
It is known that
1 2 2
2 Z d*(i,i") Z d“(i,9) (24)
(i,3")eIxTI zEI
where we replace M; by i and G by g.

It is easy to discern that to calculate the left member takes O(n?) calcula-
tions of distances while the right member takes O(n) calculations of distances.
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The basic idea is then to replace the first two moments of the distribution
{d?(i,")|(i,i") € J x J} (25)
by the first two moments of the distribution of

{d*(i,9)]i € T} (26)

where gy represents the centroid of the subset of data points indexed by J.

Now, in (21) let us consider the contribution of the cluster E; for the value
of the index. This is represented by:

L X X ) i @) € Bx B} (2D

/,r.lsl/nZ

But,

D A& (@, y) -1/ (d)|(2,y) € BixE} = 2m { > ld2(m’gl) - % > dQ(JU,g)] }

z€E) z€E
(28)

Where g; is the centroid of the cluster E;. We remark that d?(z,g;) is
centered by the total moment of inertia. We can replace [0’ (d2)]2 by the
variance of the distribution of {d*(z, g)|x € E}, which we designate by .
The final expression is proportional to:

] 1
Cy(m,d?) = — X Z ny Z{d T, 91) — pglz € Ep} (29)
VT )‘9 1<I<k
where
1
hy =~ > d(@.9)
zeFE
and
1
= - Z d4($,g) -
n z€FR

5 The case of mixed numerical and categorical
attributes

We are going to adapt our index for the metric case that is considered in
(HUANG 1998) where the attributes may be numerical and/or categorical.
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Each one of the data objects can be caracterized by (v!,...,vP,cPT1, ... c™)
where v!,v2, ..., vP represent the numerical attributes and ¢P*!, cP+2, ... ™
represent the categorical attributes (m > p).

Here we consider {x;]i € I'} the data set (I = {1,2,...,n}). Let 27 be the
value of the attribute j for the object x;. This value is numerical if 1 < j <p
and is categorical if p+ 1 < j < m. The distance between z; and z; can be
evaluate using the following formula:

A . N2 o
(x5, ) = 182517 (mf — wf,) +p+1szjsm5 (wf,wf,) (30)

e 0if 20 =, .
here &(x?,z),) = i i forp+1<j<m

It is shown in (HUANG 1998) that the centroid of any set X is given by:

1 .
ng(gk""Jgg/(J""ng’f)p(+7"'7 )’}+JJ"'7f?) (31)

v_vhere g% is the mean of the component h in X, 1 < h < p, and where
fg}“ represents the mode of the categorical variable p+ j (the most frequent
category in X), 1< j <m —p.

Under these conditions, the adaptation of the index is immediate.

6 Application of the index

In this section the quality of the index is empirically evaluated on seven data
sets. We tested on two artificial examples with two data sets each, and on
three real data sets.

For each artificial example we have generated two data sets with 20,000
objects each. One of the data sets was defined on a bidimensional euclidean
space, represented in Figures 1 and 5, and it contains five clusters. The sec-
ond data set consisted on adding to the previous variables, four categorical
attributes, having each four values. We determine in a random way the same
distribution of these attributes on each cluster. But this common distribution
of the four attributes is different from one cluster to another one. Thus, the
probability distributions were the same for each categorical variable within a
given cluster, but were different for different clusters. In Figure 2 and 7 it can
be seen the five clusters identified by the k-prototype method (Huang 1998).
The minimum value for our index is for K = 5 in both data sets of the first
example , as can be seen in Figures 3 and 4. In Figures 8 and 9 it can be
seen the variation of the index for the two data sets of the second example.
For the mixed data set the number of clusters is correctly identified, whereas
for the euclidean data set we got the minimum for K = 3 due to a weak
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efficience of the k-prototype identifying three and five clusters as it can be
seen in Figure 6 and Figure 7.

In figures 10, 11 and 12 we can analyze the application of our index in
the case of real data sets. These data sets belong to the Stalog database
that are a subset of the datasets used in the European Statlog project. The
data set , whose index values are represented in Figure 10 (Australian Credit
Approval), concerns credit card applications. It has 690 objects with six nu-
merical and eight categorical attributes and has 2 clusters. The data set,
whose index values are represented in Figure 11, concerns image segmenta-
tion (Image Segmentation data). The instances were drawn randomly from a
database of seven outdoor images, and the images were segmented to create
a classification for every pixel. This data set has 2,310 objects with nineteen
numerical attributes and has seven clusters. Finally in Figure 12 are the val-
ues of the index related to a data set (Shuttle Dataset) with 43, 500 objects
with nine numerical attributes each and seven clusters.

7 Conclusions and Future Work

We have developped a criterion for the identification of the number of clusters
present in a data set; and it can be applied to both numerical and categorical
variables. This criterion has a linear computational complexity, which makes
it very interesting to use in large data sets, as is common in Data Mining.
We have seen empirically the importance of the new criterion on seven data
sets, four artificial and three real ones. The criterion has been applied in con-
junction with the k-prototypes algorithm (Huang 1998), and because of that,
some interesting partitions that could have been identified by our criterion
were not, because k-prototypes didn’t find them. We are developping a new
clustering method that incorporates the new criterion into the construction
of the partitions, and hope that in this way the above disadvantage will be
solved. We are also planning to consider the adaption of the index for un-
structured data, because as it is now it can not be applied to the case of
just one cluster. Finally, in the case of numerical data, the comparison of
the behaviour of our criterion with some classical ones (Milligan and Cooper
1985) will be studied. For one of the most important of these, the ”Cubic
Clustering Criterion (CCC)” such comparison has been performed relative
to the initial quadratic form of our criterion (Molliere 1986).
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Fig. 1. Data set with 20,000 objects (two numerical attributes).
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Fig. 2. Partition in five clusters identified by the k-prototype method, apllied to
the data set of Figure 1.
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Fig. 3. Values of our index (K = 2,...,15) for the data set represented in Figure
1.
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Fig. 4. Values of our index (K = 2,...,15) for the data set with two numerical
and four categorical attributes and five clusters.
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Fig. 5. Data set with 20,000 objects (two numerical attributes).
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Fig. 6. Partition in three clusters identified by the k-prototype method, apllied to
the data set of Figure 5.
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Fig. 7. Partition in five clusters identified by the k-prototype method, apllied to
the data set of Figure 5.
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Fig. 8. Values of our index (K = 2,...,15) for the data set represented in Figure
5.
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Fig. 9. Values of our index (K = 2,...,15) for the data set with two numerical
and four categorical attributes and five clusters.
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Fig. 10. Values of our index (K = 2,...,15) for the Australian Credit Approval

data set.
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Fig. 11. Values of our index (K = 2,...,25) for the Image Segmentation data set.
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Fig. 12. Values of our index (K = 2,...,15) for the Shuttle Dataset.



