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When two asymmetrically informed risk-neutral agents repeatedly exchange a risky
asset for numéraire, they are essentially playing an n-times repeated zero-sum game of
incomplete information. In this setting, the price Lq at period q can be defined as the
expected liquidation value of the risky asset given players’ past moves. This paper indicates
that the asymptotics of this price process at equilibrium, as n goes to ∞, is completely
independent of the “natural” trading mechanism used at each round: it converges, as n
increases, to a Continuous Martingale of Maximal Variation. This martingale class thus
provides natural dynamics that could be used in financial econometrics. It contains in
particular Black and Scholes’ dynamics. We also prove here a mathematical theorem on
the asymptotics of martingales of maximal M-variation, extending Mertens and Zamir’s
paper on the maximal L1-variation of a bounded martingale.
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1. Introduction

One fundamental problem in financial analysis is to accurately identify the stock price dynamics: different dynamics for
the underlying asset will lead to different pricing formulae for derivatives.

Financial econometrics does not completely solve this problem: Statistical methods can calibrate the parameters of a
model, finding in a general class of possible dynamics, the one that best fits the historical data. But still, assumptions have
to be made regarding the class of possible dynamics. Most of the classes used in practice (Bachelier’s dynamics, Black and
Scholes dynamics, diffusion models, stochastic volatility models, GARCH-models, etc.) are chosen by a kind of rule of thumb,
with no real economic justification. The randomness of the prices is often conceived as completely exogenous. The first
sentences in Bachelier’s (1900) thesis illustrate quite well this kind of explanation: “The influences that determine the price
variations on the stock market are uncountable. Past, present or even future expected events, having often nothing to do
with the stock market, have repercussion on the prices.”

In this paper however, we suggest that part of the randomness in the stock price dynamics is endogenous: it is intro-
duced by the agents in order to maximize their profit. This idea was already present in De Meyer and Moussa-Saley (2003),
where the Brownian term in the price dynamics was explained endogenously. Institutional investors clearly have better ac-
cess to information on the market than the private ones: they are better skilled to analyze the flow of information and in
some cases they are even part of the board of directors of the firms of which they are trading the shares. So, institutional
investors are better informed and this informational advantage is known publicly. As a consequence, each of their moves
on the markets is analyzed by the other agents to extract its informational content. If informed agents act naively, making
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moves that depend deterministically on their information, they will completely reveal this information to the other agents,
and doing so, they will lose their strategic advantage for the future. The only way to benefit from the information without
revealing it too fast is to introduce noise on their moves: this is tantamount to selecting random moves via lotteries that
depend on their information. The main idea in De Meyer and Moussa-Saley (2003) is that the noise introduced by the
informed agents in the day-to-day transactions will generate a Brownian motion.

The central result of this paper is that this kind of argument leads to a particular class of price dynamics, hereafter
referred to as Continuous Martingales of Maximal Variation (CMMV), which is quite robust: CMMV will appear in any
repeated exchange between two risk neutral asymmetrically-informed players, independently of the “natural” trading mech-
anism used in the exchanges.

The structure of the paper is as follows: in the next section, we define CMMV precisely. As suggested by our main result,
this class of dynamics is a natural candidate that could be used in financial econometrics as the class of possible dynamics.
As will be seen, this class of dynamics is a subclass of local volatility models that contains as particular cases Bachelier’s
dynamics as well as Black and Scholes’ dynamics.

In Section 3, we introduce the game Γn to model the repeated exchanges between two risk neutral asymmetrically
informed players in the most general way: Player 1 initially receives a private message concerning the liquidation value L
of the risky asset traded. During n consecutive rounds, the players exchange the risky asset against a numéraire, using a
general trading mechanism 〈I, J , T 〉 which is simply a game with respective action spaces I and J for players 1 and 2, and
whose outcome T (i, j) is a transfer vector representing the quantities of risky asset and numéraire exchanged when actions
are (i, j). At each round, actions are chosen simultaneously and are then publicly announced. The players aim to maximize
the liquidation value of their final portfolio.

The game Γn is equivalent to a zero sum repeated game with one sided information à la Aumann–Maschler. In Section 4,
we define the concepts of strategy, value and optimal strategy for Γn . Since players are risk neutral, the natural notion of
price Lq of the risky asset at period q is defined as the conditional expected liquidation value given player 2’s previous
observations.

The trading mechanism introduced above should satisfy some properties in order to represent real exchanges on the
stock market. In Section 5, we introduce 5 axioms that must be satisfied by a “natural” trading mechanism. Let us describe
them very briefly here:

(H1) The game Γn has a value Vn whatever the distribution of the liquidation value is.
(H2) is a continuity assumption of V 1 as a function of the law of the liquidation value.
(H3) stipulates that the mechanism should be invariant with respect to the scale of numéraire: If two players use this

mechanism to exchange a risky asset R against the dollar or against the cent, the same transactions in value will be
observed in both cases. More specifically, the quantity of risky asset exchanged will be the same, but the counterpart
in cents will be the counterpart in dollars multiplied by 100. (H3) is thus a 1-homogeneity property of the value.

(H4) is an invariance axiom with respect to the riskless part of the risky asset: If two players use the trading mechanism
to exchange with the dollar as numéraire an asset R ′ consisting of one share of asset R and a $100 bill, then the
transaction observed will be the same in value as if they were exchanging R for the dollar. In other words, the
quantity x of R- and R ′-shares exchanged will be the same in both cases, but the x bills of $100 exchanged within the
R ′-shares will be paid back in dollars, that is, if y and y′ denotes the counterpart in numéraire when exchanging R and
R ′ respectively, then y′ = y + 100x. The value of the game must thus remain unchanged if one shifts the liquidation
value by a constant amount.

(H5) There exists a situation in which player 1 can take a strictly positive profit from his private information: he is strictly
better off with his message than without. This axiom is on the one hand completely natural to model the stock market:
it seems indeed commonsense that private information has a strictly positive value on the market. Otherwise, there
would clearly be no need for insider trading regulation, since no one would have incentive to make such trades.

On the other hand, however, this axiom is in a way unnatural. This game is zero sum and has a positive value. So
why should the uninformed player participate in a game where he is loosing money? This is a particular case of Milgrom–
Stokey’s No Trade Theorem. Some agents on the market are in fact forced to trade: for instance, a market maker facing
a more informed trader. Since the bid and the ask posted by a market maker is a commitment to buy or sell at these
prices any quantity of shares up to a prefixed limit, the only way for the market maker to avoid trading would be to post
a very large bid-ask spread. Most market regulations however impose explicit limit on market makers’ bid-ask spread, thus
steering past the No Trade paradox.

At the end of Section 5, we state the main result of the paper which is Theorem 1. It indicates that if the trading mech-
anism is natural in the above sense, if the price process (Lq)q=0,...,n at equilibrium in Γn is represented by the continuous
time process (Πn

t )t∈[0,1] , with Πn
t := Lq on the time interval [q/n, (q + 1)/n[, then Πn converges in law to a particular

CMMV Πμ depending just on the law μ of the liquidation value of R . The limit is thus completely independent of the
natural trading mechanism considered, showing in this way the robustness of the CMMV class of dynamics. This paper
differs from the existing literature on trading with asymmetrical information (see e.g. Kyle, 1985) by the fact that the price
randomness is essentially considered as endogenous. In Kyle’s paper however, to get rid of the above mentioned No Trade
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paradox, noise traders have to be introduced, and the resulting dynamics will thus crucially depend on the hypotheses made
on this exogenous source of randomness.

We will provide explicit examples of trading mechanism satisfying (H1) to (H5) is Section 6, and we will compare our
results with De Meyer and Moussa-Saley (2003). In that paper a particular trading mechanism is analyzed for which optimal
strategies can be explicitly computed and the convergence to the CMMV Πμ can be proved directly. The result of this paper
however is much more general and applies to games with abstract trading mechanisms. In the absence of closed-form
formulae, a more subtle and abstract line of analysis has to be followed.

The proof of Theorem 1 is presented in Section 7. By linking more or less his moves to his initial message, player 1 can
chose the rate of revelation of his private information and in this way, he can control the price process (Lq)q=1,...,n , which
is precisely the conditional expectation of L given the past moves. We then express the maximal amount player 1 can
guarantee in Γn with a given revelation martingale (Lq)q=1,...,n . We prove in particular that this amount is the V 1-variation
of the martingale (Lq)q=1,...,n: for a function M , such as V 1, that maps probability measures (the laws of the liquidation
value for V 1) to R, the M-variation of the martingale (Lq)q=1,...,n is defined as E[∑n−1

q=0 M([Lq+1 − Lq|(Ls)s�q])], where
[Lq+1 − Lq|(Ls)s�q] denotes the conditional law of the increment Lq+1 − Lq given the past at time q. The informed player is
thus facing a martingale optimization problem: the price martingale (Lq) at equilibrium must maximize the V 1-variation.

Theorem 1 then follows at once from Theorem 5 which is a mathematical result proved in the second part of the paper.
It is an interesting result that generalizes both Mertens and Zamir (1977) and De Meyer (1998) on the maximal L1- and
L p-variation of a bounded martingale: It states that the continuous representation (Πn

t )t∈[0,1] of a martingale (Ln
q)q=0,...,n

(i.e. Πn
t = Ln

q if t ∈ [q/n, (q + 1)/n[) with final distribution μ that maximizes the M-variation converges in law, as n → ∞,
to the CMMV Πμ , provided M satisfies a homogeneity and a continuity property. This result justifies the terminology
Continuous Martingale of Maximal Variation adopted in this paper. Since the limit Πμ is independent of M , which is a
completely general function that could even have no relation with a game, this result underlines even more the robustness
of the CMMV class. The proof of this result is based on three ingredients: duality, the central limit theorem and Skorokhod’s
embedding techniques. We refer the reader to Section 8 for more details.

It is generally fairly difficult to prove that one particular mechanism satisfies to (H1): Games of any length must have a
value. In Appendix A, we prove that it is often sufficient to prove that the one shot game has a value.

2. Continuous martingales of maximal variation

Let � be the set of probability distributions on (R, BR), where BR is the Borel tribe on R. In the following, the
probability distribution of a random variable X will be denoted [X]. If μ ∈ �, we will use both notations X ∼ μ or
[X] = μ to indicate that the random variable X is μ-distributed. We also write ‖μ‖Lp for ‖X‖Lp where X ∼ μ, and we
set �p := {μ ∈ �: ‖μ‖Lp < ∞}.

A continuous martingale of maximal variation is defined as a martingale Π on time interval [0,1] that can be written as: ∀t: Πt =
f (Bt , t) where B is a standard Brownian motion and f : R × [0,1] → R is increasing in the first variable.

Notice that we can recover the whole function f (x, t) from its terminal values g(x) := f (x,1): Indeed, using the Markov
property of the Brownian motion, we get:

f (Bt, t) = Πt = E
[
Π1|(Bs)s�t

]= E
[

g(B1)|Bt
]= E

[
g
(

Bt + (B1 − Bt)
)|Bt
]
.

Since, B1 − Bt ∼ N (0, (1 − t)) is independent of Bt , we get with ht denoting the density function of N (0, (1 − t)):

f (x, t) =
∞∫

−∞
g(x − y)ht(y)dy = g ∗ ht(x),

∗ representing the convolution product. Due to the smoothing property of the normal kernel, the function f is thus C∞ on
R × [0,1[. We may then also apply Itô’s formula to the process Πt and we get:

dΠt = ∂x f (Bt, t)dBt +
(

∂t f (Bt, t) + 1

2
∂2

x,x f (Bt, t)

)
dt.

For Π to be a martingale, the drift term must vanish and f must thus satisfy the heat equation ∂t f (x, t) + 1
2 ∂2

x,x f (x, t) = 0.
One useful property of CMMV is that for a given μ ∈ �1, there exists a unique CMMV denoted hereafter Πμ such that

Π
μ
1 ∼ μ. Indeed, as is well known, there exists a unique (up to a null set) increasing function fμ : R → R that fμ(Z) ∼ μ

if Z ∼ N (0,1). The function fμ can be expressed in terms of the cumulative distribution functions Fμ and F N of μ and
N (0,1) by the following formula: fμ(x) = F −1

μ (F N (x)), where F −1
μ (y) := inf{s: Fμ(s) > y}.

Since Π
μ
1 = f (B1,1) ∼ μ and f (x,1) is by hypothesis increasing in x, it must be the case that f (x,1) = fμ(x), as

B1 ∼ N (0,1). As mentioned above, we then get f (x, t) = ∫∞
−∞ fμ(x − y)ht(y)dy which is clearly increasing in x, since so is

fμ: if x > x′: fμ(x − y) � fμ(x′ − y). Multiplying both sides of this inequality by ht(y) > 0, we get indeed after integration
f (x, t) � f (x′, t).

We conclude this section by showing that the CMMV class is a class of local volatility models for the price process that
contains as particular cases Bachelier’s Dynamics as well as Black and Scholes’ one. Indeed, if μ is not a Dirac measure, fμ
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is not a constant function. Therefore, the strict inequality fμ(x− y) > fμ(x′ − y) will hold in the previous argument for a set
of y of positive Lebesgue measure. As a result, for t < 1, f (x, t) > f (x′, t), whenever x > x′ . The strictly increasing function
x → f (x, t) has thus an inverse φt and the relation Πt = f (Bt , t) yields Bt = φt(Πt). Our above formula for dΠt thus
becomes: dΠt = ∂x f (Bt , t)dBt = a(Πt , t)dBt , where a(y, t) := ∂x f (φt(y), t). We also have dΠt = a(Πt , t)dBt with a(y, t) = 0
when μ is a Dirac measure. A model of actualized price dynamics under the risk-neutral probability measure satisfying this
diffusion equation is referred to as a local volatility model in finance, a being the volatility function (e.g. Dupire, 1997).
Since a must satisfy specific properties for the corresponding process to be a CMMV, the CMMV class is indeed a subclass
of local volatility models.

Under the risk-neutral probability, Bachelier’s dynamics and Black and Scholes’ dynamics for the actualized price process
are given by the formulae dΠt = σ dBt and dΠt = σΠt dBt , where σ > 0 is the volatility parameter. As is well known, in

both case we get Πt = f (Bt , t), with f defined respectively as f (x, t) = σ x + c and f (x, t) = c eσ x− σ2
2 t . These two functions

are increasing in x.

3. The game Γn(μ)

In the game Γn analyzed in this paper, two players are repeatedly trading a risky asset R against a numéraire N .
We first describe the information asymmetry: At the beginning of the game, player 1 (P1) receives a private message m

concerning the risky asset. This message is randomly chosen by nature with a given probability distribution ν . P2 does not
receive this message. He just knows that P1 has been informed and he also knows the probability distribution ν .

The message m will be publicly revealed at a future date T , say at the next shareholder meeting. The price L of R on
the market at that date is called the liquidation value of R . It will depend on m and L is thus a function L(.) of m. The
liquidation value of N is independent of m and is fixed to be 1. We assume that both players know how to interpret the
message m and they therefore know the function L(.).

Let μ denote the probability distribution of L(m) when m ∼ ν . We will assume in this paper that μ ∈ �1. As L(m) is the
only relevant information in the message m, we may assume that P1 is only informed of L(m).

So, the initial stage in Γn(μ) is simply the following: Nature picks L at random with probability μ. P1 is informed of L,
while P2 is not. Both players know μ.

We next consider n rounds of exchange before the revelation date T . To model these repeated exchanges in the most
general way, we introduce the notion of a trading mechanism. Such a mechanism is defined as a triple 〈(I, I), ( J , J ), T 〉,
where I and J are the respective action sets of P1 and P2, endowed with σ -algebras I, J , and where T : I × J → R

2

is the transfer function, assumed to be measurable from (I ⊗ J ) to the Borel σ -algebra BR2 . If the players play (i, j),
T (i, j) = (Aij, Bij) represents the transfer from P2 to P1: Aij and Bij are the respective numbers of R and N shares that P1
receives from P2. (Typically one is positive and the other negative.)

So, in Γn(μ), at trading period q (q = 1, . . . ,n), the players select an action pair (iq, jq) independently of each other,
based on their prior observations and private information. Actions are then made public and the portfolios are then in-
cremented. If yq = (yR

q , yN
q ) and zq = (zR

q , zN
q ) represent P1 and P2’s portfolios at the end of round q, we have thus:

yq = yq−1 + T (iq, jq) and zq = zq−1 − T (iq, jq). We assume that both players have sufficiently large portfolios, or have
short-selling capacities, so as to honor the trade T (iq, jq).

We will give examples of trading mechanisms in Section 6. The exchange at period q could result from a bargaining
game or from an auction procedure, and actions in these setups are the strategies used by the players in these mechanisms.
Another example of interest is a market game: Players’ actions i and j are demand functions for asset R in a given class E . In
this case, I = J = E is a set of strictly decreasing functions i from R to R satisfying limp→−∞ i(p) > 0 and limp→∞ i(p) < 0.
Once i and j are selected, the marked clearing price p∗(i, j) is computed, whenever it exists: it is the value of p solving
the equation i(p) + j(p) = 0. The transfer vector, representing the quantities of the risky asset and numéraire that player 1
receives during the exchange is then T (i, j) := (i(p∗(i, j)),−p∗(i, j)i(p∗(i, j))), and T (i, j) = (0,0), if p∗(i, j) fails to exist.
In other words, P1 receives the demanded quantity of asset R corresponding to the market clearing price. The counterpart
in numéraire is that quantity multiplied by the clearing price.

Players’ utility: The players are supposed to be risk-neutral and they aim to maximize the expected liquidation value
of their final portfolio. So P1’s utility is: E[yR

n L + yN
n ] and P2’s is E[zR

n L + zN
n ]. Since y0 and z0 are initially fixed, the

liquidation values of the initial portfolios are constants that can be subtracted from player’s utilities without affecting their
behavior in the game. This turns out to be equivalent to assuming, as we will do in the remaining part of the paper, that
y0 = z0 = (0,0), allowing for negative entries in the portfolios.

With that hypothesis, we get clearly yn = −zn and the game Γn(μ) is then a zero sum game.
Since yn =∑n

q=1 T (iq, jq), P1’s payoff in Γn(μ) becomes
∑n

q=1 h(L, iq, jq), where h(L, i, j) := L Aij + Bij is the stage
payoff. Γn(μ) is thus a repeated zero-sum game with one sided information and full monitoring à la Aumann–Maschler.
The stage payoff at stage q just depends on the current actions iq, jq and of the state of nature L initially chosen. The only
difference with Aumann–Maschler’s model is that there could be infinitely many states and actions.
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4. Strategies, value, equilibria and price process in Γn(μ)

Let us first define strategies in Γn(μ). A mixed strategy for P2 in Γ1(μ) is a probability distribution τ on ( J , J ). However,
since Aij and Bij are a priori unbounded, we have to restrict a little bit this definition. Let �( J ) be the set of probability
distributions τ on ( J , J ) such that,

∀i ∈ I:
∫
J

|Aij|dτ ( j) < ∞ and
∫
J

|Bij|dτ ( j) < ∞.

For τ ∈ �( J ), we set: Aiτ := ∫ J Ai j dτ ( j) and Biτ := ∫ J Bi j dτ ( j). In the same way, we define �(I) and, for σ ∈ �(I), Aσ , j

and Bσ , j .
A strategy τ for P2 in Γn(μ) is a sequence (τ1, . . . , τn) of �( J )-valued transition probabilities τq : (Hq−1, Hq−1) →

( J , J ), where (Hq, Hq) := ((I × J )q, (I × J )q). In other words: ∀hq−1 ∈ Hq−1, τq(hq−1) ∈ �( J ) and ∀A ∈ J : the map
hq−1 → τq(hq−1)[A] is Hq−1-measurable. τq(hq−1) is thus the probability distribution used by P2 to select his action jq .
This probability depends on the past observation hq−1 of P2 at that stage.

In the same way, a strategy σ in Γn(μ) is a sequence (σ1, . . . , σn) of �(I)-valued transition probabilities σq : (R ×
Hq−1, BR × Hq−1) → (I, I). At stage q, P1 will pick his action iq with the probability distribution σq that depends both on
his private information L and on the past moves hq−1 of both players. Sn will denote hereafter the set of P1’s strategies.

With Tulcea theorem, a triplet (μ,σ , τ ) will induce a unique probability π(μ,σ ,τ ) on (R × Hn).
Still the payoff function could be undefined in general for integrability reasons and we have to restrict our notion of

strategy. The integrability problem can be illustrated as follows: suppose that τ2 is just a function of j1 so that Bi2τ2( j1) , is
a finite function of j1, but it could fail to be integrable with respect to τ1.

This leads us to the definition of admissible strategy: A strategy τ is said admissible if for every history h1 ∈ In , the
probability π2

(h1,τ )
induced on Jn by (h1, τ ) is such that for all q, the random variables |Aiq, jq | and |Biq, jq | have finite

expectation with respect to π2
(h1,τ )

. T adm
n will denote the set of P2’s admissible strategies. Observe that π2

(h1,τ )
is just the

conditional probability π(μ,σ ,τ ) on Jn given h1.
So, An(h1, τ ) := Eπ2

(h1,τ )

[∑n
q=1 Aiq, jq ] and Bn(h1, τ ) := Eπ2

(h1,τ )

[∑n
q=1 Biq, jq ] are the expected R and N quantities in yn

given that player 1 played h1. These are finite measurable functions of h1.
Let us now write formally the payoff in Γn(μ). Notice that yn is independent of L conditionally to h1, since P2’s moves

depend on h1 but not on L. Therefore, with expectations taken with respect to π(μ,σ ,τ ) , and assuming the integrability of
LyR

n + yN
n , we could write:

E
[
LyR

n + yN
n

]= E
[

E
[
LyR

n |h1]]+ E
[

E
[

yN
n |h1]]

= E
[

E
[
L|h1] · E

[
yR

n |h1]]+ E
[

Bn(h1, τ
)]

= E
[
LAn(h1, τ

)+ Bn(h1, τ
)]

. (1)

Observing the last formula, the best player 1 can do to reply to τ is to play a history h1(L) depending on L, that solves
the problem:

φn
τ (L) := sup

h1
LAn(h1, τ

)+ Bn(h1, τ
)
. (2)

Optimal solutions could fail to exist, but measurable ε-solutions exist. Therefore a strategy τ guarantees Eμ[φn
τ (L)] to P2.

As supremum of a family of affine functions of L, φn
τ (L) is a convex l.s.c. function from R to R ∪ {∞} and is therefore

measurable. Since μ ∈ �1, we also have: Eμ[φn
τ (L)] > −∞.

Notice that there could be integrability problems in Eq. (1) in general and it could be the case that E[LyR
n + yN

n ]
is undetermined (meaning that both the positive and the negative part of LyR

n + yN
n have infinite expectation) al-

though E[LAn(h1, τ ) + Bn(h1, τ )] is finite. This remark leads us to define the payoff function in Γn(μ) as gn(μ,σ , τ ) :=
Eπ(μ,σ ,τ )

[LAn(h1, τ ) + Bn(h1, τ )].
This definition of the payoff could still be undetermined for some pairs of strategies. However, if Eμ[φn

τ (L)] < ∞, then
the payoff function gn(μ,σ , τ ) is possibly equal to −∞, but there is never indeterminacy, whatever the strategy σ is.

The minimal amount player 2 can guarantee is V n(μ) := infτ∈Tn Eμ[φn
τ (L)].

A strategy τ of player 2 is optimal in Γn(μ) if V n(μ) = Eμ[φn
τ (L)].

A strategy σ is admissible for player 1, if, for all admissible strategy τ :

E
[
min
(
LAn(h1, τ

)+ Bn(h1, τ
)
,0
)]

> −∞,

which implies that gn(μ,σ , τ ) is well defined in R ∪ {∞}. Let S adm
n be the set of admissible strategies for P1.

A strategy σ ∈ S adm
n guarantees α to P1 if, ∀τ ∈ T adm

n : gn(μ,σ , τ ) � α.
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The maximum amount P1 can guarantee in Γn(μ) is

V n(μ) := sup
σ∈S adm

n

inf
τ∈T adm

n

gn(μ,σ , τ ).

A strategy σ is optimal if it guarantees V n(μ).
It is always true that V n(μ) � V n(μ). When equality holds, the game Γn(μ) is said to have a value Vn(μ) := V n(μ) =

V n(μ).
If the game has a value, and if σ ∗ and τ ∗ are optimal strategies, then (σ ∗, τ ∗) is a Nash equilibrium of the game.

Conversely, if (σ ∗, τ ∗) is a Nash equilibrium of the game, then the game has a value and σ ∗ and τ ∗ are optimal strategies.
In the “market game” example of trading mechanism described in the previous section, where both players submit a

demand function, a natural notion of price at period q would be the market clearing price. However, with general trading
mechanisms, actions by the players are not necessarily price related and we have to define what we mean by the price

Lq of the risky asset R at period q. One possible definition of Lq could be based on the quotient − Biq , jq
Aiq , jq

, that is the

counterpart in numéraire paid per R-shares acquired. But this definition is not completely satisfying: on one hand, it would
lead to technical problems in case Aiq, jq = 0. On the other hand, both Biq, jq and Aiq, jq are random quantities. At stage 1
for instance, the counterpart to the lottery yielding Ai1, j1 units of R is a lottery yielding −Bi1, j1 of N . So, should the price

prevailing at the first exchange be defined as the quotient − E[Bi1 , j1 ]
E[Ai1, j1 ] or as E[− Bi1, j1

Ai1, j1
]? These two notions do not coincide in

general.
To avoid these difficulties, we prefer in this paper to define the price Lq as the price at which the risk-neutral player

P2 would agree to trade with another uninformed player: Lq = E[L|i1, . . . , iq, j1, . . . , jq]. This definition implies in particular
that the price process is a martingale. It will also be convenient in this paper to represent this discrete time price process
(Lq)q=0,...,n by a continuous time process (Πn

t )t∈[0,1] , where the time t represents the proportion of already elapsed rounds:
Πn

t := L[[nt]] , where [[x]] denotes the largest integer below x.

5. Natural exchange mechanism

The notion of a trading mechanism involved in the definition of Γn(μ) is completely general and some mechanisms could
be unrealistic to represent actual exchanges on the stock market, for instance a dictatorial mechanism where P1 selects the
transfer vectors, regardless to P2’s action.

Rather than focusing on an explicit trading mechanism representing one particular market, we isolate in this section five
axioms (H1) to (H5) that should be met by any natural modelization of an exchange. These are expressed in terms of the
value of the one shot game. We also give some additional conditions (H1′) to (H4′) that imply the corresponding (H) axiom
and that are easier to check.

We are concerned in this paper with qualitative properties of the price process at equilibrium in Γn(μ) when such
equilibria exist. Even if equilibria could fail to exist in Γn(ν), for ν �= μ, we however have to assume that the value exists.
This is the content of the two versions of axiom (H1) for k = 2 or ∞:

(H1-�k) Existence of the value: The game Γn(μ) has a value Vn(μ) for all distribution μ ∈ �k and all n ∈ N.

As we will see, axioms (H3) and (H4) hereafter will imply in particular that action spaces I and J contain infinitely many
actions. Even when I and J are subsets of R

m , the transfer function T will typically have some discontinuities in order to
satisfy (H5). So proving that a particular mechanism satisfies (H1) is in general fairly difficult. The problem is essentially to
prove that:

(H1′): ∀μ ∈ �∞ , the game Γ1(μ) has a value.

Indeed, we prove in Appendix A of this paper that (H1′) joint to our following continuity assumption (H2) implies
(H1-�∞). We also prove that (H1′) and (H2′) imply (H1-�2).

The second axiom is a continuity assumption of V 1(μ) as a function of μ: if two assets R and R ′ have nearly the same
the liquidation values L and L′ , i.e. there is a join distribution of (L, L′) where, for some p ∈ [1,2[, ‖L − L′‖p is small, then
it is natural to expect that exchanging R or R ′ will lead to similar profits for P1: V 1([L]) and V 1([L′]) should be close to
each other. Axiom (H2) is in fact a Lipschitz continuity assumption:

(H2) Continuity: ∃p ∈ [1,2[,∃A ∈ R: ∀L, L′ ∈ L2:∣∣V 1
([L])− V 1

([
L′])∣∣� A · ∥∥L − L′∥∥

L p .

The Wasserstein distance W p(μ,μ′) of order p between μ and μ′ ∈ �2 is defined as W p(μ,μ′) := inf{‖X − X ′‖Lp :
X ∼ μ, X ′ ∼ μ′}, and therefore (H2) is simply a Lipschitz continuity assumption in terms of W p(μ,μ′): ∃p ∈ [1,2[,
∃A ∈ R: ∀μ,μ′ ∈ �2: |V 1(μ) − V 1(μ

′)| � A · W p(μ,μ′).
Notice that a mechanism T satisfying (H2′) will clearly satisfy (H2) with p = 1:

(H2′) Bounded exchanges: ∀i, j: |Ai, j| � A.
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Indeed, if nature initially selects jointly the liquidation values (L, L′) of two asset R and R ′ and informs P1 of its joint
choice, the additional information contained in L′ is useless to play in Γ1([L]), and similarly, the additional information
contained in L is useless to play in Γ1([L′]). Viewing thus a strategy of P1 as a map from (L, L′) to �(I), we may consider
that strategy spaces are identical in Γ1([L]) and Γ1([L′]). If both players use the same strategies (σ , τ ) in these games, the
payoffs are respectively E[Ai, j L + Bi, j] and E[Ai, j L′ + Bi, j]. The difference of P1’s payoffs in both games E[Ai, j(L − L′)] is
then bounded by A‖L − L′‖1 and, as announced, (H2) is thus satisfied.

For the next two axioms, we consider a market as a system with which agents agree on trades of some asset in coun-
terpart for some numéraire. The same system and the trading mechanism representing it could be used to trade different
assets and numéraires.

In axiom (H3), we consider the effect of a change of numéraire: we compare two situations where the same risky asset is
exchanged for numéraire N1 and N2 respectively, with one unit of N1 being worth α > 0 units of N2. If L is the liquidation
value of R in terms of N1, the liquidation value of R in terms of N2 will then be αL and we are thus comparing Γ1([L])
with Γ1([αL]). Quite intuitively, we expect to observe same value trades in both situations and the value of both game will
just differ by the scaling factor α. This is our hypothesis (H3):

(H3): Invariance with respect with the numéraire scale:

∀α > 0: ∀L ∈ L2: V 1
([αL])= αV 1

([L]).
We could see this invariance property of the value V 1 as a consequence of an invariance property of the trading mech-

anism itself: when comparing Γ1([L]) with Γ1([αL]), we expect that the number of exchanged R-shares will be the same
in both games, but the number of N2-shares given in counterpart in Γ1([αL]) will just be the product of α and the N1-
counterpart in Γ1([L]).

Clearly, the players will not use the same actions when trading with N1 or N2, but to each action in the N1-trading
game corresponds an action in the N2-game with similar effect. These correspondences between actions are represented by
the translation rules in the following axiom:

(H3′): For all α > 0, there are one-to-one translation rules ψ1 : I → I and ψ2 : J → J with the property that ∀i, j: Aψ1(i),ψ2( j) =
Ai, j and Bψ1(i),ψ2( j) = α · Bi, j .

If P1 plays ψ1(i) in Γ1([αL]) whenever he would play i in Γ1([L]), then his payoff in Γ1([αL]) against an action j =
ψ2( j′) of P2 will be:

E[Aψ1(i),ψ2( j′)αL + Bψ1(i),ψ2( j′)] = αE[Ai, j′ L + Bi, j′ ].
Therefore P1 can guarantee the same amount, up to a factor α in Γ1([L]) and Γ1([αL]). A similar argument holds for P2,
and therefore our hypothesis (H3′) implies (H3).

With the next axiom, we analyze the effect of shifting the liquidation value by a constant quantity β: we compare the
game Γ1([L]), where a risky asset R with liquidation value L is traded for numéraire N , with the game Γ1([L + β]) where
a risky asset R ′ is traded for N , the asset R ′ consisting of one unit of R and β units of N . We expect to observe similar
trades in both games: the same number x of R shares will be exchanged in both cases, but the x.β units of N included in
the x units of R ′ in the second game are immediately paid back in N . In both games, the players will not use the same
actions, however, their actions in the first game can be translated into actions in the second one. This leads to the following
condition, in terms of the trading mechanism:

(H4′): For all β ∈ R, there exist one-to-one translation rules φ1 : I → I and φ2 : J → J that map Pi’s actions in Γ1([L]) to Pi’s
actions in Γ1([L + β]) with the property that ∀i, j: Aφ1(i),φ2( j) = Ai, j and Bφ1(i),φ2( j) = Bi, j − β · Ai, j .

As we will see, (H3′) and (H4′) are quite natural when “price related” mechanisms are concerned, that is mechanisms
where actions are prices or demand curves as the two first examples presented in the next section. For these mechanisms,
the translation rules ψi and φi appearing in (H3′) and (H4′) are respectively a rescaling by a factor α or a shift by a constant
β of the corresponding price or demand curve.

Since the trades in Γ1([L]) and Γ1([L +β]) will have the same value whenever the players use their translated strategies,
it follows from (H4′) that:

(H4): Invariance with respect to the risk-less part of the risky asset:

∀β ∈ R: V 1
([L + β])= V 1

([L]).
Using successively (H4), (H3) and (H2) we infer that

∀β ∈ R: V 1
([β])= V 1

([0 + β])= V 1
([0])= lim

α→0
V 1
([α])= lim

α→0
αV 1(1) = 0.

In other words, no benefit can be made of exchanging a riskless asset for a numéraire. Notice that this last property would
be automatically satisfied by a symmetrical trading mechanism (I = J and T (i, j) = −T ( j, i)). Indeed, in this case, the only
asymmetry in Γ1(μ) is the initial message sent to P1. When the liquidation value of R is a constant β , the game is thus a
completely symmetric zero sum game (with anti-symmetric payoff matrix) and its value V 1([β]) must then be 0.
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In the game Γ1([L]), P1 could decide to ignore his private information L. Since the players are risk-neutral, the risky
asset R could then be replaced by a risk-less asset with constant liquidation value β := E[L]: without his information, P1
could then guarantee V 1([β]) = 0. So, using his information in Γ1([L]), P1 can guarantee a positive amount: V 1([L]) � 0.
Our next axiom is that there exists a situation in which P1 can make a strict profit out of his information:

(H5): Positive value of information: ∃L ∈ L2: V 1([L]) > 0.

As already explained in the introduction, this last axiom is paradoxical: on one hand, the fact that private information
has a strictly positive value on the market is so obvious that a model without (H5) would be completely unrealistic. Rating
firms can sell information at a positive price because it has a positive value. Insider trading regulation would not exist if
private information had no value. On the other hand, (H5) is only possible if the uninformed player is forced to play the
game: he would be better off if he could avoid trading. As previously mentioned, we argue that some agents, for instance
market makers, are in fact forced to trade. Notice also that most market models with asymmetric information avoid this no
trade paradox by introducing noise traders, that is traders that are forced to trade for exogenous liquidity reasons.

A trading mechanism will be referred to as k-natural if it satisfies the previous five axioms (H1-�k), (H2), . . . , (H5). We
are now ready to state the main result of the paper:

Theorem 1. For k ∈ {2,∞} and μ in �k, consider a sequence {(σn, τn)}n∈N of equilibria in the repeated exchange games Γn(μ)

indexed by the length n of the game. Let Ln be the price process at equilibrium in Γn(μ):

Ln
q := Eπ(μ,σn,τn)[L|i1, . . . , iq, j1, . . . , jq].

Then, if the trading mechanism is k-natural, the continuous time representation Πn of Ln defined as Πn
t := Ln[[nt]] converges in finite-

dimensional distribution to the continuous martingale of maximal variation Πμ .

The asymptotics of the price process is thus completely independent of the natural trading mechanism. Before proving
this theorem in Section 7, we provide in the next section some examples of natural trading mechanism.

6. Examples of natural trading mechanism

6.1. Market maker game

As a first example, let us consider the game between two asymmetrically informed market makers. At each period, they
post simultaneously a price i and j ∈ R which are a commitment to sell or buy one unit of the risky asset at this price. If
i �= j, an arbitrageur will see a possibility of arbitrage: he will buy one share of R at the lowest price and sell it immediately
at the highest one. This game, referred to hereafter as the market maker game with arbitrageur is not an exchange between
two individuals and does not belong to the class of zero-sum games analyzed in this paper. It can however be approximated
by the following trading mechanism: when i > j, one share of R goes from P2 to P1 as in the market maker with arbitrageur
game, but we now assume that both players are exchanging R at a common price f (i, j) in numéraire, where f is a function
satisfying min(i, j) � f (i, j) � max(i, j), and ∀α > 0, ∀β: f (αi +β,α j +β) = α f (i, j)+β . Symmetric transfers happen when
i < j, and there is no transfer if i = j. So, formally, the trading mechanism is represented by the transfer function

T (i, j) :=
⎧⎨
⎩

(1,− f (i, j)) if i > j,

(0,0) if i = j,

(−1, f (i, j)) if i < j.

In De Meyer and Moussa-Saley (2003), the particular case f (i, j) = max(i, j) was considered. Similar results would
hold for other function f as f (i, j) = λmax(i, j) + (1 − λ)min(i, j), with λ ∈ [0,1]. In that paper, the game Γn(μ) was
analyzed for distribution μ concentrated on the two points 0,1. The analysis was extended to general distributions μ ∈ �2

in De Meyer and Moussa-Saley (2002). We prove in these papers that Γn(μ) have a value and both players have optimal
strategies. We further have a closed form formula for the value: Vn(μ) = max E[L Sn], where the maximum is taken over
the joint distributions of (L, Sn) satisfying L ∼ μ and Sn =∑n

q=1 Uq is a sum of n independent random variables Uq that
are uniformly distributed on [−1,1]. This is a Monge–Kantorovich mass transportation problem and its optimal solution
(L, Sn) is characterized by the fact that L can be expressed as the unique increasing function gn

μ(Sn) satisfying gn
μ(Sn) ∼ μ.

It follows from this formula that (H1-�2)–(H5) are satisfied by the mechanism. Based on these explicit formulae, we can
also prove that the price process at equilibrium is given by Lq = E[gn

μ(Sn)|U1, . . . , Uq]. Using the central limit theorem,
the asymptotics of this price process can then be derived, and we prove in De Meyer and Moussa-Saley (2003, 2002) that
the above Theorem 1 holds for this precise trading mechanism. The proof of Theorem 1 presented in the present paper is
however much more general as it applies to arbitrary natural trading mechanism where no closed form formulae are known
for Vn(μ).

The particular mechanism dealt with in these papers is “price related” in the sense that the players’ actions are the
proposed prices for the exchange. In this setting, a natural notion of the price process for R could be the sequence of P1’s
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posted prices. We prove in De Meyer and Moussa-Saley (2003) that the price iq posted at period q will be very close to Lq ,
and the posted price process will have the same asymptotic as (Lq)q=1,...,n .

De Meyer and Marino (2005a, 2005b), Domansky (2007) analyze the same trading mechanism as in De Meyer and
Moussa-Saley (2003), but market makers have to post prices within a discrete grid. In this case, however, the price process
fails to converge to a CMMV. Theorem 1 does not apply in this setting since neither (H3) nor (H4) are satisfied by these
discretized mechanism: the grid should be both shift- and scale-invariant, which is impossible.

6.2. Market game

The second class of examples of natural mechanisms we will present are the following market games: Players’ actions
i and j are demand functions for asset R in terms of numéraire N . In this case, I and J are sets of strictly decreasing
functions i from R to R satisfying limp→−∞ i(p) > 0 and limp→∞ i(p) < 0. Once i and j are selected, the market clearing
price p∗(i, j) is computed, whenever it exists: it is the value of p solving the equation i(p) + j(p) = 0. The transfer vector,
representing the quantities of the risky asset and numéraire that player 1 receives during the exchange is then T (i, j) :=
(i(p∗(i, j)),−p∗(i, j)i(p∗(i, j))), and T (i, j) = (0,0), if p∗(i, j) fails to exist.

The set I and J must be sufficiently rich to model the market: a natural condition on action spaces is to assume
that I and J are closed by dilatation and shift: for all α > 0 and all β ∈ R, if i belongs to I then so does the function
iα,β : p → iα,β(p) := i(αp + β). In the same way, j ∈ J will imply jα,β ∈ J , for all a > 0 and β ∈ R.

Axioms (H3) and (H4) will then be satisfied by this mechanism: we just have to prove that (H3′) and (H4′) hold. For
α > 0, define the translation maps ψ1(i) := iα−1,0 and ψ2( j) := jα−1,0. Since p∗(iα−1,0, jα−1,0) = αp∗(i, j), we get indeed
Aψ1(i),ψ2( j) = iα−1,0(p∗(iα−1,0, jα−1,0)) = i(p∗(i, j)) = Ai, j and Bψ1(i),ψ2( j) = −p∗(iα−1,0, jα−1,0)iα−1,0(p∗(iα−1,0, jα−1,0)) =
αBi, j . (H3′) is thus proved.

To prove (H4′), define, for β ∈ R, the translation maps φ1(i) := i1,−β and φ2( j) := j1,−β . Then p∗(i1,−β, j1,−β) = p∗(i, j)+
β and (H4′) follows:

Aφ1(i),φ2( j) = i1,−β

(
p∗(i1,−β, j1,−β)

)= i
(

p∗(i, j)
)= Ai, j

and

Bφ1(i),φ2( j) = −i1,−β

(
p∗(i1,−β, j1,−β)

)
p∗(i1,−β, j1,−β)

= −i
(

p∗(i, j)
)(

p∗(i, j) + β
)

= Bi, j − Ai, jβ.

We next discuss axiom (H5) in the market game model. This axiom precludes P2 from no trading and the zero demand
function could therefore not belong to J nor be approximated by an element of J in order to (H5) to hold. In fact, this
condition will imply that any function j ∈ J is discontinuous at the point γ := sup{p: j(p) > 0}. At this threshold price γ ,
P2 passes from a strictly buying position (lim

p
<→γ

j(p) > 0) to a strictly selling one (lim
p

>→γ
j(p) < 0). Would indeed j

be continuous at γ , the function jα,−αγ , which belongs to J by our previous hypothesis, would tend to the zero demand
function as α → 0, and P2 could guarantee the zero trade.

To illustrate the above discussion, let us consider the following simple example: Let I be the set of functions iα,q for
α � 0,q ∈ R, where iα,q(p) := q−p

α if α > 0 and i0,q is the inelastic demand function at price q. An action i of P1 can thus
be identified with the corresponding pair (q,α). Let J be the set of functions jr for some r ∈ R, where jr(p) := 1 if p < r,
jr(p) := −1 if p > r and jr(p) := 0 if p = r. The market clearing price in this setup will be p∗(α,q, r) = q − α if q − α > r,
p∗(α,q, r) = q + α if q + α < r, and there will be no clearing price if q − α � r � q + α. It is convenient to represent a pair
(α,q) by a pair (x, y), with x := q − α � y =: q + α. With these notations, the trading mechanism is thus

T (x, y, r) =
⎧⎨
⎩

(1, x) if r < x,

(−1, y) if r > y,

(0,0) if x � r � y.

This game could then also be viewed as an exchange between an informed market maker (P1) posting a bid x and an ask
y and an investor who is forced to trade: he can just decide the price r at which he switches from a buying position to a
selling one.

We now prove that this mechanism satisfies (H1′). Let μ ∈ �∞ and let K be a compact interval of positive length such
that μ(K ) = 1. A pure strategy for P1 in Γ1(μ) is a pair of functions (X, Y ) that maps the liquidation value L to the action
X(L), Y (L). If P2 plays a pure strategy r, the payoff is Eμ[g(L, X(L), Y (L), r)], where, with χ(x) := 1{x<0}:

g(L, x, y, r) := (L − x)χ(r − x) + (y − L)χ(y − r). (3)

Notice that a strategy (X, Y ) is always dominated by (X ′, Y ′) where X ′(L) := min(L, X(L)) and Y ′(L) := max(L, Y (L)). We
may therefore restrict P1’s pure strategy space to the set of pairs (X, Y ) satisfying ∀L: X(L) � L � Y (L). Next observe that
if one player plays in K with probability 1, the other player has K -valued ε-best reply: Γ1(μ) will have the same value as
the restricted game where both players have to play in K . This last game has indeed a value V 1(μ) in mixed strategies and
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P2 has an optimal strategy τ ∗ , as it results from Proposition 1.17 in Mertens et al. (1994): K is compact, and due to our
assumption ∀L: X(L) � L � Y (L), the coefficients of χ in (3) are positive and g(X, Y , r) is thus lower semicontinuous in r.

With this mechanism, there is at most one share of R exchanged, and thus (H2′) holds. With Theorem 24, we thus
conclude that (H1-�2) holds and axiom (H2) is implied by (H2′). Since I and J are closed for shift and dilatation, (H3)
and (H4) will hold. Finally, to prove that (H5) holds, consider the measure μ that puts a weight 1/2 on both 0 and 1. The
following strategy (X, Y ) guarantees 1/8 to P1 in Γ (μ)

X(L) :=
{

3/4 if L = 1,

0 if L = 0
and Y (L) :=

{
1/4 if L = 0,

1 if L = 1,

and V 1(μ) � 1/8 > 0. The mechanism is thus 2-natural.

6.3. Canonical games

We conclude this section with a technical remark to show the class of games we are analyzing in this paper is far
from empty: We provide a general way to generate natural trading mechanisms. If a function V : �2 → R is the value of a
game with one sided information where the state of nature space is R, it is well known that V must be both concave and
Blackwell increasing. This last property means that if (Y1, Y2) is a random vector such that E[Y2|Y1] = Y1, then V ([Y2]) �
V ([Y1]). We argue here that any function V with these properties and satisfying further (H2) to (H5) can be implemented
as the value of a game with a natural trading mechanism. V (μ) := (Eμ[|L − Eμ[L]|p])1/p , 1 � p < 2, is an example of such
a function. A concave function V is the infimum of the linear functionals by which it is dominated. In this setting, the
continuous linear functionals of measures are maps of the form μ → Eμ[φ(L)], where φ is a continuous function. Therefore
if Φ is the set of continuous functions φ such that ∀μ: Eμ[φ(L)] � V (μ), we will have ∀μ: V (μ) = infφ∈Φ Eμ[φ(L)]. The
Blackwell monotonicity indicates that only convex functions φ in Φ are to be considered: in other words, if Φvex is the set
of convex φ in Φ then ∀μ: V (μ) = infφ∈Φvex Eμ[φ(L)]. A proof of this property can be found in De Meyer et al. (2009).

By a density argument, the set Φ1,vex of continuously differentiable functions φ in Φvex will have the same property:

∀μ: V (μ) = inf
φ∈Φ1,vex

Eμ

[
φ(L)
]
. (4)

Consider then the following trading mechanism: I = R, J = Φ1,vex and ∀i ∈ I, φ ∈ Φ1,vex, T (i, φ) is defined as: T (i, φ) :=
(φ′(i),φ(i) − iφ′(i)).

With this trading mechanism, both players can guarantee V (μ) in Γ1(μ). Indeed if P2 plays φ in Γ1(μ), for all pure
strategy i(L), the payoff will be Eμ[φ′(i(L))(L − i(L)) + φ(i(L))] which is less than Eμ[φ(L)], as a consequence of the
convexity of φ. Minimizing this in φ, P2 can the guarantee V (μ) in Γ1(μ), as it follows from (4).

P1 can guarantee the same amount with the pure strategy i∗(L) := L. Indeed, if P2 plays φ the payoff is then Eμ[φ(L)] �
V (μ).

Therefore V (μ) is the value of Γ1(μ) and thus V 1 = V will satisfy (H1′) and thus (H1-�∞), as it follows from Theo-
rem 24. According to our assumption on V the mechanism will also satisfy (H2) to (H5): It thus is an ∞-natural mechanism.

In the above game, the strategy space J could be reduced to any subset F of φ1,vex such that ∀μ: V (μ) =
infφ∈F Eμ[φ(L)]. As an application of this remark, let f be a strictly positive continuously differentiable convex function

such that f (x)/(1 +|x|p) is bounded on R for some p ∈ [1,2[. If F denotes then the set of φ of the form as φ(L) = α f ( L−β
α )

for some α > 0 and β ∈ R. Then the function V (μ) := infα>0,β Eμ[α f ( L−β
α )] is the value of the game Γ1(μ) with the fol-

lowing trading mechanism: In this case a function φ ∈ E can be identified with the corresponding pair (α,β), and thus
J = (R+ × R), I = R and T (i,α,β) = ( f ′( i−β

α ),α f ( i−β
α ) − i f ′( i−β

α )). The resulting mechanism will be ∞-natural.

7. P1’s martingale optimization problem

In this section we show that the choice of a strategy for player 1 turns out to be a choice of the optimal rate of revelation
of his private information. If, at period q, P1 uses a strategy that depends on his information L, P2 will make a Bayesian
reevaluation of his beliefs about L. Therefore, the price Lq , which is the expectation of L with respect to P2’s believe after
stage q, will be different of Lq−1. The amount of information revealed can thus be represented by the price process. The
optimal rate of revelation for P1 will be that for which the price process L is optimal in the maximization problem (6) here
below.

If Y is a random variable on a probability space (Ω, A, P ) and if H ⊂ A is a σ -algebra, the probability distribution of
Y will be denoted [Y ], and the conditional distribution of Y given H will be [Y |H]. We will also write Γn[Y ] and Vn[Y ]
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instead of Γn([Y ]) and Vn([Y ]). In particular V 1[Y |H] is an H-measurable random variable.2 Let Wn(μ) be the set of pairs
(F , X) where F := (Fq)q=0,...,n+1 is a filtration on a probability space, and X = (Xq)q=0,...,n+1 is an F -martingale whose
n + 1-th value Xn+1 is μ-distributed. For (F , X) ∈ Wn(μ), we define Vn(F , X) as:

Vn(F , X) := E

[
n−1∑
q=0

V 1[Xq+1|Fq]
]
. (5)

Let us also define V n(μ) as

V n(μ) := sup
{

Vn(F , X): (F , X) ∈ Wn(μ)
}
. (6)

Lemma 2. For all μ ∈ �2: Vn(μ) � V n(μ).

Proof. Given (F , X) ∈ Wn(μ) on a probability space (Ω, A, P ), we have to prove that P1 can guarantee Vn(F , X) in Γn(μ).
At the initial stage of Γn(μ), nature selects a μ distributed random variable L and informs P1 of its choice. We can clearly
assume that nature uses the probability space (Ω, A, P ) as lottery and sets L = Xn+1, since Xn+1 ∼ μ. We can also as-
sume that P1 observes the whole space (Ω, A, P ). He can therefore adopt the following strategy in Γn[Xn+1]: at stage q
he plays an ε-optimal strategy σ ∗

q in Γ1[Xq+1|Fq]. The probability distribution σ ∗
q used by P1 to select iq is thus measur-

able with respect to σ(Fq, Xq+1) ⊂ Fq+1 and iq is chosen independently of Xn+1 conditionally to σ(Fq, Xq+1). Therefore
E[Xn+1|σ(Fq, Xq+1, iq)] = E[Xn+1|σ(Fq, Xq+1)] = Xq+1, since X is an F -martingale. The payoff at stage q is thus:

E[Aiq,τq Xn+1 + Biq,τq ] = E[Aiq,τq Xq+1 + Biq,τq ] = E
[

E[Aiq,τq Xq+1 + Biq,τq |Fq]
]
.

Since the move of P1 is ε-optimal in Γ1[Xq+1|Fq], he gets at least V 1[Xq+1|Fq] − ε conditionally to Fq . The result follows
then easily since ε > 0 is arbitrary. �
Lemma 3. For all μ ∈ �2: Vn(μ) � V n(μ).

Proof. We will prove that P1 will not be able to guarantee a higher payoff than V n(μ). Indeed, let σ be a strategy of P1 in
Γn(μ). To reply to σ , P2 may adopt the following strategy: since he knows σ1, he may compute the distribution of L1 :=
E[L|i1]. He plays then an ε-optimal strategy τ1 in Γ1[L1]. At period q, he computes [Lq|Hq−1], with Hq := σ(i1, j1 . . . iq, jq),
where Lq := E[L|iq, Hq−1], and plays an ε-optimal strategy τq in Γ1[Lq|Hq−1]. Clearly, we also have Lq = E[L|Hq], since
conditionally to Hq−1, the move jq is independent of L. Therefore, with Hn+1 := σ(L, Hn), Ln+1 := L, H0 := {∅, (I × J )n ×R},
L0 := E[L], L := (Lq)q=0,...,n+1 and H := (Hq)q=0,...,n+1, the pair (H, L) belongs to Wn(μ).

With that reply P1’s conditional payoff at period q, given Hq−1 is the at most V 1[Lq|Hq−1] + ε and the overall payoff in
Γn(μ) is then less than Vn(H, L) + nε � V n(μ) + nε . �
Theorem 4. If the mechanism satisfies (H1-�k) (k ∈ {2,∞}), then for all μ ∈ �k: Vn(μ) = V n(μ). Furthermore, if σ ,τ are opti-
mal strategies in Γn(μ), if Lq := Eπ(μ,σ ,τ )[L|Hq], where Hq := σ(i1, j1 . . . iq, jq), and L := (Lq)q=0,...,n+1 , then (H, L) solves the
maximization problem (6).

Proof. The first claim follows the two previous lemmas and the fact that the value exists as stated in (H1-�k).
Let us next assume that the players are playing a pair (σ , τ ) of optimal strategies in Γn(μ). Let Xq denote the expecta-

tion, conditional to Hq , of the sum of the n − q stage payoffs following stage q.
Let us then first observe that, for all q, Xq must be at least Vn−q[L|Hq]. Otherwise P1 could deviate from stage q + 1

on to an ε-optimal strategy in Γn−q[L|Hq], obtaining thus a higher payoff against τ than with σ , which is impossible since
(σ , τ ) is an equilibrium of the game.

At period q, P2 may compute vq−1 := V 1[Lq|Hq−1] and uq−1 := E[Aiq, jq Lq + Biq, jq |Hq−1]. On the event {vq−1 < uq−1}, P2
could then deviate at stage q with an ε-optimal strategy in Γ1[Lq|Hq−1], bringing the expected payoff of that stage to less
than vq−1 + ε . Provided ε is small enough, this is strictly less than the payoff uq−1 P1 would obtain with τ . This deviation
will not change the behavior of P1 at period q, and the distribution [L|Hq] remains thus unchanged.

2 The set � of probability measures on R may be endowed with the weak*-topology: the weakest topology such that φg : μ → Eμ[g] is continuous,
for all continuous bounded function g : R → R. If Y is a random variable on a probability space (Ω, A, P ) and if H ⊂ A is a σ -algebra, the conditional
distribution [Y |H] can then be seen as a measurable map from (Ω, H) to (�, B�) where B� denotes the Borel σ -algebra on � corresponding to the
weak*-topology. Let �2

r be the set of μ ∈ � such that ‖μ‖L2 � r. �2
r is a closed subset of �. (Indeed �2

r =⋂n φ−1
gn

([0, r2]), where gn(x) := min(x2,n).) We

next prove that the restriction of V 1 to �2
r is continuous: If {μn}n∈N ⊂ �2

r converges weakly to μ, then, according to Skorokhod representation theorem,
there exists a sequence Xn of random variables with Xn ∼ μn that converges a.s. to X ∼ μ. Since ‖Xn − X‖L2 � 2r, we conclude that |Xn − X |p is a
uniformly integrable sequence (p < 2), and thus ‖Xn − X‖Lp → 0, implying with (H2) that V 1[Xn] → V 1[X]. So V 1 is indeed continuous on �2

r . Therefore
V 1 : �2 → R is measurable on the trace B�2 of B� on �2. Let next [Y ] be in �2. As the composition of the measurable maps [Y |H] : (Ω, H) → (�2, B�2 )

and V 1 : (�2, B�2 ) → (R, BR), V 1[Y |H], is thus H-measurable, as announced.
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If, after stage q, P2 follows with an ε-optimal strategy in Γn−q[L|Hq], the payoff Yq of P1 in the n − q last stages will
be less than or equal to Vn−q[L|Hq] + ε � Xq + ε . Therefore, π(μ,σ ,τ )[vq−1 < uq−1] = 0, since otherwise, P2 would have a
profitable deviation: vq−1 + ε + Yq � vq−1 + Xq + 2ε � uq−1 + Xq , if ε is small enough.

So for all q, E[vq−1] � E[uq−1]. Summing up all these inequalities, we get Vn(H, L) � gn(μ,σ , τ ) = Vn(μ) = V n(μ), and
the second assertion is proved. �
8. The asymptotic behavior of martingales of maximal variation

In this section, we define the M-variation of a martingale and we analyze in Theorem 5 the limit behavior of the
martingales maximizing this M-variation. As we will see at the end of this section, Theorem 1 is a simple corollary of
Theorem 4 and Theorem 5.

Let us start with some notations. L2
0 will denote hereafter the set of random variables X ∈ L2 such that E[X] = 0, and

�2
0 be the set of measure μ on R such that X ∼ μ implies X ∈ L2

0. For a function M : �2
0 → R, and a random variable

X in L2
0, we will write M[X] instead of M([X]). Wn(μ) was defined in Section 7 as the set of pairs (F , X) where F :=

(Fq)q=0,...,n+1 is a filtration on a probability space, and X = (Xq)q=0,...,n+1 is an F -martingale X whose n + 1-th value Xn+1
is μ-distributed. Observe that if μ ∈ �2 and (F , X) ∈ Wn(μ), then [Xq+1 − Xq|Fq] ∈ �2

0, and we may therefore define the
M-variation V M

n (F , X) as

V M
n (F , X) := E

[
n−1∑
q=0

M[Xq+1 − Xq|Fq]
]
. (7)

Since we only will deal in this paper with functions M that are Lipschitz in L p-norm for p < 2, we refer to footnote 2 on
page 52 for a proof of the measurability of M[Xq+1 − Xq|Fq]. Let us next define V M

n (μ) as

V M
n (μ) := sup

{
V M

n (F , X): (F , X) ∈ Wn(μ)
}
. (8)

For μ ∈ �2, the function fμ was defined in Section 2 as the unique increasing function such that fμ(Z) ∼ μ when
Z ∼ N (0,1). The CMMV Πμ was also defined there as Π

μ
t := E[ fμ(B1)|(Bs)s�t ], where B is a standard Brownian motion.

With these definitions, we are ready to state the main result of this section:

Theorem 5. If M satisfies:

(i) For all random variable X ∈ L2
0 , ∀α � 0: M[αX] = αM[X].

(ii) There exist p ∈ [1,2[ and A ∈ R such that for all X, Y ∈ L2
0:∣∣M[X] − M[Y ]∣∣� A‖X − Y ‖L p .

Then for all μ ∈ �2 ,

lim
n→∞

V M
n (μ)√

n
= ρ · E

[
fμ(Z)Z

]
,

where Z ∼ N (0,1) and ρ := sup{M(ν): ν ∈ �2
0, ‖ν‖L2 � 1}.

Furthermore, if ρ > 0 and if, for all n, (F n, Xn) ∈ Wn(μ) satisfies V M
n (F n, Xn) = V M

n (μ), then the continuous time representation
Πn of Xn defined as Πn

t := Xn[[n·t]] converges in finite-dimensional distribution to the CMMV Πμ .

This theorem justifies our terminology when referring to Πμ as the continuous martingale of maximal variation corre-
sponding to μ.

With M[X] := ‖X‖L1 , V M
n (F , X) is just the L1-variation of the martingale X and we recover here Mertens and Zamir’s

(1977) result on the maximal variation of a bounded martingale, taking μ such that μ({1}) = s, μ({0}) = 1 − s. With
M[X] := ‖X‖Lp , with p ∈ [1,2[ we also recover the results of De Meyer (1998). The proof presented here is in fact inspired
by this last paper.

The previous theorem implies also Theorem 1.

Proof of Theorem 1. Indeed, (H4) indicates that for all variable X : V 1[X] = V 1[(X − E[X])] and thus also, if F is a σ -
algebra: V 1[X |F ] = V 1[(X − E[X |F ])|F ]. Therefore, if (F , X) ∈ Wn(μ), the function Vn(F , X) defined in (5) is just equal
to:

Vn(F , X) = V V 1
n (F , X).
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Since (H3) indicates that V 1 satisfies the first condition of Theorem 5, (H2) indicates that V 1 fulfills the second one and
(H5) indicates that ρ > 0, Theorem 1 follows then from Theorem 4. As a byproduct, we also get that limn→∞ Vn(μ)√

n
=

ρ · E[ fμ(Z)Z ]. �
Notice that the techniques presented in this paper could also be applied to analyze general repeated zero-sum game, and

Mertens and Zamir’s (1976) result is in fact an easy consequence of Theorem 5 and of an adapted version of Theorem 4.
The remaining sections of this paper are devoted to the proof of Theorem 5 that relies on duality techniques, a central

limit theorem for martingales and a Skorokhod embedding of martingales in the Brownian filtration. With these techniques,
the problem of maximizing the M-variation of martingales will become a problem of maximizing a covariation as introduced
in the next section.

We provide an upper bound for M in Section 10 that leads to an upper bound for V M
n in the next one. We will then

conclude in Section 13 that ρ · E[ fμ(Z)Z ] dominates the lim sup of V M
n (μ)√

n
, using a central limit theorem for martingales

presented in Section 12.

In Section 14, we prove that ρ · E[ fμ(Z)Z ] is the lim inf of V M
n (μ)√

n
, and in Section 15, we prove the convergence of the

Πn to Πμ .
Notice that the case ρ = 0 is trivial in Theorem 5, since then M[μ] � 0 for all μ in �2

0, and thus the constant martingale
Xq = E[Xn+1], for all q � n and Xn+1 ∼ μ will be optimal in the maximization problem (8), and so V M

n (μ) = 0. In the
sequel, we therefore assume ρ > 0.

As a remark, observe that the hypothesis p < 2 in (ii) of Theorem 5 could not be weakened in p � 2. A counterexample
of this is given at the end of Section 13.

9. The maximal covariation

In this section, we solve an auxiliary optimization problem that will be central in our argument: it explains where the
expression E[ fμ(Z)Z ] appearing in Theorem 5 comes from. It is a classical Monge–Kantorovich mass transportation problem
and claim (1) in the next theorem is well known. However, claim (2) is original and a proof is needed.

In this section all random variables will be on a probability space (Ω, A, P ), and Z will denote an N (0,1) random
variable.

Theorem 6. For μ ∈ �1+
, let us define α(μ) := sup{E[X Z ]: X ∼ μ} then

(1) α(μ) = E[ fμ(Z)Z ].
(2) If {Xn}n∈N is a sequence of μ-distributed random variables such that E[Xn Z ] converges to α(μ) then Xn converges in L1-norm to

fμ(Z).

Proof. Let X be a μ-distributed random variable. For a real number x, we set x+ := max{x,0} and x− := (−x)+ . Since
μ ∈ �1+

, X+ Z and X− Z are in L1 and with Fubini–Tonelli theorem

E
[

X+ Z
]= E

[ ∞∫
0

1{c�X} · Z dc

]
=

∞∫
0

E[1{c�X} Z ]dc.

Similarly, E[X− · Z ] = ∫∞
0 E[1{c<−X} Z ]dc. Therefore

E
[(

fμ(Z)
)+ · Z

]− E
[

X+ · Z
]=

∞∫
0

E
[
(1{c� fμ(Z)} − 1{c�X})Z

]
dc,

E
[(

fμ(Z)
)− · Z

]− E
[

X− · Z
]=

∞∫
0

E
[
(1{c<− fμ(Z)} − 1{c<−X})Z

]
dc.

Now observe that X and fμ(Z) have the same distribution. Therefore

∀c: E
[
(1{c� fμ(Z)} − 1{c�X})

]= 0 = E
[
(1{c<− fμ(Z)} − 1{c<−X})

]
and we infer that

E
[(

fμ(Z)
)+ · Z

]− E
[

X+ · Z
]=

∞∫
E
[
(1{c� fμ(Z)} − 1{c�X})

(
Z − f −1

μ (c)
)]

dc,
0
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E
[(

fμ(Z)
)− · Z

]− E
[

X− · Z
]=

∞∫
0

E
[
(1{c<− fμ(Z)} − 1{c<−X})

(
Z − f −1

μ (−c)
)]

dc

where f −1
μ is the left continuous inverse of fμ: f −1

μ (c) := inf{s: fμ(s) � c}.
An easy computation shows that

1{c� fμ(Z)} − 1{c�X} = 1{X<c� fμ(Z)} − 1{ fμ(Z)<c�X},

1{c<− fμ(Z)} − 1{c<−X} = 1{ fμ(Z)<−c�X} − 1{X<−c� fμ(Z)}.

Since c � fμ(Z) if and only if f −1
μ (c) � Z , we conclude that

E
[(

fμ(Z)
)+ · Z

]− E
[

X+ · Z
]=

∞∫
0

E
[
h(X, Z , c)

]
dc,

E
[(

fμ(Z)
)− · Z

]− E
[

X− · Z
]=

∞∫
0

E
[−h(X, Z ,−c)

]
dc

where

h(X, Z , c) := (1{X<c� fμ(Z)} + 1{ fμ(Z)<c�X}) · ∣∣Z − f −1
μ (c)

∣∣.
Since x = x+ − x− , we get thus E[ fμ(Z) · Z ] − E[X · Z ] = ∫∞

−∞ E[h(X, Z , c)]dc. Observing that h(X, Z , c) � 0, we get
E[ fμ(Z) · Z ] � E[X · Z ], and assertion (1) follows.

We next prove claim (2). Let {Xn}n∈N be a sequence of μ-distributed random variables such that E[Xn Z ] converges to
α(μ). Then

∫∞
−∞ E[h(Xn, Z , c)]dc converges to 0, and, since h(Xn, Z , c) � 0, we conclude that h(Xn(ω), Z(ω), c) converges

to 0 in P ⊗ λ-measure on the measure space (Ω × R, A ⊗ BR, P ⊗ λ), where λ is the Lebesgue measure and BR is the
Borelean tribe on R.

As a consequence, there exists a subsequence {X ′
n}n∈N of {Xn}n∈N , such that h(X ′

n(ω), Z(ω), c) converges P ⊗ λ-a.e. to 0.
Next

h
(

X ′
n, Z , c

)= l
(

X ′
n, Z , c

) · ∣∣Z − f −1
μ (c)

∣∣
with l(X ′

n, Z , c) := (1{X ′
n<c� fμ(Z)} + 1{ fμ(Z)<c�X ′

n}), so that

l
(

X ′
n(ω), Z(ω), c

)
.1{Z(ω) �= f −1

μ (c)}

converges P ⊗ λ-a.e. to 0.
Since ∀c: P (Z(ω) = f −1

μ (c)) = 0, l(X ′
n(ω), Z(ω), c) converges also P ⊗ λ-a.e. to 0, and since l is bounded by 2, we

conclude with Lebesgue dominated convergence theorem that for all K < ∞: limn→∞
∫ K
−K E[l(X ′

n, Z , c)]dc = 0. Now, observe
that with Tonelli’s theorem:

K∫
−K

E
[
l
(

X ′
n, Z , c

)]
dc = E

[ K∫
−K

(1{X ′
n<c� fμ(Z)} + 1{ fμ(Z)<c�X ′

n})dc

]

= E
[∣∣T K
(

X ′
n

)− T K
(

fμ(Z)
)∣∣],

where T K (x) := max(min(x, K ),−K ). Now∥∥X ′
n − fμ(Z)

∥∥
L1 �
∥∥X ′

n − T K
(

X ′
n

)∥∥
L1 + ∥∥T K

(
X ′

n

)− T K
(

fμ(Z)
)∥∥

L1 + ∥∥T K
(

fμ(Z)
)− fμ(Z)

∥∥
L1 .

Since X ′
n and fμ(Z) are μ-distributed, the first and the third terms are equal and are just a function g(K ). So, ∀K ,

lim supn→∞ ‖X ′
n − fμ(Z)‖L1 � 2g(K ). Next, since X ′

n ∈ L1, we get limK→∞ g(K ) = 0, and we conclude therefore that X ′
n

converges to fμ(Z) in L1.
We thus have proved that any maximizing sequence {Xn}n∈N (i.e. such that E[Xn Z ] → α(μ)) contains a subsequence

{X ′
n}n∈N that converges in L1 to fμ(Z). This implies clearly that any maximizing sequence converges to fμ(Z) in L1 and

claim (2) is thus proved. �
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10. An upper bound for M

On a probability space (Ω, A, P ), for q � 1 and r > 0, let Bq
r (Ω, A, P ) be the set Bq

r (Ω, A, P ) := {X ∈ L2(Ω, A, P )|
‖X‖Lq � r}. Let next B∗(Ω, A, P ) be defined as:

B∗(Ω, A, P ) := B2
ρ(Ω, A, P ) ∩ B p′

2A(Ω, A, P ),

with A, ρ and p as in Theorem 5 and p′ such that 1
p + 1

p′ = 1. Let us finally define, for X ∈ L2(Ω, A, P ):

B(X) := sup
{

E[XY ]: Y ∈ B∗(Ω, A, P )
}
. (9)

Due to Jensen’s inequality, for all r � 1, ‖E[Y |X]‖Lr � ‖Y ‖Lr . Therefore, if Y ∈ B∗(Ω, A, P ) then E[Y |X] ∈ B∗(Ω, A, P ).
So, we infer that B(X) = sup{E[X f (X)]: f (X) ∈ B∗(Ω, A, P )}, and therefore B(X) just depends on the distribution [X]. In
other words, if [X] = [X ′], then B(X) = B(X ′), even if X and X ′ are defined on different probability spaces. We will therefore
abuse the notations and write B[X] instead of B(X).

Lemma 7.

(1) For all X ∈ L2
0(Ω, A, P ): M[X] � ρ · ‖X‖L2 .

(2) If B(Ω, A, P ) := {X ∈ L2(Ω, A, P ): B[X] � 1}, then

B(Ω, A, P ) ⊂ conv
(

B2
1
ρ

(Ω, A, P ) ∪ B p
1

2A
(Ω, A, P )

)
.

(3) For all X ∈ L2
0(Ω, A, P ): B[X] � M[X].

Proof. Claim (1) is an obvious consequence of the definition of ρ as sup{M[X]: X ∈ L2
0,‖X‖L2 � 1} and of the 1-

homogeneity of M .
We next prove claim (2): Let C denote conv(B2

1
ρ

(Ω, A, P ) ∪ B p
1

2A
(Ω, A, P )). Since B2

1
ρ

(Ω, A, P ) and B p
1

2A
(Ω, A, P ) are

bounded convex closed sets in L2-norm (p < 2), they are weakly compact. C is therefore closed. Therefore, if Z ∈ L2(Ω, A, P )

does not belong to C , we can separate {Z} and C in L2(Ω, A, P ) by a separating vector Y : E[Y Z ] > α := sup{E[Y X]: X ∈ C}.
In particular α � sup{E[Y X]: X ∈ B2

1
ρ

} = 1
ρ · ‖Y ‖L2 , and α � sup{E[Y X]: X ∈ B p

1
2A

} = 1
2A · ‖Y ‖Lp′ . This indicates that Y ′ :=

Y
α ∈ B∗(Ω, A, P ). Therefore B[Z ] � E[Y ′ Z ] > 1 and so Z /∈ B(Ω, A, P ). So the complementary of C is included in the
complementary of B(Ω, A, P ), or equivalently: B(Ω, A, P ) ⊂ C .

To prove claim (3) observe that both M and B are 1-homogeneous on L2
0(Ω, A, P ). Therefore, we just have to prove

that, for all X ∈ L2
0(Ω, A, P ), M[X] � 1 whenever B[X] � 1. But if B[X] � 1, then X ∈ B(Ω, A, P ). So, by the previous claim

X ∈ C . Since C is the convex hull of two convex sets, we get that X = λY + λ′Y ′ , with λ,λ′ � 0, λ + λ′ = 1, Y ∈ B2
1
ρ

and

Y ′ ∈ B p
1

2A
. Since E[X] = 0, we also have X = λ(Y − E[Y ]) + λ′(Y ′ − E[Y ′]). Due to property (ii) in Theorem 5, we get:

M[X] � M
[
λ
(
Y − E[Y ])]+ A

∥∥λ′(Y ′ − E
[
Y ′])∥∥

L p .

Since ‖(Y − E[Y ])‖L2 � ‖Y ‖L2 � 1
ρ , it follows from claim (1) that the first term is bounded by λ. The second one is bounded

by λ′ since ‖Y ′ − E[Y ′]‖Lp � ‖Y ′‖Lp + ‖E[Y ′]‖Lp � 2‖Y ′‖Lp � 1
A . Thus M[X] � 1 and the lemma is proved. �

11. An upper bound for V M
n (μ)

For (F , X) ∈ Wn(μ), V M
n (F , X) was defined in (7). The term M[Xq+1 − Xq|Fq] involved there is then dominated by

B[Xq+1 − Xq|Fq], and we will next focus on the B variation V B
n (F , X) that dominates the M-variation.

The next lemma presents E[B[Xq+1 − Xq|Fq]] as the result of an optimization problem.
Let F1 ⊂ F2 be two σ -algebras on a probability space (Ω, A, P ). Let B∗(F2|F1) denote the set of Y ∈ L2(F2) such that

E[Y 2|F1] � ρ2 and E[|Y |p′ |F1] � (2A)p′
. Let B∗

(ρ,C)(F2|F1) denote the set of Y ∈ L2(F2) such that

(1) E[Y |F1] = 0;
(2) E[Y 2|F1] = ρ2;
(3) E[|Y |p′ |F1] � C p′

.

Lemma 8.

(1) For all X ∈ L2
0(F2):

E
[

B[X |F1]
]= sup

{
E[XY ]|Y ∈ B∗(F2|F1)

}
.
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(2) If there exists in L2(Ω, F2, P ) a random variable U that is independent of σ(F1, X) and taking the values 1 and −1 with proba-
bility 1/2 then

E
[

B[X |F1]
]
� sup

{
E[XY ]|Y ∈ B∗

(ρ,4A+ρ)(F2|F1)
}
.

Proof. If X ∈ L2(F2) and Y ∈ B∗(F2|F1) then E[XY ] = E[E[XY |F1]]. Since conditionally to F1, Y belongs to B∗ , we get
E[XY |F1] � B[X |F1], and thus E[B[X |F1]] � sup{E[XY ]|Y ∈ B∗(F2|F1)}.

To prove the reverse inequality, we just have to prove that, ∀ε > 0, there exists a measurable map φ : �2 × R → R such
that, ∀μ ∈ �2, if X ∼ μ, then E[φ(μ, X)2] � ρ2, E[|φ(μ, X)|p′ ] � (2A)p′

and B(μ) − ε � E[Xφ(μ, X)]. Indeed, the random
variable Y := φ([X |F1], X) belongs then to B∗(F2|F1) and E[XY ] � E[B[X |F1]] − ε .

We now prove the existence of such a measurable map. As argued just after Eq. (9), B(μ) = sup{Eμ[X f (X)]:
Eμ[ f (X)2] � ρ2; Eμ[| f (X)|p] � (2A)p}. Since there exists a countable set { fn}n∈N of continuous functions, with f0 ≡ 0, that
is dense in L2(R, BR,μ), for all μ ∈ �2, we also have B(μ) = supn gn(μ), where gn(μ) := Eμ[X fn(X)] if Eμ[ fn(X)2] � ρ2

and Eμ[| fn(X)|p] � (2A)p , and gn(μ) := 0 otherwise. The maps μ → gn(μ) are measurable with respect to the Borel
σ -algebra B�2 associated with the weak topology on �2. Indeed, the maps μ → Eμ[X fn(X)], μ → Eμ[ fn(X)2] and
μ → Eμ[| fn(X)|p] are weakly continuous and thus measurable with respect to B�2 . We infer therefore that μ → B(μ)

and thus μ → B(μ) − gn(μ) are also B�2 -measurable. For ε > 0, we may then define N(μ) as the smallest integer n such
that B(μ) − gn(μ) � ε . The map φ : (μ, x) → f N(μ)(x) will therefore be measurable.

It has also the required properties: ∀μ ∈ �2, if X ∼ μ, then E[φ(μ, X)2] � ρ2, E[|φ(μ, X)|p′ ] � (2A)p′
and B(μ) − ε �

E[Xφ(μ, X)].
Indeed, for all μ ∈ �2, either B(μ) � ε , which implies N(μ) = 0 and thus Eμ[ f N(μ)(X)X] = 0 � B(μ) − ε , since f0 ≡ 0.

We also have in this case Eμ[ f 2
N(μ)

(X)] = 0 � ρ2 and Eμ[| f N(μ)(X)|p] = 0 � (2A)p .

Or, B(μ) > ε , and thus gN(μ)(μ) > 0, which indicates that Eμ[ f 2
N(μ)(X)] � ρ2, Eμ[| f N(μ)(X)|p] � (2A)p and also

Eμ[ f N(μ)(X)X] = gN(μ)(μ) � B(μ) − ε , as it results from the definition of gn .
We next turn to claim (2): Just observe that if Y ∈ B∗(F2|F1), then Y ′ := E[Y |X] also belongs to B∗(F2|F1) and has

thus the property that E[XY ] = E[XY ′]. Now, consider Y ′′ := Y ′ − E[Y ′|F1]. Since X ∈ L2
0(F2|F1), we have E[X E[Y ′|F1]] = 0.

Therefore E[XY ] = E[XY ′′]. Now, observe that

θ2 := E
[(

Y ′′)2|F1
]= E

[(
Y ′)2|F1

]− (E[Y ′|F1
])2 � E

[
Y 2|F1

]
� ρ2.

Finally, let Y ′′′ be defined as Y ′′′ := Y ′′ +√ρ2 − θ2U , since U is independent of σ(F1, X), and since Y ′′ is measurable on
this σ -algebra, we get obviously

E[XY ] = E
[

XY ′′′], E
[
Y ′′′|F1

]= 0 and E
[(

Y ′′′)2|F1
]= ρ2.

Observing that (E[(Y ′′′)p′ |F1])
1
p′ is just a conditional L p′

-norm, we get

(
E
[∣∣Y ′′′∣∣p′ |F1

]) 1
p′ �
(

E
[∣∣Y ′′∣∣p′ |F1

]) 1
p′ + ρ

�
(

E
[∣∣Y ′∣∣p′ |F1

]) 1
p′ + (E[∣∣E[Y ′|F1

]∣∣p′ |F1
]) 1

p′ + ρ

� 2
(

E
[∣∣Y ′∣∣p′ |F1

]) 1
p′ + ρ

� 2
(

E
[|Y |p′ |F1

]) 1
p′ + ρ

� 4A + ρ.

Therefore, for all Y ∈ B∗(F2|F1), there is a Y ′′′ ∈ B∗
(ρ,4A+ρ)(F2|F1) such that E[XY ] = E[XY ′′′], and claim (2) then follows

from claim (1). �
Let us now use this lemma to compute V M

n (F , X) for a pair (F , X) ∈ Wn(μ) defined on a probability space (Ω, A, P ).
Let us first enlarge this space obtaining a new one (Ω ′, A′, P ′) where A may be seen as a sub-σ -algebra of A′ , P ′ and
P coincide on A and where there is a system of n independent random variables (Uq)q=1,...,n , independent of A, with
P ′(Uq = 1) = P ′(Uq = −1) = 1/2. Consider next the filtration F ′ defined by F ′

q := σ(Fq, Uk,k � q). X is then also a martin-
gale on F ′ and [Xq+1 − Xq|Fq] = [Xq+1 − Xq|F ′

q]. Therefore

V M
n (F , X) � V B

n (F , X) = V B
n

(
F ′, X

)
.

We will denote B∗
(ρ,4A+ρ)(F ′) the set of F ′- adapted processes Y such that for all q = 1, . . . ,n: Yq ∈ B∗

(ρ,4A+ρ)(F ′
q|F ′

q−1).

Then, since Xq − Xq−1 ∈ L2(F ′
q|F ′ ), we may apply claim (2) of last lemma to get
0 q−1
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V B
n

(
F ′, X

)= n∑
q=1

E
[

B
[

Xq − Xq−1|F ′
q−1

]]

� sup
Y ∈B∗

(ρ,4A+ρ)
(F ′)

n∑
q=1

E
[
(Xq − Xq−1) · Yq

]
.

Since X is an F ′-martingale and E[Yq|F ′
q−1] = 0, we get

E
[
(Xq − Xq−1) · Yq

]= E[Xq · Yq] = E
[

E
[

Xn+1|F ′
q

] · Yq
]= E[Xn+1 · Yq],

and therefore

V M
n

(
F ′, X

)
� sup

Y ∈B∗
(ρ,4A+ρ)

(F ′)
E

[
Xn+1 ·

n∑
q=1

Yq

]
. (10)

For a given Y ∈ B∗
(ρ,4A+ρ)

(F ′), let Sq be defined as S0 := 0, Sq := Sq−1 + Yq . Observe then that S is an F ′-martingale.
We will denote S(ρ,4A+ρ)(F ′) the set of F ′-martingale S whose increments Sq+1 − Sq belong to B∗

(ρ,4A+ρ)(F ′
q|F ′

q−1), for
all q, and such that S0 = 0. The last formula becomes then

V M
n

(
F ′, X

)
� sup

S∈S ∗
(ρ,4A+ρ)

(F ′)
E[Xn+1 · Sn]. (11)

Let us make two comments on the last formula: the quantity V M
n (F ′, X) depends on the laws [Xq+1 − Xq|Fq] which

are intimately related to the filtration F . The bound we found in the last formula just depends on the laws [Xq+1 −
Xq|X1, . . . , Xq]. Therefore, if we create a martingale X̃ on another filtration G with the same law as X — we call this
procedure the embedding of X in the filtration G —, the right-hand side of last inequality can equivalently be evaluated
on X̃ .

The second comment is that we will have to deal with V M
n (F ′,X)√

n
, and will then have to evaluate E[Xn+1 · Sn√

n
], for

S ∈ S ∗
(ρ,4A+ρ)

(F ′). Since the increments of S have a conditional variance equal to ρ2, Sn√
n

will be approximatively normally

distributed, due to a central limit theorem for martingales. We need however precise bounds for this approximation. These
bounds are provided in the next section which is in fact the crux point of the argument. We embed there both martingales

S√
n

and X in a Brownian filtration.

12. The embedding in the Brownian filtration

Let B be a Brownian motion on a probability space (Ω0, A0, P0) and let G be the natural filtration of B . Skorokhod
posed the following question: Given a probability distribution μ ∈ �p′

, is there a G -stopping time θ such that Bθ ∼ μ? To

avoid trivial uninteresting solutions to this problem, one further requires that E[θ p′
2 ] < ∞. It is well known that Skorokhod’s

problem has a solution for all μ ∈ �
p′
0 (see for instance Azéma and Yor, 1979) and we will denote θμ one of these solutions.

We also will need the following fact: For all p′ > 1, there exist two non-negative constants cp′ and C p′ , called the
Burkholder–Davis–Gundy constants (see Burkholder, 1973), such that, for all G -stopping times τ � τ ′:

E
[
τ

p′
2
]
< ∞ �⇒ cp′ · E

[(
τ − τ ′) p′

2 |Gτ ′
]
� E
[|Bτ − Bτ ′ |p′ |Gτ ′

]
� C p′ · E

[(
τ − τ ′) p′

2 |Gτ ′
]
.

In the particular case p′ = 2, we have c2 = C2 = 1.

Lemma 9. Let R = (Rq)q:=0,...,n be a martingale with Rn ∈ L p′
0 , then there is an increasing sequence of stopping times {τq}q:=0,...,n

such that E[τ
p′
2

n ] < ∞ and such that both processes R and R̂ have the same distribution where R̂q := Bτq .

Proof. Just take τ0 := θ[R0] so that [R̂0] = [Bτ0 ] = [R0]. Once τq is defined, define τq+1 as follows: B ′
t := Bτq+t − Bτq is an-

other Brownian motion on its natural filtration G′ . For all (r0, . . . , rq) ∈ R
q+1 define θ̃ (r0, . . . , rq) := θ ′

[Rq+1−Rq |R0=r0;...;Rq=rq] ,
where θ ′

μ is a solution of μ-Skorokhod’s problem for the Brownian motion B ′ . This mapping can be chosen measur-

able from R
q+1 to (Ω0, A0), and define τq+1 := τq + θ̃ (R̂0, . . . , R̂q). Then R̂q+1 − R̂q = Bτq+1 − Bτq = B ′

θ̃ (R̂0,...,R̂q)
. There-

fore [R̂q+1 − R̂q|R̂0, . . . , R̂q] = [Rq+1 − Rq|R0, . . . , Rq]. We then conclude that R and R̂ have the same laws. Next, since

cp · E[θ̃ (R̂0, . . . , R̂q)
p′
2 |Gτq ] � E[(R̂q+1 − R̂q)

p′ |Gτq ], we conclude by induction that E[τ
p′
2

n ] < ∞. �
We are now ready to start the embedding procedure. Let us consider (F ′, X) ∈ Wn(μ) and S ∈ S ∗

(ρ,4A+ρ)(F ′), as in the
last section.
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Let R denote R := S
ρ

√
n

. To embed both R and X , we will have to slightly perturb the above procedure: For ε > 0

we define τ0 = 0, τ 1
2

:= ε and R̂0 := 0. There exists a function f0 such that [ f0(
√

ε Z)] = [X0] if Z ∼ N (0,1) and we set

X̂0 := f0(Bτ 1
2

− Bτ0). The random vectors (R0, X0) and (R̂0, X̂0) will thus have the same distribution.

For q = 0, . . . ,n − 1, we then define τq+1, τq+ 3
2

, R̂q+1 recursively as follows: Let G′ be the natural σ -algebra of B ′
t :=

Bt+τ
q+ 1

2
− Bτ

q+ 1
2

. Define as above

θ̃ (r0, . . . , rq, x0, . . . , xq) := θ ′[Rq+1−Rq|R0=r0,...,Rq=rq,X0=x0,...,Xq=xq],

and then set τq+1 := τq+ 1
2

+ θ̃ (R̂0, . . . , R̂q, X̂0, . . . , X̂q), τq+ 3
2

:= τq+1 + ε and finally R̂q+1 := R̂q + Bτq+1 − Bτ
q+ 1

2
. It follows

from this definition that R̂q+1 − R̂q has the same law conditionally to (R̂s, X̂s)s�q as Rq+1 − Rq conditionally to (Rs, Xs)s�q ,
and thus ((R̂s)s�q+1, ( X̂s)s�q) and ((Rs)s�q+1, (Xs)s�q) have the same law. There exists a function fq+1 : R

q+1 ×R
q ×R → R

such that, ∀((rs)s�q+1, (xs)s�q) ∈ R
q+1 × R

q , with Z ∼ N (0,1):[
fq+1
(
(rs)s�q+1, (xs)s�q,

√
ε Z
)]= [Xq+1|(Rs = rs)s�q+1, (Xs = xs)s�q

]
.

We then set X̂q+1 := fq+1((R̂s)s�q+1, ( X̂s)s�q, Bτ
q+ 3

2
− Bτq+1 ), and it follows that (Rs, Xs)s�q+1 and (R̂s, X̂s)s�q+1 are equally

distributed.
It is convenient to define also τn+1 as τn+1 = τn+ 1

2
:= τn + ε and X̂n+1 := fn+1((R̂s)s�n, ( X̂s)s�n, Bτ

n+ 1
2

− Bτn ), where

fn+1 is such that, for all (rs), (xs):[
fq+1
(
(rs)s�n, (xs)s�n,

√
ε Z
)]= [Xn+1|(Rs = rs)s�n, (Xs = xs)s�n

]
,

whenever Z ∼ N (0,1).
The resulting process (R̂, X̂) has the same distribution as (R, X). It follows from the above definition that (R̂q, X̂q) is

Gτq -measurable and the law (R̂q, X̂q) conditionally to Gτq−1 is just the law of (R̂q, X̂q) conditionally to (R̂s, X̂s)s<q . Therefore

(R̂, X̂) is a Gτq -martingale. Observe next that

Bτn =
n−1∑
q=0

Bτq+1 − Bτ
q+ 1

2
+

n−1∑
q=0

Bτ
q+ 1

2
− Bτq .

Since Bτq+1 − Bτ
q+ 1

2
= R̂q+1 − R̂q and R̂0 = 0 we get Bτn − R̂n as a sum of iid N (0, ε) random variables: Bτ

q+ 1
2

− Bτq =
Bτq+ε − Bτq . Therefore R̂n − Bτn ∼ N (0,nε) and, in particular

‖R̂n − Bτn‖L2 = √
ε · n. (12)

In order to obtain our central limit result for R̂n , we will prove hereafter that τn is close to be a constant stopping time,
which indicates that Bτn follows approximately a normal distribution.

Lemma 10.

(1) For all t ∈ [0,1]: E[τ[[nt]]] = [[nt]](ε + 1
n ), where [[a]] is the greatest integer less than or equal to a.

(2) E[|τ[[nt]] − E[τ[[nt]]]|] � κ2 · n
2

p′∧4
−1

, where κ := 2
2

p′∧4 4A+ρ

(cp′ )
1
p′

ρ

.

(3) ‖Bt − Bτ[[nt]] ‖L2 � κ · n
1

p′∧4
− 1

2 +
√

t − [[nt]]
n + ε[[nt]].

Proof. To prove claim (1), observe that τ[[nt]] = τ0 +∑[[nt]]
q=1 (τq − τq−1). Then, since S ∈ S∗

(ρ,4A+ρ)(F ′), we get:

E[τq − τq−1|Gτq−1 ] = ε + E[τq − τq− 1
2
|Gτq−1 ]

= ε + E
[
(Bτq − Bτ

q− 1
2
)2|Gτq−1

]
= ε + E

[
(R̂q − R̂q−1)

2|R̂k, X̂k, k � q − 1
]

= ε + 1

ρ2n
E
[
(Sq − Sq−1)

2|Sk, Xk, k � q − 1
]

= ε + 1
.

n
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Therefore, E[τ[[nt]]] = [[nt]](ε + 1
n ), as announced.

We next prove claim (2). Since E[τq − τq−1|Gτq−1 ] = E[τq − τq−1], we get

τ[[nt]] − E[τ[[nt]]] =
[[nt]]∑
q=1

(
(τq − τq−1) − E[τq − τq−1]

)= Q [[nt]],

where

Q s :=
s∑

q=1

(
(τq − τq−1) − E[τq − τq−1|Gτq−1 ]

)= s∑
q=1

(
τq − τq− 1

2
− 1

n

)
.

The process Q = (Q s)s=0,...,n is clearly a Gτs -martingale starting at 0. Since p ∈ [1,2[ and 1
p + 1

p′ = 1, we get p′ > 2, and so,

p̃ := min(p′,4)
2 ∈ ]1,2]. Therefore∥∥τ[[nt]] − E[τ[[nt]]]

∥∥
L1 = ‖Q [[nt]]‖L1 � ‖Q n‖L1 � ‖Q n‖L p̃ . (13)

We claim next that

E
[|Q n|p̃]� 22−p̃

n−1∑
k=0

E
[|Q k+1 − Q k|p̃]. (14)

This follows at once from a recursive use of the relation:

E
[|x + Y |p̃]� |x|p̃ + 22−p̃ E

[|Y |p̃],
that holds for all x in R, whenever Y is a centered random variable: Indeed,

|x + Y |p̃ − |x|p̃ = Y

1∫
0

p̃|x + sY |p̃−1 sgn(x + sY )ds.

Thus, since E[Y ] = 0, we get

E
[|x + Y |p̃]− |x|p̃ = E

[
Y

1∫
0

p̃
(|x + sY |p̃−1 sgn(x + sY ) − |x|p̃−1 sgn(x)

)
ds

]
.

Since p̃ � 2, straightforward computation indicates that, for fixed a, the function g(x) := ||x+a|p̃−1 sgn(x+a)−|x|p̃−1 sgn(x)|
reaches its maximum at x = −a/2, implying g(x) � 22−p̃|a|p̃−1.

So, E[|x + Y |p̃] − |x|p̃ � E[|Y | ∫ 1
0 22−p̃ p̃|sY |p̃−1 ds] = 22−p̃ E[|Y |p̃], as announced and inequality (14) follows.

Next ‖Q k+1 − Q k‖L p̃ = ‖τk+1 − τk+ 1
2

− 1
n ‖L p̃ � ‖τk+1 − τk+ 1

2
‖L p̃ + 1

n . Since 1
n = E[τk+1 − τk+ 1

2
], we also have 1

n � ‖τk+1 −
τk+ 1

2
‖L p̃ , and thus

‖Q k+1 − Q k‖L p̃ � 2‖τk+1 − τk+ 1
2
‖L p̃ � 2‖τk+1 − τk+ 1

2
‖

L
p′
2

.

Finally, R̂k+1 − R̂k = Bτk+1 − Bτ
k+ 1

2
. Therefore, we get with Burkholder–Davis–Gundy inequality, and since S ∈

S ∗
(ρ,4A+ρ)

(F ′):

E
[
(τk+1 − τk+ 1

2
)

p′
2
]
� 1

cp′
E
[|R̂k+1 − R̂k|p′]= 1

cp′ρ p′n
p′
2

E
[|Sk+1 − Sk|p′]� (4A + ρ)p′

cp′ρ p′n
p′
2

.

So: E[|Q k+1 − Q k|p̃] � 2p̃(4A + ρ)2p̃(cp′ )
− 2p̃

p′ ρ−2p̃n−p̃ , and, with (14), we conclude

E
[|Q n|p̃]� 22(4A + ρ)2p̃(cp′)

− 2p̃
p′ ρ−2p̃n1−p̃ .

Therefore, with (13), we get:

∥∥τ[[nt]] − E[τ[[nt]]]
∥∥

L1 � 2
2
p̃

(
4A + ρ

(cp′)
1
p′ ρ

)2

n
1
p̃ −1

and claim (2) is proved.
We next prove claim (3): let τ denote E[τ[[nt]]]. Then

‖Bτ[[nt]] − Bt‖L2 � ‖Bτ[[nt]] − Bτ ‖L2 + ‖Bτ − Bt‖L2 =√‖τ[[nt]] − τ‖L1 +√|τ − t|.
The first term is bounded by claim (2), and the second one by claim (1). �
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13. An upper bound for lim sup V M
n (μ)/

√
n

Let us consider (F ′, X) ∈ Wn(μ). According to (11), we have:

V M
n (F ′, X)√

n
� sup

S∈S ∗
(ρ,4A+ρ)

(F ′)
E

[
Xn+1 · Sn√

n

]
.

For S ∈ S ∗
(ρ,4A+ρ)(F ′), let us define Rn := Sn

ρ
√

n
and let us embed (X, R) in the Brownian filtration, as done in the last

section, for ε > 0.
Then E[Xn+1 · Sn√

n
] = ρ · E[Xn+1 · Rn] = ρ · E[ X̂n+1 · R̂n].

Claim (3) for t = 1 in Lemma 10 yields ‖B1 − Bτn ‖L2 � κ · n
1

p′∧4
− 1

2 + √
εn. With (12), we get then ‖R̂n − B1‖L2 �

κ · n
1

p′∧4
− 1

2 + 2
√

ε · n.
Therefore, since X̂n+1 ∼ μ and B1 ∼ N (0,1),

E[ X̂n+1 · R̂n] � E[ X̂n+1 · B1] + E
[

X̂n+1 · (R̂n − B1)
]

� E[ X̂n+1 · B1] + ‖ X̂n+1‖L2 · ‖R̂n − B1‖L2

� α(μ) + ‖μ‖L2 · (κ · n
1

p′∧4
− 1

2 + 2
√

ε · n
)
,

where α(μ) = E[ fμ(Z)Z ] was defined in Theorem 6. Since this holds for all ε > 0 and all S ∈ S ∗
(ρ,4A+ρ)(F ′), we conclude

that for all (F ′, X) ∈ Wn(μ):

V M
n (F ′, X)√

n
� ρ · α(μ) + ρ · ‖μ‖L2 · κ · n

1
p′∧4

− 1
2 .

Since p′ > 2, and since the constant κ in Lemma 10 is independent of n, we thus have proved:

Theorem 11. Under the hypotheses of Theorem 5,

lim sup
n→∞

V M
n (μ)√

n
� ρ · E

[
fμ(Z)Z

]
.

We will prove in the next section that ρ · α(μ) is the limit of V M
n (μ)√

n
as n increases to ∞. To conclude this section, we

give here an example to illustrate that p must be strictly less than 2 in hypothesis (ii) of Theorem 5 in order to get the
result: Clearly, the function M[μ] := ‖μ‖L2 satisfies hypothesis (i) of Theorem 5, and would also satisfy hypothesis (ii) with
A = 1 if p = 2 was allowed. For this M , ρ = 1. Let then μ be the probability that assigns a weight 1/2 to +1 and −1. Let Xn

be the unique martingale of length n+1 such that ∀q = 0, . . . ,n, |Xn
q | =
√

q
n and such that Xn

n+1 := Xn
n . In other words, if, for

q < n, Xn
q =
√

q
n , then Xn

q+1 jumps to
√

q+1
n with probability γ or −

√
q+1

n with probability 1 − γ , where γ := 1
2 (1 +

√
q

q+1 ),

and symmetric jumps are made if Xn
q = −

√
q
n . An easy computation shows that E[(Xn

q+1 − Xn
q )2|Xn

1, . . . , Xn
q ] = 1

n , and thus,

if F n denotes the natural filtration of Xn , we get V M
n (F n, Xn) = √

n. Since for all pair (F ′, X) ∈ Wn(μ), we can write
as in (11): V M

n (F ′, X) = E[Xn+1 Sn], where Sn =∑n
k=1 Yk , with E[Y 2

k ] = 1 we get E[S2
n] = n, and due to Cauchy–Schwarz

inequality, it comes V M
n (F ′, X) � ‖Xn+1‖L2

√
n = ‖μ‖L2

√
n = √

n. Therefore:
√

n � V M
n (μ) � V M

n

(
F n, Xn)= √

n,

and thus

lim
n→∞

V M
n (μ)√

n
= 1 > ρ · E

[
fμ(Z)Z

]= E
[|Z |]=

√
2

π
,

since fμ(Z) = 1{Z�0} − 1{Z<0} .

14. A lower bound for lim infV M
n (μ)/

√
n

Let Y be a random variable in L4 with E[Y ] = 0, E[Y 2] = 1. We will provide in this section a sequence (F n, Xn) ∈ Wn(μ)

such that

lim inf
n→∞

V M
n (F n, Xn)√ � M[Y ] · α(μ).
n
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Using Lemma 9, we can construct, for each n, an increasing sequence (τn
q )q=0,...,n of stopping times on the Brownian

filtration G such that Y n
q := √

n · (Bτn
q

− Bτn
q−1

) is an i.i.d. sequence with [Y n
q ] = [Y ]. Observe in particular that τn

q − τn
q−1 is

also an i.i.d. sequence. We also set τn
n+1 := τn

n ∨ 1.
The argument of Lemma 10 can be applied to this sequence of stopping times, replacing ρ by 1, p′ by 4, ε by 0 and

4A + ρ by ‖Y ‖L4 . We obtain in this way:

Lemma 12.

(1) For all t ∈ [0,1]: E[τn[[nt]]] = [[nt]]
n .

(2) ‖τn[[nt]] − E[τn[[nt]]]‖L2 � γ 2 · n− 1
2 , where γ := ‖Y ‖L4

(c4)
1
4

.

(3) ∀u ∈ [0,1], ∀q � [[nu]]: p(τn
q < u) � γ 4

n(
q
n −u)2 .

(4) ‖B1 − Bτn
n
‖L2 � γ · n− 1

4 .

Proof. By construction of the sequence τn
q , θn

q := τn
q − τn

q−1 is an i.i.d. sequence of random variables and 1 = E[(Y n
q )2] =

n · E[(Bτn
q

− Bτn
q−1

)2] = n · E[θn
q ]. Burkholder–Davis–Gundy inequality indicates that

c4 · var
[
θn

q

]
� c4 · E

[(
θn

q

)2]� E
[
(Bτn

q
− Bτn

q−1
)4]= E

[
Y 4]/n2.

Therefore, since τn[[nt]] =∑[[nt]]
q=1 θn

q , we get E[τn[[nt]]] = [[nt]]/n and

∥∥τn[[nt]] − E
[
τn[[nt]]

]∥∥2
L2 = var

(
τn[[nt]]

)
� E[Y 4] · [[nt]]

c4 · n2
. � E[Y 4]

c4 · n
.

Claim (3) is just a one-sided Chebichev inequality: Indeed, with t := q/n, claims (1) and (2) indicate that E[τn
q ] = q/n

and var(τn
q ) � γ 4/n. Therefore: p(τn

q < u) = p(τn
q − E[τn

q ] < u − q/n) � var(τn
q )

(q/n−u)2 .

We finally conclude ‖Bτn
n

− B1‖2
L2 = E[|τn

n − 1|] �
‖Y ‖2

L4√
c4·n , and the lemma is proved. �

We define next F n
q := Gτn

q
and Xn

q := E[ fμ(B1)|F n
q ], for q = 0, . . . ,n + 1. Since τn

n+1 � 1, we have Xn
n+1 = fμ(B1), and

due to the definition of fμ , we have Xn
n+1 ∼ μ. Therefore (F n, Xn) ∈ Wn(μ).

We will have to compute V M
n (F n, Xn). To do so, it is convenient to introduce an approximation X̃n of Xn . As explained

in Section 2, due to the Markov property of the Brownian motion, Π
μ
t := E[ fμ(B1)|Gt] = f (Bt , t) where f (x, t) := E[ fμ(x +√

1 − t · Z)] with Z ∼ N (0,1). As a convolution with a normal density, f is twice continuously differentiable on R × [0,1[,
and it further satisfies the heat equation, so that Π

μ
t = f (0,0)+∫ t

0 rs dBs , with rs = 0 for s � 1 and rs = ∂
∂x f (Bs, s) for s < 1.

Let us observe here that f (x, t) is increasing in x at fixed t since so is fμ(x), and thus rs � 0 for all s. Observe also that

rs is continuous on [0,1[ and that Xn
q = f (0,0) + ∫ τn

q

0 rs dBs . We will then define X̃n by:

X̃n
q = f (0,0) +

τn
q∫

0

rn
s dBs, (15)

where rn := Tn(r) is the image of the process r by the map Tn we now define. Let H2 be the linear space of G -progressively
measurable processes a such that

‖a‖2
H2 := E

[ ∞∫
0

a2
s ds

]
< ∞.

Let also H2[0,1] denote the set of a ∈ H2 such that as = 0, for all s � 1. For a ∈ H2[0,1] , we define Tn(a) as the simple process

Tn(a)t :=
n−1∑
q=0

n · E

[ q+1
n∫

q
n

as ds|Gτn
q

]
· 1[τn

q ,τn
q+1[(t).

Lemma 13. Tn is a linear mapping from H2[0,1] to H2 , and

∀a ∈ H2[0,1]:
∥∥Tn(a)

∥∥
H2 � ‖a‖H2 .
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Proof. As a simple process, Tn(a) is progressively measurable and

∥∥Tn(a)
∥∥2

H2 = E

[
n−1∑
q=0

(
n · E

[ q+1
n∫

q
n

as ds|Gτn
q

])2

· (τn
q+1 − τn

q

)]
.

Since Y n
q+1 := √

n · (Bτn
q+1

− Bτn
q
) satisfies [Y n

q+1|Gτn
q
] = [Y ], we get

E
[
τn

q+1 − τn
q |Gτn

q

]= E
[
(Bτn

q+1
− Bτn

q
)2|Gτn

q

]= E[Y 2]
n

= 1

n
.

Furthermore, with Jensens inequality:

(
E

[ q+1
n∫

q
n

as ds|Gτn
q

])2

� E

[( q+1
n∫

q
n

as ds

)2

|Gτn
q

]
,

and by Cauchy–Schwarz inequality: (
∫ q+1

n
q
n

as ds)2 �
∫ q+1

n
q
n

a2
s ds · 1

n . Therefore

∥∥Tn(a)
∥∥2

H2 � E

[
n−1∑
q=0

E

[ q+1
n∫

q
n

a2
s ds|Gτn

q

]]
= ‖a‖2

H2 ,

and the lemma is proved. �
Lemma 14. ∀a ∈ H2[0,1]: limn→∞ ‖Tn(a) − a‖H2 = 0.

Proof. As it follows from the last lemma, the linear maps Wn defined by Wn(a) := Tn(a) − a form an equi-continuous
sequence of linear mappings. Therefore, we just have to prove the result for elementary processes a of the form: as :=
ψu · 1[u,v[ , where u < v < 1 and ψu ∈ L∞(Gu). Indeed, these elementary processes engender a dense subspace of H2[0,1] . If
ψt := E[ψu |Gt], the process ψ is a martingale on the Brownian filtration and, as such, has continuous sample paths. It is
further uniformly integrable since ψu ∈ L∞(Gu), and with the stopping theorem, we conclude that E[ψu |Gτn

q
] = ψτn

q
. Next:

Tn(a) = ψτn[[nu]] · ([[nu]] − nu
) · 1[τn[[nu]],τn[[nu]]+1[ + ψτn[[nv]] · (nv − [[nv]]) · 1[τn[[nv]],τn[[nv]]+1[ +

[[nv]]−1∑
q=[[nu]]

ψτn
q

· 1[τn
q ,τn

q+1[.

The H2 norm of the two first terms goes to 0 with n since ‖ψ‖L∞ < ∞ and E[τn
q+1 − τn

q ] = 1/n.

For all positive numbers x, x′, y, y′ such that x � y and x′ � y′ , it is easy to check that
∫∞

0 (1[x,y[ −1[x′,y′[)2 dt = |x− x′|+
|y − y′| if [x, y[ ∩ [x′, y′[ �= ∅. Otherwise,

∫∞
0 (1[x,y[ − 1[x′,y′[)2 dt = y − x + y′ − x′ . So, with Dn := {τn[[nu]] � v} ∪ {τn[[nv]] � u},

we get: ‖a − ψu · 1[τn[[nu]],τn[[nv]][‖2
H2 = ‖ψu · 1[u,v[ − ψu · 1[τn[[nu]],τn[[nv]][‖2

H2 which is also equal to E[1Dc
n
ψ2

u (|u − τn[[nu]]| + |v −
τn[[nv]]|)] + E[1Dn ψ

2
u (τn[[nv]] − τn[[nu]] + v − u)]. The first expectation converges to 0 as n increases, since ‖ψu‖L∞ < ∞ and

both ‖v − τn[[nv]]‖L1 and ‖u − τn[[nu]]‖L1 converge to 0, according to Lemma 12. The same lemma indicates that ‖τn[[nt]]‖L2 �
1 + γ 2 and ψ2

u (τn[[nv]] − τn[[nu]] + v − u) is thus bounded in L2. With Cauchy–Schwarz inequality, we conclude then that

E[1Dn ψ
2
u (τn[[nv]] − τn[[nu]] + v − u)] converges to 0 as n → ∞, since p(Dn) = p(τn[[nu]] � v) + p(τn[[nv]] � u) also converges to 0:

τn[[nu]] converges in L1 to u < v , and τn[[nv]] to v > u. Therefore ‖a − ψu · 1[τn[[nu]],τn[[nv]][‖2
H2 converges to 0 and, to prove the

lemma, it just remains to prove that ηn converges to 0, where

ηn :=
∥∥∥∥∥ψu · 1[τn[[nu]],τn[[nv]][ −

[[nv]]−1∑
q=[[nu]]

ψτn
q

· 1[τn
q ,τn

q+1[

∥∥∥∥∥
2

H2

.

Now

ηn =
∥∥∥∥∥

[[nv]]−1∑
(ψu − ψτn

q
) · 1[τn

q ,τn
q+1[

∥∥∥∥∥
2

2

=
[[nv]]−1∑

E
[
(ψu − ψτn

q
)2 · (τn

q+1 − τn
q

)]
.

q=[[nu]] H q=[[nu]]
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It results from the definition of ψt that ψt = ψu if t � u. Therefore, we infer that: (ψu − ψτn
q
)2 � 4‖ψu‖2∞1τn

q <u and thus

ηn � 4‖ψu‖2∞E

[ [[nv]]−1∑
q=[[nu]]

1τn
q <u · (τn

q+1 − τn
q

)]= 4‖ψu‖2∞
[[nv]]−1∑
q=[[nu]]

p
(
τn

q < u
)
/n,

since {τn
q < u} ∈ Gτn

q
and E[(τn

q+1 − τn
q )|Gτn

q
] = 1/n. Due to claim (3) in Lemma 12 we have:

∑[[nv]]−1
q=[[nu]] p(τn

q < u)/n �∑n
q=[[nu]] min(

γ 4

n(
q
n −u)2 ,1)/n. For q between [[nu]] and nu + γ 2√n, the min appearing in the corresponding term is equal

to 1. The sum of these first terms is thus bounded by (1 + γ 2√n)/n which goes to 0 as n → ∞. The sum Sn of the re-

maining terms is thus Sn := γ 4

n (
∑n

q=[[nu+γ 2
√

n]]
1

(
q
n −u)2

1
n ). The expression in between the parentheses can be viewed as a

Riemann sum of
∫ 1+ 1

n
[[nu+γ 2√

n]]−1
n

1
(x−u)2 dx = n( 1

[[nu+γ 2
√

n]]−1−nu
− 1

n(1−u)+1 ) � n
γ 2

√
n−2

. The function 1
(x−u)2 being decreasing in x

on the integration range, the Riemann sum is below the corresponding integral. Multiplying this by a factor γ 4

n , we get a
bound for Sn and we conclude that Sn goes to 0 as n → ∞. The lemma is thus proved. �

We defined X̃n in Eq. (15) with rn := Tn(r). We next take benefit of last lemma to prove that X̃n is a good approximation
of Xn .

Lemma 15.

(1) limn→∞ ‖ X̃n
n − Xn

n‖L2 = 0.

(2) limn→∞ |V M
n (F n,Xn)−V M

n (F n, X̃n)|√
n

= 0.

Proof. Since Itô’s integral is isometric from H2 to L2, we get:∥∥ X̃n
n − Xn

n

∥∥
L2 �
∥∥ X̃n

n+1 − Xn
n+1

∥∥
L2 = ∥∥r − rn

∥∥
H2 ,

and claim (1) then follows from last lemma.
We prove now claim (2). With �Xn

q+1 := Xn
q+1 − Xn

q and � X̃n
q+1 := X̃n

q+1 − X̃n
q , we have, with assumption (ii) in Theo-

rem 5:

∣∣V M
n

(
F n, Xn)− V M

n

(
F n, X̃n)∣∣=

∣∣∣∣∣E
[

n−1∑
q=0

M
[
�Xn

q+1|F n
q

]− M
[
� X̃n

q+1|F n
q

]]∣∣∣∣∣
� E

[
n−1∑
q=0

∣∣M[�Xn
q+1|F n

q

]− M
[
� X̃n

q+1|F n
q

]∣∣]

� A · E

[
n−1∑
q=0

E
[∣∣�Xn

q+1 − � X̃n
q+1

∣∣p|F n
q

] 1
p

]

� A · E

[
n−1∑
q=0

E
[∣∣�Xn

q+1 − � X̃n
q+1

∣∣2|F n
q

] 1
2

]
.

Due to Cauchy–Schwarz inequality, we have for all real numbers x0, . . . , xn−1:

n−1∑
q=0

xq �
√

n ·

√√√√√n−1∑
q=0

x2
q .

Therefore and since
√

x is concave in x, we get with Jensens inequality:

∣∣V M
n

(
F n, Xn)− V M

n

(
F n, X̃n)∣∣� √

n · A · E

[√√√√√n−1∑
q=0

E
[∣∣�Xn

q+1 − � X̃n
q+1

∣∣2|F n
q
]]

�
√

n · A ·

√√√√√n−1∑
q=0

E
[∣∣�Xn

q+1 − � X̃n
q+1

∣∣2]
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= √
n · A ·

√
E
[∣∣Xn

n − X̃n
n

∣∣2].
Claim (2) follows then from claim (1). �

We will next compute V M
n (F n, X̃n). Defining λn

q as: λn
q := n · E[∫ q+1

n
q
n

rs ds|Gτn
q
], we have rn

t :=∑n−1
q=0 λn

q · 1[τn
q ,τn

q+1[(t). Since

r is a positive process, we clearly have λn
q � 0. Next, X̃n

q+1 − X̃n
q = λn

q · (Bτn
q+1

− Bτn
q
) = an

q · Y n
q+1, where an

q := λn
q√
n

. an
q is thus

positive and F n
q -measurable. Therefore, since M[X] is 1-homogeneous in X according to assumption (i) in Theorem 5, since

[Y n
q+1|Fq] = [Y ], and since E[Y 2] = 1, E[Y ] = 0, we get:

V M
n

(
F n, X̃n)= E

[
n−1∑
q=0

M
[

X̃n
q+1 − X̃n

q |F n
q

]]

= E

[
n−1∑
q=0

M
[
an

q · Y n
q+1|F n

q

]]

= E

[
n−1∑
q=0

an
q · M[Y ]

]

= M[Y ] · E

[
n−1∑
q=0

an
q · (Y n

q+1

)2]

= M[Y ] · E

[(
n−1∑
q=0

an
q · Y n

q+1

)
·
(

n−1∑
q=0

Y n
q+1

)]

= √
n · M[Y ] · E

[
X̃n

n · Bτn
n

]
.

Since E[B2
τn

n
] = 1, we also have

V M
n (F n, X̃n)

M[Y ] · √n
� E
[

Xn
n · Bτn

n

]− ∥∥ X̃n
n − Xn

n

∥∥
L2

= E
[

Xn
n+1 · Bτn

n

]− ∥∥ X̃n
n − Xn

n

∥∥
L2

� E
[

Xn
n+1 · B1

]− ∥∥Xn
n+1

∥∥
L2 · ‖Bτn

n
− B1‖L2 − ∥∥ X̃n

n − Xn
n

∥∥
L2

= E
[

fμ(B1) · B1
]− ‖μ‖L2 · ‖Bτn

n
− B1‖L2 − ∥∥ X̃n

n − Xn
n

∥∥
L2

= α(μ) − ‖μ‖L2 · ‖Bτn
n

− B1‖L2 − ∥∥ X̃n
n − Xn

n

∥∥
L2 .

With claim (4) in Lemma 12 and claim (1) in Lemma 15, we conclude then that:

lim inf
n→∞

V M
n (F n, Xn)√

n
= lim inf

n→∞
V M

n (F n, X̃n)√
n

� M[Y ] · α(μ).

Since V M
n (μ) � V M

n (F n, Xn), we thus have proved that for all Y ∈ L4 with E[Y ] = 0 and E[Y 2] = 1:

lim inf
n→∞

V M
n (μ)√

n
� M[Y ] · α(μ).

Since D̃ := {Ỹ ∈ L4: E[Ỹ ] = 0 and E[Ỹ 2] � 1} is dense for the L2-norm in D := {Ỹ ∈ L2: E[Ỹ ] = 0 and E[Ỹ 2] � 1}, and since
M is continuous for the L p-norm and thus for the L2-norm, we infer that there exists a sequence {Ỹn}n∈N ⊂ D̃ such that

lim
n→∞ M[Ỹn] = ρ := sup

{
M[Ỹ ]: Ỹ ∈ D

}
> 0.

We may further assume that M[Ỹn] > 0, so that, since M is 1-homogeneous, we have that M[Yn] � M[Ỹn], where Yn =
Ỹn

‖Ỹn‖L2
. Since Yn ∈ L4 satisfies E[Yn] = 0 and E[Y 2

n ] = 1, we thus have proved that

lim inf
n→∞

V M
n (μ)√

n
� lim

n→∞ M[Y ] · α(μ) = ρ · α(μ).

With Theorem 11, we get then
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Theorem 16. Under the hypotheses of Theorem 5,

lim
n→∞

V M
n (μ)√

n
= ρ · α(μ).

The first part of Theorem 5 is thus proved. The second part will be proved in the next section.

15. Convergence to the continuous martingale of maximal variation

Let B be a standard one-dimensional Brownian motion on a filtered probability space (Ω, A, P , (Gt)t�0). If μ ∈ �1+
,

the martingale Π
μ
t := E[ fμ(B1)|Gt] is referred to in this paper as the continuous martingales of maximal variation of final

distribution μ. This terminology is justified by the next result that clearly implies the second part of Theorem 5.
If (F , X) ∈ Wn(μ), we define the continuous time representation X̃ of X as the process ( X̃t)t∈[0,1] with X̃t := X[[nt]] ,

where [[a]] is the greatest integer less or equal to a.

Theorem 17. Assume that M satisfies the hypotheses (i) and (ii) of Theorem 5, that ρ > 0, that μ ∈ �2 and that {(F n, Xn)}n∈N is a
sequence of martingales with for all n (F n, Xn) ∈ Mn(μ), that asymptotically maximizes the M-variation, i.e.:

lim
n→∞

V M
n (F n, Xn)√

n
= ρ · α(μ).

Then X̃n converges in finite-dimensional distribution to Πμ: For all finite set J ⊂ [0,1], ( X̃n
t )t∈ J converges in law to (Π

μ
t )t∈ J .

Proof. Let {(F n, Xn)}n∈N be an asymptotically maximizing sequence. Without loss of generality, we may assume that F n

contains an adapted system (Uq)q=0,...,n of independent uniform random variables, independent of Xn (otherwise F n could
be widened). Therefore, with (11), there exists Sn ∈ S ∗

(ρ,4A+ρ)(F n) such that V M
n (F n, Xn) − 1 � E[Xn

n+1 · Sn
n], and thus

lim
n→∞

E[Xn
n+1 · Sn

n]
ρ · √n

= α(μ).

As in Section 12, for εn > 0 to be determined later, we may embed (Xn, Rn) in the Brownian filtration G , where Rn := Sn

ρ·√n
,

obtaining thus an increasing sequence (τn
q )q=0,...,n+1 and a pair ( X̂n, R̂n) of F̂ n martingales, where F̂ n

q := Gτn
q

such that

(Xn, Rn) and ( X̂n, R̂n) are equally distributed. We then have

E
[

X̂n
n+1 B1

]
� E
[

X̂n
n+1 R̂n

n

]− ‖μ‖L2 · ∥∥B1 − R̂n
n

∥∥
L2 .

Since E[ X̂n
n+1 R̂n

n] = E[Xn
n+1 Rn

n], the first term in the right-hand side of the last inequality converges to α(μ). Next, according
to (12) and claim (3) in Lemma 10 with t = 1:∥∥B1 − R̂n

n

∥∥
L2 � ‖B1 − Bτn

n
‖L2 + ∥∥Bτn

n
− R̂n

n

∥∥
L2

� κ · n
1

p′∧4
− 1

2 + 2
√

εnn.

So if εn is chosen so as to ensure nεn → 0 as n → ∞, we get

lim
n→∞

E[ X̂n
n+1 · B1]

ρ · √n
= α(μ).

Since B1 ∼ N (0,1) and X̂n
n+1 ∼ μ, we may then apply claim (2) in Theorem 6 to infer that X̂n

n+1 converges in L1-norm to

fμ(B1) = Π
μ
1 .

Next observe that ‖ X̂n[[nt]] − Π
μ
t ‖L1 � ‖ X̂n[[nt]] − Π

μ
τn[[nt]]

‖L1 + ‖Πμ
τn[[nt]]

− Π
μ
t ‖L1 . But

∥∥ X̂n[[nt]] − Π
μ
τn[[nt]]

∥∥
L1 = ∥∥E

[
X̂n

n+1 − Π
μ
1 |Gτn[[nt]]

]∥∥
L1 �
∥∥ X̂n

n+1 − Π
μ
1

∥∥
L1 .

On the other hand, with claims (1) and (2) in Lemma 10 and our choice of εn we infer that τn[[nt]] → t in L1. Since Πμ is
uniformly integrable and, as a martingale on the Brownian filtration, it has continuous sample paths, we then conclude that
‖Πμ

τn[[nt]]
− Π

μ
t ‖L1 → 0 as n increases. Therefore X̂n[[nt]] converges to Π

μ
t in L1.

This implies in particular the convergence in finite distribution of the process ( X̂n[[nt]])t�0 to Πμ , and this process has

same distribution as X̃n . �
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16. Conclusion

We conclude this paper with a list of open problems and some possible extensions of the model.

(1) It is assumed in the description of Γn that actions are observed at each round. This is however an unrealistic hypothesis
in the case of a market game, where the complete individual demand functions remain typically private. Only a sample
of this demand function will be revealed during the tâtonnement process leading to the market clearing price. What
is certainly observed by P2 in an exchange game is the trade. This raises the question whether similar dynamics will
appear in a game where only transfers are observed at each round. This however is a game with imperfect monitoring
and is thus more difficult to analyze.

(2) It is quite reductive to represent the market by a two player game. It is interesting to note at this respect that, in Γn ,
P1 has no need to observe P2’s actions to play optimally, and thus, at each stage, P2 is essentially maximizing his stage
payoff, since his action will not influence P1’s future behavior. Therefore, we could replace P2 by a succession of players,
one per stage, playing against a single informed P1, and we would obtain the same equilibria.
Our result relies crucially on the min max approach and the notion of value that characterizes zero-sum games. Dealing
with more general model where N-players interact at each round is more difficult as the notion of optimal strategies
has to be replaced by that of Nash equilibrium which has much less structure. There could in particular exist multiple
equilibria with different payoffs.

(3) One criticism of the model concerns hypothesis (H5) and the fact that it implies that P2 is forced to trade (see the
discussion of (H5) is Section 5). The only way to avoid this no trade paradox is to consider risk proclivity for P2. This
however turns also to be a non-zero sum game. Instead of considering one single risk-seeking player 2, we are currently
analyzing a game where P1 faces a succession of risk-seeking P2s and we expect the same price dynamics to appear.
Indeed, in this setting, the one shot game has a single equilibrium for all μ and P1’s payoff at equilibrium is also
a function M of the law of Lq+1 − Lq . P1 thus maximizes the M variation. However, due to the risk proclivity, this
function M is not 1-homogeneous any more, but it is locally 1-homogeneous around 0. Apparently this is enough to get
our asymptotic results: Martingales with maximal variation converge to continuous processes: as n increases, the size
of the increments goes to 0 and only the local behavior of M around zero seems to matter.

(4) As mentioned above, analyzing non-zero sum games is much more difficult. As a first step in that direction, we are
currently analyzing the market maker game with arbitrageur model mentioned is Section 6.1. This game is non-zero
sum and we find in this model a sequence of equilibria in which the price process converges to continuous martingales
close to the CMMV class.

(5) Since CMMV is a quite robust class of dynamics, it seems natural to use it in financial econometrics. As a particular
local volatility model, it could be used to price derivatives, taking into account the volatility smile, as Dupire’s (1997)
method. We are currently working on a pricing method with volatility smile using CMMV. As compared to Dupire’s one,
less information is needed on the volatility manifold to calibrate the model accurately.

Appendix A

In this appendix we aim to prove that (H1′) joint (H2) implies (H1-�∞) as stated in Theorem 24. The trading mechanism
considered in this section is thus assumed to satisfy both (H1′) and (H2). We are concerned in this section with measures
in �∞ having thus a compact support. Let K = [K , K ] be a compact interval. All measures μ considered in this section are
in �(K ), the set of probability distribution over K . In Lemma 2, we proved that P1 can guarantee V n(μ) in Γn(μ). We will
prove that player 2 can guarantee the same amount, proving thus that V n(μ) is the value of Γn(μ), without assuming that
this value exists. With the next lemma, we analyze the continuity of V n(μ).

Lemma 18.

(1) If V 1 satisfies (H2) in L p-norm with the Lipschitz constant A, then for all random variables L1, L2 , for all n:∣∣V n
([L1]

)− V n
([L2]

)∣∣� nA‖L1 − L2‖L p .

(2) In particular V n is continuous for the weak topology on �(K ).
(3) V n(μ) is further concave in μ.
(4) Let Φn denote the set of continuous functions φ on K satisfying for all ν ∈ �(K ), Eν [φ(L)] � V n(ν), then

∀μ ∈ �(K ): V n(μ) = inf
φ∈Φn

Eμ

[
φ(L)
]
.

(5) ∀ε > 0, there exists a finite subset Φ ′ ∈ Φn such that

∀μ ∈ �(K ): min
φ∈Φ ′ Eμ

[
φ(L)
]
� V n(μ) + ε.
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Proof. (1) Let (L1, L2) be a random vector with marginals μ1,μ2 in �(K ). Let (F , X) ∈ Wn(μ1) be such that Vn(F , X) �
V n(μ1) − ε . Let then Yn+1 be a random variable on the same probability space as X and such that the random vectors
(Xn+1, Yn+1) and (L1, L2) are equally distributed. Set then Yq := E[Yn+1|Fq]. Then (F , Y ) ∈ Wn(μ2). It follows from Jensen’s
inequality:

E
[∣∣V 1[Xq+1|Fq] − V 1[Yq+1|Fq]

∣∣]� A · E
[(

E
[∣∣Xq+1 − Yq+1

∣∣p|Fq
]) 1

p
]

� A · (E[E[|Xq+1 − Yq+1|p|Fq
]]) 1

p

= A · ‖Xq+1 − Yq+1‖L p

� A · ‖Xn+1 − Yn+1‖L p

= A · ‖L1 − L2‖L p .

Therefore |Vn(F , X) − Vn(F , Y )| � nA‖Yn+1 − Xn+1‖Lp , and thus V n(μ1) − ε � Vn(F , X) � Vn(F , Y ) + nA‖L1 − L2‖Lp �
V n(μ2) + nA‖L1 − L2‖Lp . Since ε > 0 is arbitrary, we get V n([L1]) − V n([L2]) � nA‖L1 − L2‖Lp . Interchanging L1 and L2, we
get claim (1).

(2) Next, let μm be weakly convergent in �(K ) to μ. According to Skorokhod’s representation theorem, there exists a
sequence Xm of μm-distributed random variables that converges a.s. to a μ-distributed limit X . Since all variables are K -
valued, we conclude with Lebesgue dominated convergence theorem that Xm converges to X in L p-norm. Claim (1) implies
then that V n(μm) = V n([Xm]) converges to V n([X]) = V n(μ), and V n is thus weakly continuous as announced.

(3) If μ = λ1μ1 + λ2μ2, with λi � 0, λ1 + λ2 = 1, let, for ε > 0, (F i, Xi) ∈ Wn(μi) be such that Vn(F i, Xi) � V n(μi) − ε .
Assume that X1 and X2 are on two independent probability spaces. On the product space, we can then consider X :=
1A X1 + (1 − 1A)X2, where A is an event of probability λ1 independent of X1, X2. Then set Fq := σ(A, F 1

q , F 2
q ). It follows

that (F , X) ∈ Wn(μ). Therefore V n(μ) � Vn(F , X) =∑i λi Vn(F i, Xi) �
∑

i λi V n(μi) − ε . Letting ε go to 0, we get the
announced concavity.

(4) This claim follows at once from the fact that a continuous concave function f on a Banach space is the infimum of
the set of continuous linear functionals that dominate f . In this case, V n is a function on the closed subset �(K ) of the
Banach space of bounded measures on K and C(K ) is the dual of this space.

(5) For ε > 0 and φ ∈ Φn , define Cφ as {μ ∈ �(K )|Eμ[φ(L)] − V n(μ) < ε}. Since V n is weakly continuous, Cφ is an open
set for the weak topology of �(K ). Claim (4) indicates that {Cφ}φ∈Φn forms an open covering of the weakly compact set
�(K ). There exists thus a finite subset Φ ′ of Φn such that {Cφ}φ∈Φ ′ is subcovering �(K ). This clearly implies our claim. �
Lemma 19.

(1) Let F be a σ -algebra on a probability space (Ω, A, P ) and X a random variable. Then E[V n[X |F ]] = infφ.∈F E[φω(X(ω))],
where F is the set of F -measurable maps φ. : Ω → Φn taking finitely many values.

(2) If F1 ⊂ F2 , then E[V n[X |F2]] � E[V n[X |F1]].

Proof. (1) Let φ. be in F and let φ1, . . . , φR be the list of the values taken by φ. . Then, if Dr denotes the event φω = φr , we
get φω =∑r 1Dr (ω)φr . Therefore, since the sets Dr form a partition of Ω , and since φr ∈ Φn , we have: E[φω(X(ω))|F ] =∑

r 1Dr (ω)E[φr(X(ω))|F ] � V n([X |F ]). On the other hand, for ε > 0, let Φ ′ as in claim (5) of Lemma 18. Let φ1, . . . , φR be
an enumeration of Φ ′ . Then, if r∗(ω) denotes the smallest r that minimizes E[φr(X)|F ](ω), r∗(ω) is F measurable and we
clearly get with φω := φr∗(ω): E[φω(X(ω))] = E[minr{E[φr(X)|F ]}] � E[V n([X |F ])] + ε . Letting ε go to 0, we get claim (1).

(2) Let Fi the set corresponding to Fi in claim (1). Then F1 ⊂ F2 and thus infφ.∈F2 E[φω(X(ω))] � infφ.∈F1 E[φω(X(ω))],
and the result follows. �

Throughout this paper, V n(μ), as defined in (6), has been considered as a problem of maximization of Vn(F , X) over a
martingale space Wn(μ). The next lemma will allow us to view V n(μ) as a maximization problem over a measure space.
Let �mart

n be the subset of ρ ∈ �(K n+1) such that if (L1, . . . , Ln+1) is ρ-distributed then ∀q: Eρ [Lq+1|L�q] = Lq , where L�q

is a notation for (L1, . . . , Lq). The set of ρ ∈ �(K n+1) that further satisfy Ln+1 ∼ μ will be denoted �mart
n (μ). This last set

is thus the set of laws of martingales in Wn(μ). Clearly, ρ ∈ �(K n+1) belongs to �mart
n if and only if for all continuous

function f : Eρ [ f (L�q)(Lq+1 − Lq)] = 0, and it belongs to �mart
n (μ) if furthermore Eρ [ f (Ln+1)] = Eμ[ f (L)]. Since all these

conditions are linear continuous in ρ , �mart
n and �mart

n (μ) are closed convex subsets of the weakly compact space �(K n+1).

Lemma 20.

(1) ∀(F , X) ∈ Wn(μ): Vn(X, F ) �
∑n

q=1 E[V 1[Xq|X<q]].
(2) ∀μ ∈ �(K ): V n(μ) = supρ∈�mart

n (μ)

∑n
q=1 Eρ [V 1([Lq|L<q]ρ)], where [Lq|L�q]ρ is the conditional law of Lq given L<q induced

by ρ .
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(3) ∀μ ∈ �(K ): V n(μ) = supρ∈�mart
1 (μ) V 1([L1]ρ) + Eρ [V n−1([L2|L1]ρ)].

(4) The map ρ → Eρ [V n([L2|L1]ρ)] is concave in ρ and weakly upper semicontinuous on �mart
1 .

Proof. (1) For (F , X) ∈ Wn(μ), set F ′
q := σ(X�q). Since Xq is Fq-measurable, we get F ′

q ⊂ Fq . Therefore, with claim (2)
Lemma 19,

Vn(X, F ) =
n∑

q=1

E
[
V 1[Xq|Fq−1]

]
�

n∑
q=1

E
[
V 1
[

Xq|F ′
q−1

]]
,

and claim (1) is proved.
(2) If ρ denotes the law of X , then ρ ∈ �mart

n (μ) and the coordinate process (L�n+1) on the probability space
(K n+1, B K n+1 ,ρ) has the same law as X . If Gq := σ(L�q), we get thus

∑n
q=1 E[V 1[Xq|F ′

q−1]] =∑n
q=1 Eρ [V 1[Lq|Gq−1]] =

Vn(G, L) � V n(μ), and thus V n(μ) = supρ∈�mart
n (μ)

∑n
q=1 Eρ [V 1[Lq|L<q]].

(3) Observe that, conditionally to L1, L>1 is a martingale of length n, with final distribution [Ln+1|L1]. Therefore, for all
ρ : Eρ [∑n

q=2 V 1[Lq|L�q]|L1] � V n−1([Ln+1|L1]). Thus, V n(μ) � supρ∈�mart
n (μ) V 1([L1]ρ) + Eρ [V n−1([Ln+1|L1])]. Conversely,

let ρ be ε-optimal in the right-hand side of this formula. Let then ρL1 denote the law of an ε-optimal martingale in this
in V n−1([Ln+1|L1]), then selecting L1 with ρ and L>1 with ρL1 gives a martingale that satisfies

∑n
q=1 E[V 1[Lq|L<q]] �

supρ∈�mart
n (μ) V 1([L1]ρ) + Eρ [V n−1([Ln+1|L1])] − 2ε .

(4) According to claim (1) in Lemma 19: E[V n−1[L2|L1]] = infφ.∈F E[φL1(L2)], where F is the set of F -measurable maps
φ. : K → Φn−1 taking finitely many values. If φ1, . . . , φR ∈ Φn−1 are the possible values taken by such a map φ. ∈ F ,
then φL1 =∑R

r=1 1Dr (L1)φ
r , Dr is the measurable set of L ∈ K where φL = φr . The map L → (1Dr (L))R

r=1 is a measur-
able map from K to the R-dimensional simplex �R and is thus the limit in L1 of a sequence θm in C , where C is
the set of continuous functions θ : K → �R . For such a function θ , we will denote φθ(L) :=∑R

r=1 θr(L1)φ
r . We get thus

E[φL1(L2)] = limm→∞ E[φθm(L1)(L2)]. Since Φn−1 is a convex set, ∀L: φθ(L) ∈ Φn−1, and thus E[φθ(L1)(L2)|L1] � V n−1[L2|L1],
implying E[φθ(L1)(L2)] � E[V n−1[L2|L1]]. It follows that

E
[

V n−1[L2|L1]
]= inf

φ.∈F
inf
θ∈C

E
[
φθ(L1)(L2)

]
.

Since φθ(L1)(L2) is continuous in the pair (L1, L2), the map ρ → Eρ [φθ(L1)(L2)] is linear weakly continuous and ρ →
Eρ [V n−1[L2|L1]], as an infimum of continuous linear maps, is concave weakly u.s.c. �

The three previous lemma were dealing with functional properties of the function V n . We will now focus on the game
Γn(μ) and prove that P2 can guarantee V n in this game. We now will use hypothesis (H1′) that for all μ ∈ �(K ), the game
Γ1(μ) has a value.

For an admissible strategy τ in Γ1(μ), the function φτ (L) := supi Aiτ L + Biτ involved in formula (2) is finite on the
support of μ, but could take infinite values outside of this support. The next lemma indicates that we may restrict our
analysis to the set T K of strategies τ such that φτ is finite and thus continuous on K .

Lemma 21. For all μ ∈ �(K ): V 1(μ) = infτ∈T K Eμ[φτ (L)].

Proof. Let L1 be a μ distributed random variable with values in the compact interval K := [K , K ]. Consider a random
variable Ln

2 having the following distribution conditionally to L1: Ln
2 = L1 with probability 1 − 1/n, and otherwise, with

probability 1/n, Ln
2 jumps to either K or K , with weights selected so as E[Ln

2|L1] = L1. If μ is not a Dirac measure on
L or L, then for all n, the law μn of Ln

2 gives a strictly positive probability to both L and L. Therefore any admissible
strategy τ in Γ1(μ

n) must be such that φτ (L) < ∞ and φτ (L) < ∞. Due to convexity of φτ , we infer that φτ is finite
on K and τ belongs thus to T K . Since ‖Ln

2 − L1‖Lp goes to 0 with n, we conclude with (H2) that for n high enough
|V 1(μ) − V 1(μn)| will be smaller than an arbitrarily fixed ε > 0. Let τ be an ε-optimal strategy in Γ1(μn). Then V 1(μ) �
E[φτ (L1)] = E[φτ (E[Ln

2|L1])] � E[φτ (Ln
2)] � V 1(μn) + ε � V 1(μ) + 2ε . Since τ ∈ T K and ε is arbitrarily small, the lemma

follows for μ. Note that the result can be proved for Dirac measures on L or K by extending the interval K . �
Lemma 22. There exists a countable subset T1 of T K such that, if φ ∈ Φ1 then, for all ε > 0, there exists τ ∈ T1 such that ∀L ∈ K :
φ(L) + ε � φτ (L).

Proof. Our hypothesis on φ indicates that

0 � sup
μ∈�(K )

V 1(μ) − Eμ

[
φ(L)
]= sup

μ∈�(K )

inf
τ∈T K

Eμ

[
φτ (L) − φ(L)

]
.

Since Eμ[φτ (L)] = supi(.) Eμ[Ai(L),τ L + Bi(L),τ L], we conclude that τ → Eμ[φτ (L)] is convex, as supremum of linear func-
tionals. Since φτ and φ are continuous, the map μ → Eμ[φτ (L) − φ(L)] is linear weakly continuous. Since �(K ) is weakly
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compact, we conclude with Proposition 1.8 in Mertens et al. (1994) that inf and sup comute in the previous formula and
thus:

0 � inf
τ∈T K

max
μ∈�(K )

Eμ

[
φτ (L) − φ(L)

]
.

If τ in and ε-optimal strategy in this inf sup, we get ∀μ: ε � Eμ[φτ (L) − φ(L)], and in particular ∀L: ε � φτ (L) − φ(L).
We thus have proved that ∀φ ∈ Φ1,∀ε > 0, there exists τ ∈ T K such that φ + ε � φτ .
Let E be a countable dense subset in the separable space (C(K ),‖.‖∞). For all f ∈ E ∩ Φ1,∀n ∈ N, let τ f ,n ∈ T K be such

that f + 1/n � φτ f ,n . The countable set T1 of {τ f ,n| f ∈ E ∩ Φ1,n ∈ N} will have the required property. Indeed, if φ ∈ Φ1, for
all ε > 0, there exists f ∈ E such that φ + ε/2 � f � φ. In particular f ∈ Φ1. If n � 2/ε , then φτ f ,n � f + 1/n � φ + ε . �

We next prove recursively a similar property for Γn:

Lemma 23. There exists a countable set Tn of P2’s strategies in Γn such that, if φ ∈ Φn then, for all ε > 0, there exists a strategy τ in
Tn such that ∀L ∈ K : φ(L) + ε � φn

τ (L), where φn
τ was defined in (2).

Proof. According to the previous lemma, the result holds for n = 1. Assume next it holds for n − 1. We argue that it will
also hold for n. Indeed, φ ∈ Φn implies that ∀μ ∈ �(K ): Eμ[φ(L)] � V n(μ). Therefore 0 � supμ V n(μ)− Eμ[φ(L)]. According
to claim (3) in Lemma 20, we get thus

0 � sup
μ

sup
ρ∈�mart

1 (μ)

V 1
([L1]ρ

)+ Eρ

[
V n−1

([L2|L1]ρ
)]− Eρ

[
φ(L2)

]
.

Since �mart
1 =⋃μ �mart

1 (μ), we get with Lemma 21:

0 � sup
ρ∈�mart

1

inf
τ∈T K

Eρ

[
φτ (L1)

]+ Eρ

[
V n−1

([L2|L1]ρ
)]− Eρ

[
φ(L2)

]
.

The payoff in this sup inf is finite since all the φτ and φ are continuous on K and thus bounded. It is further concave
weakly u.s.c. in ρ as it results from claim (4) in Lemma 20. �mart

1 is weakly compact as a closed subset of �(K 2). On the
other hand the map τ → Eρ [φτ (L1)] is convex. We conclude with Proposition 1.8 in Mertens et al. (1994) that inf and sup
comute in the previous formula and thus: 0 � infτ∈T K supρ∈�mart

1
Eρ [φτ (L1)] + Eρ [V n−1([L2|L1]ρ)] − Eρ [φ(L2)].

Let then τ ∗ ∈ T K be an ε/2-optimal strategy in this inf sup. We get thus for all ρ ∈ �mart
1 : ε/2 � Eρ [φτ ∗(L1)] +

Eρ [V n−1([L2|L1]ρ)] − Eρ [φ(L2)]. For all μ ∈ �(K ), if ρ is the law of a vector (L1, L2) with L2 ∼ μ and L1 = Eμ[L2], then
ρ ∈ �mart

1 and the last formula yields: ε/2 � φτ ∗ (Eμ[L2])] + V n−1(μ) − φ(Eμ[L2]) and in particular, as it results from
the definition of φτ ∗ , for all action i of P1: ε/2 � Aiτ ∗ Eμ[L2] + Biτ ∗ + V n−1(μ) − φ(Eμ[L2]). In other words, the function
φi(L) := ε/2 + φ(L) − Ai,τ ∗ L − Biτ ∗ satisfies ∀μ ∈ �(K ): Eμ[φi(L)] � V n−1(μ) and thus belongs to Φn−1. According to our
hypothesis that the lemma holds for n − 1, there must be a strategy τ in Tn−1 such that ε/2 + φi � φn−1

τ . Let τ (i) denote
the first such τ in a given enumeration of Tn−1. The function τ (i) will then be measurable in i.

Consider then the following strategy τ of P2 in Γn: at the first stage he plays τ1 := τ ∗ and starting from the second
stage on, he plays according to τ (i1) if P1’s first move was i1.

For this strategy,

φn
τ (L) = sup

i1,...in

Ai1τ ∗ L + Bi1τ ∗ + L

(
n∑

q=2

Aiq,τq−1(i1)

)
+
(

n∑
q=2

Biq,τq−1(i1)

)

= sup
i1

Ai1τ ∗ L + Bi1τ ∗ + φn−1
τ (i1)

(L)

� sup
i1

Ai1τ ∗ L + Bi1τ ∗ + φi1(L) + ε/2

= φτ ∗(L) + ε.

We thus have proved that for all φ ∈ Φn , ∀ε > 0, there exists a strategy τ such that ε + φ � φn
τ . The construction of Tn

is then similar to that of T1 in the previous lemma. �
Theorem 24.

(1) If the trading mechanism satisfies (H1′) and (H2) then for all μ ∈ �(∞), V n(μ) is the value of Γn(μ). The mechanism satisfies
thus to (H1-�∞).

(2) If the mechanism further satisfies to (H2′), then the above assertion holds for all μ ∈ �2 , and (H1-�2) is satisfied.
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Proof. (1) Any μ ∈ �∞ has a compact support, and the previous results apply. In particular, with claim (4) in Lemma 18,
for all ε > 0, there exists φ ∈ Φn such that ε + V n(μ) � Eμ[φ]. According to Lemma 23, P2 has a strategy τ in Γn(μ) such
that φ + ε � φn

τ . The maximal amount P1 can get if P2 uses this strategy is Eμ[φn
τ (L)] � Eμ[φ(L)] + ε � V n(μ) + 2ε . Since

ε > 0 is arbitrary, we conclude that P2 can guarantee V n(μ) in Γn(μ). The fact that P1 can guarantee the same amount was
proved in Lemma 2.

(2) If ∀i, j: |Ai, j| � A, as stated in (H2′), then for all admissible strategy τ in Γn , the function φn
τ (L) defined in (2) will

be Lipschitz in L with constant nA. Let then μ ∈ �2 and let L be a μ-distributed random variable. There exists a sequence
Lm of random variables in L∞ that converges to L in L1. Let then τm be a 1/m-optimal strategy of P2 in Γn([Ym]). Then,
since E[φn

τm
(L)] � E[φn

τm
(Lm)] + nA‖L − Lm‖L1 � V n([Lm]) + 1/m + nA‖L − Lm‖L1 � V n([L]) + 2nA‖Y − Ym‖L1 + 1/m. Since

the right-hand side converges to V n([Y ]) as m → ∞, we infer that P2 can guarantee V n(μ) in Γ (μ), for all μ ∈ �2. �
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