Special Hermitian structures

XIX International Fall Workshop on Geometry and Physics, Porto – 6-9 September 2010

Anna Fino Dipartimento di Matematica Università di Torino

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection *SKT* and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups Characterization in terms of currents Besolution of orbifolds

A simply-connected example

1 KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

2 Examples

6-dimensional SKT nilmanifolds Twist construction Hermitian-symplectic structures on nilmanifolds From almost contact manifolds

8 Blow-ups and resolutions of orbifolds

Blow-ups Characterization in terms of currents Resolution of orbifolds A simply-connected example

4 References

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents

rrents

Resolution of orbifolds

A simply-connected example

Bismut connection

On any Hermitian manifold $(M^{2n}, J, g) \exists !$ connection ∇^B such that

 $abla^B g = 0$ (metric) $abla^B J = 0$ (Hermitian) c(X, Y, Z) = g(X, T(Y, Z)) 3-form

where *T* is the torsion of ∇^B

 $\nabla^B = \nabla^{LC} + \frac{1}{2}c$ is the Bismut connection and c = -JdJF, where $F = g(J, \cdot)$ is the associated fundamental form.

 ∇^B is also called a *KT* connection.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection

SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups Characterization in terms of currents

Resolution of orbifolds

A simply-connected example

Bismut connection

On any Hermitian manifold $(M^{2n}, J, g) \exists !$ connection ∇^{B} such that

 $abla^B g = 0$ (metric) $abla^B J = 0$ (Hermitian) c(X, Y, Z) = g(X, T(Y, Z)) 3-form

where T is the torsion of ∇^B

 $\nabla^B = \nabla^{LC} + \frac{1}{2}c$ is the Bismut connection and c = -JdJF, where $F = g(J, \cdot)$ is the associated fundamental form.

 ∇^B is also called a *KT* connection.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection

SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups Characterization in terms of

currents

Resolution of orbifolds

A simply-connected example

Bismut connection

On any Hermitian manifold $(M^{2n}, J, g) \exists !$ connection ∇^{B} such that

 $abla^B g = 0$ (metric) $abla^B J = 0$ (Hermitian) c(X, Y, Z) = g(X, T(Y, Z)) 3-form

where T is the torsion of ∇^B

 $\nabla^B = \nabla^{LC} + \frac{1}{2}c$ is the Bismut connection and c = -JdJF, where $F = g(J, \cdot)$ is the associated fundamental form.

 ∇^{B} is also called a *KT* connection.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection

SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups Characterization in terms of

currents Resolution of orbifolds

A simply-connected example

 $c=0 \Longleftrightarrow
abla^B =
abla^{LC} \Longleftrightarrow (M^{2n}, J, g)$ is Kähler

Definition

(J,g) on M^{2n} is said to be strong Kähler with torsion (SKT) or pluriclosed if dc = 0, i.e. if $\partial \overline{\partial} F = 0$.

Definition (Jost, Yau)

(J,g) on M^{2n} is called astheno-Kähler if $\partial \overline{\partial} F^{n-2} = 0$.

- If $n = 2 \Rightarrow$ any Hermitian metric is astheno-Kähler.
- If $n = 3 \Rightarrow$ SKT= astheno-Kähler.
- If \exists a astheno-Kähler metric on a compact (M^{2n}, J) , then any holomorphic 1-form must be closed [Jost-Yau].

 \Rightarrow a complex parallelizable (M^{2n}, J) cannot admit any astheno-Kähler metric compatible with J.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection

SKT and astheno-Kähler metrics

Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups Characterization in terms of currents Resolution of orbifolds

A simply-connected example

$${m c}={m 0} \Longleftrightarrow
abla^{{m B}}=
abla^{{m L}{m C}} \Longleftrightarrow ({M^{2n}}, J, g)$$
 is Kähler

Definition

(J, g) on M^{2n} is said to be strong Kähler with torsion (SKT) or pluriclosed if dc = 0, i.e. if $\partial \overline{\partial} F = 0$.

Definition (Jost, Yau)

(J,g) on M^{2n} is called astheno-Kähler if $\partial \overline{\partial} F^{n-2} = 0$.

- If $n = 2 \Rightarrow$ any Hermitian metric is astheno-Kähler.
- If $n = 3 \Rightarrow$ SKT= astheno-Kähler.
- If \exists a astheno-Kähler metric on a compact (M^{2n}, J) , then any holomorphic 1-form must be closed [Jost-Yau].

 \Rightarrow a complex parallelizable (M^{2n}, J) cannot admit any astheno-Kähler metric compatible with J.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection

SKT and astheno-Kähler metrics

Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic

structures Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups Characterization in terms of currents Resolution of orbifolds A simply-connected

A simply-connected example

$${m c}={m 0} \Longleftrightarrow
abla^{{m B}}=
abla^{{m L}{m C}} \Longleftrightarrow ({M^{2n}}, J, g)$$
 is Kähler

Definition

(J, g) on M^{2n} is said to be strong Kähler with torsion (SKT) or pluriclosed if dc = 0, i.e. if $\partial \overline{\partial} F = 0$.

Definition (Jost, Yau)

(J,g) on M^{2n} is called astheno-Kähler if $\partial \overline{\partial} F^{n-2} = 0$.

- If $n = 2 \Rightarrow$ any Hermitian metric is astheno-Kähler.
- If $n = 3 \Rightarrow$ SKT= astheno-Kähler.
- If \exists a astheno-Kähler metric on a compact (M^{2n}, J) , then any holomorphic 1-form must be closed [Jost-Yau].

 \Rightarrow a complex parallelizable (M^{2n}, J) cannot admit any astheno-Kähler metric compatible with J.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection

SKT and astheno-Kähler metrics

Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic

structures Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups Characterization in terms of currents Resolution of orbifolds A simply-connected

A simply-connected example

$${m c}={m 0} \Longleftrightarrow
abla^{{m B}}=
abla^{{m L}{m C}} \Longleftrightarrow ({M^{2n}},{m J},{m g})$$
 is Kähler

Definition

(J, g) on M^{2n} is said to be strong Kähler with torsion (SKT) or pluriclosed if dc = 0, i.e. if $\partial \overline{\partial} F = 0$.

Definition (Jost, Yau)

(J,g) on M^{2n} is called astheno-Kähler if $\partial \overline{\partial} F^{n-2} = 0$.

If $n = 2 \Rightarrow$ any Hermitian metric is astheno-Kähler. If $n = 3 \Rightarrow$ SKT= astheno-Kähler.

• If \exists a astheno-Kähler metric on a compact (M^{2n}, J) , then any holomorphic 1-form must be closed [Jost-Yau].

 \Rightarrow a complex parallelizable (M^{2n}, J) cannot admit any astheno-Kähler metric compatible with J.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection

SKT and astheno-Kähler metrics

Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups Characterization in terms of currents Resolution of orbifolds

A simply-connected example

$${m c}={m 0} \Longleftrightarrow
abla^{{m B}}=
abla^{{m L}{m C}} \Longleftrightarrow ({M^{2n}},{m J},{m g})$$
 is Kähler

Definition

(J, g) on M^{2n} is said to be strong Kähler with torsion (SKT) or pluriclosed if dc = 0, i.e. if $\partial \overline{\partial} F = 0$.

Definition (Jost, Yau)

(J,g) on M^{2n} is called astheno-Kähler if $\partial \overline{\partial} F^{n-2} = 0$.

If $n = 2 \Rightarrow$ any Hermitian metric is astheno-Kähler.

If $n = 3 \Rightarrow$ SKT= astheno-Kähler.

• If \exists a astheno-Kähler metric on a compact (M^{2n}, J) , then any holomorphic 1-form must be closed [Jost-Yau].

 \Rightarrow a complex parallelizable (M^{2n} , J) cannot admit any astheno-Kähler metric compatible with J.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection

SKT and astheno-Kähler metrics

Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups Characterization in terms of currents Resolution of orbifolds A simply-connected example

Definition

A Hermitian structure (J, g) on M^{2n} is called standard if $\partial \overline{\partial} F^{n-1} = 0$ or equivalently if the Lee form θ is co-closed.

Theorem (Gauduchon)

For a compact (M^{2n}, J) a standard metric can be found in the conformal class of any given J-Hermitian metric.

If $n = 2 \Rightarrow$ standard = SKT

If n > 2 a SKT g is standard $\Leftrightarrow |dF|^2 = (n-1)|\theta \wedge F|^2$.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection

SKT and astheno-Kähler metrics

Link with standard metrics

Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups Characterization in terms of currents

Resolution of orbifolds

A simply-connected example

Definition

A Hermitian structure (J, g) on M^{2n} is called standard if $\partial \overline{\partial} F^{n-1} = 0$ or equivalently if the Lee form θ is co-closed.

Theorem (Gauduchon)

For a compact (M^{2n}, J) a standard metric can be found in the conformal class of any given J-Hermitian metric.

If $n = 2 \Rightarrow$ standard = SKT

If n > 2 a SKT g is standard $\Leftrightarrow |dF|^2 = (n-1)|\theta \wedge F|^2$.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection

SKT and astheno-Kähler metrics

Link with standard metrics

Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents

Besolution of orbifolds

A simply-connected example

Definition

A Hermitian structure (J, g) on M^{2n} is called standard if $\partial \overline{\partial} F^{n-1} = 0$ or equivalently if the Lee form θ is co-closed.

Theorem (Gauduchon)

For a compact (M^{2n}, J) a standard metric can be found in the conformal class of any given J-Hermitian metric.

If $n = 2 \Rightarrow$ standard = SKT

If n > 2 a SKT g is standard $\Leftrightarrow |dF|^2 = (n-1)|\theta \wedge F|^2$.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection

SKT and astheno-Kähler metrics

Link with standard metrics

Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups Characterization in terms of currents Resolution of orbifolds

A simply-connected example

Definition

A Hermitian structure (J, g) on M^{2n} is called standard if $\partial \overline{\partial} F^{n-1} = 0$ or equivalently if the Lee form θ is co-closed.

Theorem (Gauduchon)

For a compact (M^{2n}, J) a standard metric can be found in the conformal class of any given J-Hermitian metric.

If $n = 2 \Rightarrow$ standard = SKT

If n > 2 a SKT g is standard $\Leftrightarrow |dF|^2 = (n-1)|\theta \wedge F|^2$.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection

SKT and astheno-Kähler metrics

Link with standard metrics

Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups Characterization in terms of currents

Resolution of orbifolds

A simply-connected example

Link with generalized Kähler Structures

Definition (Hitchin, Gualteri)

A generalized Kähler structure on M^{2n} is a pair $(\mathcal{J}_1, \mathcal{J}_2)$ of generalized complex structures such that

• \mathcal{J}_1 and \mathcal{J}_2 commute,

• \mathcal{J}_1 and \mathcal{J}_2 are compatible with the indefinite metric (,) on $TM \oplus T^*M$,

• $-(\mathcal{J}_1\mathcal{J}_2\cdot,\cdot)$ is positive definite.

Theorem (Apostolov, Gualtieri)

A GK structure on M^{2n} is equivalent to a triple (g, J_+, J_-) with (J_\pm, g) SKT structures such that $J_+ dF_+ = -J_- dF_-$.

The previous conditions appear on the general target space geometry for a (2, 2) supersymmetric sigma model [Gates, Hall and Roček].

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics

Link with standard metrics

Link with generalized Kähler structures

Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups Characterization in terms of

currents

Resolution of orbifolds

A simply-connected example

Link with generalized Kähler Structures

Definition (Hitchin, Gualteri)

A generalized Kähler structure on M^{2n} is a pair $(\mathcal{J}_1, \mathcal{J}_2)$ of generalized complex structures such that

• \mathcal{J}_1 and \mathcal{J}_2 commute,

• \mathcal{J}_1 and \mathcal{J}_2 are compatible with the indefinite metric (,) on $TM\oplus T^*M$,

• $-(\mathcal{J}_1\mathcal{J}_2\cdot,\cdot)$ is positive definite.

Theorem (Apostolov, Gualtieri)

A GK structure on M^{2n} is equivalent to a triple (g, J_+, J_-) with (J_{\pm}, g) SKT structures such that $J_+ dF_+ = -J_- dF_-$.

The previous conditions appear on the general target space geometry for a (2, 2) supersymmetric sigma model [Gates, Hall and Roček].

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics

Link with standard metrics

Link with generalized Kähler structures

Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups Characterization in terms of

currents

Resolution of orbifolds

A simply-connected example

Link with generalized Kähler Structures

Definition (Hitchin, Gualteri)

A generalized Kähler structure on M^{2n} is a pair $(\mathcal{J}_1, \mathcal{J}_2)$ of generalized complex structures such that

 $\bullet \ \mathcal{J}_1 \ \text{and} \ \mathcal{J}_2 \ \text{commute,}$

• \mathcal{J}_1 and \mathcal{J}_2 are compatible with the indefinite metric (,) on $\mathit{TM}\oplus \mathit{T^*M},$

• $-(\mathcal{J}_1\mathcal{J}_2\cdot,\cdot)$ is positive definite.

Theorem (Apostolov, Gualtieri)

A GK structure on M^{2n} is equivalent to a triple (g, J_+, J_-) with (J_{\pm}, g) SKT structures such that $J_+ dF_+ = -J_- dF_-$.

The previous conditions appear on the general target space geometry for a (2, 2) supersymmetric sigma model [Gates, Hall and Roček].

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics

Link with generalized Kähler structures

Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups Characterization in terms of currents Resolution of orbifolds

A simply-connected example

Let (M^{2n}, J, g_0) be an Hermitian manifold. Streets and Tian introduced a flow

 $\frac{\partial F(t)}{\partial t} = \Phi(F), \quad F(0) = F_0,$

where $\Phi(F) = -\partial \partial^* F - \overline{\partial} \overline{\partial}^* F - \frac{i}{2} \partial \overline{\partial} \log \det g = -(\rho^B)^{1,1}$.

Proposition (Streets, Tian)

Let (M^{2n}, J, g) be a SKT manifold. Then $F \to \Phi(F)$ is a real quasi-linear second-order elliptic operator when restricted to $\{J - \text{Hermitian SKT metrics}\}$.

If g(0) is SKT (Kähler), then g(t) is SKT (Kähler) for all t.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups Characterization in terms of currents Resolution of orbifolds A simply-connected example

Let (M^{2n}, J, g_0) be an Hermitian manifold. Streets and Tian introduced a flow

$$\frac{\partial F(t)}{\partial t} = \Phi(F), \quad F(0) = F_0,$$

where $\Phi(F) = -\partial \partial^* F - \overline{\partial} \overline{\partial}^* F - \frac{i}{2} \partial \overline{\partial} \log \det g = -(\rho^B)^{1,1}$.

Proposition (Streets, Tian)

Let (M^{2n}, J, g) be a SKT manifold. Then $F \to \Phi(F)$ is a real quasi-linear second-order elliptic operator when restricted to $\{J - \text{Hermitian SKT metrics}\}$.

If g(0) is SKT (Kähler), then g(t) is SKT (Kähler) for all t.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups Characterization in terms of currents Resolution of orbifolds A simply-connected example

Let (M^{2n}, J, g_0) be an Hermitian manifold. Streets and Tian introduced a flow

$$\frac{\partial F(t)}{\partial t} = \Phi(F), \quad F(0) = F_0,$$

where $\Phi(F) = -\partial \partial^* F - \overline{\partial} \overline{\partial}^* F - \frac{i}{2} \partial \overline{\partial} \log \det g = -(\rho^B)^{1,1}$.

Proposition (Streets, Tian)

Let (M^{2n}, J, g) be a SKT manifold. Then $F \to \Phi(F)$ is a real quasi-linear second-order elliptic operator when restricted to $\{J - \text{Hermitian SKT metrics}\}$.

If g(0) is SKT (Kähler), then g(t) is SKT (Kähler) for all t.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups Characterization in terms of currents Resolution of orbifolds A simply-connected

example References

Let (M^{2n}, J, g_0) be an Hermitian manifold. Streets and Tian introduced a flow

$$\frac{\partial F(t)}{\partial t} = \Phi(F), \quad F(0) = F_0,$$

where $\Phi(F) = -\partial \partial^* F - \overline{\partial} \overline{\partial}^* F - \frac{i}{2} \partial \overline{\partial} \log \det g = -(\rho^B)^{1,1}$.

Proposition (Streets, Tian)

Let (M^{2n}, J, g) be a SKT manifold. Then $F \to \Phi(F)$ is a real quasi-linear second-order elliptic operator when restricted to $\{J - \text{Hermitian SKT metrics}\}$.

If g(0) is SKT (Kähler), then g(t) is SKT (Kähler) for all t.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups Characterization in terms of currents Resolution of orbifolds A simply-connected example

Hermitian-symplectic structures

Definition (Streets, Tian)

A SKT metric g on compact (M^{2n}, J) is static if $\Phi(F) = \lambda F$, or equivalently if $(\rho^B)^{1,1} = \lambda F$.

If g is Kähler and static, then it is Kähler-Einstein.

Proposition (Streets, Tian)

Let (M^{2n}, J) be compact with a static SKT metric g. If $\lambda \neq 0$, then $F = \Omega^{1,1}$, where Ω is a symplectic form Ω taming J, i.e. such that $\Omega(X, JX) > 0$, $\forall X \neq 0$.

Definition

A Hermitian-symplectic structure on (M^{2n}, J) is a symplectic form Ω taming J.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups Characterization in terms of currents Resolution of orbifolds

A simply-connected example

Hermitian-symplectic structures

Definition (Streets, Tian)

A SKT metric g on compact (M^{2n}, J) is static if $\Phi(F) = \lambda F$, or equivalently if $(\rho^B)^{1,1} = \lambda F$.

If g is Kähler and static, then it is Kähler-Einstein.

Proposition (Streets, Tian)

Let (M^{2n}, J) be compact with a static SKT metric g. If $\lambda \neq 0$, then $F = \Omega^{1,1}$, where Ω is a symplectic form Ω taming J, i.e. such that $\Omega(X, JX) > 0$, $\forall X \neq 0$.

Definition

A Hermitian-symplectic structure on (M^{2n}, J) is a symplectic form Ω taming J.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups Characterization in terms of currents Resolution of orbifolds

A simply-connected example

Hermitian-symplectic structures

Definition (Streets, Tian)

A SKT metric g on compact (M^{2n}, J) is static if $\Phi(F) = \lambda F$, or equivalently if $(\rho^B)^{1,1} = \lambda F$.

If g is Kähler and static, then it is Kähler-Einstein.

Proposition (Streets, Tian)

Let (M^{2n}, J) be compact with a static SKT metric g. If $\lambda \neq 0$, then $F = \Omega^{1,1}$, where Ω is a symplectic form Ω taming J, i.e. such that $\Omega(X, JX) > 0$, $\forall X \neq 0$.

Definition

A Hermitian-symplectic structure on (M^{2n}, J) is a symplectic form Ω taming *J*.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups Characterization in terms of currents Resolution of orbifolds A simply-connected

example References

If a compact (M^4 , J) admits a Hermitian-symplectic structure then (M^4 , J) has a Kähler metric.

Problem (Streets, Tian)

There exists an example of a compact (M^{2n}, J) , with n > 2, admitting a Hermitian-symplectic structure, but no Kähler structures?

Proposition (Enrietti, -, Vezzoni)

Giving a Hermitian-symplectic structure Ω on (M^{2n}, J) is equivalent to assign an SKT metric g such that $\partial F = \overline{\partial}\beta$, for some ∂ -closed (2, 0)-form β .

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups Characterization in terms of

currents Resolution of orbifolds

Resolution of orbifolds

A simply-connected example

If a compact (M^4, J) admits a Hermitian-symplectic structure, then (M^4, J) has a Kähler metric.

Problem (Streets, Tian)

There exists an example of a compact (M^{2n}, J) , with n > 2, admitting a Hermitian-symplectic structure, but no Kähler structures?

Proposition (Enrietti, -, Vezzoni)

Giving a Hermitian-symplectic structure Ω on (M^{2n}, J) is equivalent to assign an SKT metric g such that $\partial F = \overline{\partial}\beta$, for some ∂ -closed (2, 0)-form β .

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups Characterization in terms of

currents Resolution of orbifolds

A simply-connected example

If a compact (M^4, J) admits a Hermitian-symplectic structure, then (M^4, J) has a Kähler metric.

Problem (Streets, Tian)

There exists an example of a compact (M^{2n}, J) , with n > 2, admitting a Hermitian-symplectic structure, but no Kähler structures?

Proposition (Enrietti, -, Vezzoni)

Giving a Hermitian-symplectic structure Ω on (M^{2n}, J) is equivalent to assign an SKT metric g such that $\partial F = \overline{\partial}\beta$, for some ∂ -closed (2,0)-form β .

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of

currents

Resolution of orbifolds

A simply-connected example

If a compact (M^4, J) admits a Hermitian-symplectic structure, then (M^4, J) has a Kähler metric.

Problem (Streets, Tian)

There exists an example of a compact (M^{2n}, J) , with n > 2, admitting a Hermitian-symplectic structure, but no Kähler structures?

Proposition (Enrietti, -, Vezzoni)

Giving a Hermitian-symplectic structure Ω on (M^{2n}, J) is equivalent to assign an SKT metric g such that $\partial F = \overline{\partial}\beta$, for some ∂ -closed (2,0)-form β .

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups Characterization in terms of currents Resolution of orbifolds

A simply-connected example

6-dimensional SKT nilmanifolds

Theorem (-, Parton, Salamon)

 $M^6 = G/\Gamma$ nilmanifold, J left-invariant, g any compatible metric. Then

(J,g) SKT $\Leftrightarrow \exists$ a basis (α^i) of (1,0)-forms such that

$$\begin{array}{rcl} d\alpha^{1} = & d\alpha^{2} = 0, \\ d\alpha^{3} = & A\overline{\alpha}^{1} \wedge \alpha^{2} + B\overline{\alpha}^{2} \wedge \alpha^{2} + C\alpha^{1} \wedge \overline{\alpha}^{1} + \\ & D\alpha^{1} \wedge \overline{\alpha}^{2} + E\alpha^{1} \wedge \alpha^{2} \end{array}$$

with

 $|A|^{2} + |D|^{2} + |E|^{2} + 2Re(\overline{B}C) = 0.$

G has to be 2-step and the existence of a SKT metric depends only on *J*.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of

currents

Resolution of orbifolds

A simply-connected example

6-dimensional SKT nilmanifolds

Theorem (-, Parton, Salamon)

 $M^6 = G/\Gamma$ nilmanifold, J left-invariant, g any compatible metric. Then $(I, g) SKT \Rightarrow \exists a basis (a^j) of (1, 0) forms such that$

(J,g) SKT $\Leftrightarrow \exists$ a basis (α^i) of (1,0)-forms such that

$$\begin{cases} d\alpha^{1} = d\alpha^{2} = 0, \\ d\alpha^{3} = A\overline{\alpha}^{1} \wedge \alpha^{2} + B\overline{\alpha}^{2} \wedge \alpha^{2} + C\alpha^{1} \wedge \overline{\alpha}^{1} + \\ D\alpha^{1} \wedge \overline{\alpha}^{2} + E\alpha^{1} \wedge \alpha^{2} \end{cases}$$

with

 $|A|^{2} + |D|^{2} + |E|^{2} + 2Re(\overline{B}C) = 0.$

G has to be 2-step and the existence of a SKT metric depends only on *J*.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of

currents

Resolution of orbifolds

A simply-connected example

6-dimensional SKT nilmanifolds

Theorem (-, Parton, Salamon)

 $M^6 = G/\Gamma$ nilmanifold, J left-invariant, g any compatible metric. Then $(I, g) SKT \Rightarrow \exists a basis (a^j) of (1, 0) forms such that$

(J,g) SKT $\Leftrightarrow \exists$ a basis (α^i) of (1,0)-forms such that

$$\begin{pmatrix} d\alpha^1 = d\alpha^2 = 0, \\ d\alpha^3 = A\overline{\alpha}^1 \wedge \alpha^2 + B\overline{\alpha}^2 \wedge \alpha^2 + C\alpha^1 \wedge \overline{\alpha}^1 + \\ D\alpha^1 \wedge \overline{\alpha}^2 + E\alpha^1 \wedge \alpha^2 \end{pmatrix}$$

with

 $|A|^2 + |D|^2 + |E|^2 + 2Re(\overline{B}C) = 0.$

G has to be 2-step and the existence of a SKT metric depends only on *J*.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of

currents

Resolution of orbifolds

A simply-connected example

Example

Consider the nilpotent Lie group with structure equations

$$\left\{ \begin{array}{l} de^i = 0\,, i = 1, \dots, 5 \\ de^6 = e^{12} + e^{34}\,. \end{array}
ight.$$

and J defined by

$$\eta^1 = e^1 + ie^2$$
, $\eta^2 = e^3 + ie^4$, $\eta^3 = e^5 + ie^6$.

Take $\Gamma \subset G$ such that *J* is rational on $M = \Gamma/G \Rightarrow$ • any holomorphic 1-form on *M* is *d*-closed since $H^{1,0}_{\overline{\partial}}(M,J) = \text{span} < \eta^1, \eta^2 >.$ • (M,J) does not admit any SKT metric compatible with *J*.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection *SKT* and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents

rrents

Resolution of orbifolds

A simply-connected example

Example

Consider the nilpotent Lie group with structure equations

$$\left\{ \begin{array}{l} de^i = 0\,, i = 1, \ldots, 5 \\ de^6 = e^{12} + e^{34}\,. \end{array}
ight.$$

and J defined by

$$\eta^1 = e^1 + ie^2$$
, $\eta^2 = e^3 + ie^4$, $\eta^3 = e^5 + ie^6$.

Take $\Gamma \subset G$ such that *J* is rational on $M = \Gamma/G \Rightarrow$ • any holomorphic 1-form on *M* is *d*-closed since $H^{1,0}_{\overline{\partial}}(M,J) = \operatorname{span} < \eta^1, \eta^2 >.$ • (M,J) does not admit any SKT metric compatible with *J*.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of

currents

Resolution of orbifolds

A simply-connected example

Twist construction

Let *M* be a manifold with a T_M -action and a principal torus bundle $\pi : P \to M$ with connection θ .

Definition (Swann)

If the torus action lifts to *P* commuting with the principal action, then one may construct the twist *W* of *M*, as the quotient $W = P/T_M$.

$M \xleftarrow{\pi} P \xrightarrow{\pi_W} W$

If the lifted torus action preserves θ , then tensors on M can be transferred to tensors on W if their pullbacks to P coincide on $\mathcal{H} = \text{Ker}\theta$.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups Characterization in terms of currents

Resolution of orbifolds

A simply-connected example

Twist construction

Let *M* be a manifold with a T_M -action and a principal torus bundle $\pi : P \to M$ with connection θ .

Definition (Swann)

If the torus action lifts to *P* commuting with the principal action, then one may construct the **twist** *W* of *M*, as the quotient $W = P/T_M$.

$M \xleftarrow{\pi} P \xrightarrow{\pi_W} W$

If the lifted torus action preserves θ , then tensors on M can be transferred to tensors on W if their pullbacks to P coincide on $\mathcal{H} = \text{Ker}\theta$.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups Characterization in terms of currents

Resolution of orbifolds

A simply-connected example

Twist construction

Let *M* be a manifold with a T_M -action and a principal torus bundle $\pi : P \to M$ with connection θ .

Definition (Swann)

If the torus action lifts to *P* commuting with the principal action, then one may construct the twist *W* of *M*, as the quotient $W = P/T_M$.

$M \xleftarrow{\pi} P \xrightarrow{\pi_W} W$

If the lifted torus action preserves θ , then tensors on M can be transferred to tensors on W if their pullbacks to P coincide on $\mathcal{H} = \text{Ker}\theta$.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups Characterization in terms of currents

Resolution of orbifolds

A simply-connected example

Twist construction

Let *M* be a manifold with a T_M -action and a principal torus bundle $\pi : P \to M$ with connection θ .

Definition (Swann)

If the torus action lifts to *P* commuting with the principal action, then one may construct the twist *W* of *M*, as the quotient $W = P/T_M$.

$M \xleftarrow{\pi} P \xrightarrow{\pi_W} W$

If the lifted torus action preserves θ , then tensors on M can be transferred to tensors on W if their pullbacks to P coincide on $\mathcal{H} = \text{Ker}\theta$.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups Characterization in terms of currents

Resolution of orbifolds

A simply-connected example

Twist construction

Let *M* be a manifold with a T_M -action and a principal torus bundle $\pi : P \to M$ with connection θ .

Definition (Swann)

If the torus action lifts to *P* commuting with the principal action, then one may construct the twist *W* of *M*, as the quotient $W = P/T_M$.

$$M \stackrel{\pi}{\longleftarrow} P \stackrel{\pi_W}{\longrightarrow} W$$

If the lifted torus action preserves θ , then tensors on *M* can be transferred to tensors on *W* if their pullbacks to *P* coincide on $\mathcal{H} = \text{Ker}\theta$.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups Characterization in terms of currents Resolution of orbifolds

A simply-connected example

 $M^8 = N^6 \times \mathbb{T}^2$ is astheno-Kähler and SKT with torsion *c* supported on N^6 .

Theorem (Swann)

If there are two l.i. integral closed (1, 1)-forms Ω_i , i = 1, 2, on N^6 with $[\Omega_i] \in H^2(N^6, \mathbb{Z})$ l.i. and such that

$$\sum_{i,j=1}^{2} \gamma_{ij} \Omega_i \wedge \Omega_j = \mathbf{0}$$

for some positive definite $(\gamma_{ij}) \in M_2(\mathbb{R})$, then there is a compact simply connected SKT \mathbb{T}^2 -bundle \tilde{W} over N^6 .

Under the additional condition $c \wedge \Omega_j = 0, j = 1, 2$, we can prove that \tilde{W} is astheno-Kähler.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups Characterization in terms of currents

Resolution of orbifolds

A simply-connected example

 $M^8 = N^6 \times \mathbb{T}^2$ is astheno-Kähler and SKT with torsion *c* supported on N^6 .

Theorem (Swann)

If there are two l.i. integral closed (1, 1)-forms Ω_i , i = 1, 2, on N^6 with $[\Omega_i] \in H^2(N^6, \mathbb{Z})$ l.i. and such that

$$\sum_{i,j=1}^{2} \gamma_{ij} \Omega_i \wedge \Omega_j = \mathbf{0}$$

for some positive definite $(\gamma_{ij}) \in M_2(\mathbb{R})$, then there is a compact simply connected SKT \mathbb{T}^2 -bundle \tilde{W} over N^6 .

Under the additional condition $c \wedge \Omega_j = 0, j = 1, 2$, we can prove that \tilde{W} is astheno-Kähler.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups Characterization in terms of currents

Resolution of orbifolds

A simply-connected example

 $M^8 = N^6 \times \mathbb{T}^2$ is astheno-Kähler and SKT with torsion *c* supported on N^6 .

Theorem (Swann)

If there are two l.i. integral closed (1, 1)-forms Ω_i , i = 1, 2, on N^6 with $[\Omega_i] \in H^2(N^6, \mathbb{Z})$ l.i. and such that

$$\sum_{i,j=1}^{2} \gamma_{ij} \Omega_i \wedge \Omega_j = \mathbf{0}$$

for some positive definite $(\gamma_{ij}) \in M_2(\mathbb{R})$, then there is a compact simply connected SKT \mathbb{T}^2 -bundle \tilde{W} over N⁶.

Under the additional condition $c \wedge \Omega_j = 0, j = 1, 2$, we can prove that \tilde{W} is astheno-Kähler.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups Characterization in terms of currents

Resolution of orbifolds

A simply-connected example

 $M^8 = N^6 \times \mathbb{T}^2$ is astheno-Kähler and SKT with torsion *c* supported on N^6 .

Theorem (Swann)

If there are two l.i. integral closed (1, 1)-forms Ω_i , i = 1, 2, on N^6 with $[\Omega_i] \in H^2(N^6, \mathbb{Z})$ l.i. and such that

$$\sum_{i,j=1}^{2} \gamma_{ij} \Omega_i \wedge \Omega_j = \mathbf{0}$$

for some positive definite $(\gamma_{ij}) \in M_2(\mathbb{R})$, then there is a compact simply connected SKT \mathbb{T}^2 -bundle \tilde{W} over N^6 .

Under the additional condition $c \wedge \Omega_j = 0, j = 1, 2$, we can prove that \tilde{W} is astheno-Kähler.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups Characterization in terms of currents Besolution of orbifolds

A simply-connected

A simply-connected example

 $M^8 = N^6 \times \mathbb{T}^2$ is astheno-Kähler and SKT with torsion *c* supported on N^6 .

Theorem (Swann)

If there are two l.i. integral closed (1, 1)-forms Ω_i , i = 1, 2, on N^6 with $[\Omega_i] \in H^2(N^6, \mathbb{Z})$ l.i. and such that

$$\sum_{i,j=1}^{2} \gamma_{ij} \Omega_i \wedge \Omega_j = \mathbf{0}$$

for some positive definite $(\gamma_{ij}) \in M_2(\mathbb{R})$, then there is a compact simply connected SKT \mathbb{T}^2 -bundle \tilde{W} over N^6 .

Under the additional condition $c \land \Omega_j = 0, j = 1, 2$, we can prove that \tilde{W} is astheno-Kähler.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups Characterization in terms of currents

Resolution of orbifolds

A simply-connected example

Twist and SKT nilmanifolds

Example (Swann)

Any 6-dimensional SKT nilmanifold M^6 is the twist of the Kähler product $T^4 \times T^2$ by using the two integral 2-forms Ω_j (supported on T^4) such that $d\alpha^3 = \Omega_1 + i\Omega_2$. The integrability condition for the induced almost complex structure on the twist is

 $(\Omega_1 + i\Omega_2)^{(0,2)} = \mathbf{0}$

and the SKT condition for the induced Hermitian metric is

 $\Omega_1 \wedge J\Omega_1 + \Omega_2 \wedge J\Omega_2 = 0.$

Problem

Study the existence of SKT and Hermitian-symplectic structures on 2n-dimensional nilmanifolds.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents

Resolution of orbifolds

A simply-connected example

Twist and SKT nilmanifolds

Example (Swann)

Any 6-dimensional SKT nilmanifold M^6 is the twist of the Kähler product $T^4 \times T^2$ by using the two integral 2-forms Ω_j (supported on T^4) such that $d\alpha^3 = \Omega_1 + i\Omega_2$. The integrability condition for the induced almost complex structure on the twist is

 $(\Omega_1+i\Omega_2)^{(0,2)}=0$

and the SKT condition for the induced Hermitian metric is

 $\Omega_1 \wedge J\Omega_1 + \Omega_2 \wedge J\Omega_2 = 0.$

Problem

Study the existence of SKT and Hermitian-symplectic structures on 2n-dimensional nilmanifolds.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of

currents

Resolution of orbifolds

A simply-connected example

Twist and SKT nilmanifolds

Example (Swann)

Any 6-dimensional SKT nilmanifold M^6 is the twist of the Kähler product $T^4 \times T^2$ by using the two integral 2-forms Ω_j (supported on T^4) such that $d\alpha^3 = \Omega_1 + i\Omega_2$. The integrability condition for the induced almost complex structure on the twist is

 $(\Omega_1+i\Omega_2)^{(0,2)}=0$

and the SKT condition for the induced Hermitian metric is

 $\Omega_1 \wedge J\Omega_1 + \Omega_2 \wedge J\Omega_2 = 0.$

Problem

Study the existence of SKT and Hermitian-symplectic structures on 2n-dimensional nilmanifolds.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of

currents

Resolution of orbifolds

A simply-connected example

Theorem (Enrietti, -, Vezzoni)

 $(M = G/\Gamma, J)$ with J left-invariant and G any Lie group If $J\xi \cap [\mathfrak{g}, \mathfrak{g}] \neq \{0\}$, then (M, J) does not admit any compatible Hermitian-symplectic structure.

Theorem (Enrietti, -, Vezzoni)

 G/Γ nilmanifold (not a torus), J left-invariant. 1) If $(G/\Gamma, J)$ has a J-Hermitian SKT metric, then G has to b 2-step and the SKT nilmanifold is a twist of a torus. 2) $(G/\Gamma, J)$ does not admit any compatible Hermitian-symplectic structure.

To prove 1) we show that J has to preserve the center ξ of g and that a SKT structure on g induces a SKT structure on g/ξ

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of

currents

Resolution of orbifolds

A simply-connected example

Theorem (Enrietti, -, Vezzoni)

 $(M = G/\Gamma, J)$ with J left-invariant and G any Lie group If $J\xi \cap [\mathfrak{g}, \mathfrak{g}] \neq \{0\}$, then (M, J) does not admit any compatible Hermitian-symplectic structure.

Theorem (Enrietti, -, Vezzoni)

 G/Γ nilmanifold (not a torus), J left-invariant. 1) If $(G/\Gamma, J)$ has a J-Hermitian SKT metric, then G has to b 2-step and the SKT nilmanifold is a twist of a torus. 2) $(G/\Gamma, J)$ does not admit any compatible Hermitian-symplectic structure.

To prove 1) we show that *J* has to preserve the center ξ of g and that a SKT structure on g induces a SKT structure on g/ξ

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of

currents

Resolution of orbifolds

A simply-connected example

Theorem (Enrietti, -, Vezzoni)

 $(M = G/\Gamma, J)$ with J left-invariant and G any Lie group If $J\xi \cap [\mathfrak{g}, \mathfrak{g}] \neq \{0\}$, then (M, J) does not admit any compatible Hermitian-symplectic structure.

Theorem (Enrietti, -, Vezzoni)

G/Γ nilmanifold (not a torus), J left-invariant.
1) If (G/Γ, J) has a J-Hermitian SKT metric, then G has to be
2-step and the SKT nilmanifold is a twist of a torus.
2) (G/Γ, J) does not admit any compatible
Hermitian-symplectic structure.

To prove 1) we show that *J* has to preserve the center ξ of g and that a SKT structure on g induces a SKT structure on g/ξ

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents

rents

Resolution of orbifolds

A simply-connected example

Theorem (Enrietti, -, Vezzoni)

 $(M = G/\Gamma, J)$ with J left-invariant and G any Lie group If $J\xi \cap [\mathfrak{g}, \mathfrak{g}] \neq \{0\}$, then (M, J) does not admit any compatible Hermitian-symplectic structure.

Theorem (Enrietti, -, Vezzoni)

G/Γ nilmanifold (not a torus), J left-invariant.
1) If (G/Γ, J) has a J-Hermitian SKT metric, then G has to be
2-step and the SKT nilmanifold is a twist of a torus.
2) (G/Γ, J) does not admit any compatible
Hermitian-symplectic structure.

To prove 1) we show that *J* has to preserve the center ξ of \mathfrak{g} and that a SKT structure on \mathfrak{g} induces a SKT structure on \mathfrak{g}/ξ .

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups Characterization in terms of currents Besolution of orbifolds

A simply-connected

S^1 -bundles

Proposition (Kobayashi)

Let $(N^{2n+1}, I, \xi, \eta, h)$ be an almost contact metric manifold and let $[\Omega] \in H^2(N^{2n+1}, \mathbb{Z})$. Then $\exists S^1 \hookrightarrow P \xrightarrow{\pi} N^{2n+1}$ with connection 1-form θ on P whose curvature form is $d\theta = \pi^*(\Omega)$

Proposition (Ogawa)

P has an almost Hermitian structure (J, g) with J defined by

$$\theta(JX) = -\pi^*(\eta(\pi_*X)), \quad \pi_*(JX) = I(\pi_*X) + \tilde{\theta}(X)\xi$$

and

 $g(X, Y) = \pi^* h(\pi_* X, \pi_* Y) + \theta(X) \theta(Y),$

where $\tilde{\theta}(X)$ is such that $\pi^*\tilde{\theta}(X) = \theta(X)$.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of

currents

Resolution of orbifolds

A simply-connected example

S^1 -bundles

Proposition (Kobayashi)

Let $(N^{2n+1}, I, \xi, \eta, h)$ be an almost contact metric manifold and let $[\Omega] \in H^2(N^{2n+1}, \mathbb{Z})$. Then $\exists S^1 \hookrightarrow P \xrightarrow{\pi} N^{2n+1}$ with connection 1-form θ on P whose curvature form is $d\theta = \pi^*(\Omega)$.

Proposition (Ogawa)

P has an almost Hermitian structure (J, g) with J defined by

$$\theta(JX) = -\pi^*(\eta(\pi_*X)), \quad \pi_*(JX) = I(\pi_*X) + \tilde{\theta}(X)\xi$$

and

 $g(X, Y) = \pi^* h(\pi_* X, \pi_* Y) + \theta(X) \theta(Y),$

where $\tilde{\theta}(X)$ is such that $\pi^* \tilde{\theta}(X) = \theta(X)$.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of

currents

Resolution of orbifolds

A simply-connected example

S^1 -bundles

Proposition (Kobayashi)

Let $(N^{2n+1}, I, \xi, \eta, h)$ be an almost contact metric manifold and let $[\Omega] \in H^2(N^{2n+1}, \mathbb{Z})$. Then $\exists S^1 \hookrightarrow P \xrightarrow{\pi} N^{2n+1}$ with connection 1-form θ on P whose curvature form is $d\theta = \pi^*(\Omega)$.

Proposition (Ogawa)

P has an almost Hermitian structure (J, g) with J defined by

$$heta(JX) = -\pi^*(\eta(\pi_*X)), \quad \pi_*(JX) = I(\pi_*X) + \tilde{ heta}(X)\xi$$

and

$$g(X, Y) = \pi^* h(\pi_* X, \pi_* Y) + \theta(X) \theta(Y),$$

where $\tilde{\theta}(X)$ is such that $\pi^* \tilde{\theta}(X) = \theta(X)$.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of

currents

Resolution of orbifolds

A simply-connected example

Theorem (Fernandez, -, Ugarte, Villacampa)

(J,g) on P is SKT if and only if (I,ξ,η,h) is normal, $d\theta$ is J-invariant and

 $\begin{aligned} & \mathsf{d}(\pi^*(\mathsf{I}(i_\xi \mathsf{d}\omega))) = \mathsf{0}, \\ & \mathsf{d}(\pi^*(\mathsf{I}(\mathsf{d}\omega) - \mathsf{d}\eta \wedge \eta)) = (-\pi^*(\mathsf{I}(i_\xi \mathsf{d}\omega)) + \pi^*\Omega) \wedge \pi^*\Omega. \end{aligned}$

Definition

 $(N^{2n+1}, I, \xi, \eta, h)$ is quasi-Sasakian if it is normal and $d\omega = 0$. If $d\eta = -2\omega$, then it is Sasakian.

Corollary

For a quasi-Sasakian (N^{2n+1} , I, ξ , η , h), (J, g) on P is SKT if and only if Ω is *I*-invariant, $i_{\varepsilon}\Omega = 0$ and

 $d\eta \wedge d\eta = -\Omega \wedge \Omega.$

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of

currents

Resolution of orbifolds

A simply-connected example

Theorem (Fernandez, -, Ugarte, Villacampa)

(J,g) on P is SKT if and only if (I,ξ,η,h) is normal, $d\theta$ is J-invariant and

 $\begin{aligned} & d(\pi^*(\mathit{I}(i_{\xi}d\omega))) = 0, \\ & d(\pi^*(\mathit{I}(d\omega) - d\eta \wedge \eta)) = (-\pi^*(\mathit{I}(i_{\xi}d\omega)) + \pi^*\Omega) \wedge \pi^*\Omega. \end{aligned}$

Definition

 $(N^{2n+1}, I, \xi, \eta, h)$ is quasi-Sasakian if it is normal and $d\omega = 0$. If $d\eta = -2\omega$, then it is Sasakian.

Corollary

For a quasi-Sasakian (N^{2n+1} , I, ξ , η , h), (J, g) on P is SKT if and only if Ω is *I*-invariant, $i_{\varepsilon}\Omega = 0$ and

 $d\eta \wedge d\eta = -\Omega \wedge \Omega.$

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of

currents

Resolution of orbifolds

A simply-connected example

Theorem (Fernandez, -, Ugarte, Villacampa)

(J,g) on P is SKT if and only if (I,ξ,η,h) is normal, $d\theta$ is J-invariant and

 $egin{aligned} & d(\pi^*(I(i_\xi d\omega))) = 0, \ & d(\pi^*(I(d\omega) - d\eta \wedge \eta)) = (-\pi^*(I(i_\xi d\omega)) + \pi^*\Omega) \wedge \pi^*\Omega. \end{aligned}$

Definition

 $(N^{2n+1}, I, \xi, \eta, h)$ is quasi-Sasakian if it is normal and $d\omega = 0$. If $d\eta = -2\omega$, then it is Sasakian.

Corollary

For a quasi-Sasakian (N^{2n+1} , I, ξ , η , h), (J, g) on P is SKT if and only if Ω is *I*-invariant, $i_{\xi}\Omega = 0$ and

$$d\eta \wedge d\eta = -\Omega \wedge \Omega.$$

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction Hermitian-symplectic

structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of

currents

Resolution of orbifolds

A simply-connected example

Theorem (Friedrich, Ivanov)

 $(N^{2n+1}, I, \xi, \eta, h)$ admits ∇^c preserving (I, ξ, η, h) and with totally skew-symmetric torsion if and only if [I, I] is skew-symmetric and ξ is a Killing vector field. Moreover, ∇^c is unique.

For a quasi-Sasakian $(N^{2n+1}, I, \xi, \eta, h)$

$$h(\nabla_X^c Y, Z) = h(\nabla_X^g Y, Z) + \frac{1}{2}(d\eta \wedge \eta)(X, Y, Z).$$

Then ∇^B of (J, h) on P and ∇^c on N^{2n+1} are related by $g(\nabla^B_X Y, Z) = \pi^* h(\nabla^c_{\pi_* X} \pi_* Y, \pi_* Z),$

for any vector fields $X, Y, Z \in \text{Ker } \theta$.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of

currents

Resolution of orbifolds

A simply-connected example

Theorem (Friedrich, Ivanov)

 $(N^{2n+1}, I, \xi, \eta, h)$ admits ∇^c preserving (I, ξ, η, h) and with totally skew-symmetric torsion if and only if [I, I] is skew-symmetric and ξ is a Killing vector field. Moreover, ∇^c is unique.

For a quasi-Sasakian $(N^{2n+1}, I, \xi, \eta, h)$

$$h(\nabla_X^c Y, Z) = h(\nabla_X^g Y, Z) + \frac{1}{2}(d\eta \wedge \eta)(X, Y, Z).$$

Then ∇^B of (J, h) on P and ∇^c on N^{2n+1} are related by $g(\nabla^B_X Y, Z) = \pi^* h(\nabla^c_{\pi_* X} \pi_* Y, \pi_* Z),$

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of

currents

Resolution of orbifolds

A simply-connected example

Theorem (Friedrich, Ivanov)

 $(N^{2n+1}, I, \xi, \eta, h)$ admits ∇^c preserving (I, ξ, η, h) and with totally skew-symmetric torsion if and only if [I, I] is skew-symmetric and ξ is a Killing vector field. Moreover, ∇^c is unique.

For a quasi-Sasakian (N^{2n+1} , I, ξ , η , h)

$$h(\nabla_X^c Y, Z) = h(\nabla_X^g Y, Z) + \frac{1}{2}(d\eta \wedge \eta)(X, Y, Z).$$

Then ∇^{B} of (J, h) on *P* and ∇^{c} on N^{2n+1} are related by

 $g(\nabla^{\mathcal{B}}_{X}Y,Z) = \pi^{*}h(\nabla^{c}_{\pi_{*}X}\pi_{*}Y,\pi_{*}Z),$

for any vector fields $X, Y, Z \in \text{Ker } \theta$.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of

currents

Resolution of orbifolds

A simply-connected example

Let $(N^{2n+1}, I, \xi, \eta, h)$ be an an almost contact metric manifold

Definition

The Riemannian cone of (N^{2n+1}, h) is $N^{2n+1} \times \mathbb{R}^+$ with $g = t^2 h + (dt)^2$.

 $N^{2n+1} \times \mathbb{R}^+$ has an almost Hermitian (J, g) with $JX = IX, \ X \in \text{Ker } \eta, \ J\xi = -t \frac{d}{dt}.$

Theorem (Boyer, Galicki)

 $(N^{2n+1}, I, \xi, \eta, h)$ is Sasakian if and only if $(N^{2n+1} \times \mathbb{R}^+, J, g)$ is Kähler.

Theorem (Fernandez, -, Ugarte, Villacampa

 $(N^{2n+1} \times \mathbb{R}^+, J, g)$ is SKT if and only if (I, ξ, η, h) is normal and $-4\eta \wedge \omega + 2I(d\omega) - 2d\eta \wedge \eta = d(I(i_{\xi}d\omega)).$

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups Characterization in terms of currents Resolution of orbifolds

A simply-connected example

Let $(N^{2n+1}, I, \xi, \eta, h)$ be an an almost contact metric manifold.

Definition

The Riemannian cone of (N^{2n+1}, h) is $N^{2n+1} \times \mathbb{R}^+$ with $g = t^2 h + (dt)^2$.

 $N^{2n+1} \times \mathbb{R}^+$ has an almost Hermitian (J, g) with $JX = IX, X \in \text{Ker } \eta, J\xi = -t \frac{d}{dt}$.

Theorem (Boyer, Galicki)

 $(N^{2n+1}, I, \xi, \eta, h)$ is Sasakian if and only if $(N^{2n+1} \times \mathbb{R}^+, J, g)$ is Kähler.

Theorem (Fernandez, -, Ugarte, Villacampa

 $(N^{2n+1} \times \mathbb{R}^+, J, g)$ is SKT if and only if (I, ξ, η, h) is normal and $-4\eta \wedge \omega + 2I(d\omega) - 2d\eta \wedge \eta = d(I(i_{\xi}d\omega)).$

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups Characterization in terms of currents Resolution of orbifolds

A simply-connected example

Let $(N^{2n+1}, I, \xi, \eta, h)$ be an an almost contact metric manifold.

Definition

The Riemannian cone of (N^{2n+1}, h) is $N^{2n+1} \times \mathbb{R}^+$ with $g = t^2h + (dt)^2$.

 $N^{2n+1} \times \mathbb{R}^+$ has an almost Hermitian (J, g) with $JX = IX, \ X \in \text{Ker } \eta, \ J\xi = -t \frac{d}{dt}.$

Theorem (Boyer, Galicki)

 $(N^{2n+1}, I, \xi, \eta, h)$ is Sasakian if and only if $(N^{2n+1} \times \mathbb{R}^+, J, g)$ is Kähler.

Theorem (Fernandez, -, Ugarte, Villacampa

 $(N^{2n+1} \times \mathbb{R}^+, J, g)$ is SKT if and only if (I, ξ, η, h) is normal and $-4\eta \wedge \omega + 2I(d\omega) - 2d\eta \wedge \eta = d(I(i_{\xi}d\omega)).$

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups Characterization in terms of currents Resolution of orbifolds

A simply-connected example

Let $(N^{2n+1}, I, \xi, \eta, h)$ be an an almost contact metric manifold.

Definition

The Riemannian cone of (N^{2n+1}, h) is $N^{2n+1} \times \mathbb{R}^+$ with $g = t^2 h + (dt)^2$.

 $N^{2n+1} \times \mathbb{R}^+$ has an almost Hermitian (J, g) with $JX = IX, \ X \in \text{Ker } \eta, \ J\xi = -t \frac{d}{dt}.$

Theorem (Boyer, Galicki)

 $(N^{2n+1}, I, \xi, \eta, h)$ is Sasakian if and only if $(N^{2n+1} \times \mathbb{R}^+, J, g)$ is Kähler.

Theorem (Fernandez, -, Ugarte, Villacampa

 $(N^{2n+1} \times \mathbb{R}^+, J, g)$ is SKT if and only if (I, ξ, η, h) is normal and $-4\eta \wedge \omega + 2I(d\omega) - 2d\eta \wedge \eta = d(I(i_{\xi}d\omega)).$

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups Characterization in terms of currents Resolution of orbifolds A simply-connected example

Let $(N^{2n+1}, I, \xi, \eta, h)$ be an an almost contact metric manifold.

Definition

The Riemannian cone of (N^{2n+1}, h) is $N^{2n+1} \times \mathbb{R}^+$ with $g = t^2h + (dt)^2$.

 $N^{2n+1} \times \mathbb{R}^+$ has an almost Hermitian (J, g) with $JX = IX, \ X \in \text{Ker } \eta, \ J\xi = -t \frac{d}{dt}.$

Theorem (Boyer, Galicki)

 $(N^{2n+1}, I, \xi, \eta, h)$ is Sasakian if and only if $(N^{2n+1} \times \mathbb{R}^+, J, g)$ is Kähler.

Theorem (Fernandez, -, Ugarte, Villacampa)

 $(N^{2n+1} \times \mathbb{R}^+, J, g)$ is SKT if and only if (I, ξ, η, h) is normal and $-4\eta \wedge \omega + 2I(d\omega) - 2d\eta \wedge \eta = d(I(i_{\xi}d\omega)).$

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups Characterization in terms of currents Resolution of orbifolds A simply-connected example

Blow-ups

Theorem (Blanchard)

The blow-up of a Kähler manifold (M, J, g) at a point p or along a compact complex submanifold Y is still Kähler.

U= open set centered around p. The blow-up $ilde{M}_p$ is obtained by adjoining to $M \setminus \{p\}$

$$\tilde{U} = \{(z, l) \in U \times \mathbb{C}P^{n-1} | z \in l\}.$$
$$= 0\} \cong U \setminus \{p\}.$$

 $\pi: \widetilde{M}_{p}
ightarrow M$ with $\pi^{-1}(p) \cong \mathbb{C}P^{n-1}$.

 $\pi^* F$ is $\partial \overline{\partial}$ -closed, but it is not positive definite on $\pi^{-1}(M \setminus \{p\})$.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents Resolution of orbifolds

A simply-connected example

Blow-ups

Theorem (Blanchard)

The blow-up of a Kähler manifold (M, J, g) at a point p or along a compact complex submanifold Y is still Kähler.

U= open set centered around p. The blow-up \tilde{M}_p is obtained by adjoining to $M \setminus \{p\}$

$$\tilde{U} = \{(z, l) \in U \times \mathbb{C}P^{n-1} | z \in l\}.$$

by $U \setminus \{z = 0\} \cong U \setminus \{p\}.$

 $\pi: M_{
ho} o M$ with $\pi^{-1}(
ho) \cong \mathbb{C}P^{n-1}$.

 $\pi^* F$ is $\partial \overline{\partial}$ -closed, but it is not positive definite on $\pi^{-1}(M \setminus \{p\})$.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents Resolution of orbifolds

A simply-connected example

Blow-ups

Theorem (Blanchard)

The blow-up of a Kähler manifold (M, J, g) at a point p or along a compact complex submanifold Y is still Kähler.

U= open set centered around p. The blow-up \tilde{M}_p is obtained by adjoining to $M \setminus \{p\}$

$$\begin{split} \tilde{U} &= \{(z, I) \in U \times \mathbb{C}P^{n-1} | z \in I\}. \end{split}$$

by $\tilde{U} \setminus \{z = 0\} \cong U \setminus \{p\}.$
 $\pi : \tilde{M}_p \to M \text{ with } \pi^{-1}(p) \cong \mathbb{C}P^{n-1}.$

 $\pi^* F$ is $\partial \overline{\partial}$ -closed, but it is not positive definite on $\pi^{-1}(M \setminus \{p\})$.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents Resolution of orbifolds A simply-connected

A simply-connected example

 $\pi: \widetilde{M}_Y \setminus \pi^{-1}(Y) \to M \setminus Y$ biholomorphism and $\pi^{-1}(Y) \cong \mathbb{P}(\mathcal{N}_{Y|_M}).$

 \exists a holomorphic line bundle *L* on \tilde{M}_Y such that *L* is trivial on $\tilde{M}_Y \setminus \pi^{-1}(Y)$ and $L|_{\pi^{-1}(Y)} \cong \mathcal{O}_{\mathbb{P}(\mathcal{N}_{Y|_M})}(1)$

We may extend a hermitian metric *h* on $\mathcal{O}_{\mathbb{P}(\mathcal{N}_{Y|_M})}(1)$ to \hat{h} on *L* in such a way that \hat{h} is the flat metric structure on the complement of a compact neighborhood *W* of *Y*.

The Chern curvature of *L* is $\hat{\omega} = 0$ on $M \setminus W$ and $\hat{\omega}|_{\mathbb{P}(\mathcal{N}_{YM})} = \omega$.

Then $\exists \epsilon > 0$ such that $\tilde{F} = \pi^* F + \epsilon \hat{\omega} > 0$.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction Hermitian-symplectic

structures on nilmanifolds From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents Resolution of orbifolds A simply-connected example

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds Twist construction

Hermitian-symplectic

structures on nilmanifolds From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents Resolution of orbifolds A simply-connected example

References

 $\pi: \widetilde{M}_Y \setminus \pi^{-1}(Y) \to M \setminus Y$ biholomorphism and $\pi^{-1}(Y) \cong \mathbb{P}(\mathcal{N}_{Y|_M}).$

 \exists a holomorphic line bundle *L* on \tilde{M}_Y such that *L* is trivial on $\tilde{M}_Y \setminus \pi^{-1}(Y)$ and $L|_{\pi^{-1}(Y)} \cong \mathcal{O}_{\mathbb{P}(\mathcal{N}_{Y|_M})}(1)$

We may extend a hermitian metric h on $\mathcal{O}_{\mathbb{P}(\mathcal{N}_{Y|_M})}(1)$ to \hat{h} on L in such a way that \hat{h} is the flat metric structure on the complement of a compact neighborhood W of Y.

The Chern curvature of *L* is $\hat{\omega} = 0$ on $M \setminus W$ and $\hat{\omega}|_{\mathbb{P}(N_{Y|M})} = \omega$.

Then $\exists \epsilon > 0$ such that $\tilde{F} = \pi^* F + \epsilon \hat{\omega} > 0$.

Theorem (–, Tomassini)

The blow-up of a SKT manifold at a point or along a compact complex submanifold is still SKT.

The same theorem holds for manifolds with $\partial \overline{\partial} F = 0$, $\partial \overline{\partial} F^2 = 0$ (\Rightarrow astheno-Kähler).

Theorem (Miyaoka)

If $M^{2n} \setminus \{p\}$ admits a Kähler metric, then there exists a Kähler metric on the complex manifold M^{2n} .

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents Resolution of orbifolds A simply-connected

Theorem (-, Tomassini)

The blow-up of a SKT manifold at a point or along a compact complex submanifold is still SKT.

The same theorem holds for manifolds with $\partial \overline{\partial} F = 0, \partial \overline{\partial} F^2 = 0$ (\Rightarrow astheno-Kähler).

Theorem (Miyaoka)

If $M^{2n} \setminus \{p\}$ admits a Kähler metric, then there exists a Kähler metric on the complex manifold M^{2n} .

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents Resolution of orbifolds A simply-connected

Theorem (-, Tomassini)

The blow-up of a SKT manifold at a point or along a compact complex submanifold is still SKT.

The same theorem holds for manifolds with $\partial \overline{\partial} F = 0$, $\partial \overline{\partial} F^2 = 0$ (\Rightarrow astheno-Kähler).

Theorem (Miyaoka)

If $M^{2n} \setminus \{p\}$ admits a Kähler metric, then there exists a Kähler metric on the complex manifold M^{2n} .

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents Resolution of orbifolds A simply-connected

Theorem (-, Tomassini)

The blow-up of a SKT manifold at a point or along a compact complex submanifold is still SKT.

The same theorem holds for manifolds with $\partial \overline{\partial} F = 0$, $\partial \overline{\partial} F^2 = 0$ (\Rightarrow astheno-Kähler).

Theorem (Miyaoka)

If $M^{2n} \setminus \{p\}$ admits a Kähler metric, then there exists a Kähler metric on the complex manifold M^{2n} .

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents Resolution of orbifolds A simply-connected

example References

Let $\mathcal{D}^{p,q}(M)$ be the space of (p,q)-forms with compact support on (M, J).

Definition

The space of currents of bi-dimension (p, q) or of bi-degree (n - p, n - q) is the topological dual $\mathcal{D}'_{p,q}(M)$ of $\mathcal{D}^{p,q}(M)$.

A current of bi-dimension (p, q) on M can be locally identified with a (n - p, n - q)-form on M with coefficients distributions.

A current *T* of bi-dimension (p, p) is real if $T(\varphi) = T(\overline{\varphi})$, for any $\varphi \in \mathcal{D}^{p,p}(M)$.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents

Resolution of orbifolds

A simply-connected example

Let $\mathcal{D}^{p,q}(M)$ be the space of (p,q)-forms with compact support on (M, J).

Definition

The space of currents of bi-dimension (p, q) or of bi-degree (n - p, n - q) is the topological dual $\mathcal{D}'_{p,q}(M)$ of $\mathcal{D}^{p,q}(M)$.

A current of bi-dimension (p, q) on M can be locally identified with a (n - p, n - q)-form on M with coefficients distributions.

A current *T* of bi-dimension (p, p) is real if $T(\varphi) = T(\overline{\varphi})$, for any $\varphi \in \mathcal{D}^{p,p}(M)$.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection *SKT* and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents

Resolution of orbifolds

A simply-connected example

Let $\mathcal{D}^{p,q}(M)$ be the space of (p,q)-forms with compact support on (M, J).

Definition

The space of currents of bi-dimension (p, q) or of bi-degree (n-p, n-q) is the topological dual $\mathcal{D}'_{p,q}(M)$ of $\mathcal{D}^{p,q}(M)$.

A current of bi-dimension (p, q) on M can be locally identified with a (n - p, n - q)-form on M with coefficients distributions.

A current *T* of bi-dimension (p, p) is real if $T(\varphi) = T(\overline{\varphi})$, for any $\varphi \in \mathcal{D}^{p,p}(M)$.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents

Resolution of orbifolds

A simply-connected example

Let $\mathcal{D}^{p,q}(M)$ be the space of (p,q)-forms with compact support on (M, J).

Definition

The space of currents of bi-dimension (p, q) or of bi-degree (n-p, n-q) is the topological dual $\mathcal{D}'_{p,q}(M)$ of $\mathcal{D}^{p,q}(M)$.

A current of bi-dimension (p, q) on M can be locally identified with a (n - p, n - q)-form on M with coefficients distributions.

A current *T* of bi-dimension (p, p) is real if $T(\varphi) = T(\overline{\varphi})$, for any $\varphi \in \mathcal{D}^{p,p}(M)$.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents

Resolution of orbifolds

A simply-connected example

A real $T \in \mathcal{D}'_{p,p}$ is strictly positive if $T(\frac{p^2}{2^p}\varphi^1 \wedge \ldots \wedge \varphi^p \wedge \overline{\varphi}^1 \wedge \ldots \wedge \overline{\varphi}^p) \ge 0$, for any $\varphi^j \in \mathcal{D}^{1,0}$ and $T(\frac{p^2}{2^p}\varphi^1 \wedge \ldots \wedge \varphi^p \wedge \overline{\varphi}^1 \wedge \ldots \wedge \overline{\varphi}^p) > 0$ if $\varphi^1 \wedge \ldots \wedge \varphi^p \neq 0$.

If *F* is the fundamental form of (J, g) on *M*, then *F* corresponds to a real strictly positive current of bi-degree (1, 1).

Theorem (Egidi)

A compact (M, J) has a SKT metric if and only if there is no non-zero positive current of bi-dimension (1, 1) which is $i\partial \overline{\partial}$ -exact.

Theorem (–. Tomassini)

Let (M^{2n}, J) , $n \ge 2$. If $M^{2n} \setminus \{p\}$ admits a SKT metric, then there exists a SKT metric on M^{2n} .

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents

Resolution of orbifolds

A simply-connected example

A real $T \in \mathcal{D}'_{p,p}$ is strictly positive if $T(\frac{i^{p^2}}{2^p}\varphi^1 \wedge \ldots \wedge \varphi^p \wedge \overline{\varphi}^1 \wedge \ldots \wedge \overline{\varphi}^p) \ge 0$, for any $\varphi^j \in \mathcal{D}^{1,0}$ and $T(\frac{i^{p^2}}{2^p}\varphi^1 \wedge \ldots \wedge \varphi^p \wedge \overline{\varphi}^1 \wedge \ldots \wedge \overline{\varphi}^p) > 0$ if $\varphi^1 \wedge \ldots \wedge \varphi^p \ne 0$.

If *F* is the fundamental form of (J, g) on *M*, then *F* corresponds to a real strictly positive current of bi-degree (1, 1).

Theorem (Egidi)

A compact (M, J) has a SKT metric if and only if there is no non-zero positive current of bi-dimension (1, 1) which is $i\partial \overline{\partial}$ -exact.

Theorem (–. Tomassini)

Let (M^{2n}, J) , $n \ge 2$. If $M^{2n} \setminus \{p\}$ admits a SKT metric, then there exists a SKT metric on M^{2n} .

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents

Resolution of orbifolds

A simply-connected example

A real $T \in \mathcal{D}'_{p,p}$ is strictly positive if $T(\frac{p^2}{2^p}\varphi^1 \wedge \ldots \wedge \varphi^p \wedge \overline{\varphi}^1 \wedge \ldots \wedge \overline{\varphi}^p) \ge 0$, for any $\varphi^j \in \mathcal{D}^{1,0}$ and $T(\frac{p^2}{2^p}\varphi^1 \wedge \ldots \wedge \varphi^p \wedge \overline{\varphi}^1 \wedge \ldots \wedge \overline{\varphi}^p) > 0$ if $\varphi^1 \wedge \ldots \wedge \varphi^p \ne 0$.

If *F* is the fundamental form of (J, g) on *M*, then *F* corresponds to a real strictly positive current of bi-degree (1, 1).

Theorem (Egidi)

A compact (M, J) has a SKT metric if and only if there is no non-zero positive current of bi-dimension (1, 1) which is $i\partial \overline{\partial}$ -exact.

Theorem (–. Tomassini)

Let (M^{2n}, J) , $n \ge 2$. If $M^{2n} \setminus \{p\}$ admits a SKT metric, then there exists a SKT metric on M^{2n} .

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents

Resolution of orbifolds

A simply-connected example

A real $T \in \mathcal{D}'_{p,p}$ is strictly positive if $T(\frac{p^2}{2^p}\varphi^1 \wedge \ldots \wedge \varphi^p \wedge \overline{\varphi}^1 \wedge \ldots \wedge \overline{\varphi}^p) \ge 0$, for any $\varphi^j \in \mathcal{D}^{1,0}$ and $T(\frac{p^2}{2^p}\varphi^1 \wedge \ldots \wedge \varphi^p \wedge \overline{\varphi}^1 \wedge \ldots \wedge \overline{\varphi}^p) > 0$ if $\varphi^1 \wedge \ldots \wedge \varphi^p \ne 0$.

If *F* is the fundamental form of (J, g) on *M*, then *F* corresponds to a real strictly positive current of bi-degree (1, 1).

Theorem (Egidi)

A compact (M, J) has a SKT metric if and only if there is no non-zero positive current of bi-dimension (1, 1) which is $i\partial \overline{\partial}$ -exact.

Theorem (–. Tomassini)

Let (M^{2n}, J) , $n \ge 2$. If $M^{2n} \setminus \{p\}$ admits a SKT metric, then there exists a SKT metric on M^{2n} .

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents

Resolution of orbifolds

A simply-connected example

A real $T \in \mathcal{D}'_{p,p}$ is strictly positive if $T(\frac{p^2}{2^p}\varphi^1 \wedge \ldots \wedge \varphi^p \wedge \overline{\varphi}^1 \wedge \ldots \wedge \overline{\varphi}^p) \ge 0$, for any $\varphi^j \in \mathcal{D}^{1,0}$ and $T(\frac{p^2}{2^p}\varphi^1 \wedge \ldots \wedge \varphi^p \wedge \overline{\varphi}^1 \wedge \ldots \wedge \overline{\varphi}^p) > 0$ if $\varphi^1 \wedge \ldots \wedge \varphi^p \ne 0$.

If *F* is the fundamental form of (J, g) on *M*, then *F* corresponds to a real strictly positive current of bi-degree (1, 1).

Theorem (Egidi)

A compact (M, J) has a SKT metric if and only if there is no non-zero positive current of bi-dimension (1, 1) which is $i\partial \overline{\partial}$ -exact.

Theorem (-. Tomassini)

Let (M^{2n}, J) , $n \ge 2$. If $M^{2n} \setminus \{p\}$ admits a SKT metric, then there exists a SKT metric on M^{2n} .

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents

Resolution of orbifolds

A simply-connected example

It is sufficient to show that if *F* is the fundamental 2-form of a SKT metric on $\mathbb{B}^n(r) \setminus \{0\}$, $n \ge 2$, then $\exists 0 < R < r$ and $\hat{F} \in \Lambda^{1,1}(\mathbb{B}^n(R))$ such that i) \hat{F} is the fundamental 2-form of a SKT metric on $\mathbb{B}^n(R)$; ii) $\hat{F} = F$ on $\mathbb{B}^n(R) \setminus \mathbb{B}^n(\frac{2}{3}R)$.

F= fundamental form of a SKT metric on $\mathbb{B}^n(r) \setminus \{0\}$ and set T = -F.

Theorem (Alessandrini, Bassanelli)

Y analytic subset in $\Omega \subset \mathbb{C}^n$. If *T* is a plurisubharmonic, negative current of bi-dimension (p, p) on $\Omega \setminus Y$ and dim_C *Y* < *p*, then \exists the simple (or trivial) extension T^0 of \exists across *Y* and T^0 is plurisubharmonic.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents

Resolution of orbifolds

A simply-connected example

It is sufficient to show that if *F* is the fundamental 2-form of a SKT metric on $\mathbb{B}^n(r) \setminus \{0\}$, $n \ge 2$, then $\exists 0 < R < r$ and $\hat{F} \in \Lambda^{1,1}(\mathbb{B}^n(R))$ such that i) \hat{F} is the fundamental 2-form of a SKT metric on $\mathbb{B}^n(R)$; ii) $\hat{F} = F$ on $\mathbb{B}^n(R) \setminus \mathbb{B}^n(\frac{2}{3}R)$.

F= fundamental form of a SKT metric on $\mathbb{B}^n(r) \setminus \{0\}$ and set T = -F.

Theorem (Alessandrini, Bassanelli)

Y analytic subset in $\Omega \subset \mathbb{C}^n$. If *T* is a plurisubharmonic, negative current of bi-dimension (p, p) on $\Omega \setminus Y$ and dim_C *Y* < *p*, then \exists the simple (or trivial) extension T^0 of \exists across *Y* and T^0 is plurisubharmonic.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents

Resolution of orbifolds

A simply-connected example

It is sufficient to show that if *F* is the fundamental 2-form of a SKT metric on $\mathbb{B}^n(r) \setminus \{0\}$, $n \ge 2$, then $\exists 0 < R < r$ and $\hat{F} \in \Lambda^{1,1}(\mathbb{B}^n(R))$ such that i) \hat{F} is the fundamental 2-form of a SKT metric on $\mathbb{B}^n(R)$; ii) $\hat{F} = F$ on $\mathbb{B}^n(R) \setminus \mathbb{B}^n(\frac{2}{3}R)$.

F = fundamental form of a SKT metric on $\mathbb{B}^n(r) \setminus \{0\}$ and set T = -F.

Theorem (Alessandrini, Bassanelli)

Y analytic subset in $\Omega \subset \mathbb{C}^n$. If *T* is a plurisubharmonic, negative current of bi-dimension (p, p) on $\Omega \setminus Y$ and dim_C *Y* < *p*, then \exists the simple (or trivial) extension T^0 of \exists across *Y* and T^0 is plurisubharmonic.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents

Resolution of orbifolds

A simply-connected example

It is sufficient to show that if *F* is the fundamental 2-form of a SKT metric on $\mathbb{B}^n(r) \setminus \{0\}$, $n \ge 2$, then $\exists 0 < R < r$ and $\hat{F} \in \Lambda^{1,1}(\mathbb{B}^n(R))$ such that i) \hat{F} is the fundamental 2-form of a SKT metric on $\mathbb{B}^n(R)$; ii) $\hat{F} = F$ on $\mathbb{B}^n(R) \setminus \mathbb{B}^n(\frac{2}{3}R)$.

F = fundamental form of a SKT metric on $\mathbb{B}^n(r) \setminus \{0\}$ and set T = -F.

Theorem (Alessandrini, Bassanelli)

Y analytic subset in $\Omega \subset \mathbb{C}^n$. If *T* is a plurisubharmonic, negative current of bi-dimension (p, p) on $\Omega \setminus Y$ and dim_{\mathbb{C}} *Y* < *p*, then \exists the simple (or trivial) extension T^0 of *T* across *Y* and T^0 is plurisubharmonic.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents

Resolution of orbifolds

A simply-connected example

$$T^{0}(\varphi) = \int_{\mathbb{B}^{n}(r)\setminus\{0\}} F \wedge \varphi, \quad \forall \varphi \in \mathcal{D}^{n-1,n-1}(\mathbb{B}^{n}(r)).$$

Set $F^0 = -T^0$.

Theorem (Siu, Bassanelli)

Let T be a current of bi-degree (h, k) on Ω . If T is of order 0 and i $\partial \overline{\partial} T = 0$, then, locally,

$$T=\partial G+\overline{\partial}H\,,$$

with G and H with locally integrable functions as coefficients.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents

Resolution of orbifolds

A simply-connected example

$$\mathcal{T}^0(arphi) = \int_{\mathbb{B}^n(r) \setminus \{0\}} \mathcal{F} \wedge arphi, \quad orall arphi \in \mathcal{D}^{n-1,n-1}(\mathbb{B}^n(r)).$$

Set $F^0 = -T^0$.

Theorem (Siu, Bassanelli)

Let T be a current of bi-degree (h, k) on Ω . If T is of order 0 and i $\partial \overline{\partial} T = 0$, then, locally,

$$T=\partial G+\overline{\partial}H\,,$$

with G and H with locally integrable functions as coefficients.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents

Resolution of orbifolds

A simply-connected example

$$T^0(\varphi) = \int_{\mathbb{B}^n(r) \setminus \{0\}} F \wedge \varphi, \quad \forall \varphi \in \mathcal{D}^{n-1,n-1}(\mathbb{B}^n(r)).$$

Set $F^0 = -T^0$.

Theorem (Siu, Bassanelli)

Let T be a current of bi-degree (h, k) on Ω . If T is of order Ω and i $\partial \overline{\partial} T = 0$, then, locally,

$$T=\partial G+\overline{\partial}H\,,$$

with G and H with locally integrable functions as coefficients.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents

Resolution of orbifolds

A simply-connected example

$$T^0(\varphi) = \int_{\mathbb{B}^n(r) \setminus \{0\}} F \wedge \varphi, \quad \forall \varphi \in \mathcal{D}^{n-1,n-1}(\mathbb{B}^n(r)).$$

Set $F^0 = -T^0$.

Theorem (Siu, Bassanelli)

Let T be a current of bi-degree (h, k) on Ω . If T is of order 0 and $i \partial \overline{\partial} T = 0$, then, locally,

$$T=\partial G+\overline{\partial}H,$$

with G and H with locally integrable functions as coefficients.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents

Resolution of orbifolds

A simply-connected example

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents

Resolution of orbifolds

A simply-connected example

References

Then by Siu, Bassanelli

$$F^{0} = \partial G + \overline{\partial G},$$

on $\mathbb{B}^n(R)$ for some 0 < R < r, where *G* is a current of bi-degree (0, 1).

In fact, *G* is smooth on $\mathbb{B}^n(R) \setminus \{0\}$.

Finally, we can regularize *G*, in order that we obtain a $i\partial\overline{\partial}$ -closed and positive (1, 1)-form on $\mathbb{B}^n(R)$.

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents

Resolution of orbifolds

A simply-connected example

References

Then by Siu, Bassanelli

$$F^0 = \partial G + \overline{\partial G},$$

on $\mathbb{B}^n(R)$ for some 0 < R < r, where *G* is a current of bi-degree (0, 1).

In fact, *G* is smooth on $\mathbb{B}^n(R) \setminus \{0\}$.

Finally, we can regularize *G*, in order that we obtain a $i\partial\overline{\partial}$ -closed and positive (1, 1)-form on $\mathbb{B}^n(\mathbb{R})$.

Resolution of orbifolds

Definition

A complex orbifold is a singular complex manifold *M* such that each singularity *p* is locally isomorphic to U/G, where $U \subset \mathbb{C}^n$ $G \subset GL(n, \mathbb{C})$ finite subgroup with the only one fixed point *p* and real codim of $S \ge 2$.

Definition

A SKT resolution of a SKT orbifold (M, J, g) is a smooth (\tilde{M}, \tilde{J}) endowed with a \tilde{J} -Hermitian SKT metric \tilde{g} and of a map $\pi : \tilde{M} \to M$, such that (i) $\pi : \tilde{M} \setminus E \to M \setminus S$ is a biholomorphism, where $E = \pi^{-1}(S)$

(ii) $ilde{g}=\pi^*g$ on the complement of a neighborhood of E.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents

Resolution of orbifolds

A simply-connected example

Resolution of orbifolds

Definition

A complex orbifold is a singular complex manifold M such that each singularity p is locally isomorphic to U/G, where $U \subset \mathbb{C}^n$, $G \subset GL(n, \mathbb{C})$ finite subgroup with the only one fixed point pand real codim of $S \ge 2$.

Definition

A SKT resolution of a SKT orbifold (M, J, g) is a smooth (\tilde{M}, \tilde{J}) endowed with a \tilde{J} -Hermitian SKT metric \tilde{g} and of a map $\pi : \tilde{M} \to M$, such that (i) $\pi : \tilde{M} \setminus E \to M \setminus S$ is a biholomorphism, where $E = \pi^{-1}(S)$

(ii) $\tilde{g} = \pi^* g$ on the complement of a neighborhood of E.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents

Resolution of orbifolds

A simply-connected example

Resolution of orbifolds

Definition

A complex orbifold is a singular complex manifold M such that each singularity p is locally isomorphic to U/G, where $U \subset \mathbb{C}^n$, $G \subset GL(n, \mathbb{C})$ finite subgroup with the only one fixed point pand real codim of $S \ge 2$.

Definition

A SKT resolution of a SKT orbifold (M, J, g) is a smooth (\tilde{M}, \tilde{J}) endowed with a \tilde{J} -Hermitian SKT metric \tilde{g} and of a map $\pi : \tilde{M} \to M$, such that (i) $\pi : \tilde{M} \setminus E \to M \setminus S$ is a biholomorphism, where $E = \pi^{-1}(S)$. (ii) $\tilde{g} = \pi^* g$ on the complement of a neighborhood of E.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups Characterization in terms of currents

Resolution of orbifolds

A simply-connected example

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents

Resolution of orbifolds

A simply-connected example

References

By using the Hironaka result that the singularities of a comple. variety algebraic can be resolved by a finite number of blow-ups.

Theorem (–, Tomassini)

Let (M, J) be a complex orbifold of complex dimension n endowed with a J-Hermitian SKT metric g. Then there exists a SKT resolution.

The same result holds for Hermitian orbifolds satisfying $\partial \overline{\partial} F = 0, \partial \overline{\partial} F^2 = 0.$

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents

Resolution of orbifolds

A simply-connected example

References

By using the Hironaka result that the singularities of a complex variety algebraic can be resolved by a finite number of blow-ups.

Theorem (–, Tomassini)

Let (M, J) be a complex orbifold of complex dimension n endowed with a J-Hermitian SKT metric g. Then there exists a SKT resolution.

The same result holds for Hermitian orbifolds satisfying $\partial \overline{\partial} F = 0, \partial \overline{\partial} F^2 = 0.$

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents

Resolution of orbifolds

A simply-connected example

References

By using the Hironaka result that the singularities of a complex variety algebraic can be resolved by a finite number of blow-ups.

Theorem (-, Tomassini)

Let (M, J) be a complex orbifold of complex dimension n endowed with a J-Hermitian SKT metric g. Then there exists a SKT resolution.

The same result holds for Hermitian orbifolds satisfying $\partial \overline{\partial} F = 0$, $\partial \overline{\partial} F^2 = 0$.

 $p\in S$: singular point of M . Take a chart $U_p=\mathbb{B}^n(r)/G_p$.

 $X = \mathbb{C}^n/G_p$ is an affine algebraic variety which has 0 as the only singular point. By Hironaka there exists a resolution $\pi_X : \tilde{X} \to X$ which is a quasi-projective variety.

Let $E = \pi_X^{-1}(0)$ and $\tilde{U} = \pi_X^{-1}(U_p)$. By identifying $\tilde{U} \setminus E$ with $U_p \setminus \{p\}$, define $\tilde{M} = (M \setminus \{p\}) \cup \tilde{U}$.

It is possible then to define a SKT metric \tilde{g} on \tilde{M} such that $\tilde{g} = \pi_{\chi}^* g$ on the complement of a neighborhood of E.

 $\tilde{F} = \pi_X^* F + \epsilon i \partial \overline{\partial} (h \iota^* \rho)$, where h = 1 on $\mathbb{B}^n(\frac{1}{3}r)/G_p$ and h = 0 on $(\mathbb{B}^n(r) \setminus \mathbb{B}^n(\frac{2}{3}r))/G_p$.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents

Resolution of orbifolds

A simply-connected example

 $p \in S$: singular point of M. Take a chart $U_p = \mathbb{B}^n(r)/G_p$.

 $X = \mathbb{C}^n/G_p$ is an affine algebraic variety which has 0 as the only singular point. By Hironaka there exists a resolution $\pi_X : \tilde{X} \to X$ which is a quasi-projective variety.

Let $E = \pi_X^{-1}(0)$ and $\tilde{U} = \pi_X^{-1}(U_p)$. By identifying $\tilde{U} \setminus E$ with $U_p \setminus \{p\}$, define $\tilde{M} = (M \setminus \{p\}) \cup \tilde{U}$.

It is possible then to define a SKT metric \tilde{g} on \tilde{M} such that $\tilde{g} = \pi_{\chi}^* g$ on the complement of a neighborhood of E.

 $\tilde{F} = \pi_X^* F + \epsilon i \partial \overline{\partial} (h \iota^* \rho)$, where h = 1 on $\mathbb{B}^n(\frac{1}{3}r)/G_p$ and h = 0 on $(\mathbb{B}^n(r) \setminus \mathbb{B}^n(\frac{2}{3}r))/G_p$.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection *SKT* and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents

Resolution of orbifolds

A simply-connected example

A simply-connected example

Let $\mathbb{T}^{2n} = \mathbb{R}^{2n} / \mathbb{Z}^{2n}$ and σ the involution on \mathbb{T}^{2n} induced by

$$\sigma\left((x_1,\ldots,x_{2n})\right)=(-x_1,\ldots,-x_{2n}).$$

Consider on $\mathbb{T}^{2n} J$ defined by

$$\begin{cases} \eta^{1} = dx_{1} + i (f \, dx_{n} + dx_{n+1}) , \\ \eta^{j} = dx_{j} + i \, dx_{n+j} , \quad j = 2, \dots, n, \end{cases}$$

where $f = f(x_n, x_{2n})$ is a C^{∞} , \mathbb{Z}^{2n} -periodic and even function.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents

Resolution of orbifolds

A simply-connected example

A simply-connected example

Let $\mathbb{T}^{2n} = \mathbb{R}^{2n}/\mathbb{Z}^{2n}$ and σ the involution on \mathbb{T}^{2n} induced by

$$\sigma\left((x_1,\ldots,x_{2n})\right)=(-x_1,\ldots,-x_{2n}).$$

Consider on $\mathbb{T}^{2n} J$ defined by

$$\begin{cases} \eta^{1} = dx_{1} + i(f dx_{n} + dx_{n+1}), \\ \eta^{j} = dx_{j} + i dx_{n+j}, \quad j = 2, ..., n, \end{cases}$$

where $f = f(x_n, x_{2n})$ is a C^{∞} , \mathbb{Z}^{2n} -periodic and even function.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents

Besolution of orbifolds

A simply-connected

example References

Then

• $(\mathbb{T}^{2n}/\langle \sigma \rangle, J)$ is a complex orbifold with singular point set

$$S = \left\{ x + \mathbb{Z}^{2n} \mid x \in \frac{1}{2} \mathbb{Z}^{2n} \right\}.$$

- The *J*-Hermitian metric $g = \frac{1}{2} \sum_{j=1}^{n} (\eta^{j} \otimes \overline{\eta}^{j} + \overline{\eta}^{j} \otimes \eta^{j})$ is SKT and $\partial \overline{\partial} F^{2} = 0$ (\Rightarrow astheno-kähler).
- The strong KT resolution is simply-connected.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents

Resolution of orbifolds

A simply-connected example

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction

Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents

Resolution of orbifolds

A simply-connected example

References

Then

• $(\mathbb{T}^{2n}/\langle \sigma \rangle, J)$ is a complex orbifold with singular point set

$$S = \left\{ x + \mathbb{Z}^{2n} \mid x \in \frac{1}{2}\mathbb{Z}^{2n} \right\}$$

- The *J*-Hermitian metric $g = \frac{1}{2} \sum_{j=1}^{n} (\eta^{j} \otimes \overline{\eta}^{j} + \overline{\eta}^{j} \otimes \eta^{j})$ is SKT and $\partial \overline{\partial} F^{2} = 0$ (\Rightarrow astheno-kähler).
- The strong KT resolution is simply-connected.

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

- 6-dimensional SKT nilmanifolds
- Twist construction
- Hermitian-symplectic structures on nilmanifolds

From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents

Besolution of orbifolds

A simply-connected example

References

Then

• $(\mathbb{T}^{2n}/\langle \sigma \rangle, J)$ is a complex orbifold with singular point set

$$S = \left\{ x + \mathbb{Z}^{2n} \mid x \in rac{1}{2} \mathbb{Z}^{2n}
ight\}.$$

• The *J*-Hermitian metric $g = \frac{1}{2} \sum_{j=1}^{n} (\eta^{j} \otimes \overline{\eta}^{j} + \overline{\eta}^{j} \otimes \eta^{j})$ is SKT and $\partial \overline{\partial} F^{2} = 0$ (\Rightarrow astheno-kähler).

• The strong KT resolution is simply-connected.

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction Hermitian-symplectic

structures on nilmanifolds From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups

Characterization in terms of currents

Besolution of orbifolds

A simply-connected example

References

Then

• $(\mathbb{T}^{2n}/\langle \sigma \rangle, J)$ is a complex orbifold with singular point set

$$S = \left\{ x + \mathbb{Z}^{2n} \mid x \in \frac{1}{2}\mathbb{Z}^{2n}
ight\}$$

- The *J*-Hermitian metric $g = \frac{1}{2} \sum_{j=1}^{n} (\eta^{j} \otimes \overline{\eta}^{j} + \overline{\eta}^{j} \otimes \eta^{j})$ is SKT and $\partial \overline{\partial} F^{2} = 0$ (\Rightarrow astheno-kähler).
- The strong KT resolution is simply-connected.

References

A. Fino, M. Parton, S. Salamon, Families of strong KT structures in six dimensions, Comm. Math. Helv. 79 (2004) nc 2, 317-340.

A. Fino, A. Tomassini, Blow ups and resolutions of strong Kähler with torsion metrics, Adv. Math. **221** (2009), no.3, 914-935.

A. Fino, A. Tomassini, On astheno-Kähler metrics, math.DG/0806.0735, to appear in J. London Math. Soc.

M. Fernandez, A. Fino, L. Ugarte, R. Villacampa, Strong Kähler with torsion structures from almost contact manifolds, math.DG/0909.3946., to appear in Pacific J. Math.

N. Enrietti, A. Fino, L. Vezzoni, Hermitian-symplectic structures and SKT metrics, math.DG/1002.3099.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction Hermitian-symplectic

structures on nilmanifolds From almost contact

manifolds Blow-ups and

resolutions of orbifolds

Blow-ups Characterization in terms of currents Resolution of orbifolds

A simply-connected example

References

A. Fino, M. Parton, S. Salamon, Families of strong KT structures in six dimensions, Comm. Math. Helv. 79 (2004) no. 2, 317-340.

A. Fino, A. Tomassini, Blow ups and resolutions of strong Kähler with torsion metrics, Adv. Math. **221** (2009), no.3, 914-935.

A. Fino, A. Tomassini, On astheno-Kähler metrics, math.DG/0806.0735, to appear in J. London Math. Soc.

M. Fernandez, A. Fino, L. Ugarte, R. Villacampa, Strong Kähler with torsion structures from almost contact manifolds, math.DG/0909.3946., to appear in Pacific J. Math.

N. Enrietti, A. Fino, L. Vezzoni, Hermitian-symplectic structures and SKT metrics, math.DG/1002.3099.

Special Hermitian structures

Anna Fino

KT geometry

Bismut connection SKT and astheno-Kähler metrics Link with standard metrics Link with generalized Kähler structures Hermitian-symplectic structures

Examples

6-dimensional SKT nilmanifolds

Twist construction Hermitian-symplectic

structures on nilmanifolds From almost contact manifolds

Blow-ups and resolutions of orbifolds

Blow-ups Characterization in terms of currents Resolution of orbifolds A simply-connected example

