Dynamics near heteroclinic networks
ICMC Summer Meeting in Differential Equations
celebrating the 70th birthday of
Plácido Zoega Táboas

Isabel S. Labouriau

Centro de Matemática da Universidade do Porto
Portugal

São Carlos, 8–10 February 2010
Dynamics near heteroclinic networks

Joint work with

- Manuela A.D. Aguiar
 Faculdade de Economia da Universidade do Porto

- Sofia B.S.D. Castro
 Faculdade de Economia da Universidade do Porto

and

- Alexandre A.P. Rodrigues
 Faculdade de Ciências da Universidade do Porto
Outline

Introduction
 Heteroclinic cycles
 Heteroclinic networks
 Network questions

Dynamics near the network

A network of rotating nodes

Switching

Horseshoes

Cycling
Context: smooth vector fields on \mathbb{R}^n or on a smooth manifold ordinary differential equations.

Heteroclinic cycle
Finite set of flow-invariant hyperbolic objects (**nodes**) trajectories joining them (**connections**) in a cycle
Context: smooth vector fields on \mathbb{R}^n or on a smooth manifold ordinary differential equations.

Heteroclinic cycle
Finite set of flow-invariant hyperbolic objects (nodes) trajectories joining them (connections) in a cycle

Special context here:
- 3 dimensional phase-space;
- nodes are either equilibria or closed trajectories;
Special contexts for persistent heteroclinic cycles: (flow-invariant subspaces)

- game theory, economics;
- population dynamics;
- coupled cell networks;
- equations with symmetry.
Heteroclinic network
Connected set, finite union of heteroclinic cycles
Heteroclinic network
Connected set, finite union of heteroclinic cycles
Network questions

Dynamics near a network

- switching;
- cycling;

Persistence of dynamics when the network is broken.
Network questions

Dynamics near a network

- switching;
- cycling;

Persistence of dynamics when the network is broken.
A rotating node is:

either

a hyperbolic non-trivial closed trajectory of saddle type

or

an equilibrium of saddle type, with eigenvalues

\[A \in \mathbb{R} \quad \text{and} \quad B \pm iC \]

where

\[AB < 0 \quad AB \neq -1 \quad \text{and} \quad C \neq 0 \]
A network of rotating nodes satisfies:

- all the nodes are rotating
- all connections that take place in 2-dimensional invariant manifolds occur as transverse intersections.
Switching at a node

Given a connection on the network arriving at the node for every connection coming out of the node there is a trajectory that shadows each one of the connections coming out.
Switching at a node

Given a connection on the network arriving at the node for every connection coming out of the node there is a trajectory that shadows each one of the connections coming out.
Switching at a node

Given a connection on the network arriving at the node for every connection coming out of the node, there is a trajectory that shadows each one of the of connections coming out.
Switching at a node

Given a connection on the network arriving at the node for every connection coming out of the node there is a trajectory that shadows each one of the of connections coming out.

For hyperbolic nodes, follows from λ-lemma.
Finite switching near the network

Given any finite path on the network there is a trajectory that shadows it.
Finite switching near the network

Given any finite path on the network there is a trajectory that shadows it.
Finite switching near the network

Given any finite path on the network there is a trajectory that shadows it.
Finite switching near the network

Given any finite path on the network there is a trajectory that shadows it.

Infinite switching near the network: every infinite path is shadowed.
Theorem

For a vector field on the 3-sphere S^3 with a network of rotating nodes there is infinite switching on the network.
Sketch proof — linearised dynamics near v

path $[v \rightarrow w \rightarrow C]$
Sketch proof — linearised dynamics near v

path $[v \to w \to C]$

the red line is not a trajectory!
Sketch proof — first connection $[v \to w]$

path $[v \to w \to C]$

the red line is **not** a trajectory!
Sketch proof — first connection $[v \rightarrow w]$

path $[v \rightarrow w \rightarrow C]$

the red line is **not** a trajectory!
Sketch proof — first connection \([v \rightarrow w]\)

path \([v \rightarrow w \rightarrow C]\)

the red line is not a trajectory!
Sketch proof — second connection \([w \rightarrow C]\)

path \([v \rightarrow w \rightarrow C]\)

the red line is not a trajectory!
Sketch proof

Iterate the process to get nested sequences of intervals.
Dynamics near a network

Theorem

For a vector field on the 3-sphere S^3 with a network of rotating nodes there is a suspended horseshoe following each cycle in the network.
Sketch proof
Sketch proof

R_I
Sketch proof

R_1

R_2
Sketch proof
Cycling near a heteroclinic network

Given:

- an infinite path on the network through the nodes n_1, n_2, \ldots
- a sequence of natural numbers t_1, t_2, \ldots

there is a trajectory that makes t_i turns around the node n_i.
Number of turns inside a neighbourhood of a node
number of times the trajectory hits a section Π
Theorem

For a vector field on the 3-sphere \mathbb{S}^3 with a network of rotating nodes there is cycling near the network.
M. A.D. Aguiar, S. B. Castro and I. S. Labouriau,
Dynamics near a heteroclinic network,
Nonlinearity 18, 2005

M. A. D. Aguiar, I. S. Labouriau and A. A. P. Rodrigues,
Switching near a heteroclinic network of rotating nodes,

A. A. P. Rodrigues, I. S. Labouriau and M. A. D. Aguiar,
Chaotic double cycling,
preprint CMUP 2009–41

I. S. Labouriau, A. A. P. Rodrigues and M. A. D. Aguiar,
Global generic dynamics close to symmetry,
in preparation
The End