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Abstract. We study the dynamics of a Z2⊕Z2- equivariant vec-
tor field in the neighbourhood of a heteroclinic network with a peri-
odic trajectory and symmetric equilibria. We assume that around
each equilibrium the linearization of the vector field has non-real
eigenvalues. Trajectories starting near each node of the network
turn around in space either following the periodic trajectory or due
to the complex eigenvalues near the equilibria. Thus, a network
with rotating nodes. The rotations combine with transverse inter-
sections of two-dimensional invariant manifolds to create switching
near the network: close to the network there are trajectories that
visit neighbourhoods of the saddles following all the heteroclinic
connections of the network in any given order. Our results are mo-
tivated by an example where switching was observed numerically,
by forced symmetry breaking of an asymptotically stable network
with O(2) symmetry.

1. Introduction

Heteroclinic connections and networks are a common feature of sym-
metric differential equations, and persist under perturbations that pre-
serve the symmetry. Start with an asymptotically stable network with
O(2) symmetry. A perturbation that breaks part of the symmetry
splits a two-dimensional connection into a pair of one-dimensional ones.
The new network is no longer asymptotically stable, nearby trajectories
follow the network around in a complex way that we call switching.

By a heteroclinic network we mean a connected flow-invariant set
that is the union of heteroclinic cycles. In the present case it is the
orbit under the symmetry group Z2 ⊕Z2 of a heteroclinic cycle. These
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networks are often called heteroclinic cycles in the literature. Hete-
roclinic cycles and networks are known to occur persistently in the
settings of symmetry [8], [16], coupled cell systems (with and without
symmetry) [6], [2] and population dynamics [12], [13], [11], [7]. They
are induced by the existence of flow invariant subpaces that correspond,
respectively, to fixed point subspaces, synchrony subspaces and coor-
dinate axes and hyperplanes.

We study the dynamics near such a network where all cycles have
a common node that is a closed trajectory. We prove that there are
trajectories near the network that follow its cycles in any desired or-
der. Trajectories that go near the periodic orbit may switch to any
heteroclinic cycle, return and switch again.

It is worthwhile to isolate general properties that entail switching,
so the results may be applied to examples in other contexts.

There exist in the literature several numerical reports on complicated
dynamics near heteroclinic networks of equilibria and of equilibria and
periodic trajectories, that include random visits to the nodes of the
network in any possible order [10], [8], [5], [23].

This type of behaviour is not possible around asymptotically sta-
ble heteroclinic networks whose connections are contained in invariant
subspaces. Each cycle in the network cannot be asymptotically stable
but it may have strong attractivity properties [19], [24] so that each
nearby trajectory outside the invariant subspaces will tend to one of
the cycles in the network.

Different forms of switching have been described in several contexts.
Networks where all the nodes are equilibria, have been studied by
Postlethwaite and Dawes [21] who found trajectories that follow three
cycles in a network sequentially, both regularly and irregularly; by Kirk
and Silber [15] near a network with two cycles who found nearby tra-
jectories that switch in one direction. Persistent random switching is
found by Guckenheimer and Worfolk [10] and Aguiar et al [4]; noise
induced switching in Armbruster et al [5].

A problem similar to ours, where a network involves equilibria and a
periodic trajectory, appears in the heteroclinic model of the geodynamo
derived in Melbourne et al [20]. Starting with a model with Z2 ⊕
Z2 ⊕ SO(2) symmetry, they perturb the model so the only remaining
symmetry is −Id. For the perturbed model they establish switching
numerically in terms of reversals and excursions.

This has motivated Kirk and Rucklidge [14] to ask whether switch-
ing would be observed when all the symmetries are broken. First they
analyse partially broken symmetries in two different ways: when only
the SO(2) symmetry remains they find a weak form of switching, where
trajectories starting near one equilibrium may visit the neighbourhood
of another but not return to the first one; for the Z2 ⊕ Z2 symmet-
ric case they find attracting periodic trajectories and no switching.
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Then they argue that when all symmetries are broken and the net-
work is destroyed, switching will not take place arbitrarily close to
Z2 ⊕ Z2-symmetric problems because of barriers formed by invariant
manifolds. They describe a scenario where switching may arise, if the
symmetry-breaking terms are larger than a threshold value. They pro-
pose a mechanism for switching arising from the right combination of
homoclinic tangencies between the stable and unstable manifolds of a
periodic orbit and specific heteroclinic tangencies between stable and
unstable manifolds of the equilibria.

Here we analyse equations with a symmetry group Z2⊕Z2 a subgroup
of that considered by Melbourne et al [20] but not acting in the same
way as in Kirk and Rucklidge [14]: each Z2 in our setting contains
a rotation by π that fixes a plane. A discussion of how our results
compare with those of [14] and [20] appears at the end of this paper in
section 9.

Under generic hypotheses for this symmetry, we prove a strong form
of switching: the existence of trajectories that visit neighbourhoods of
any sequence of nodes of the network in any order that is compatible
with the network connections.

The conditions we need for switching are stated in section 3 preceded
by definitions and preliminary results in section 2.

In section 4 we present an example of a Z2 ⊕Z2- equivariant family
of ordinary differential equations having a network of rotating nodes.
When one of the parameters is set to zero, the equations are Z2 ⊕Z2 ⊕
SO(2)-symmetric and the network is asymptotically stable. Switching
occurs for all small non-zero values of this symmetry-breaking param-
eter.

We linearize the flow around the invariant saddles in section 5, ob-
taining isolating blocks around each node of the network. This sec-
tion is mostly concerned with introducing the notation for the proof of
switching that occupies the rest of the paper.

The goal of this paper is to prove switching in the neighbourhood
of a heteroclinic network that consists of four symmetric copies of a
heteroclinic cycle

C → v → w → C

where C is a closed trajectory invariant under the symmetries and v
and w are equilibria. The connection v → w is one-dimensional and
takes place inside a fixed-point subspace, the other connections are
transverse intersections of 2-dimensional invariant manifolds. The tra-
jectory C has real Floquet multipliers and 2-dimensional stable and
unstable manifolds; the linearisation of the flow near v has a pair
of complex eigenvalues with positive real part and one real negative
eigenvalue; the linearisation of the flow near w has one real positive
eigenvalue and pair of complex eigenvalues with negative real part (see
figures 1 and 2).
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In section 6 we obtain a geometrical description of the way the flow
transforms a curve of initial conditions lying across the stable manifold
of each node. The curve is wrapped around the isolating block of the
next node, accumulating on its unstable manifold and in particular on
the next connection. Thus, points on a line across the stable manifold
of v will be mapped into a helix accumulating on the unstable manifold
of w that will cross the transverse stable manifold of C infinitely many
times. Similarly, points on a line across the stable manifold of C will
be mapped into a helix accumulating on its unstable manifold and thus
will cross the transverse stable manifold of v infinitely many times.

The geometrical setting is explored in section 7 to obtain intervals
on the curve of initial conditions that are mapped by the flow into
curves near the next node in a position similar to the first one. This
allows us to establish the recurrence needed for switching in section 8:
for any sequence of nodes like

+v → −w → C → −v → −w → C → +v → +w → C → +v → · · ·

we find a trajectory that visits neighbourhoods of these nodes in the
same sequence.

We end the paper with a discussion (section 9) of the results obtained
and of related results in the literature.

2. Preliminaries

Let f be a smooth vector field on Rn with flow given by the unique
solution x(t) = ϕ(t, x0) ∈ Rn of

(1) ẋ = f(x) x(0) = x0.

If A is a compact invariant set for the flow of f , we say, following
Field [8], that A is an invariant saddle if

A ⊆ W s(A)\A and A ⊆ W u(A)\A,

where A is the closure of A. In this paper all the saddles are hyperbolic.
Given two invariant saddles A and B, an m-dimensional hetero-

clinic connection from A to B, denoted [A → B], is an m-dimensional
connected flow-invariant manifold contained in W uA)∩W s(B). There
may be more than one connection from A to B.

Let S ={Aj : j ∈ {1, . . . , k}} be a finite ordered set of mutually
disjoint invariant saddles. Following Field [8], we say that there is a
heteroclinic cycle associated to S if

∀j ∈ {1, . . . , k}, W u(Aj) ∩ W s(Aj+1) 6= ∅ (mod k).

We refer to the saddles defining the heteroclinic cycle as nodes.
A heteroclinic network is a finite connected union of heteroclinic

cycles.
Let Γ be a compact Lie group acting linearly on Rn. The vector

field f is Γ−equivariant if for all γ ∈ Γ and x ∈ Rn, we have f(γx) =
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γf(x). In this case γ ∈ Γ is said to be a symmetry of f . We refer the
reader to Golubitsky, Stewart and Schaeffer [9] for more information
on differential equations with symmetry.

The Γ-orbit of x0 ∈ Rn is the set Γ(x0) = {γx0, γ ∈ Γ} that is
invariant under the flow of Γ-equivariant vector fields f . In particular,
if x0 is an equilibrium of (1), so are the elements in its Γ-orbit.

The isotropy subgroup of x0 ∈ Rn is Γx0
= {γ ∈ Γ, γx0 = x0}. For

an isotropy subgroup Σ of Γ, its fixed-point subspace is

Fix(Σ) = {x ∈ Rn : ∀γ ∈ Σ, γx = x}.

Fixed-point subspaces are the reason for the robustness of heteroclinic
cycles and networks in symmetric dynamics: if f is Γ-equivariant then
Fix(Σ) is flow-invariant, thus connections occurring inside these spaces
persist under perturbations that preserve the symmetry.

For a heteroclinic network Σ with node set A, a path of order k, on
Σ is a finite sequence sk = (cj)j∈{1,...,k} of connections cj = [Aj → Bj ]
in Σ such that Aj , Bj ∈ A and Bj = Aj+1 i.e. cj = [Aj → Aj+1]. For
an infinite path, take j ∈ N.

Let NΣ be a neighbourhood of the network Σ and let UA be a neigh-
bourhood of each node A in Σ. For each heteroclinic connection in Σ,
consider a point p on it and a small neighbourhood V of p. We are
assuming that the neighbourhoods of the nodes are pairwise disjoint,
as well for those of points in connections.

Given neighbourhoods as above, the point q, or its trajectory ϕ(t),
follows the finite path sk = (cj)j∈{1,...,k} of order k, if there exist two
monotonically increasing sequences of times (ti)i∈{1,...,k+1} and (zi)i∈{1,...,k}

such that for all i ∈ {1, . . . , k}, we have ti < zi < ti+1 and:

(1) ϕ(t) ⊂ NΣ for all t ∈ (t1, tk+1);
(2) ϕ(ti) ∈ UAi

and ϕ(zi) ∈ Vi and
(3) for all t ∈ (zi, zi+1), ϕ(t) does not visit the neighbourhood of

any other node except that of Ai+1.

There is finite switching near Σ if for each finite path there is a
trajectory that follows it. Analogously, we define infinite switching
near Σ by requiring that each infinite path is followed by a trajectory.

An infinite path on Σ may also be seen as a pseudo-orbit of ẋ = f(x),
with infinitely many discontinuities. Switching near Σ means that these
infinite pseudo-orbits can be shadowed.

3. A network of rotating nodes

Our object of study is the dynamics around a special type of hete-
roclinic network (see figure 2) for which we give a rigorous description
here. The network lies in a topological three-sphere and one of its nodes
is a closed trajectory with real Floquet multipliers and 2-dimensional
stable and unstable manifolds. Near this node, the flow rotates follow-
ing the closed trajectory. The other nodes are equilibria with a pair
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Figure 1. Dynamics near a heteroclinic network of
rotating nodes. Left: dynamics around the plane
Fix(Z2(γ1)) illustrating property (P3); Right: dynam-
ics in the plane Fix(Z2(γ2)) illustrating property (P4).

of non-real eigenvalues. Thus the local dynamics rotates around each
node.

Specifically, we study a smooth vector field f on R4 with the follow-
ing properties:

(P1) The vector field f is equivariant under Γ ∼= Z2 ⊕ Z2 acting lin-
early on R4 with generators γ1 and γ2 and with two transverse two-
dimensional fixed-point subspaces. In particular, the origin is an equi-
librium.

(P2) There is a three-dimensional flow-invariant manifold S3 diffeomor-
phic to a sphere that attracts all the trajectories except the origin. For
simplicity, we assume this manifold to be the unit sphere.

By (P1–P2) there are two flow-invariant circles

C1 = S3 ∩ Fix(Z2(γ1)) and C = S3 ∩ Fix(Z2(γ2)).

(P3) On C1 there are exactly four equilibria that will be denoted by
+v, +w, −v = γ2 · v, −w = γ2 · w. Moreover, the eigenvalues of df
restricted to TS3 are:

• −Cv ± i and Ev with Cv 6= Ev > 0, at ±v;
• Ew ± i and −Cw with Cw 6= Ew > 0, at ±w.

In Fix(Z2(γ1)) the equilibria ±v are saddles and ±w are sinks with
connections in C1 from ±v to ±w. These connections are persistent
under perturbations that preserve the γ1−symmetry (see figure 1).
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(P4) In the invariant plane Fix(Z2(γ2)) the only equilibrium is the
origin and it is an unstable focus.

Thus C is a closed trajectory and, from (P2), this trajectory is a sink
in Fix(Z2(γ2)) (see figure 1). Since C is contained in the flow-invariant
plane Fix(Z2(γ2)), its Floquet multipliers are real.

(P5) The periodic trajectory C is hyperbolic and, in S3, dim W u(C) =
dim W s(C) = 2. Moreover, there are connections [C → +v] and
[+w → C] satisfying:

W u(C) ⋔ W s (+v) and W u (+w) ⋔ W s (C) .

These intersections are one-dimensional and consist of one pair of γ1-
related trajectories.

From the γ2− symmetry, we obtain a pair of γ1-related one-dimensional
connections in W u(C) ⋔ W s (−v) and in W u (−w) ⋔ W s (C). It fol-
lows that there is a heteroclinic network Σ involving the saddles ±v,
±w and C (figure 2). Such a network Σ is what we call a network of
rotating nodes. This paper shows switching near this network.

The symmetry γ1 and its flow invariant fixed point subspace ensure
the persistence of the connections [±v → ±w]. The other symmetry
γ2 is not essential for the existence of a robust network with these
properties but it makes them more natural as illustrated by the example
in section 4. The same is true for the existence of the invariant 3-sphere.
In section 9 we discuss variants of these hypotheses for which switching
may be proved in the same way. Note that if the invariant manifolds
W u(C) and W s (−v) did not intersect at all, one of them might form
a barrier in S3, contradicting some of the other hypotheses.

4. Example

Our study was initially motivated by the following example con-
structed in Aguiar [1], using the methods of [3]. This is an ordinary
differential equation in R4 given by:















ẋ1 = x1(α1 + α2r
2
1 + α3x

2
3 + α4x

2
4 + α5(x

4
3 − r2

1x
2
4)) − x2

ẋ2 = x2(α1 + α2r
2
1 + α3x

2
3 + α4x

2
4 + α5(x

4
3 − r2

1x
2
4)) + x1

ẋ3 = x3(α1 + α2x
2
3 + α3x

2
4 + α4r

2
1 + α5(x

4
4 − r2

1x
2
3)) + ξh1(x)

ẋ4 = x4(α1 + α2x
2
4 + α3r

2
1 + α4x

2
3 + α5(r

4
1 − x2

3x
2
4)) − ξh2(x)

where x = (x1, x2, x3, x4) ∈ R4, r2
1 = x2

1 + x2
2 and

h1(x) = [α1+3α2(x
2

1+x2

2)]x1x2x4 and h2(x) = [α1+3α2(x
2

1+x2

2)]x1x2x3.

The symmetries of the equation are changes of sign of pairs of coordi-
nates:

γ1(x) = (−x1,−x2, x3, x4) γ2(x) = (x1, x2,−x3,−x4).
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+ v

+ w

C

- w

- v

Figure 2. Schematic description of a heteroclinic net-
work of rotating nodes satisfying (P1)-(P5). Each ar-
row represents a 1-dimensional heteroclinic connection.
There is one 1-dimensional heteroclinic connection from
each equilibrium ±v to each equilibrium ±w (P3). There
are two 1-dimensional heteroclinic connection involving
each equilibrium and the periodic trajectory C (P5).

In [1] it is proved that, for parameter values such that

α1 > 0 α3 + α4 = 2α2 α3 < α2 < α4 < 0

α2(α3 − α4) + α1α5 > 0

and if ξ ≥ 0 is such that

ξ <
−α2α3 + α2α4 + α1α5

2α1α2

and ξ2 <
(α4 − α3)(2α1α5 − α2α3 + α2α4)

4α2
1α2

,

then its dynamics satisfies (P1–P4) as we proceed to explain.
For ξ = 0 the equation has more symmetry, like the model in Mel-

bourne et al [20]: it is equivariant under the group Z2 ⊕ Z2 ⊕ SO(2),
generated by

κϕ(x) = (x1 cos(ϕ) − x2 sin(ϕ), x1 sin(ϕ) + x2 cos(ϕ), x3, x4)
κ2(x) = (x1, x2,−x3, x4) κ3(x) = (x1, x2, x3,−x4).

For ξ = 0 the three-dimensional sphere S3

r of radius r =
√

−α1

α2

is flow

invariant and globally attracting. The equilibria ±v (resp. ±w) lie
at the intersection of S3

r with line fixed by the subgroup generated by
κϕ and κ2 (resp. κϕ and κ3). The closed trajectory C is the intersec-
tion of S3

r with the plane fixed by the subgroup generated by κ2 and
κ3. A direct computation of the eigenvalues and eigenvectors shows
that the closed trajectory and the equilibria form a network where the
two-dimensional unstable (resp. stable) manifold of C coincides with
the two-dimensional stable (resp.unstable) manifold of ±v (resp. ±w).
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Since all the heteroclinic connections are contained in fixed point sub-
spaces, there is no swicthing. Moreover, the network is asymptotically
stable by the criteria of Krupa and Melbourne [17], [18].

For ξ > 0 the SO(2) symmetry is broken and so are the two-
dimensional connections. The only symmetries remaining are γ1 = κπ

and γ2 = κ2κ3. The symmetry-breaking term (0, 0, h1(x), h2(x)) is tan-
gent to the invariant sphere so it is still flow invariant and properties
(P1) and (P2) hold. The perturbation mantain the flow-invariance of
the lines that were fixed by κ2 and κ3, and the equilibria and the pe-
riodic trajectory are preserved together with their stability, and prop-
erties (P3-P4) hold. Using Melnikov’s Method, Aguiar [1] proved that
the two-dimensional manifolds of the periodic trajectory and of the
saddle-foci intersect transversely. Hence property (P5) holds.

5. Local Dynamics near the saddles

Here and in the next two sections, we define the setup for the proof
of swicthing near the network. This section contains mostly notation
and coordinates used in the rest of the paper.

We restrict our study to S3 since this is a compact and flow-invariant
manifold that captures all the dynamics. When we refer to the sta-
ble/unstable manifold of an invariant saddle, we mean the local sta-
ble/unstable manifold of that saddle.

We use Samovol’s theorem to linearize the flow around each saddle
— equilibrium or closed trajectory. We then introduce local cylindrical
coordinates and define a neighbourhood with boundary transverse to
the linearised flow. For each saddle, we obtain the expression of the
local map that sends points in the boundary where the flow goes in,
into points in the boundary where it goes out. These expressions will be
used in the sequel to obtain a geometrical description of the discretised
flow.

5.1. Coordinates near equilibria. Let v and w stand for any of the
two symmetry-related equilibria ±v and ±w, respectively. By Samo-
vol’s theorem [22] f may be linearized around them, since nonresonance
is automatic here. In cylindrical coordinates (ρ, θ, z) the linearizations
take the forms:

(2)







ρ̇ = −Cvρ

θ̇ = 1
ż = Evz







ρ̇ = Ewρ

θ̇ = 1
ż = −Cwz.

We consider cylindrical neighbourhoods of v and w in S3 of radius
ε > 0 and height 2ε. Their boundaries consist of three components
(see figure 3):

• The cylinder wall parametrized by x ∈ R (mod 2π) and |y| ≤ ε
with the usual cover (x, y) 7→ (ε, x, y) = (ρ, θ, z).
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(a) (b) 

2ε

x

y

ε
r

ϕ

Figure 3. Coordinates on the boundaries of the neigh-
bourhood of v and w: (a) cylinder wall (b) top and bot-
tom.

• Two disks, the top and the bottom of the cylinder. We take
polar coverings of these disks: (r, ϕ) 7→ (r, ϕ, jε) = (ρ, θ, z)
where j ∈ {−, +}, 0 ≤ r ≤ ε and ϕ ∈ R (mod 2π).

change We use x for the angular coordinate on the cylinder wall so
as to avoid confusion with the angular coordinate on the disks when
dealing with the local maps.

Note that the two flows defined by (2) have symmetry Z2 ⊕ SO(2)
given by z 7→ −z and rotation around the z axis. This is an artifact of
the linearisation and has nothing to do with the original symmetries,
but it will be useful in simplifying statements in the next sections.

5.2. Local dynamics near v. The cylinder wall is denoted H in
v . Tra-

jectories starting at interior points of H in
v go inside the cylinder in

positive time and H in
v ∩ W s(v) is parametrized by y = 0. The set

of points in H in
v with positive (resp. negative) second coordinate is

denoted H in,+
v (resp. H in,−

v ).
The top and the bottom of the cylinder are denoted Hout,+

v and
Hout,−

v , respectively. Trajectories starting at interior points of either
Hout,+

v or Hout,−
v go inside the cylinder in negative time (see figure 4).

After linearization W u(v) is the z-axis, intersecting Hout,+
v at the

origin of coordinates of Hout,+
v . Trajectories starting at H in,j

v , j ∈
{+,−} leave the cylindrical neighbourhood at Hout,j

v . The orientation
of the z-axis may be chosen to have [v → jw] meeting Hout,j

v .
The local map near v, φv : H in,+

v → Hout,+
v is given by

(3) φv(x, y) =
(

Kvy
δv ,− 1

Ev
ln y + x + 1

Ev
ln(ε)

)

= (r, φ) ,
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W   (v)s

H   in,+

H   in,-
v

v

H   out,+
v

v

H   out,-
v

W   (v)u

loc

loc 

W   (v)u

loc




W   (w)u

H   out,+

H   out,-
w

w

H   in,+
w

w

H   in,-
w

W   (w)s

loc

loc 

W   (w)s

loc

Figure 4. Neighbourhoods of the saddle-foci. Left :
once the flow enters the cylinder transversely across the
wall H in

v \W s
loc(v) it leaves it transversely across the cylin-

der top Hout,+
v and bottom Hout,−

v . Right : the flow enters
the cylinder transversely across top H in,+

w \W s
loc(w) and

bottom H in,−
w \W s

loc(w) and leaves it transversely across
the wall Hout

w . Inside the two cylinders the vector field is
linear.

where

δv =
Cv

Ev

> 0, Kv = ε1−δv > 0 and
1

Ev

> 0.

The expression for the local map from H in,−
v to Hout,−

v is the same.

5.3. Local dynamics near w. After linearization, W s(w) is the z-
axis, intersecting the top and bottom of the cylinder at the origin of
the coordinates. We denote by H in,j

w , j ∈ {−, +}, the component that
[jv → w] ∩ H in,j

w 6= ∅. Trajectories starting at interior points of H in,±
w

go inside the cylinder in positive time (see figure 4).
Trajectories starting at interior points of the cylinder wall Hout

w go
inside the cylinder in negative time. The set of points in Hout

w whose
second coordinate is positive (resp. negative) is denoted Hout,+

w (resp.
Hout,−

w ) and Hout
w ∩ W u(w) is parametrized by y = 0. The orienta-

tion of the z-axis may be chosen to have trajectories that start at
H in,j

w \W s(w), j ∈ {+,−} leaving the cylindrical neighbourhood at
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Hout,j
w . The local map near w, φw : H in,+

w \W s(w) → Hout,+
w is

φw(r, ϕ) =
(

1

Ew
ln(ε) − 1

Ew
ln r + ϕ, Kwrδw

)

= (x, y) ,

where

δw =
Cw

Ew

> 0, Kw = ε1−δw > 0 and
1

Ew

> 0.

The same expression holds for the local map from H in,−
w \W s(w) to

Hout,−
w .

5.4. Local dynamics near the closed trajectory C. Consider a
local cross section S to the flow at p ∈ C. The Poincaré first re-
turn map defined on S may be linearized around the hyperbolic fixed
point p using Samovol’s Theorem. Suspending the linear map yields,
in cylindrical coordinates, the differential equations:

(4)







ρ̇ = −CC(ρ − 1)

θ̇ = 1
ż = ECz

that are locally orbitally equivalent to the original flow. In these co-
ordinates, C corresponds to the circle ρ = 1 and z = 0, W s(C) is the
plane z = 0 and W u(C) is the cylinder ρ = 1.

We work with a hollow three-dimensional cylindrical neighbourhood
of C with boundary H in

C ∪ Hout
C , where trajectories starting in H in

C

(resp. Hout
C ) go into the neighbourhood in positive (resp. negative)

small time. In what follows we establish some notation for components
of the boundary (see figure 5).

The components of H in
C are the two cylinder walls, H in

C,+ and H in
C,−

locally separated by W u(C) and parametrized by the covering map:

(x, y) 7→ (1 ± ε, x, y) = (ρ, θ, z),

where x ∈ R (mod 2π), |y| < ε. We denote by H in
C,+ the component

with ρ = 1 + ε.
In these coordinates, H in

C ∩ W s(C) is the union of the two circles

y = 0 in the two components. It divides H in
C,+ in two parts, H in,+

C,+ and

H in,−
C,+ , parametrized, respectively, by positive and negative y, with a

similar convention for H in,+
C,− and H in,−

C,− .

The components Hout,+
C and Hout,−

C of Hout
C are two anuli, locally

separated by W s(C) and parametrized by the covering:

(r, ϕ) 7→ (r, ϕ,±ε) = (ρ, θ, z),

for 1 − ε < r < 1 + ε and ϕ ∈ R (mod 2π) and where Hout,+
C is the

component corresponding to the + sign and Hout
C ∩W u(C) is the union

of two circles parametrized by r = 1.
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Figure 5. Neighbourhood of the closed trajectory C.
The flow enters the hollow cylinder transversely across
cylinder walls H in

C,± and leaves it transversely across top
Hout

C,+ and bottom Hout
C,−.

Denote by Hout,k
C,+ (resp. Hout,k

C,− ), k ∈ {+,−} the set parametrized by

1 < r < 1 + ε (resp. 1 − ε < r < 1) in Hout,k
C . In these coordinates the

local map φC : H in,k
C,j → Hout,k

C,j , j, k ∈ {+,−}, is given by

φC(x, y) =

(

jKcy
δc + 1,

1

Ec

ln(ε) −
1

Ec

ln y + x

)

= (r, ϕ),

where

δc =
Cc

Ec

> 0 Kc = ε1−δC > 0 and
1

Ec

> 0.

6. Geometry near the saddles

The coordinates and notation of section 3 may now be used to anal-
yse the geometry of the local dynamics near each saddle. The manifold
W s(v) separates the cylindrical neighbourhood of v into an upper and
a lower component, mapped into neighbourhoods of Pw and −w, re-
spectively. We show here that initial conditions lying on a segment on
the upper part of the cylindrical wall around v and ending at W s(v)
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are mapped into points on a spiral on the top of the cylinder Hout
v

where the flow goes out (figure 6).
Initial conditions on a spiral on the top of cylindrical neighbourhood

of w are then shown to be mapped into points on a helix around the
cylinder accumulating on W u(w) (figure 6). Since W s(C) is transverse
to W u(w), then the helix on Hout,+

w is mapped across W s(C) on H in
C

infinitely many times. This will be used in section 7 to obtain, in
any segment on H in,+

v , infinitely many intervals that are mapped into
segments on H in

C ending at W s(C).
Then the image of a segment ending at W s(C) on one of the walls

of H in
C is shown to be mapped into a curve accumulating on W u(C) ∩

Hout
C (see figure 7). This curve meets W s(v) infinitely many times by

transversality and it is thus mapped across W s(v) on H in
v infinitely

many times. Again, we will use this in section 7 to obtain an infin-
itely many intervals that are mapped into segments on H in

v ending at
W s(v).

This structure of segments containing intervals that are successively
mapped into segments will allow us to establish a recurrence in section 8
and to construct nested sequences of intervals containing the initial
conditions for switching.

Definition 1. A segment β on H in
v (resp.: H in

C ) is a smooth regular
parametrized curve β : [0, 1] → H in

p (resp.: β : [0, 1] → H in
C ) , that

meets W s(v) (or W s(C)) transverselly at the point β(1) only and such
that, writing β(s) = (x(s), y(s)), both x and y are monotonic functions
of s.

The coordinates (x, y) may be chosen so as to make the angular
coordinate x an increasing or decreasing function of s as convenient.

Definition 2. Let U be an open set in a plane in Rn and p ∈ U . A
spiral on U around p is a curve α : [0, 1) → U satisfying lim

s→1−
α(s) =

p and such that, if α(s) = (α1(s), α2(s)) are its expressions in polar
coordinates (ρ, θ) around p, then α1 and α2 are monotonic, with

lim
s→1−

|α2(s)| = +∞.

It follows that α1 is a decreasing function of s.

Proposition 1. A segment β on H in,+
v (resp. H in,−

v ) is mapped by φv

into a spiral on Hout,+
v (resp. Hout,−

v ) around W u(v).

Proof. Write β(s) = (x(s), y(s)) on H in,+
v with y(s) ≥ 0 monotonically

decreasing and choose a parametrization of H in,+
v such that x(s) is

monotonically increasing. Then, writing φv(β(s)) = (r(s), θ(s)), it fol-
lows from the expression of φv in section 5.2 that r(s) is monotonically
decreasing while θ(s) is monotonically increasing. From lims→1− y(s) =
0 and lims→1− x(s) = x(1) the required limits lims→1− r(s) = 0 and
lims→1− θ(s) = +∞ follow. �
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Figure 6. Local Dynamics near the saddle-foci. Left :
Near v, any segment on the cylinder wall is mapped into
a spiral on the top or bottom of the cylinder. Right : A
spiral on the top or bottom of the cylinder near w is
mapped into a helix on the cylinder wall accumulating
on W u(w). The double arrows on the segment, spiral
and helix indicate correspondence of orientation and not
the flow.

Definition 3. Let a, b ∈ R such that a < b and let H be a surface
parametrized by a cover (θ, h) ∈ R× [a, b] where θ is periodic. A helix
on H accumulating on the circle h = h0 is a curve γ : [0, 1) → H such
that its coordinates (θ(s), h(s)) are monotonic functions of s with

lim
s→1−

h(s) = h0 and lim
s→1−

|θ(s)| = +∞.

Proposition 2. A spiral on H in,+
w (resp. H in,−

w ) around W s(w) is
mapped by φw into a helix on Hout,+

w (resp. Hout,−
w ) accumulating on

the circle Hout
w ∩ W u(w).

Proof. Parametrize H in,+
w so that a spiral σ(s) = (r(s), θ(s)) around

W s(w) has θ(s) increasing with s. The expression of φw of section 5.3
ensures that in φw(σ(s)) = (x(s), y(s)) we have y decreasing with s and
x increasing with s. The limits in the definiton of helix follow from the
form of φw and from lims→1− r(s) = 0 and lims→1− θ(s) = +∞. �

Proposition 3. A segment β on H in,+
C,+ is mapped by φC into a helix

on Hout,+
C,+ accumulating on the circle W u(C) ∩ Hout,+

C .

The proof, as in Propositions 1 and 2, consists of using the expression
of φC of section 5.4 after a suitable choice of orientation in H in,+

C,+ . Using
the symmetries of the linearised flow, it follows that Proposition 3 also
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H   
in,+
C,+

W (C)  
u

W   (C)s
loc




C




H   
in,-
C,+

Figure 7. Local dynamics near the closed trajectory C.
A segment on the wall ending at W s(C) is mapped into
a curve accumulating on W u(C) ∩ Hout

C .

holds for a segment β on H in,+
C− and for Hout,+

C− , as well as for a segment β

on H in,−
C+

and for Hout,−
C+

and for β on H in,−
C− and for Hout,−

C− , considering

the circle W u(C) ∩ Hout,−
C (see figure 7).

7. First return to v

Let p and q be two nodes of Σ such that there is a connection [p → q].
The transition map Ψp,q from Hout

p to H in
q follows the trajectory [p → q]

in flow-box fashion. In this section we use this information to put
together the local behaviour of trajectories that start near ±v. To
simplify the reading, we omit the − and + signs.

Let P ∈ Hout
w be one of the points where [w → C] meets Hout

w . For
small a, b > 0, the rectangle

[

−a
2
, a

2

]

×
[

− b
2
, b

2

]

is mapped diffeomor-
phically into Hout

w by the parametrization that maps the origin to P
(figure 8). Its image, that we denote by Rw, will be called a rectangle
in Hout

w centered at P with height b.
The vertical sides of Rw are the images of the segments (±a

2
, y) with

y ∈
[

− b
2
, b

2

]

. Rectangles in Hout
C centered at a given point are defined

in the same way; we denote them by RC .
By Propositions 1 and 2, the map

η = φw ◦ Ψv,w ◦ φv : H in
v → Hout

w

maps a segment β on H in
v infinitely many times across any small rec-

tangle in Hout
w centered at a point in W u(w).
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[v          ]


[w       C ]   

 


[C        v ]

w 

P

Figure 8. Transition from v to w: a segment on H in
v is

mapped into spirals on Hout
v around W u(v) ∩ Hout

v and
W s(w) ∩ H in

w . The spiral is then mapped into a helix
on Hout

w accumulating on W u(w) and crossing infinitely
many times a rectangle Rw centered at one of the con-
nections starting at w (see also figure 9). Double arrows
indicate orientation of the segment and not the flow.

An admissible family of intervals I = {[ai, bi]}i∈N is one that satisfies

0 < ai < bi < ai+1 < 1 and lim
i→∞

ai = 1.

Proposition 4. Let Rw be a rectangle in Hout
w centered at one point

P of Hout
w ∩ [w → C]. For any segment β : [0, 1] −→ H in

v there is an
admissible family of intervals {[σi, ρi]}i∈N such that:

(1) each closed interval [σi, ρi] satisfies η ◦ β([σi, ρi]) ⊂ Rw;
(2) each open interval (ρi+1, σi) satisfies η ◦ β((ρi+1, σi)) ∩Rw = ∅;
(3) the family of curves {η ◦ β([σi, ρi])} accumulates uniformly on

W u(w) ∩ Rw as i → +∞.

This also holds for the local map around C, with C, φC and C where
we have written w, η and v.

Proof. Writing (x(s), y(s)) for the coordinates of the helix η ◦ β(s) on
the cylinder wall, we have that y decreases with s and that x(s) can be
taken as an increasing function of s by choosing compatible orientations
in H in

v and Hout
w and, if necessary, by restricting the domain of β to

a smaller interval (s1, 1). In particular the helix η ◦ β may be seen as
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a graph (x, y(x)) where x ∈ [x(0), +∞) and where y is a decreasing
function of x with limx→∞ y(x) = 0 (figure 9).







x

y

b




Rw RwRw Rw Rw RwRw

2

η(β(σ  ))0
η(β(ρ  ))0 Rw

Figure 9. A helix on a periodic cover of the cylinder
wall Hout

w . After it meets the first (shaded) copy of the
rectangle, the helix will intersect the rectangle at inter-
vals whose image accumulates on the curve W u(w), rep-
resented here by the x-axis.

On Hout
w the rectangle Rw is [n − a/2, n + a/2] × [−b/2, b/2] with

n ∈ N. Let σ0 be the smallest value of s ∈ (s1, 1) such that (x(s), y(s))
lies on the left vertical side of Rw, with y(σ0) < b

2
as in figure 9. Then

y(s) < b
2

for all s ∈ [σ0, 1).
The sequences defining the family of intervals are obtained from

points where the helix meets successive copies of the vertical sides of
Rw with x(σi) = n0 + i − a/2 and x(ρi) = n0 + i + a/2. The proof for
φC is similar. �

Proposition 5. Given a segment β : [0, 1] −→ H in
v , a rectangle Rw

of sufficiently small height and the family of intervals {[σi, ρi]}i∈N of
Proposition 4. Then for sufficiently large i there are τi with σi < τi < ρi

such that Ψw,C ◦ η(β(τi)) ∈ W s(C) and Ψw,C ◦ η ◦ β maps each one of

the intervals [σi, τi] and [τi, ρi] into a segment on one of the sets H in,+
C

and H in,−
C . This also holds for ΨC,v ◦ φC : H in

C −→ H in,±
v with the

appropriate changes.

Proof. Since W s(C) ∩ Hout
w meets W u(w) ∩ Hout

w transverselly (prop-
erty (P5)) then if the height of Rw is small, W s(C) does not meet its
vertical sides. Each one of the images η◦β([σi, ρi]) meets W s(C)∩Hout

w
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transversely at a single point η◦β(τi), since they accumulate uniformly
on W u(w) ∩ Rw as i → +∞. The monotonicity of the coordinates of
η ◦ β will be preserved by Ψw,C close to W u(w). Each component
of η ◦ β([σi, ρi])\ {η ◦ β(τi)} will be mapped into a segment, one into

each connected component of H in,j
C \W s(C). The proof for ΨC,v ◦φC is

analogous. �

8. Switching near the Heteroclinic Network

In this section, we put together the information about the first return
map to H in

v . In sections 6 and 7 we have found that a segment ending
at a stable manifold contains intervals that are mapped into segments
ending at the stable manifold of the next node. Starting with a segment
on in H in

v , here this is used recursively to obtain sequences of nested
intervals containing initial conditions that follow sequences heteroclinic
connections.

We say that the path sk = (cj)j∈{1,...,k} of order k on the network Σ is
inside the path tk+l = (dj)j∈{1,...,k+l} of order k + l (denoted sk ≺ tk+l)
if cj = dj for all j ∈ {1, . . . , k}.

The family of closed intervals I = {Ii}i∈N is inside the family Ĩ =
{Ĩi}i∈N (I < Ĩ) if, for all i ∈ N, Ii ⊂ Ĩi. If Ĩ is admissible in the sense

of section 7 and I < Ĩ then I is also admissible, provided none of its
intervals consists of a point.

Theorem 6. There is finite switching near the network Σ defined by
a vector field satisfying (P1)–(P5).

Proof. Given a path, we want to find trajectories that follow it into
the neighbourhoods of section 5 going through small disks in Hout

v

around W u(±v) and through rectangles in Hout
w and Hout

C centered
at the connections. Without loss of generality we only consider paths
sk = (cj)j∈{1,...,k} starting with c1 = [±v → ±w].

Take a segment β on H in,±
v of points that follow the first connection

c1. We will construct admissible families of intervals I(c1, . . . , cn) =
{Ii}i∈N recursively, such that points in β(Ii) follow (c1, . . . , cn) and
the image of β(Ii) by the transition maps is a segment. We will show
that sk ≺ sk+l implies I(sk) > I(sk+l) and thus the process will be
recursive.

By Propositions 4 and 5, there is an admissible family of intervals
I(c1, c2) = {Ii}i∈N such that β(Ii) is mapped by Ψw,C ◦ φw ◦ Ψv,w ◦

φv into a segment on H in,±
C with the choice of sign appropriate for

the next connection c3. Applying the second part of Propositions 4
and 5 to this segment, we obtain an admissible family of intervals
I(c1, c2, c3) < I(c1, c2) corresponding to points that follow (c1, c2, c3)
and to intervals that are mapped into a segment on H in,±

v with the
choice of sign appropriate for following the connection c4.
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Figure 10. On a segment β on H in
v , there are infinitely

many small segments that are mapped by η into Rw, each
one containing a point mapped into W s(C). The small
segments contain smaller ones that are mapped into RC

and this may be continued, forming a nested sequence.

In Proposition 5 we assume the height of the rectangle Rw is small
and we reduce it if necessary. This is done to ensure that inside Rw the
stable manifold W s(C) is the graph of a function and thus a helix only
meets it once at each turn. However, as soon as the choice of height is
made it may be kept throughout the proof and thus the construction
of I(sk) is recursive, proving finite switching near Σ. �

Theorem 7. There is infinite switching near the network Σ defined by
a vector field satisfying (P1)–(P5).

Proof. Fix an infinite path s∞ = (cj)j∈N on Σ. For each k ∈ N define
the finite path sk of order k by sk = (cj)j∈ {1,...,k}, with sk ≺ sk+1.
From the proof of Theorem 6, for each k we have an admissible family
of intervals I(sk) = {Jki}i∈N such that I(sk) > I(sk+1) and all the
points in β(Jki) follow sk.

Since we have I(sk) > I(sk+1) then Λ =
⋂∞

k=1
I(sk) is non-empty

because each set Λi =
⋂∞

k=1
Jki is non empty. From the definition of

admissible family of intervals, if we take ai ∈ Λi then limi→∞ ai = 1.
From the construction we have that β(ai) follows s∞. Thus, we have
obtained a sequence of points β(ai) that accumulate on Σ as i → ∞
and that follow the infinite path. �

9. Final remarks and discussion

9.1. Generalisation. Not all assumptions of Section 3 are essential
to prove switching, although some of them simplify the calculations.
For instance, the eigenvalues at ±v and ±w may have any imaginary
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part, not necessarily 1 as in (P3). The proof also works if at one of the
pairs of nodes ±v or ±w the eigenvalues of df are real, as long as the
eigenvalues at the other pair of nodes are not real — it is enough to have
one pair of rotating equilibria. Any finite number of one-dimensional
connections [w → C] and [C → v] could have been used instead of two
for each equilibrium.

The existence of swicthing near a networks may be easily generalised
to a heteroclinic network involving rotating nodes such that each het-
eroclinic connection involving a periodic trajectory is transverse and
there are no consecutive non transverse heteroclinic connections on the
network.

It is not essential to have (Z2 ⊕ Z2)-equivariance. The symmetry γ2

is used here to obtain the closed trajectory C and the role of γ1 is to
guarantee that the one-dimensional connections [v → w] are robust.
Symmetries make the existence of the network natural and ensure per-
sistence. Switching will hold for any network having the nodes and
connections prescribed here, as long as the remaining assumptions are
satisfied.

Estimates for the transition maps may be refined as in Aguiar et

al. [4] to show that near this network there is a suspended horseshoe
with transition map described as a full shift over a countable set of
symbols. The suspended horseshoe has the same shape as the network.
Thus, when the O(2)-symmetry of the example in section 4 is broken
we have instant chaos. In particular it can be shown that there are
periodic orbits that follow any finite path in the network, but this uses
techniques beyond the scope of this paper.

Finite switching is present even when all the local maps are expand-
ing, as in the case Cv < Ev, Cw < Ew, CC < EC . This is due to the
rotation around the nodes and is markedly different from the situation
where all eigenvalues are real. In the example of section 4 this cor-
responds to parameter values where the O(2)-symmetric network is a
repeller.

A path on the network can also be shadowed by trajectories in
W u(C) (see figure 10) because the local unstable manifold of C meets
H in

v at a segment by the transversality assumption (P5). It also fol-
lows that there are infinitely many homoclinic connections involving
the periodic trajectory C, although there are no homoclinic trajecto-
ries involving the equilibria. The geometry of W u(C) gets extremely
complicated as we move away from C, since it will accumulate on the
whole network, having v, w and C as limit points. A complete descrip-
tion of the nonwandering set for this type of flows is in preparation.

9.2. Discussion. Generic breaking of the γ1-symmetry destroys the
network, as in [14] and [20], by breaking the connections [v → w]. If the
remaining assumptions are still satisfied, a weaker form of switching will
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hold: for small symmetry-breaking terms, it may still be possible to find
trajectories that visit neighbourhoods of finite sequences of nodes. This
is because the spirals on top of the cylinder around w of figure 6 will
be off-centered and will turn a finite number of times around W s(w).
From this we may obtain points whose trajectories follow short finite
paths on the network. As W u(v) gets closer to W s(w) (as the system
moves closer to symmetry) the paths that can be shadowed get longer.

This is in contrast to the findings of Kirk and Rucklidge [14], who
claim that there can be no switching in generic systems close to the
symmetric case, so a comparison of the settings and results of the two
papers is in order at this point. The first caveat is that the Z2 ⊕
Z2 representations are different: in our case Fix(Z2 ⊕ Z2) = {0},
and there are two transverse 2-dimensional fixed-point subspaces for
the isotropy subgroups, whereas in [14], Fix(Z2 ⊕ Z2) is a plane with
two 1-dimensional fixed-point subspaces for the isotropy subgroups. In
their setting, our symmetries correspond to the group generated by a
rotation of π in SO(2) and by the product of their Z2 ⊕Z2 generators.
Both representations occur in the larger group Z2⊕Z2⊕SO(2) used in
[20]. Moreover, we are assuming the existence of an invariant 3-sphere
(a natural assumption in the symmetric context, see [8] ) and it is not
evident that in their context such a sphere will exist.

However, the difference in the results of [14] and ours indicates that
vector fields with Z2 ⊕Z2 ⊕SO(2) symmetry have codimension higher
than 3 in the universe of general vector fields. This will mean that in
general systems close to symmetry what will be observed may depend
on the way symmetries are broken and that a lot more needs to be
done before switching is well understood.
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