
Digital Object Identifier (DOI) 10.1007/s002220000057
Invent. math. 140, 351–398 (2000)

SRB measures for partially hyperbolic systems whose
central direction is mostly expanding?
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Abstract. We construct Sinai-Ruelle-Bowen (SRB) measures supported on
partially hyperbolic sets of diffeomorphisms – the tangent bundle splits into
two invariant subbundles, one of which is uniformly contracting – under the
assumption that the complementary subbundle isnon-uniformlyexpanding.
If the rate of expansion (Lyapunov exponents) is bounded away from zero,
then there are only finitely many SRB measures. Our techniques extend to
other situations, including certain maps with singularities or critical points,
as well as diffeomorphisms having only a dominated splitting (and no
uniformly hyperbolic subbundle).

1. Introduction

The following approach has been most effective in studying the dynamics of
complicated systems: one tries to describe the average time spent by typical
orbits in different regions of the phase space. According to the ergodic
theorem of Birkhoff, such times are well defined for almost all point, with
respect to any invariant probability measure. However, the notion of typical
orbit is usually meant in the sense of volume (Lebesgue measure), which
is not always captured by invariant measures. Indeed, it is a fundamental
open problem to understand under which conditions the behaviour of typical
points is well defined, from this statistical point of view.
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versit́e de Bourgogne, France, and Praxis XXI-Fı́sica Mateḿatica and Centro de Matemática
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This problem can be precisely formulated by means of the following
notion, introduced by Sinai, Ruelle, and Bowen. Let us consider discrete
time systems, namely mapsf : M → M on a manifoldM. Given an
f -invariant Borelian probabilityµ in M, we callbasinof µ the setB(µ) of
the pointsx ∈ M such that the averages of Dirac measures along the orbit
of x converge toµ in the weak∗ sense:

lim
n→+∞

1

n

n−1∑
j=0

ϕ( f j (x)) =
∫
ϕ dµ for any continuousϕ : M→ R. (1)

Then we say thatµ is aphysicalor Sinai-Ruelle-Bowen (SRB) measurefor
f if the basinB(µ) has positive Lebesgue measure inM. Then, one would
like to know whether, for most systems, the basins of all SRB measures
cover a full Lebesgue measure subset of the whole manifold.

This question has an affirmative answer in the context of uniformly
hyperbolic systems, after [Sin72,BR75,Bow75,Rue76]. A detailed picture
is also available for maps of the circle or the interval, see [Jak81,Lyu].
However, in higher dimensions the problem is mostly open, outside the uni-
formly hyperbolic setting, despite substantial progress in the study of certain
classes of maps and flows with some properties of non-uniform hyperbolic-
ity, including the Lorenz-like attractors, see e.g. [Pes92,Sat92,Tuc99], and
the H́enon-like attractors, see [BC91,BY92,BV].

In this work we deal with diffeomorphisms admittingpartially hyper-
bolic invariant sets: the tangent bundle over the set has an invariant domi-
nated splitting into two subbundles, one of which is uniformly hyperbolic
(contracting or expanding). Precise definitions are given in the next sub-
section. This property yields a fair amount of geometric information, e.g.
invariant foliations, so that it is natural to try to recover for these systems as
much as possible of the geometric and ergodic properties of the hyperbolic
ones.

Indeed, some knowledge of such properties is already available, through
works of several authors. For the foundations concerning invariant fo-
liations see [BP74,HPS77]. Gibbsu-states were constructed by [PS82],
and used by [You90,Car93,BV99] to construct SRB measures for some
types of partially hyperbolic systems. SRB measures and decay
of correlations were also studied by [Alv97,Cas98,Dol]. More-
over, [Shu71,Mañ78,GPS94,Kan94,BD96,Via97,SW] constructed exam-
ples where partial hyperbolicity is used to get robustness (stability) of
topological or ergodic properties, which is also a main topic in [BP74].
Conversely, [Mañ82,DPU99,BDP], showed that partial hyperbolicity (or, in
high dimensions, existence of a dominated splitting) is in fact a necessary
condition for robust topological transitivity.

The interest in this class of systems was further stressed by these recent
results, that suggest that partial hyperbolicity (or, at least, existence of
a dominated splitting) should be a crucial ingredient in a global theory
of Dynamics. A program towards such a theory has been proposed a few
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years ago by [Pal99], the cornerstone of which is a conjecture containing
the following statement: every system can be approximated by one having
finitely many SRB measures, whose basins cover a full Lebesgue measure
subset of the phase space.

In the present paper we obtain results of existence and finiteness of SRB
measures for a large class of partially hyperbolic maps. Previous construc-
tions depended on the existence of a uniformly expanding (strong-unstable)
invariant subbundle. In fact, except for the situation of [Via97,Alv97], the
SRB measures coincide with the Gibbsu-states (invariant measures abso-
lutely continuous in the strong-unstable direction) constructed by [PS82].
As shown in [BV99], this happens whenever the central subbundle is (at
least) non-uniformly contracting.

One main novelty here is that we do not assume existence of a strong-
unstable direction. Using only a condition of non-uniform expansion in
an invariant (centre-unstable) subbundle, we are able to construct invariant
measures absolutely continuous in this centre-unstable direction. Actually,
this does not even require the full strength of partial hyperbolicity, it suffices
to have a dominated splitting. In some cases, theseGibbs cu-statesare
SRB measures: in particular, this is always the case if the complementary
subbundle is uniformly contracting on the support of the measure.

1.1. Partially hyperbolic diffeomorphisms

Let f : M → M be aC1 diffeomorphism on a manifoldM. Here we say that
a compact setK ⊂ M ispartially hyperbolicfor f if it is positively invariant,
i.e. f(K) ⊂ K , and there exists a continuousD f -invariant splittingTK M =
Ess⊕ Ecu of the tangent bundle restricted toK and a constantλ < 1
satisfying (for some choice of a Riemannian metric onM)

1. Ess is uniformly contracting:‖D f | Ess
x ‖ ≤ λ for all x ∈ K ;

2. Ecu is dominated byEss: ‖D f | Ess
x ‖ · ‖D f −1 | Ecu

f(x)‖ ≤ λ for all
x ∈ K .

We call Ess strong-stable subbundle andEcu centre-unstable subbundle.

Theorem A. Let f : M → M be aC2 diffeomorphism having a partially
hyperbolic setK . Assume thatf is non-uniformly expanding along the
centre-unstable direction, meaning that

lim sup
n→+∞

1

n

n∑
j=1

log
∥∥D f −1 | Ecu

f j (x)

∥∥ < 0 (2)

for all x in a positive Lebesgue measure setH ⊂ K . Then f has some er-
godic SRB measure with support contained in∩∞j=0 f j (K). In fact, Lebesgue
almost every point inH belongs in the basin of some such SRB measure.
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As we shall explain below, for the proof it is enough to have condition
(2) on a positive Lebesgue measure subset of some disk transverse to the
strong-stable direction.

The SRB measures produced by this theorem have dimEcu positive Lya-
punov exponents and dimEssnegative Lyapunov exponents. Moreover, they
have absolutely continuous conditional measures along corresponding Pesin
unstable manifolds (which are tangent to the centre-unstable subbundleEcu

at almost every point).
We ignore whether the conclusion of Theorem A remains true if the

non-uniform expansion condition is replaced by

lim sup
n→+∞

1

n
log

∥∥D f −n | Ecu
f n(x)

∥∥ < 0 (3)

(i.e. positivity of all the Lyapunov exponents in the centre-unstable direc-
tion). Clearly, the two formulations (2) and (3) are equivalent when the
non-uniformly expanding direction is 1-dimensional, that is, whenEcu can
be split asEc⊕ Euu with Ec having dimension 1 andEuu being uniformly
expanding. Let us also note that for a set of points with full probability
(full measure with respect to any invariant probability measure) condition
(3) implies condition (2) for somef k, k ≥ 1. Of course, the theorem is not
affected whenf is replaced by any positive iterate of it.

As a consequence of the proof of the theorem we also get

Corollary B. Under the assumptions of Theorem A, if the limit in (2) is
bounded away from zero, then the setH is contained in the union of the
basins of finitely many SRB measures, up to a zero Lebesgue measure subset.

These results have the following curious consequence: in the setting of
Theorem A the set of values of the limit in (2) over a full Lebesgue measure
subset ofH is discrete, with zero as the unique possible accumulation value.

The assumption of partial hyperbolicity in Theorem A can be somewhat
relaxed, as we explain in Sect. 6. Assuming only the existence of a domi-
nated splittingEcs⊕ Ecu with Ecu non-uniformly expanding, we prove that
the diffeomorphism admits invariant probability measures with absolutely
continuous conditional measures along the centre-unstable direction. This
may be thought of as a non-uniform version of the results of [PS82] on
existence of Gibbsu-states. We also show that in some cases whereEcs is
non-uniformly contracting these invariant measures are SRB measures for
the corresponding system.

1.2. Maps with singular sets

Similar methods allow us to construct SRB measures for certain maps with
singularities and/or critical points. Apart from a condition of non-uniform
expansion on a positive Lebesgue measure subsetH, similar to (2), we also



SRB measures for partially hyperbolic systems 355

need the points ofH not to spend most of the time too close to the singular
set. This is properly expressed in (6) below. Before that, let us explain what
we mean by singular set of a map.

Let M be a compact manifold,S ⊂ M a compact subset, andf :
M \ S → M a C2 map onM \ S. We assume thatf behaves like a power
of the distance toS close to thesingular setS, in the following sense: there
exist constantsB> 1 andβ > 0 such that

(S1)
1

B
dist(x,S)β ≤ ‖D f(x)v‖

‖v‖ ≤ B dist(x,S)−β;

(S2) | log‖D f(x)−1‖ − log‖D f(y)−1‖ | ≤ B
dist(x, y)

dist(x,S)β
;

(S3) | log |detD f(x)| − log |detD f(y)| | ≤ B
dist(x, y)

dist(x,S)β
;

for everyv ∈ TxM andx, y ∈ M \ S with dist(x, y) < dist(x,S)/2.
Givenδ > 0 andx ∈ M \ S we define theδ-truncated distancefrom x

to S

distδ(x,S) =
{

1 if dist(x,S) ≥ δ
dist(x,S) otherwise. (4)

Note that this is not really a distance function: dist(x, y)+ distδ(y,S) may
be smaller than distδ(x,S). We also denoteS∞ = ∪∞n=0 f n(S).

Theorem C. Assume thatf satisfies (S1), (S2), (S3) and is non-uniformly
expanding, in the sense that

lim sup
n→+∞

1

n

n−1∑
j=0

log‖D f( f j (x))−1‖ < 0 (5)

for all x in a positive Lebesgue measure setH ⊂ M \S∞. Assume moreover
that, given anyε > 0 there existsδ > 0 such that for everyx ∈ H

lim sup
n→+∞

1

n

n−1∑
j=0

− log distδ( f j (x),S) ≤ ε. (6)

Then Lebesgue almost every point inH belongs in the basin of some ergodic
absolutely continuous invariant measure.

As a by-product, corresponding to the case when the singular set is
empty,

Corollary D. Let f : M → M be a C2 covering map (local diffeo-
morphism) on a compact manifoldM, which is non-uniformly expanding:
(5) holds for allx in a setH ⊂ M with positive Lebesgue measure. Then
Lebesgue almost every pointx ∈ H belongs in the basin of some ergodic
absolutely continuous invariant measure.
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In the settings of these last two results, we also have an analogue of
Corollary B: if the limit in (5) is bounded away from zero thenH is cov-
ered by the basins of finitely many ergodic absolutely continuous invariant
measures. See also the comments at the end of Sect. 5 concerning similar
results for partially hyperbolic maps with singularities.

For unimodal maps of the interval with negative Schwarzian derivative,
results in a similar spirit had been obtained by [Led81] and [Kel90]. In
particular, [Kel90] contains a strong version of Corollary D for such maps.

This paper is organized as follows. To construct the SRB measures in
Theorem A we fix anyC2 disk transverse to the strong-stable direction and
intersectingH on a positive Lebesgue measure subset, and we consider the
sequence of averages of forward iterates of Lebesgue measure restricted to
such a disk. We prove, in Sect. 3, that a definite fraction of each average
corresponds to a measure that is absolutely continuous with respect to
Lebesgue measure along the iterates of the disk, with uniformly bounded
densities. This uses distortion bounds that we obtain in Sect. 2, together
with the key notion ofhyperbolic times, first introduced in [Alv97]. The
construction of the SRB measures is completed in Sect. 4, where we show
that the absolute continuity property passes to the limit. In Sect. 4 we also
obtain enough information about the basins of these measures to prove the
finiteness statement in Corollary B.

In Sect. 5 we explain how condition (6) allows us to bypass the difficulty
caused by the presence of singularities, and obtain Theorem C and Corol-
lary D, as well as the results on partially hyperbolic maps with singularities
that we mentioned before. Sect. 6 contains related results for systems with
a dominated splittingEcs⊕ Ecu where neither of the factors needs have any
uniform subbundle, that we also mentioned above. In the Appendix we give
a few simple criteria allowing to check the assumptions of our results in
specific situations.

2. Curvature and distortion

A first main step in the proof of Theorem A is to prove a bounded distortion
property for iterates off over disks whose tangent space is contained in
a centre-unstable cone at each point. This section is devoted to the precise
statement and proof of this property.

Remark 2.1. Throughout this section, as well as in Sect. 3 and Subsect. 4.1,
we do not need the full strength of partial hyperbolicity. In Subsect. 2.1 we
only use existence of a dominated splittingEcs⊕ Ecu. Subsections 2.2 and
2.3, Sect. 3, and Subsect. 4.1 depend also on the condition of non-uniform
expansion along the centre-unstable direction (2). Existence of a strong-
stable subbundleEss is used for the first time in Subsect. 4.2.

We fix continuous extensions of the two subbundlesEcs andEcu to some
neighbourhoodV0 of K , that we denotẽEcs andẼcu. It should be noted that
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we do not require these extensions to be invariant underD f . Then, given
0< a< 1, we define thecentre-unstable cone fieldCcu

a =
(
Ccu

a (x)
)

x∈V0
of

width a by

Ccu
a (x) =

{
v1 + v2 ∈ Ẽcs

x ⊕ Ẽcu
x such that‖v1‖ ≤ a‖v2‖

}
. (7)

We define thecentre-stable cone fieldCcs
a =

(
Ccs

a (x)
)

x∈V0
of width a in

a similar way, just reversing the roles of the subbundles in (7).
We fix a > 0 andV0 small enough so that, up to slightly increasing

λ < 1, the domination condition 2. in Subsect. 1.1 remains valid for any
pair of vectors in the two cone fields:

‖D f(x)vcs‖ · ‖D f −1( f(x))vcu‖ ≤ λ‖vcs‖ ‖vcu‖
for everyvcs ∈ Ccs

a (x), v
cu ∈ Ccu

a ( f(x)), and any pointx ∈ V0 ∩ f −1(V0).
Note that the centre-unstable cone field is positively invariant:D f(x)Ccu

a (x)⊂ Ccu
a ( f(x))wheneverx and f(x)are inV0. Indeed, the domination property

together with the invariance ofEcu = (Ẽcu | K) imply

D f(x)Ccu
a (x) ⊂ Ccu

λa( f(x)) ⊂ Ccu
a ( f(x)),

for everyx ∈ K , and this extends to anyx ∈ V0 ∩ f −1(V0) by continuity.
Wherever we presumeEcs to be uniformly contracting (as already men-

tioned, this will happen not happen before Subsect. 4.2), we denote it by
Ess instead, and represent bỹEss its extension toV0. Moreover, in that case
the cone fieldCcs

a is denotedCss
a , and calledstrong-stable.

2.1. Hölder control of the tangent direction

We say that an embeddedC1 submanifoldN ⊂ V0 is tangent to the centre-
unstable cone fieldCcu

a if the tangent subspace toN at each pointx ∈ N is
contained in the corresponding coneCcu

a (x). Then f(N) is also tangent to
the centre-unstable cone field, if it is contained inV0.

The tangent bundle ofN is said to be Hölder continuous ifx 7→ TxN
defines a Hölder continuous section fromN to the corresponding Grassman
bundle of M. In this subsection we show that the tangent bundle of the
iterates of aC2 submanifold are Hölder continuous (as long as they do not
leaveV0), with uniform Hölder constants.

The basic idea is contained in the following observation, which the
reader may easily check. LetE1, E2 be two Euclidean spaces andL be
a linear isomorphism onE1 ⊕ E2 leaving both factors invariant. Assume
that we have the domination property

‖L | E1‖ · ‖L−1 | E2‖ < 1.

Then there existC > 0 and 0< ζ ≤ 1 such that ifΓ ⊂ E1 ⊕ E2 is
the graph of aC1+ζ mapφ : E1 → E2, with Hölder constantC, then the
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same is true forL(Γ). In fact, it suffices to take anyζ such that‖L | E1‖·
‖L−1 | E2‖1+ζ < 1.

In order to apply similar arguments in our situation, it is useful to express
the notion of Hölder variation of the tangent bundle in local coordinates, as
follows.

We chooseδ0 > 0 small enough so that the inverse of the exponential
map expx is defined on theδ0 neighbourhood of every pointx in V0. From
now on we identify this neighbourhood ofx with the corresponding neigh-
bourhoodUx of the origin inTxN, through the local chart defined by exp−1

x .
Accordingly, we identifyx with 0 ∈ TxN. Reducingδ0, if necessary, we
may suppose that̃Ecs

x is contained in the centre-stable coneCcs
a (y) of every

y ∈ Ux. In particular, the intersection ofCcu
a (y)with Ẽcs

x reduces to the zero
vector. Then, the tangent space toN at y is parallel to the graph of a unique
linear mapAx(y) : TxN→ Ẽcs

x . Given constantsC > 0 and 0< ζ ≤ 1, we
say thatthe tangent bundle toN is (C, ζ)-Hölder if

‖Ax(y)‖ ≤ Cdx(y)
ζ for everyy ∈ N ∩Ux andx ∈ V0 . (8)

Here,dx(y) denotes the distance fromx to y alongN ∩ Ux, defined as the
length of the shortest curve connectingx to y insideN ∩Ux.

Recall that we have chosen the neighbourhoodV0 and the cone widtha
sufficiently small so that the domination property remains valid for vectors
in the conesCcs

a (z), Ccu
a (z), and for any pointz in V0. Then, there exist

λ1 ∈ (λ,1) andζ ∈ (0,1] such that

‖D f(z)vcs‖ · ‖D f −1( f(z))vcu‖1+ζ ≤ λ1 < 1 (9)

for every norm 1 vectorsvcs ∈ Ccs
a (z) andvcu ∈ Ccu

a (z), at anyz ∈ V0. Then,
up to reducingδ0 > 0 and slightly increasingλ1 < 1, (9) remains true if
we replacez by anyy ∈ Ux, x ∈ V0 (taking‖ · ‖ to mean the Riemannian
metric in the corresponding local chart).

We fixζ andλ1 as above in all that follows. Then, given aC1 submanifold
N ⊂ V0, we denote

κ(N) = inf{C > 0 : the tangent bundle ofN is (C, ζ)-Hölder}. (10)

Proposition 2.2. There existλ0 < 1 and C0 > 0 so that if N ⊂ V0 ∩
f −1(V0) is anyC1 submanifold tangent to the centre-unstable cone field
then

κ( f(N)) ≤ λ0 κ(N)+ C0 .

Proof. Of course, we only need to consider the case whenκ(N) is finite,
that is, the tangent bundle ofN is (C, ζ)-Hölder for someC > 0. Letx ∈ N
be fixed. We use(u, s) ∈ TxN ⊕ Ẽcs

x and (u1, s1) ∈ Tf(x) f(N) ⊕ Ẽcs
f(x),

respectively, to represent the local coordinates inUx andU f(x) introduced
above. We write the expression of our map in these local coordinates as
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f(u, s) = (u1(u, s), s1(u, s)). Observe that ifx ∈ K then the partial deriva-
tives ofu1 ands1 at the origin 0∈ TxN are

∂uu1(0) = D f |TxN, ∂su1(0) = 0, ∂us1(0) = 0, ∂ss1(0) = D f |Ẽcs
x .

This is becauseEcs
x = Ẽcs

x is mapped toEcs
f(x) = Ẽcs

f(x) under D f(x) and,
similarly, TxN is mapped toTf(x)N. Then, given any smallε0 > 0 we have
that

‖∂uu1(y)− D f |TxN‖, ‖∂su1(y)‖, ‖∂us1(y)‖, ‖∂ss1(y)− D f |Ẽcs
x ‖,

(11)

are all less thanε0 for everyx ∈ V0 and y ∈ Ux, as long asδ0 andV0 are
small. Taking the cone widtha also small, we get∥∥D f |TyN − D f |Ẽcu

x

∥∥ ≤ ε0 and (12)∥∥D f −1|Tf(y) f(N)− D f −1|Ẽcu
f(x)

∥∥ ≤ ε0 ,

for everyx ∈ V0 and y ∈ Ux. Since f is C2, there is also some constant
K2 > 0 such that

‖∂su1(y)‖ ≤ K2dx(y) and ‖∂us1(y)‖ ≤ K2dx(y). (13)

For y1 in U f(x), let Af(x)(y1) be the linear map fromTf(x) f(N) to Ẽcs
f(x)

whose graph is parallel toTy1 f(N). We are going to prove that, fixingε0
sufficiently small, thenAf(x)(y1) satisfies (8) for anyC > λ0κ(N)+C0, with
convenientλ0 andC0. Let us begin by noting that‖Af(x)(y1)‖ is bounded by
some uniform constantK1 > 0, sincef(N) is tangent to the centre-unstable
cone field. We will choose the constantC0 ≥ K1/(δ0/‖D f −1‖)ζ , so that
(8) is immediate whendf(x)(y1) ≥ δ0/‖D f −1‖:

‖Af(x)(y1)‖ ≤ K1 ≤ C0(δ0/‖D f −1‖)ζ ≤ C0df(x)(y1)
ζ .

Here‖D f −1‖ is the supremum of all‖D f −1(z)‖ with z ∈ Uw, w ∈ V0,
where the norms are taken with respect to the Riemannian metrics in the local
charts. This permits us to restrict to the case whendf(x)(y1) < δ0/‖D f −1‖
in all that follows. LetΓ1 be any curve onf(N) ∩ U f(x) joining f(x) to y1

and whose length approximatesdf(x)(y1). ThenΓ = f −1(Γ1) is a curve in
N ∩Ux joining x to y = f −1(y1), with length less thanδ0. In fact, cf. (12),

dx(y) ≤ length(Γ) ≤ (‖D f −1|Ẽcu
f(x)‖ + ε0

)
length(Γ1).

This shows thatdx(y) ≤ (‖D f −1|Ẽcu
f(x)‖ + ε0)df(x)(y1).

Now we observe that

Af(x)(y1) =
[
∂us1(y)+ ∂ss1(y) · Ax(y)

] · [∂uu1(y)+ ∂su1(y) · Ax(y)
]−1
.
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On the one hand, by (11) and (13),

‖∂us1(y)+ ∂ss1(y) · Ax(y)‖ ≤ K2dx(y)+
(‖D f |Ẽcs

x ‖ + ε0
)
κ(N)dx(y)

ζ

≤ (K2+
(‖D f |Ẽcs

x ‖ + ε0
)
κ(N)

)
dx(y)

ζ .

On the other hand,‖∂su1(y) · Ax(y)‖ ≤ ε0K1, which can be made much
smaller than 1/‖(∂uu1(y)−1‖. As a consequence, recall (12) and (13),∥∥[∂uu1(y)+ ∂ss1(y) · Ax(y)

]−1∥∥ ≤ ∥∥D f −1
∣∣Ẽcu

f(x)

∥∥+ ε1 ,

whereε1 can be made arbitrarily small by reducingε0. Putting these bounds
together, we conclude that‖A f(x)(y1)‖df(x)(y1)

−ζ is less than(‖D f |Ẽcs
x ‖ + ε0

)(‖D f −1|Ẽcu
f(x)‖ + ε1

)(‖D f −1|Ẽcu
f(x)‖ + ε0

)−ζ κ(N)+ K2
(‖D f −1|Ẽcu

f(x)‖ + ε1
)(‖D f −1|Ẽcu

f(x)‖ + ε0
)−ζ .

So, choosingδ0, V0, a sufficiently small, we can makeε0, ε1, sufficiently
close to zero so that the factor multiplyingκ(N) is less than someλ0 ∈
(λ1,1); recall (9). Moreover, the second term in the expression above is
bounded by some constant that depends only onf . We takeC0 larger than
this constant. ut
Remark 2.3. The proof remains valid if the diffeomorphismf is only of
classC1+ζ : it suffices to replace (13) by‖∂su1(y)‖, ‖∂us1(y)‖ ≤ K2dx(y)ζ ,
which is sufficient for the rest of the argument.

Corollary 2.4. There existsC1 > 0 such that, given anyC1 submanifold
N ⊂ V0 tangent to the centre-unstable cone field,

a) there existsn0 ≥ 1 such thatκ( f n(N)) ≤ C1 for everyn ≥ n0 such that
f k(N) ⊂ V0 for all 0≤ k ≤ n;

b) if κ(N) ≤ C1, then the same is true for every iteratef n(N), n ≥ 1, such
that f k(N) ⊂ V0 for all 0≤ k ≤ n;

c) in particular, if N andn are as in b), then the functions

Jk : f k(N) 3 x 7→ log
∣∣ det

(
D f | Tx f k(N)

)∣∣, 0≤ k ≤ n,

are(L1, ζ)-Hölder continuous withL1 > 0 depending only onC1 and f .

Proof. It suffices to choose anyC1 ≥ C0/(1− λ0). ut
Remark 2.5. Suppose that we have the following stronger form of domi-
nation

‖D f |Ecs
x ‖ · ‖D f −1|Ecu

f(x)‖i ≤ λ for i = 1,2,

and anyx ∈ K . Then, assuming thatf is a C2 diffeomorphism, we may
takeζ = 1 in the previous arguments. In that case,κ(N) yields a bound on
the curvature tensor ofN. So, Corollary 2.4 asserts that ifN is C2 then the
curvature of all its iteratesf n(N), n ≥ 1, is bounded by some constant that
depends only on the curvature ofN.
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2.2. Hyperbolic times and distortion bounds

The following notion will allow us to deriveuniform behaviour(expansion,
distortion) from the hypothesis of non-uniform expansion in (2).

Definition 2.6. Given σ < 1, we say thatn is a σ -hyperbolic timefor
a pointx ∈ K if

n∏
j=n−k+1

∥∥D f −1 | Ecu
f j (x)

∥∥ ≤ σk for all 1≤ k ≤ n.

In particular, if n is a σ -hyperbolic time forx then D f −k | Ecu
f n(x) is

a contraction for every 1≤ k ≤ n:

∥∥D f −k
∣∣Ecu

f n(x)

∥∥ ≤ n∏
j=n−k+1

∥∥D f −1
∣∣Ecu

f j (x)

∥∥ ≤ σk.

Moreover, ifa is taken sufficiently small in the definition of our cone fields,
and we chooseδ1 > 0 also small (in particular, theδ1-neighbourhood ofK
should be contained inV0), then, by continuity,

‖D f −1( f(y))v‖ ≤ 1√
σ
‖D f −1|Ecu

f(x)‖ ‖v‖ (14)

wheneverx ∈ K , dist(x, y) ≤ δ1, andv ∈ Ccu(y).
Let D be anyC1 disk contained inV0 and tangent to the centre-unstable

cone field. We use distD(· , ·) to denote distance between two points in the
disk, measured alongD. The distance from a pointx ∈ D to the boundary
of D is distD(x, ∂D) = inf y∈∂D distD(x, y).

Lemma 2.7. Given anyC1 disk D ⊂ V0 tangent to the centre-unstable
cone field,x ∈ D ∩ K , andn ≥ 1 a σ -hyperbolic time forx,

distf n−k(D)( f n−k(y), f n−k(x)) ≤ σk/2 distf n(D)( f n(y), f n(x)).

for any pointy ∈ D with dist( f n(x), f n(y)) ≤ δ1.

Proof. Let η0 be a curve of minimal length inf n(D) connecting f n(x)
to f n(y). For 1≤ k ≤ n write ηk = f n−k(η0). We prove the lemma by
induction. Let 1≤ k ≤ n and assume that

length(η j ) ≤ δ1 for 0≤ j ≤ k− 1.

Denote byη̇0(z) the tangent vector to the curveη0 at the pointz. Then, in
view of the choice ofδ1 in (14) and the definition ofσ -hyperbolic times,

‖D f −k(z)η̇0(z)‖ ≤ σ−k/2 ‖η̇0(z)‖
n∏

j=n−k+1

‖D f −1|Ecu
f j (x)‖ ≤ σk/2‖η̇0(z)‖.
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As a consequence,

length(ηk) ≤ σk/2 length(η0) = σk/2 distf n−k(D)( f n−k(y), f n−k(x)) ≤ δ1 .

This completes our induction, thus proving the lemma. ut
Proposition 2.8. There existsC2 > 1 such that, given anyC1 disk D
tangent to the centre-unstable cone field withκ(D) ≤ C1, and given any
x ∈ D ∩ K andn ≥ 1 a σ -hyperbolic time forx, then

1

C2
≤ |detD f n | TyD|
|detD f n | TxD| ≤ C2

for everyy ∈ D such thatdist( f n(y), f n(x)) ≤ δ1.

Proof. For 0 ≤ i < n and y ∈ D, we denoteJi (y) = |detD f |
Tf i (y) f i(D)|. Then,

log
|detD f n | TyD|
|detD f n | TxD| =

n−1∑
i=0

(
log Ji (y)− log Ji (x)

)
By Corollary 2.4, logJi is (L1, ζ)-Hölder continuous, for some uniform
L1 > 0. Moreover, by Lemma 2.7, the sum of all distD( f j (x), f j (y))ζ

over 0 ≤ j ≤ n is bounded byδ1/(1 − σζ/2). Now it suffices to take
C2 = exp(L1δ1/(1− σζ/2)). ut

2.3. Curvature at hyperbolic times

It is possible to obtain control of the curvature at hyperbolic times, without
having to assume the stronger form of domination in Remark 2.5. As before,
we assume thatf is aC2 diffeomorphism with a partially hyperbolic setK .
Let σ < 1 be fixed, andδ1 > 0 be chosen as in (14).

Proposition 2.9. Let D be aC2 disk tangent to the centre-unstable cone
field,x ∈ D∩K , andn ≥ 1be aσ -hyperbolic time forx. Then, the curvature
of theδ1-neighbourhood off n(x) in f n(D) is bounded by a constantK0 > 0
that depends only onf , σ , and the curvature ofD. In fact, ifn is sufficiently
large thenK0 may be taken depending only onf andσ .

The main idea in the proof of this proposition is to show that, up to con-
formal changes of the Riemannian metric, we may suppose thatD f | Ecu is
uniformly expanding at every pointf j (x), 0≤ j < n. As a consequence, the
domination condition 2. in Subsect. 1.1 implies the condition in Remark 2.5
(with respect to the modified metrics). In doing this, it is important that all
metric changes can be done by dilation, which is due to the hyperbolic time
condition.
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Lemma 2.10. Let n ≥ 1 anda1, . . . ,an, c0, be real numbers such that
n∑

j=k+1

aj ≥ (n− k)c0 for all 0≤ k < n. (15)

Then, there existb1, . . . ,bn such that

1. |bj | ≤ sup1≤ j≤n |c0 − aj | for all 1≤ j ≤ n;

2. aj + bj ≥ c0 for all 1≤ j ≤ n;

3.
∑k

j=1 bj ≥ 0 for 1≤ k < n and
∑n

j=1 bj = 0.

Proof. Definebj by recurrence, through

b1 = max{0, c0 − a1} and bj = max{−
j−1∑
i=1

bj , c0 − aj }

for j = 2, . . . ,n.

The first condition in the statement is clear, in the case whenbj = c0− aj .
Otherwise,bj = −∑ j−1

i=1 bi which, by construction, is always non-positive.
So, in this second case we must have 0≥ bj ≥ c0 − aj , so that the bound
in 1. remains valid. The second condition follows immediately from the
construction, and the same is true for the first statement in 3. To obtain the
last claim, we begin by proving the following fact, by induction onj :

j∑
i=1

bi ≤
n∑

i= j+1

(ai − c0) for j = 1, . . . ,n− 1. (16)

In view of (15),
n∑

i=2

(ai−c0) ≥ 0 and
n∑

i=2

(ai−c0) ≥
n∑

i=1

(ai−c0)+(c0−a1) ≥ (c0−a1).

This gives
∑n

i=2(ai − c0) ≥ max{0, c0 − a1} = b1, corresponding to case
j = 1. Now we suppose that, by recurrence,

∑ j−1
i=1 bi ≤∑n

i= j (ai−c0). Then,
eitherbj = c0 − aj in which case, addingbj to both sides of the previous
inequality immediately gives the conclusion. Or else,bj = −∑ j−1

i=1 bi and
then

j∑
i=1

bi = 0≤
n∑

i= j+1

(ai − c0),

due to our assumption (15). This completes the proof of (16). In particular,
taking j = n−1, we get that−∑n−1

i=1 bi ≥ c0−an, and sobn = −∑n−1
j=1 bi .
ut
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Now we use this lemma to prove Proposition 2.9.

Proof. Let Dn be the neighbourhood of radiusδ1 around f n(x) in f n(D),
and Dj = f j−n(Dn) for 0 ≤ j < n. Take c0 = − logσ and aj =
− log‖D f −1|Ecu

f j (x)
‖, 1 ≤ j ≤ n, in Lemma 2.10. Letbj , 1 ≤ j ≤ n, be

the corresponding sequence, and denotet j = exp(
∑ j

i=1 bi ) for 1 ≤ j ≤ n,
andt0 = 1. Conclusion 3. in the lemma implies that

t j ≥ 1 for every j and tn = 1.

In all that follows ‖ · ‖ j denotes the metric obtained by multiplying the
initial Riemannian metric ofM by t j , 0 ≤ j ≤ n. Accordingly, we de-
note ‖D f ‖ j−1, j and ‖D2 f ‖ j−1, j the norms of the derivatives off from
(M, ‖ · ‖ j−1) to (M, ‖ · ‖ j ). We use similar notations for the restrictions of
D f , D f −1 to the subbundles̃Ecu andẼcs. Observe that

‖D f ‖ j−1, j = expbj‖D f ‖ and ‖D2 f ‖ j−1, j = expbj

t j−1
‖D2 f ‖.

Since thebj are bounded, and thet j are larger than 1,‖D f ‖ j−1, j and
‖D2 f ‖ j−1, j are bounded by constants that depend only onf andσ . Note
also that the domination property is not affected by this conformal change
of metrics:∥∥D f

∣∣Ẽcs
y

∥∥
j−1, j ·

∥∥D f −1
∣∣Ẽcu

f(y)

∥∥
j, j−1 =

∥∥D f
∣∣Ẽcs

y

∥∥ · ∥∥D f −1
∣∣Ẽcu

f(y)

∥∥ ≤ λ,
(17)

at every pointy where these subbundles are defined.
Conclusion 2. in the lemma now means that∥∥D f −1

∣∣Ecu
f j (x)

∥∥
j, j−1 = exp(−bj − aj ) ≤ σ.

So, by (14) and Lemma 2.7,‖D f −1|Ẽcu
f j (y)
‖ j, j−1 ≤ √σ < 1 for everyy in

D0 and 1≤ j ≤ n. Together with (17), this gives∥∥D f
∣∣Ẽcs

f j−1(y)

∥∥
j−1, j ·

∥∥D f −1
∣∣Ẽcu

f j (y)

∥∥2
j, j−1 ≤ λ

√
σ ≤ λ

for every y ∈ D0 and 1≤ j ≤ n. This means that a strong domination
property as in Remark 2.5 is valid, with respect to the relevant modified
metrics, at every point ofD0 ∪ f(D0) ∪ · · · ∪ f n−1(D0). Since we already
checked that the first and second derivatives have uniformly bounded norms
relative to these modified metrics, the arguments in Proposition 2.2 carry
on completely to the present context to prove Proposition 2.9. ut

Closing this section we observe that these arguments could also be used
to give an alternative proof of the distortion bounds we obtained in the
previous section.
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3. Lebesgue measure at hyperbolic times

The following lemma, due to Pliss [Pli72], will permit us to prove that
a pointx satisfying assumption (2) has many (positive density at infinity)
hyperbolic times.

Lemma 3.1. Given A ≥ c2 > c1 > 0, let θ0 = (c2 − c1)/(A− c1). Then,
given any real numbersa1, . . . ,aN such that

N∑
j=1

aj ≥ c2N and aj ≤ A for every1≤ j ≤ N,

there arel > θ0N and1< n1 < · · · < nl ≤ N so that
ni∑

j=n+1

aj ≥ c1(ni − n) for every0≤ n < ni and i = 1, . . . , l.

Proof. (cf. [Mañ87, Section 2]) DefineS(n) = ∑n
j=1(aj − c1), for each

1 ≤ n ≤ N, and alsoS(0) = 0. Then define 1< n1 < · · · < nl ≤ N to
be the maximal sequence such thatS(ni) ≥ S(n) for every 0≤ n < ni and
i = 1, . . . , l . Note thatl can not be zero, sinceS(N) > S(0). Moreover, the
definition means that

ni∑
j=n+1

aj ≥ c1(ni − n) for 0≤ n < ni and i = 1, . . . , l .

So, we only have to check thatl > θ0N. Observe that, by definition,

S(ni − 1) < S(ni−1) and so S(ni) < S(ni−1)+ (A− c1)

for every 1< i ≤ l . Moreover,S(n1) ≤ (A− c1) and S(nl) ≥ S(N) ≥
N(c2 − c1). This gives,

N(c2 − c1) ≤ S(nl) =
l∑

i=2

(
S(ni)− S(ni−1)

)+ S(n1) < l(A− c1),

which completes the proof. ut
Clearly, the setH in the statement of Theorem A may be taken positively

invariant underf . Given anyσ < 1, let H(σ) be the set of points inH for
which the limit in (2) is smaller than 3 logσ . Then H(σ) is positively
invariant and, since we are assuming thatH has positive Lebesgue measure,
H(σ) must also have positive Lebesgue measure ifσ is close enough to 1.
Then, there exists some smallC2 disk D transverse to the centre-stable
subbundle, and intersectingH(σ) in a set with positive Lebesgue measure
insideD. Up to replacing it by some small disk contained inf l(D) for some
large enoughl ≥ 1, we may suppose thatD is tangent to the centre-unstable
cone field andκ(D) ≤ C1. Hereκ(·) is the Hölder constant defined by (10),
recall Corollary 2.4. We fix such a diskD, once and for all.
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Corollary 3.2. There isθ > 0, depending only onσ and f , such that, given
anyx ∈ D∩H(σ) and any sufficiently largeN ≥ 1, there existσ -hyperbolic
times1≤ n1 < · · · < nl ≤ N for x, with l ≥ θN.

Proof. Sincex ∈ H(σ), we have

N∑
j=1

log
∥∥D f −1

∣∣Ecu
f j (x)

∥∥ ≤ 2N logσ,

for all N ≥ 1 sufficiently large. Now it suffices to takec1 = | logσ |,
c2 = 2c1, A = sup

∣∣ log‖D f −1|Ecu‖ ∣∣, andaj = − log‖D f −1|Ecu
f j (x)
‖ in

the previous lemma. ut
Let δ1 > 0 be the small number introduced prior to Lemma 2.7. In

particular, we requested that theδ1-neighbourhood of the setK be contained
in the domainV0 of the invariant cone fieldsCcs andCcu. Reducingδ1 if
necessary, we may suppose that the subsetA = A(D, σ, δ1) of points
x ∈ D ∩ H(σ) such that distD(x, ∂D) ≥ δ1 still has positive Lebesgue
measure inD.

We consider the sequence

µn = 1

n

n−1∑
j=0

f j
∗ LebD (18)

of averages of forward iterates of Lebesgue measure onD. A main idea
is to decomposeµn as a sum of two measures, to be denotedνn andηn,
such thatνn is uniformly absolutely continuous on iterates of the diskD
(uniformly bounded density with respect to Lebesgue measure) and has
total mass uniformly bounded away from zero for all largen. This is done
as follows.

Given integersn ≥ 1, define the following subset ofD ∩ H(σ)

Hn = {x ∈ A : n is aσ -hyperbolic time forx}.
It follows from Lemma 2.7 that ifx ∈ Hn then the distance fromf n(x)
to the boundary off n(D) is larger thanδ1. For δ > 0, we denote∆n(x, δ)
theδ-neighbourhood off n(x) inside f n(D). Clearly,( f n∗ LebD) | ∆n(x, δ1)
is absolutely continuous with respect to Lebesgue measure on∆n(x, δ1).
Moreover, ifx ∈ Hn and one normalizes both measures, then Proposition 2.8
means that the density of the former with respect to the latter is uniformly
bounded from below and above.

Proposition 3.3. There exists a constantτ > 0 such that for anyn there
exists a finite subset̂Hn of Hn such that the balls of radiusδ1/4 in f n(D)
around the pointsx ∈ f n(Ĥn) are two-by-two disjoint, and their union∆n
satisfies

f n
∗ LebD(∆n ∩ H(σ)) ≥ f n

∗ LebD(∆n ∩ f n(Hn)) ≥ τ LebD(Hn) .
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This is obtained takingN = f n(D) ∩ V0, ω = f n∗ LebD, r = δ1,
Ω = f n(Hn), andĤn = I in the following abstract result.

Lemma 3.4. There existτ > 0 andr0 > 0 such that the following holds.
Let N ⊂ V0 be aC1 embedded submanifold ofM tangent to the centre-
unstable cone field, andω be a finite Borelian measure inN. Let0< r ≤ r0
andΩ ⊂ N be a measurable subset with compact closure, whose distance
to the boundary ofN is larger thanr > 0.

Then there exists a finite subsetI ⊂ Ω such that the balls∆(x, r/4) in N
around the points ofI are two-by-two disjoint, and their union∆ satisfies

ω(∆ ∩Ω) ≥ τω(Ω) .
Proof. By the continuity of the centre-unstable cone field, we may fix
r0 > 0 small enough so that the connected component of the intersection
of N with the ball of radiusr0 around each pointz ∈ N that containsz
coincides with the graph of a mapgz from a neighbourhood of 0 inEcu

z
to Ecs

z (or, to be more precise, with the image of such a graph under the
exponential map expz). Moreover, as long asr0 is small enough, thengz is
a Lipschitz continuous map, with Lipschitz constant depending only on the
constanta in the definition of our cone fields. As a consequence, there exists
a constantR> 0 such that, given 0< r1 < r2 ≤ r0, any ball of radiusr2 in
N can be covered by at most(r2/r1)

d Rballs of radiusr1, with d = dim Ecu.
We assume thatω(Ω) > 0, since otherwise there is nothing to prove.

Let 0< r ≤ r0 andz1 ∈ N be such thatω(Ω ∩∆(z1, r)) is larger than
ω(Ω ∩∆(z, r))/2 for any other pointz ∈ N. By the previous remarks, we
may find a pointy1 ∈ N such that the ball∆(y1, r/8) of radiusr/8 around
y1 intersects∆(z1, r) and

ω(∆(y1, r/8) ∩Ω) ≥ 1

R8d
ω(Ω ∩∆(z1, r)).

In particular∆(y1, r/8) contains some pointx1 ∈ Ω. We take it to be the
first point in our setI . Observe that, due to the choice ofz1,

ω(∆(x1, r/4) ∩Ω) ≥ ω(∆(y1, r/8) ∩Ω)

≥ 1

R8d
ω(Ω ∩∆(z1, r))

≥ 1

2R8d
ω(Ω ∩∆(x1, r)). (19)

Now we considerΩ1 = Ω \ ∆(x1, r). Either this set has zeroω measure,
in which case we stop, or we may apply the same construction as before to
determine a second pointx2 ∈ Ω. Observe that the balls of radiusr/4 around
x1 and x2 are disjoint, sincex2 belongs inΩ1. Repeating this procedure,
we find a sequencexi , i ≥ 1, of points inΩ whose balls of radiusr/4 are
two-by-two disjoint. By compactness, this sequence is necessarily finite.
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Moreover, by construction,Ω is contained in the union of the balls of radius
r around thesexi . So, using the bound in (19),

ω(Ω) ≤ 2R8d
∑

i

ω(∆(xi , r/4)) ∩Ω) = 2R8dω(∆ ∩Ω).

This means that we may takeτ = 1/(2R8d). ut
In the sequel we shall denoteDn the family of balls of radiusδ1/4 in

f n(D) around the pointsx ∈ f n(Ĥn), that form∆n. Now we define

νn = 1

n

n−1∑
j=0

( f j
∗ LebD) | ∆ j , (20)

andηn = µn − νn.

Proposition 3.5. There isα > 0 such thatνn(H(σ)) ≥ α for all n large
enough.

Proof. Recall that we tookH and H(σ) positively invariant underf . By
Proposition 3.3 we have thatνn(H(σ)) is bounded from below by the product
of τ by n−1∑n−1

i=0 LebD(Hi ). So, it suffices to prove that this last expression
is larger than some positive constant, forn large.

For all k > 0, denoteAk the set of pointsx ∈ A such that, for any
n ≥ k the sum

∑n
j=1 log‖D f −1|Ecu

f j (x)
‖ is smaller than 2n logσ . As A

is the increasing union of theAn, there isk0 ≥ 1 such that the Lebesgue
measure ofAk is nonzero for allk ≥ k0 . Given anyk ≥ k0, let ξn be the
measure in{1, . . . ,n} defined byξn(B) = #B/n, for each subsetB. Then,
using Fubini’s theorem

1

n

n−1∑
i=0

LebD(Hn) =
∫ (∫

χ(x, i)d LebD(x)

)
dξn(i)

=
∫ (∫

χ(x, i)dξn(i)

)
d LebD(x),

whereχ(x, i) = 1 if x ∈ Hi andχ(x, i) = 0 otherwise. Now, Corollary 3.2
means that the integral with respect todξn is larger thanθ > 0, as long as
k ≥ k0. So, the expression on the right hand side is bounded from below by
θ LebD(D). ut
Remark 3.6. We proved a slightly stronger fact, that will be useful in
Sect. 4:νn

( ∪n−1
i=0 f i (D ∩ H(σ))

) ≥ α for every largen.

We consider some subsequence(nk)k such thatµnk andνnk converge to
measuresµ andν, respectively. It is easy to see thatµ is a probability and
f -invariant. Moreoverν(K) ≥ lim supk νk(K) ≥ α > 0. We shall prove, in
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the next section, thatν has a property of absolute continuity along certain
(fairly large) disks contained in its support. Here are some preparatory
comments.

Recall that eachνn is supported on a finite union∪n−1
j=0∆ j of disks whose

size is bounded from below and from above. Then the support ofν is
contained in the set

∆∞ = ∩∞n=1 closure
(∪ j≥n∆ j

)
of accumulation points of such∆ j . Giveny ∈ ∆∞ then there exist( ji)i →
∞, disksDi = ∆ j i (xi , δ1/4) ⊂ ∆ j i , and pointsyi ∈ Di converging toy as
i →∞. Up to considering subsequences, we may suppose that the centers
xi converge to some pointx and, using the theorem of Ascoli-Arzela, the
Di converge to a diskD(x) of sizeδ1/4 aroundx. Theny is in the closure
D̄(x) of D(x), andD̄(x) ⊂ ∆∞.

We shall denoteD∞ the family of disksD(x) obtained in this way.
Observe that these pointsx are inĤ∞ = ∩∞n=1 closure

(∪ j≥n f j (Ĥ j )
)
. Since

every Ĥ j is contained inK , which is compact and positively invariant,̂H∞
is a subset of∩∞n=1 f n(K). According to the next lemma,D(x) depends only
on x and not on the various choices we made in the construction.

Lemma 3.7. The subspaceEcu
x is uniformly expanding:‖D f −k | Ecu

x ‖ ≤
σk/2 for all k ≥ 1. The diskD(x) is contained in the corresponding strong-
unstable manifoldWuu(x), and so it is uniquely defined byx. Moreover,D(x)
is tangent to the centre-unstable subbundle at every point of∩∞n=1 f n(K) ∩
D(x).

Proof. Let ji → ∞, xi → x, and Di → D(x) be as in the construction
of D(x) above. Note thatDi is contained in theji -iterate of D, which
was taken tangent to the centre-unstable cone field. So, the domination
property implies that the angle betweenDi andEcu goes to zero asi →∞,
uniformly on∩∞n=1 f n(K). By Lemma 3.7, given anyk ≥ 1 then f −k is a
σk/2-contraction onDi for every largei . Passing to the limit, we get that
every f k is aσk/2-contraction onD(x), andD(x) is tangent to the centre-
unstable subbundle at every point in∩∞n=1 f n(K) ∩ D(x), includingx.

In particular, we have shown that the subspaceEcu
x is indeed uniformly

expanding forD f . The domination property means that any expansion
D f may exhibit along the complementary directionEcs is weaker than
this. Then, see [Pes76], there exists a uniquestrong-unstablemanifold
Wuu

loc(x) tangent toEcu and which is contracted by the negative iterates
of f : for every y ∈ Wuu(x), dist( f −k(x), f −k(y)) decreases at least as
‖D f −k | Ecu

x ‖ ≤ σk/2 whenk gets large. To see thatD(x) is contained in
Wuu(x) is suffices to recall that it is contracted by everyf −k, and that all its
negative iterates are tangent to centre-unstable cone field. ut
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4. Existence and finiteness of SRB measures

This section contains the proofs of Theorem A and Corollary B. First we
show that the measureν obtained in the previous section has an absolute
continuity property on disks as in Lemma 3.7. Then, using the uniformly
contracting bundle, we conclude that some ergodic component of the in-
variant measureµ is an SRB measure.

4.1. Absolute continuity

We write u = dim Ecu ands = dim Ecs, and useBu, Bs to represent the
unit compact balls in the Euclidean space of dimensionu, s, respectively.
In what follows we call cylinder any diffeomorphic image ofBu × Bs.

Proposition 4.1. There exists a cylinderC ⊂ M, and there exists a family
K∞ of disjoint disks contained inC ∩∆∞ and which are graphs overBu,
such that

1. the union of all the disks inK∞ has positiveν-measure; in fact, the
intersection ofK with this union also has positiveν-measure;

2. the restriction ofν to that union has absolutely continuous conditional
measures along the disks inK∞.

The first step of the proof is to construct a covering of the support ofν
by cylinders, one of which will be theC in the statement. Let us point out
that these cylinders we shall obtain are not small: each one contains some
ball with radius uniformly bounded away from zero, depending only on the
diffeomorphism f .

As we have seen, given anyy ∈ ∆∞ there exists a pointx ∈ Ĥ∞ and
a disk D(x) of size δ1/4 aroundx such thaty ∈ D̄(x) ⊂ ∆∞. For any
suchx andr > 0 small, letCr (x) be the tubular neighbourhood of̄D(x),
defined as the union of the images under the exponential map at each point
z ∈ D̄(x) of all vectors orthogonal tōD(x) at z and with norm less or equal
thanr . We taker to be sufficiently small, so thatCr (x) is a cylinder and it is
endowed with a canonical projectionπ : Cr (x)→ D(x). Slightly adjusting
r if necessary, we may also suppose that the boundary ofCr (x) has zero
ν-measure.

The covering of the support ofν by cylinders that we mentioned above
will be obtained decomposing each of theseCr (x) into a sufficient number
of domains with small diameter in the centre-unstable direction, as we now
explain.

Recall that each set∆ j , j ≥ 0, consists of a finite union of disks of
radiusδ1/4 inside f j (D). For any smallε > 0, we denote∆ j,ε the subset of
∆ j obtained by removing theε-neighbourhood of the boundary from each
one of these disks. Moreover, forn ≥ 1, we denoteνn,ε the restriction ofνn

to∪n−1
j=0∆ j,ε. Letα > 0 be as in Proposition 3.5.
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Lemma 4.2. If ε > 0 is sufficiently small thenνn,ε(K) ≥ α/2 for every
large n.

Proof. This is a simple consequence of Proposition 3.5. Indeed, the propo-
sition implies that theνn-measure ofK is greater or equal thanα, for all
large n. On the other hand, ifε is small then the Lebesgue measure of
the ε-neighbourhood of the boundary of each disk in∆ j is a small frac-
tion of the Lebesgue measure of that disk. Then, in view of the distortion
bound given by Proposition 2.8, the same is true withf j

∗ LebD in the place
of Lebesgue measure. So, takingε small enough, we are certain to have
( f j
∗ LebD)

(
∆ j \ ∆ j,ε

) ≤ α/2 for every j ≥ 0. Then, by the definitions of
νn andνn,ε,

νn(K)− νn,ε(K) ≤ 1

n

n−1∑
j=0

( f j
∗ LebD)

(
∆ j \∆ j,ε

) ≤ α
2
.

This completes the proof. ut
In the sequel, we fixε > 0 as in the lemma. Letx ∈ Ĥ∞ andπ :

Cr (x) → D̄(x) be as above. We fix a covering of̄D(x) by finitely many
domainsDx,l ⊂ D̄(x), l = 1, . . . , N, small enough so that the intersection of
eachCx,l = π−1(Dx,l)with any smooth diskγ tangent to the centre-unstable
cone has diameter less thanε insideγ . We take theDx,l diffeomorphic to
the compact ballBu, so that everyCx,l is a cylinder.

We say that a diskγ crossesCx,l if π mapsγ ∩ Cx,l diffeomorphically
onto Dx,l . For eachj ≥ 0, let K j (x, l ) be the union of the intersections of
Cx,l with all the disks inD j (the disks in the support∆ j of f j

∗ LebD) that
crossCx,l . Similarly, let K∞(x, l ) be the union of the intersections ofCx,l
with all the disksD(x) in D∞ that crossCx,l .

The next lemma asserts that, for at least one of the cylindersCx,l , the
part of the measureν that is carried by the disks inK∞(x, l ) gives positive
weight to the setK . Recall thatν = lim νnk for some(nk)k.

Lemma 4.3. There exist(x, l )andα1 > 0such thatν
(
K∩K∞(x, l )

) ≥ α1,
andνn

(
K ∩ ∪n−1

j=0K j (x, l )
) ≥ α1 for n in some subsequence of(nk)k.

Proof. For eachn ≥ 1, let ν̃n,ε be the restriction ofνn,ε to K , i.e., the
measure defined bỹνn,ε(E) = νn,ε(K ∩ E) for every measurable subsetE
of M. Up to replacing(nk)k by some subsequence, we may suppose that
ν̃nk,ε converges to some measureν̃ε. On the one hand, Lemma 4.2 means
that ν̃n,ε(M) ≥ α/2 for every largen, and soν̃ε(M) ≥ α/2. On the other
hand, the support of̃νε is contained in∩∞n=1 closure

( ∪ j≥n ∆ j,ε
)
, and this

set is covered by the interiors of the cylindersCr (x). By compactness, the
support ofν̃ε is contained in the union of a finite number of theseCr (x),
and so it is also contained in the union of finitely many cylindersCx,l .
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As a consequence, there must be(x, l ) such thatν̃ε(Cx,l) > 0. We are
going to show that any such(x, l ) satisfies the conclusion of the lemma, if
α1 < ν̃ε(Cx,l).

Given any diskDj in D j , j ≥ 1, let Dj,ε be the subset obtained by
removing fromDj theε-neighbourhood of the boundary. As a consequence
of the way we chose these cylinders, we have that ifDj,ε intersectsCx,l then
Dj must crossCx,l . This implies that

ν̃n,ε
(
Cx,l

) = νn,ε
(
K ∩ Cx,l

) ≤ νn
(
K ∩ ∪n−1

j=0K j (x, l )
)

for everyn ≥ 1. Since the boundary ofCx,l has zero measure forν, and
ν̃ε ≤ ν,

lim
k
ν̃nk,ε

(
Cx,l

) = ν̃ε(Cx,l) > α1 .

Combining this with the previous inequality, we get the second part of
the lemma. To get the first part, we observe that the accumulation set of
∪n−1

j=0K j (x, l ), asn→∞, is contained inK∞(x, l ). So, sinceK is compact,

lim sup
k

νn
(
K ∩ ∪n−1

j=0K j (x, l )
) ≤ ν(K ∩ K∞(x, l )).

Thus,ν(K ∩ K∞(x, l )) ≥ ν̃ε(Cx,l) > α1 as we claimed. ut
In what follows, we fix(x, l ) as in the lemma. We take the cylinderC in

Proposition 4.1 to beCx,l , and we letK∞ be the family of disks forming
K∞(x, l ). To complete the proof of the proposition, we now show that the
restriction ofν to K∞(x, l ) has absolutely continuous conditional measures
along the disks inK∞.

Lemma 4.4. There existsC3 > 1 and a family of conditional measures
(νγ )γ of ν | K∞(x, l ) along the disksγ ∈ K∞, such thatνγ is ab-
solutely continuous with respect to Lebesgue measureLebγ on γ , with
1/C3 Lebγ (B) ≤ νγ (B) ≤ C3 Lebγ (B) for any Borel setB ⊂ γ .

Proof. Let us introducêK(x, l ) = ∪0≤ j≤∞K j (x, l )×{ j }. In this space, we
consider the sequence of (finite) measuresν̂n defined by

ν̂n (B0× {0} ∪ · · · ∪ Bn−1× {n− 1}) = 1

n

n−1∑
j=0

f j
∗ LebD(Bj ),

andν̂n(B) = 0 wheneverB is contained in∪n≤ j≤∞K j (x, l )× { j }. We also
consider a sequence of partitionsP k in K̂(x, l ) constructed as follows. Fix
an arbitrary pointz in Dx,l , and letV be the inverse imageπ−1(z) under
the canonical projection. Fix also a sequenceVk, k ≥ 1, of increasing
partitions ofV with diameter going to zero. Then, by definition, two points
(x,m), (y,n) ∈ K̂(x, l ) are in a same atom of the partitionP k if

1. the disk inDm containingx, and the disk inDn containingy intersect
a same element ofVk;

2. eitherm ≥ k andn ≥ k or m= n < k .
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It is clear from the construction that for any pointξ ∈ K j (x, l ),
0≤ j ≤ ∞,

P 1(ξ) ⊃ · · · ⊃ P k(ξ) ⊃ · · ·
and∩∞k=1P k(ξ) coincides with the intersection of the cylinderCx,l with
the disk inD j that containsξ. Let π̂ : K̂(x, l ) → Dx,l be defined by
π̂(x, j) = π(x). We claim that there exitsC3 > 1 such that, given any Borel
subsetB of Dx,l , k ≥ 1, andξ ∈ K̂(x, l ),

1

C3
νn(P k(ξ))Leb(B) ≤ ν̂n

(
π̂−1(B) ∩P k(ξ)

) ≤ C3νn(P k(ξ))Leb(B) .

(21)

Indeed, by definition each atomP k(ξ) is a union of setsγ × { j }, whereγ
is the intersection of the cylinder with a disk inD j . Since the projectionπ
mapsγ diffeomorphically ontoDx,l ,

1

C4

Leb(B)

Leb(Dx,l)
≤ Leb(π̂−1(B) ∩ (γ × { j }))

Leb(γ × { j })
= Leb(π−1(B) ∩ γ)

Leb(γ)
≤ C4

Leb(B)

Leb(Dx,l)
,

for some uniform constantC4. By Proposition 2.8, the density off j
∗ LebD

with respect to Lebesgue measure on each disk in∆ j is bounded from below
and from above. So, the previous inequality implies

1

C2
2C4

Leb(B)

Leb(Dx,l)
≤ ( f j

∗ LebD)(π̂
−1(B) ∩ (γ × { j }))

( f l∗ LebD)(γ × { j }) ≤ C2
2C4

Leb(B)

Leb(Dx,l)
,

Since this holds for everyγ , we get (21) withC3 = C2
2C4/Leb(Dx,l).

Clearly, any accumulation measure of the sequenceν̂n must be supported
in K∞(x, l ) × {∞}. We have chosen a sequencenk such thatνnk converges
to some measureν, and it is easy to see that this is just the same as saying
that ν̂k converges to the measureν̂∞ defined byν̂∞(B× {∞}) = ν(B), for
any Borel setB ⊂ Cx,l . Then, by (21) and the theorem of Radon-Nikodym,
the disintegration of̂ν along the disks∩∞k=1P k(ξ) is absolutely continuous
with respect to Lebesgue measure on those disks, with densities almost
everywhere bounded from above byC3 and from below by 1/C3. Sinceν̂
is naturally identified withν, this gives the conclusion of the lemma. ut

At this point we completed the proof of Proposition 4.1.
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4.2. Ergodicity and basin of attraction

Let us introduce some notations that are useful for the proof of the next
lemma. We denote byR the set ofregular pointsz of f : this means that,
given any continuous functionϕ : M → R, both forward and backward
time averages

lim
n→+∞

1

n

n−1∑
j=0

ϕ( f j (z)) and lim
n→+∞

1

n

n−1∑
j=0

ϕ( f − j (z))

exist and they coincide. The ergodic theorem ensures thatRhas full measure,
with respect to any invariant probability. We say that two pointsz, w ∈ R
are in a sameaccessibility class, see [BP74,PS89], if there existN ≥ 1
and pointsz = z0, z1, . . . , zN−1, zN = w in R such that f ti (zi ) is in the
union Ws(zi−1) ∪Wu(zi−1) of the stable and the unstable sets ofzi−1, for
some integerti and every 1≤ i ≤ N. It follows from the definition, that
accessibility classes are invariant sets. Since forward averages are constant
on stable sets, and backward averages are constant on unstable sets, the
restriction of any invariant probability measure to an accessibility class is
an ergodic measure (possibly identically zero).

Lemma 4.5. The invariant measureµ = ν+η has some ergodic compon-
entµ∗ whose Lyapunov exponents are all non-zero, and whose conditional
measures along local unstable manifolds are absolutely continuous with
respect to Lebesgue measure. Moreover, we may chooseµ∗ with support
contained in∩∞j=0 f j (K) andLebD(B(µ∗) ∩ H) > 0.

Proof. Since R has fullµ-measure, it must also have fullν-measure. In
particular, up to replacingK∞ by a convenient sub-family of disksγ ,
whose union has fullν measure inK∞, we may suppose thatνγ almost
every point inγ is regular, for everyγ ∈ K∞. In particular, Lebγ almost
every point in any diskγ is regular. Using the fact that the strong-stable
foliation is absolutely continuous, cf. [BP74, Section 2], we conclude that
all such regular points are in a same accessibility class. Moreover, this
accessibility classA has positiveν-measure, and so also positiveµ-measure,
by Lemma 4.3.

We let µ∗ be the normalized restriction ofµ to A: µ∗(B) =
µ(B ∩ A)/µ(A) for every Borel setB. Thenµ∗ is an invariant ergodic
probability measure. It follows from Lemma 3.7 that the Lyapunov expo-
nents ofµ∗ along the tangent space of the disksγ are positive. Of course,
the Lyapunov exponents along the strong-stable direction are all negative.
Sinceµ∗ is ergodic, its conditional measures along local unstable manifolds
in K∞ are either almost everywhere singular or almost everywhere abso-
lutely continuous (with respect to Lebesgue measure). This is a well known
fact, whose proof can be sketched as follows.

Suppose there isA⊂ K∞(x, l ) such thatmγ (A∩γ) = 0 for allγ ∈K∞,
and yetµ∗(A) > 0 (henceµ∗γ (A ∩ γ) > 0 for manyγ ∈ K∞). Let
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B = ∪+∞j=−∞ f j (A). By ergodicity,µ∗(B) = 1, and soµ∗,γ (B ∩ γ) = 1
for µ̂∗-almost allγ in K∞. On the other hand,mγ (B ∩ γ) = 0 for every
γ ∈K∞. This is becausef is a diffeomorphism, unstable manifolds are an
invariant family of submanifolds, andB is given by a countable union. So, in
this case,µ∗γ is singular with respect tomγ for µ̂∗-almost allγ ∈K∞. Now
suppose that, on the contrary, every measurable setA⊂ K∞(x, l ) satisfying
mγ (A ∩ γ) = 0 for all γ ∈ K∞ has zeroµ∗-measure. Then, restricted to
K∞(x, l ), µ∗ is absolutely continuous with respect to the product measure
mγ × µ̂∗ . Consequently, in this second case, the conditional measuresµ∗,γ
are absolutely continuous with respect to Lebesgue measuremγ for µ̂∗-
almost everyγ in K∞.

In the setting we are dealing with, the singular case is easily excluded:
the conditional measures ofµ∗ can be written as the sum of the conditional
measures of the restrictions ofη andν to the accessibility class, and the latter
are equivalent to Lebesgue measure at least onK∞(x, l ). So, the conditional
measures ofµ∗ must be almost everywhere absolutely continuous.

Sinceν(K ∩ K∞(x, l )) is positive, by Lemma 4.3,µ(K ∩A) > 0 and
soµ∗(K) > 0. As K is compact and positively invariant, the ergodicity of
µ∗ implies thatµ∗(∩∞n=0 f n(K)) = 1, and the support ofµ∗ is contained in
∩∞j=0 f j (K).

To prove the last statement in the lemma we need the following fact:
Claim: There exists a diskD∞ insideK∞(x, l ) such that Lebesgue almost
all the points inD∞ are in the basin ofµ∗, and there exists a sequence
Dk of disks inK jk(x, l ) accumulating onD∞ and such thatLebDk(Dk ∩
f jk(H(σ) ∩ D)) is uniformly bounded away from zero.

We assume this for a while, and explain how to conclude the proof of the
lemma from it. Since forward averages of continuous functions are constant
on strong-stable leaves, the basin ofµ∗ contains the union of all strong-
stable leaves through Lebesgue almost all points inD∞. As this foliation is
absolutely continuous, and theDk accumulate onD∞, such union intersects
Dk in a subset whose relative Lebesgue measure insideDk goes to 1 when
k goes to infinity. In particular, LebDk(Dk ∩ f jk(H(σ) ∩ D) ∩ B(µ∗)) is
positive for every largek. Of course, the basin is invariant byf , so we may
conclude that LebD(H(σ) ∩ B(µ∗)) > 0. ut

All that is left to do is to prove the Claim above.

Proof. We use Remark 3.6:

νn
( ∪n−1

i=0 f i (D ∩ H(σ))
) ≥ α.

It follows that if ε > 0 is fixed sufficiently small then there exists a subset
of disks in the support ofνn with total νn-mass larger thanα/2 and such
that a fraction larger thanε of any such disk corresponds to points coming
from D ∩ H(σ). Then, by the same argument as at the end of the proof of
Lemma 4.3, the unionE of the disks inD∞ that are accumulated by disks



376 J.F. Alves et al.

as above hasν-mass larger thanα/2. Then some of these disks must be
such that Lebesgue almost all points in it are in the basin ofµ∗. Indeed,
sinceµ∗ is ergodic, its basin has fullµ∗-measure. Then, a full measure
subset ofE consists of disks where almost all points, with respect to the
conditional measure ofµ∗ on the disk, are inB(µ∗). Since we know that
the conditional measures ofµ∗ along the disks inK∞ are bounded away
from zero (because the same is true forν, cf. Lemma 4.4), we conclude that
Lebesgue almost all points in some disk inE is in B(µ∗). ut

As a consequence, we also get that

lim
n→+∞

1

n

n−1∑
j=1

log
∥∥D f −1

∣∣Ecu
f j (x)

∥∥ = ∫ log
∥∥D f −1

∣∣Ecu
y

∥∥dµ∗(y) < 2 logσ

(22)

for µ∗-almost everyx ∈ M (and for everyx ∈ B(µ∗) that remains in the
neighbourhoodV0 whereEcu has a meaning). This is a simple consequence
of the ergodicity ofµ∗, and the fact that its basin intersectsH(σ). In par-
ticular, all the Lyapunov exponents ofµ∗ in the centre-unstable direction
are larger than− logσ .

Finally, we deduce the following result which completes the proof of
Theorem A and also gives Corollary B.

Corollary 4.6. For any σ < 1, a full Lebesgue measure subset ofH(σ)
is contained in the union of finitely many SRB measures supported in
∩∞j=0 f j (K).

Proof. First we observe that the set of points inH(σ)which do not belong in
the basin of some SRB measure as in the statement must have zero Lebesgue
measure. Indeed, otherwise we could apply the previous arguments with this
set in the place ofH(σ): we would get, cf. Lemma 4.5, an extra positive
Lebesgue measure subset in the basin of some SRB measure, contradicting
the definition.

The main point to obtain the finiteness statement is to note that the
choice ofδ1 in the context of (14) depends only onσ . Using this remark,
we can deduce that for any SRB measureµ∗ as we constructed above there
exists a diskD(µ∗) of fixed radiusδ1, tangent to the centre-unstable cone
field and such that Lebesgue almost every point inD(µ∗) is in the basin
of µ∗. For this, we recall that for the SRB measures we constructed above
there exist disksD0 containing some pointx ∈ H(σ)∩ B(µ∗) and on which
Lebesgue almost every point is in the basinB(µ∗). In view of (22),x has
manyσ -hyperbolic timesn. We may takeD(µ∗) to be the disk of radiusδ1
around f n(x) inside f n(D0), for any suchn sufficiently large.

Then, the union of all strong-stable leaves through the points inD(µ∗)∩
B(µ∗) is contained inB(µ∗). Using the absolute continuity property of the
strong-stable foliation, we may conclude that this union contains a subset of
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a neighbourhood ofD(µ∗) with volume bounded away from zero by some
constant that depends only onδ1 and f . For this, we fix some neighbourhood
of D(µ∗) with size uniformly bounded from below, as well as a smooth
foliation of it by disksC1 close toD(µ∗). For instance,D(µ∗) could be
contained in one of the leaves of this foliation. Given any leafD, the strong-
stable manifolds through the points ofD(µ∗) intersectD on a subdisk
D′ whose Lebesgue measure insideD is bounded away from zero, by
a constant that depends only on the sizeδ1 of D, and on the mapf .
This is just by continuity of the strong-stable foliation. Moreover, absolute
continuity implies that Lebesgue almost every point ofD′ is in the strong-
stable manifold of a point ofD(µ∗) ∩ B(µ∗). Now, our claim that the
Lebesgue measure of the union of these strong-unstable leaves is uniformly
bounded away from zero follows from Fubini’s theorem.

Of course, basins of different SRB measures are two-by-two disjoint.
So the conclusion of the previous paragraph implies that there can only be
finitely many such measures (even if we do not assumeM to be compact),
since small neighbourhoods of the compact setK have finite volume. ut

5. Maps with singular or critical points

Here we explain how the previous arguments can be adapted to prove
Theorem C and Corollary D. A main difference concerns the notion of
hyperbolic times. A key point in the previous sections was thatif n is
a hyperbolic time for a pointx then there exists a neighbourhood ofx, in
the diskD, which is mapped onto a ball of fixed radius aroundf n(x), in
f n(D), diffeomorphically and with uniformly bounded distortion. This was
a consequence of the contraction property in Definition 2.6. Now, in the
presence of a singular setS, in order to have a similar property we must
also ensure that iteratesf j (x) with 0≤ j < n are not too close toS.

Let B > 1 andβ > 0 be as in the hypotheses (S1), (S2), (S3). In what
follows b is any fixed constant such that 0< b< min{1/2,1/(2β)}.
Definition 5.1. Givenσ < 1andδ > 0, we say thatn is a(σ, δ)-hyperbolic
time for a pointx ∈ M \ S∞ if, for all 1≤ k ≤ n,

n−1∏
j=n−k

‖D f( f j (x))−1‖ ≤ σk and distδ( f n−k(x),S) ≥ σbk.

Let us begin by proving that this notion does imply the key property
above:

Lemma 5.2. Given σ < 1 and δ > 0, there existsδ1 > 0 such that if
n is a (σ, δ)-hyperbolic time for a pointx ∈ M \ S∞, then there exists
a neighbourhoodVx of x such that
1. f n mapsVx diffeomorphically onto the ball of radiusδ1 around f n(x);
2. for every1≤ k < n and y, z ∈ Vx,

dist( f n−k(y), f n−k(z)) ≤ σk/2 dist( f n(y), f n(z)).



378 J.F. Alves et al.

Proof. We shall prove, by induction onj ≥ 1, that if δ1 is chosen small
enough then there exists a well defined branch off − j on the ball of radius
δ1 around f n(x), mapping f n(x) to f n− j (x). In addition, this branch is a
σ j/2-contraction. The precise conditionδ1 should satisfy is given by the
following statement:
Claim: Fix δ1 > 0 so that4δ1 < δ and4Bδ1 < δ

β| logσ |. Then,

‖D f(y)−1‖ ≤ σ−1/2‖D f( f n− j (x))−1‖ (23)

for any 1 ≤ j < n and any pointy in the ball of radius2δ1σ
j/2 around

f n− j (x).

Proof. By hypothesis distδ( f n− j (x),S) ≥ σ j . According to the definition
of the truncated distance, this means that

dist( f n− j (x),S) =distδ( f n− j (x),S) ≥ σb j

or else dist( f n− j (x),S) ≥ δ.
In either case, dist(y, f n− j (x)) < dist( f n− j (x),S)/2 because we chose
b< 1/2 andδ1 < δ/4< 1/4. Therefore, we may use (S2) to conclude that

log
‖D f(y)−1‖

‖D f( f n− j (x))−1‖ ≤ B
dist(y, f n− j (x))

dist( f n− j (x)),S)β
≤ B

2δ1σ
j/2

min{σbβ j , δβ} .
Sinceδ andσ are smaller than 1, and we tookbβ < 1/2, the term on the
right hand side is bounded by 2Bδ1δ

−β. Moreover, our second condition on
δ1 means that this last expression is smaller than logσ−1/2. ut

Starting the induction argument to prove Lemma 5.2, we note that for
j = 1 the Claim gives

‖D f(y)−1‖ ≤ σ−1/2‖D f( f n−1(x))−1‖ ≤ σ1/2,

sincen is a hyperbolic time forx. This means thatf is aσ−1/2-dilation in
the ball of radius 2δ1σ

1/2 around f n−1(x). As a consequence, there exists
some neighbourhoodV(n− 1) of f n−1(x) contained in that ball of radius
2δ1σ

1/2, that is mapped diffeomorphically onto the ball of radiusδ1 around
f n(x).

Now, given anyj > 1, let us suppose that we have constructed a neigh-
bourhoodV(n − j + 1) of f n− j+1(x) such that the restriction off j−1 to
V(n− j + 1) is a diffeomorphism onto the ball of radiusδ1 around f n(x),
with

‖D f( f i(z))−1‖ ≤ σ−1/2‖D f( f n− j+i+1(x))−1‖ (24)

for all z in V(n − j + 1) and 0≤ i < j . Then, by the Claim and the
hypothesis thatn is a hyperbolic time forx,

‖D f j (y)−1‖ ≤
j−1∏
i=0

‖D f( f i(y))−1‖ ≤
j−1∏
i=0

σ−1/2‖D f( f n− j+i (x))−1‖ ≤ σ j/2
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for any pointy in the ball of radius 2δ1σ
j/2 whose imagez = f(y) is in

V(n− j + 1).
Now we can construct an inverse branch off j on the ball of radiusδ1

around f n(x), by lifting geodesics in the following way. Given a geodesic
γ connecting f n(x) to a point in the boundary of the ball, there is a well
defined lift of the restriction ofγ to a small neighbourhood off n(x), into
a curve starting atf n− j (x). Moreover, as far as this curve does not leave the
ball of radius 2δ1σ

j/2, the derivative on it is aσ− j/2-dilation. This means that
the length of the lifted curve is less thanδ1σ

j/2, and so the curve is actually
contained in a smaller ball. This proves that the lift is well defined on the
whole geodesicγ . Thus, we have a well defined branch off − j on the ball
of radiusδ1 around f n(x) as we claimed. We callV(n− j) the image of that
inverse branch. By construction,V(n− j) is contained in the 2δ1σ

j/2-ball
around f n− j (x) and its image underf coincides withV(n − j + 1). So,
in view of the Claim, we also recovered the induction assumption (24) for
points inV(n− j) and times 0≤ i ≤ j .

In this way, we construct neighbourhoodsV(n− j) of f n− j (x) as above,
for all 1≤ j ≤ n. The lemma follows takingVx = V(0). ut
Corollary 5.3. There existsC5 > 0 such that for everyx ∈ M \ S∞, any
n that is a(σ, δ)-hyperbolic time forx, and everyy, z ∈ Vx

1

C5
≤ |detD f n(y)|
|detD f n(z)| ≤ C5 .

Proof. By construction, for 0≤ k < n, the distance fromf k(x) to either
f k(y) or f k(z) is less thanδ1σ

(n−k)/2, which is much smaller thanσb(n−k) ≤
dist( f k(x),S). So, assumption (S3) implies

log
|detD f n(y)|
|detD f n(z)| =

n−1∑
k=0

log
|detD f( f k(y))|
|detD f( f k(z))| ≤

n−1∑
k=0

2B
δ1σ

(n−k)/2

σbβ(n−k)
.

Now, it suffices to takeC5 ≥ exp
(∑∞

i=1 2Bδ1σ
(1/2−bβ)i

)
, recall thatbβ <

1/2. ut
Let σ < 1 be fixed. The assumptions of Theorem C imply that, ifσ is

close enough to 1, then the setH(σ) of pointsx ∈ M \ S∞ for which the
limit in (5) is less than 3 logσ has positive Lebesgue measure. The next
lemma asserts that points inH(σ) have many(σ, δ)-hyperbolic times.

Lemma 5.4. There areθ > 0 andδ > 0, depending only onσ and on the
map f , such that given anyx ∈ H(σ) and any sufficiently largeN ≥ 1 there
exist(σ, δ)-hyperbolic times1≤ n1 < · · · < nl ≤ N for x, with l ≥ θN.

Proof. The strategy is to use Lemma 3.1 twice, first for the sequence given
by aj = − log‖D f( f j−1(x))−1‖ (up to a cut off that makes it bounded from
above), and then withaj = log distδ( f j−1(x),S) for a convenientδ > 0.
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We prove that there exist many timesni for which the conclusion of Pliss’
Lemma 3.1 holds, simultaneously, for both sequences. Then we check that
any suchni is a(σ, δ)-hyperbolic time forx.

Let x ∈ H(σ). By definition ofH(σ), for every largeN we have

N−1∑
j=0

− log‖D f( f j (x))−1‖ ≥ 2| logσ |N .

Fix anyρ > β. Then (S1) implies that∣∣ log‖D f(x)−1‖ ∣∣ ≤ ρ | log dist(x,S)| (25)

for everyx in a neighbourhoodV of S. Fix ε1 > 0 so thatρε1 ≤ | logσ |/2,
and letr1 > 0 be small enough so that

N−1∑
j=0

− log distr1( f j (x),S) ≤ ε1N . (26)

Assumption (6) ensures that this is possible. Fix anyH1 ≥ ρ | log r1| large
enough so that it is also an upper bound for− log‖D f −1‖ on the com-
plement ofV. Then let E be the subset of times 1≤ j ≤ N such that
− log‖D f( f j−1(x))−1‖ > H1, and define

aj =
{− log‖D f( f j−1(x))−1‖ if j /∈ E

0 if j ∈ E.

By construction,aj ≤ H1 for 1 ≤ j ≤ N. Note that if j ∈ E then
f j−1(x) ∈ V. Moreover, for j ∈ E we have dist( f j−1(x),S) < r1:

ρ | log r1| ≤ H1 < − log‖D f( f j−1(x))−1‖ < ρ | log dist( f j−1(x),S)|.
In particular, distr1( f j−1(x),S) = dist( f j−1(x),S) < r1 for all j ∈ E.
Therefore, by (25) and (26),∑

j∈E

− log‖D f( f j−1(x))−1‖ ≤ ρ
∑
j∈E

| log dist( f j−1(x),S)| ≤ ρ ε1N.

We have chosenε1 in such a way that the last term is less than| logσ |N/2.
As a consequence,

N∑
j=1

aj =
N∑

j=1

− log‖D f( f j−1(x))−1‖

−
∑
j∈E

− log‖D f( f j−1(x))−1‖ ≥ 3

2
| logσ |N .
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Thus, we have checked that we may apply Lemma 3.1 toaj , with c1 =
| logσ |, c2 = 3 | logσ |/2, andA = H1. The lemma providesθ1 > 0 and
l1 ≥ θ1N times 1≤ p1 < · · · < pl1 ≤ N such that

pi∑
j=n+1

− log‖D f( f j−1(x))−1‖ ≥
pi∑

j=n+1

aj ≥ (pi − n) | logσ | (27)

for every 0≤ n < pi and 1≤ i ≤ l1.
Now fix ε2 > 0 small enough so thatε2/(b| logσ |) < θ1, and letr2 > 0

be such that, cf. condition (6),

N−1∑
j=0

log distr2( f j (x),S) ≥ −ε2N .

Let c1 = b logσ , c2 = −ε2, A = 0, and

θ2 = c2− c1

A− c1
= 1− ε2

b | logσ | .

Applying Lemma 3.1 to the sequenceaj = log distr2( f j−1(x),S), we con-
clude that there arel2 ≥ θ2N times 1≤ q1 < · · · < ql2 ≤ N such that

qi−1∑
j=n

log distr2( f j (x),S) ≥ b logσ (qi − n) (28)

for every 0≤ n < qi and 1≤ i ≤ l2 .
Finally, our condition onε2 means thatθ1+ θ2 > 1. Letθ = θ1+ θ2−1.

Then there existl = (l1 + l2 − N) ≥ θN times 1≤ n1 < · · · < nl ≤ N at
which (27) and (28) occur simultaneously:

ni−1∑
j=n

log‖D f( f j (x))−1‖ ≤ (ni − n) logσ

and
ni−1∑
j=n

log distr2( f j (x),S) ≥ b logσ(ni − n),

for every 0≤ n < ni and 1≤ i ≤ l . Therefore, given 1≤ i ≤ l and
1≤ k ≤ ni ,

ni∏
j=ni−k+1

‖D f −1( f j (x))‖ ≤ σk and distr2( f ni−k(x),S) ≥ σbk.

In other words, all thoseni are(σ, δ)-hyperbolic times forx, for δ = r2. ut
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Now we prove Theorem C, the same argument gives Corollary D.

Proof. Let H be the positive Lebesgue measure set in the statement, and
H(σ) be as above.

Lemma 5.5. Supposeσ is close enough to1 so that H(σ) has positive
Lebesgue measure. Thenf admits some invariant probability measureµ0
absolutely continuous with respect to Lebesgue measure and giving positive
weight toH(σ).

Proof. According to Lemma 5.4, there existsδ > 0 depending only onσ ,
such that for any pointx in H(σ) there exist many(σ, δ)-hyperbolic times.
We letµn be the averages of the positive iterates of Lebesgue measure onM,
andνn be part ofµn carried on disks of radiusδ1 around pointsf j (x) such
that 1≤ j ≤ n is a(σ, δ)-hyperbolic time forx. More precisely, arguing as
in Lemma 3.4 and Proposition 3.3, we may find for eachj ≥ 1 a finite set
of pointsx1, . . . , xN admitting j as a(σ, δ)-hyperbolic time, such that

1. Vx1, . . . ,VxN are two-by-two disjoint;
2. the Lebesgue measure ofWj = Vx1∪. . .∪VxN is larger than the Lebesgue

measure of the set of points inH(σ) having j as a(σ, δ)-hyperbolic time,
up to a uniform multiplicative constantτ > 0.

Then we take

νn = 1

n

n−1∑
j=0

f j
∗ (Leb|Wj ).

As before in Proposition 3.5, each of theseνn has total mass bounded away
from zero, in fact,νn(H(σ)) ≥ α for some uniformα > 0. Moreover, as
a consequence of the distortion Corollary 5.3, everyf j

∗ (Leb|Wj ) is abso-
lutely continuous with respect to Lebesgue measure, with density uniformly
bounded from above, and so the same is true for everyνn.

Now takenk →∞ such that bothµnk andνnk converge to measuresµ
andν, respectively, in the weak∗ sense. Thenµ is an invariant probability
measure,µ = ν + η for some measureη, ν is absolutely continuous with
respect to Lebesgue measure, andν(H(σ)) ≥ α > 0. Now, if η = ηac+ ηs
denotes the Lebesgue decomposition ofη (as the sum of an absolutely
continuous and a completely singular measure, with respect to Lebesgue
measure), thenµac = ν + ηac gives the absolutely continuous component
in the corresponding decomposition ofµ. By uniqueness of the Lebesgue
decomposition, and the fact that the push-forward underf preserves the
class of absolutely continuous measures, we may conclude thatµac is an
invariant measure. Clearly,µac(H(σ)) ≥ ν(H(σ)) > 0. ut

Up to replacingµ0 by its normalized restriction to the (positively in-
variant) setH(σ)we may suppose thatµ0(H(σ)) = 1. The next lemma will
allow us to show thatH(σ) is covered by the basins of finitely many ergodic
absolutely continuous invariant measures.
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Lemma 5.6. For any positively invariant setG ⊂ H(σ) there exists some
disk∆ with radiusδ1/4 such thatLeb(∆ \ G) = 0.

Proof. It suffices to prove that there exist disks of radiusδ1/4 where the
relative measure ofG is arbitrarily close to 1.

Let ε be some small number,Gc be a compact subset ofG, andGo be
a neighbourhood ofGc such that bothG \ Gc andGo \ Gc have Lebesgue
measure less thanε Leb(G). By Lemma 5.4 and Fubini’s theorem, there
exist arbitrarily large values ofj ≥ 1 such that the Lebesgue measure of the
subsetGj of points inG for which j is a(σ, δ)-hyperbolic time has Lebesgue
measure is at leastθ Leb(G). So, as long asε is fixed sufficiently small, the
Lebesgue measure ofGc ∩ Gj is larger than(θ/2)Leb(G). Assume that
j is large enough so that for any pointx in Gc ∩ Gj , the neighbourhood
Vx is contained inGo. HereVx is the neighbourhood ofx constructed in
Lemma 5.2: it is mapped diffeomorphically onto the ball of radiusδ1 around
f j (x) by f j . Let Wx ⊂ Vx be the pre-image of the ball of radiusδ1/4 under
this diffeomorphism. Letx1, . . . , xN ∈ Gc∩Gj be such thatWx1, . . . ,WxN

cover the compact setGc ∩ Gj . Up to reordering, we may suppose that
Wx1, . . . ,Wxn, somen ≤ N, is a maximal sub-family whose elements are
two-by-two disjoint. Notice that theVx1, . . . ,Vxn coverGc∩Gj , since their
union contains everyWxi , 1≤ i ≤ N. Indeed, everyWxi must intersect some
Wxk with k ≤ n. Then its image underf j intersects the ball of radiusδ1/4
around f j (xk) and so it is contained in the corresponding ball of radiusδ1.
This means, precisely, thatWxi is contained inVxk.

By the bounded distortion property, Leb(Wx) is larger than the product
of Leb(Vx) by some uniform constantτ > 0 (independent ofx or j ). So,
the Lebesgue measure ofWx1 ∪ · · · ∪Wxn is larger thanτ Leb(Gc ∩Gj ). If
ξ > 0 is such that Leb(Wxi \ (Gc∩Gj )) ≥ ξ Leb(Wxi ) for every 1≤ i ≤ n,
then

Leb
(
Wx1 ∪ · · · ∪Wxn) \ (Gc ∩ Gj )

) ≥ ξτ Leb(Gc ∩ Gj ) ≥ ξτθ Leb(G) .

On the other hand, since theWxi are contained inGo andGc ∩ Gj ⊂ G,
this measure must be smaller thanε Leb(G). This means that by reducing
ε (which we may, by increasingj ), we can forceξ to be arbitrarily small.
In other words, we may findj and Wxi such that the relative Lebesgue
measure ofWxi ∩Gc∩Gj in Wxi is arbitrarily close to 1. Then, by bounded
distortion, the relative Lebesgue measure ofG ⊃ f j (Gc ∩ Gj ) in the ball
of radiusδ1/4 around f j (xi ) is also arbitrarily close to 1. So the proof of
the lemma is complete. ut

Finally, we may conclude the proof of Theorem C and Corollary D.

Let µ0 be any absolutely continuous invariant measure withµ0(H(σ))
= 1. If µ0 is not ergodic then we may decomposeH(σ) into two disjoint
invariant setsH1, H2 both with positiveµ0-measure. In particular, bothH1
and H2 have positive Lebesgue measure. Letµ1, µ2 be the normalized re-
strictions ofµ0 to H1, H2, respectively. Clearly, they are also absolutely
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continuous invariant measures. If they are not ergodic, we continue decom-
posing them, in the same way as we did forµ0. On the other hand, by
Lemma 5.6, each one of the invariant sets we find in this decomposition
has full Lebesgue measure in some disk with fixed radius. Since these disks
must be disjoint, and the ambient manifold is compact, there can only be
finitely many of them. So, the decomposition must stop after a finite num-
ber of steps, giving thatµ0 can be writtenµ0 = ∑s

i=1µ0(Hi )µi where
H1, . . . , Hs is a partition ofH(σ) into invariant sets with positive measure
and eachµi (·) = µ0(· ∩ Hi )/µ0(Hi ) is an ergodic measure.

This completes the proof of Theorem C and Corollary D, and it also
gives the finiteness result stated in Subsect. 1.1 right after the corollary.ut

Having in mind important classes of maps with singularities, such
as Poincaŕe return maps of singular (or generalized Lorenz) attractors,
[ABS77,GW79,Rov93,MPP98,BPV97] we now propose a natural exten-
sion of the previous results forpartially hyperbolic maps with singularities.

Let us a manifoldM, a compact subsetS, and aC2 diffeomorphism
(onto its image)f : M \ S → M. We supposef has a compact positively
invariant subsetK , in the sense thatf(K \ S) ⊂ K , such that the tangent
bundle of M restricted toK \ S has aD f -invariant dominated splitting
TK\S M = Ess⊕ Ecu such thatEss is uniformly contracting.

We assume thatf behaves like a power of the distance toS along the
centre-unstabledirection: for everyx ∈ K \ S andv ∈ Ecu

x

(R1)
1

B
dist(x,S)β ≤ ‖D f(x)v‖

‖v‖ ≤ B dist(x,S)−β;

(R2) ‖D(D f(x))‖ ≤ B distcu(x,S)−β and
‖D(D f(x)−1)‖ ≤ B distcu(x,S)−β

(R3) | log‖D f −1 | Ecu
f(x)‖ − log‖D f −1 | Ecu

f(y)‖| ≤ B distcu(x,y)
distcu(x,S)β

, if x and
y are in a same disk tangent to the centre-unstable cone field, and
distcu(x, y) < distcu(x,S)/2.

Here distcu denotes the shortest distance measured along curves tangent
to the centre-unstable cone field, and we also define the truncated version
distcu

δ of distcu, in the same way as in (4). LetS∞ = ∪+∞n=−∞ f n(S).
Although we did not try to check all the details, it seems that the following

statement can be obtained by combining the arguments in the proofs of
Theorems A and C:

Let f be as above, and assume that it is non-uniformly expanding along
the centre-unstable direction, in the sense that (2) holds for allx in a positive
Lebesgue measure setH ⊂ M \S∞ Assume moreover that, given anyε > 0
there existsδ > 0 such that for everyx ∈ H

lim sup
n→+∞

1

n

n−1∑
j=0

− log distcu
δ ( f j (x),S) ≤ ε.
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Then Lebesgue almost every point inH is in the basin of some SRB measure.

The main technical point in giving a full proof, is to control the curvature
of iterates of disks tangent to the centre-unstable cone field, similarly to what
we did in Subsect. 2.1.

6. Diffeomorphisms with a dominated splitting

Let f : M → M be a C1+ζ diffeomorphism on a manifoldM. Here
we suppose thatf has a compact positively invariant setK ⊂ M with
a continuous invariantdominated splittingTK M = Ecs⊕ Ecu: there exists
a constantλ < 1 and some choice of a Riemannian metric onM such that

• ‖D f | Ecs
x ‖ · ‖D f −1 | Ecu

f(x)‖ ≤ λ for all x ∈ K .

We call Ecs centre-stable subbundle andEcu centre-unstable subbundle.
As we did at the beginning of Sect. 2, we can extend the subbundles

continuously to a neighbourhoodV0 of K , and then consider cone fields
Ccs

a andCcu
a with small width a > 0 around these extended subbundles.

As before, we assume thatf is non-uniformly expanding along the centre-
unstable direction:

lim sup
n→+∞

1

n

n∑
j=1

log
∥∥D f −1

∣∣Ecu
f j (x)

∥∥ < 0 (29)

for everyx in a positive Lebesgue measure subsetH of D ∩ K , whereD is
someC2 disk tangent to the centre-unstable cone field. We fix anyσ < 1
such thatH(σ), defined as in Sect. 3, has positive Lebesgue measure inD.

Everything we did in Sect. 2 through Subsect. 4.1 applies immediately in
this context. So, cf. Proposition 4.1, there exist measuresµ, ν, η, a cylinder
C and a familyK∞ of disjoint disks crossingC such that

1. µ is an invariant probability measure andµ = ν + η;
2. the disks inK∞ are accumulated by sub-disks of radiusδ1 in f n(D),

around pointsf n(x) such thatn is aσ -hyperbolic time forx ∈ H(σ);
3. the unionK∞ of all the disks inK∞ intersectsK in a set with positive
ν-measure;

4. the restriction ofν to K∞ has absolutely continuous conditional measures
along the disks inK∞.

Let us recall a few well-known notions and facts that are useful for the
proof of the next lemma. Given a pointx, let us denoteµx the probability
measure given by the time average along the orbit ofx:∫

ϕ dµx = lim
n→+∞

1

n

n−1∑
j=0

ϕ( f j (x)) for every continuousϕ : M→ R.
(30)
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According to the ergodic decomposition theorem, see [Mañ87, Section 2.6],
µx is well-defined and ergodic for everyx in a setΣ ⊂ M that has full
measure with respect to any invariant measureξ. Moreover,x 7→ ∫

g dµx
is measurable and ∫

g dξ =
∫ (∫

g dµx

)
dξ(x)

for every measurable bounded functiong : M→ R. In fact, for any suchg
the integral

∫
g dµx coincides almost everywhere with the time average of

g over the orbit ofx.
Let R be the set of regular points off , as introduced in Subsect. 4.2:

z ∈ R if and only if the forward and backward time averages of each
continuous function over the orbit ofzexist and coincide.Rhas full measure
for any f -invariant probability measureξ, as a consequence of Birkhoff’s
ergodic theorem. Let us point out thatµx is constant on the intersection of
R with every diskγ of K∞. This is because these disks are (exponentially)
contracted by negative iterates, cf. property 2. above and Lemmas 2.7 and
3.7, and so points in a sameγ ∈ K∞ have the same backward average (hence
points in R∩ γ also have the same forward average) for each continuous
functionϕ.

Lemma 6.1. There existsz ∈ K∞∩K ∩Σ∩Rsuch thatµz(K∞∩K) > 0
andµz has absolutely continuous conditional measures along the disks in
K∞. In particular, the support ofµz is contained in∩∞j=0 f j (K).

Proof. Fix B to be some measurable subset ofM such that

mγ (B∩ γ) = 0 for every γ ∈K∞, (31)

andµ(B) is maximal among all measurable sets with this property. For
instance,B = ∪nBn where theBn, n ≥ 1, are measurable sets with property
(31) such thatµ(Bn) converges to the largest value compatible with that
property. Observe thatν(B) = 0, becauseν is absolutely continuous along
the leaves ofK∞. Let Z∞ = K∞ ∩ K ∩Σ ∩ R\ B. Then,

µ(Z∞) ≥ ν(Z∞) = ν(K∞ ∩ K ∩Σ ∩ R) = ν(K∞ ∩ K) > 0.

Let (µ | Z∞) be the restriction ofµ to Z∞: by definition(µ | Z∞)(E) =
µ(E ∩ Z∞) for any measurable setE in M.

Let A be any measurable subset ofZ∞ such thatmγ (A ∩ γ) = 0 for
everyγ ∈ K∞. Thenµ(A)must be zero, since we tookµ(B)maximal. This
means that(µ | Z∞) is absolutely continuous with respect to the product
mγ × µ̂, whereµ̂ stands for the quotient measure induced by(µ | Z∞)
onK∞. As a consequence, the conditional measuresµ̃γ of (µ | Z∞) on the
disksγ ∈ K∞ are absolutely continuous with respect to Lebesgue measure
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mγ for µ̂-almost allγ ∈ K∞. On the other hand, for any measurable set
A ⊂ Z∞ ,

µ(A) =
∫
µx(A)dµ(x) (32)

where the integral is taken overM or, more precisely, over the full measure
subsetΣ. We want to express this in terms of an integral overZ∞. As we
mentioned before,

µx(A) =
∫

XA dµx = lim
n→+∞

1

n

n−1∑
j=0

XA( f j (x))

almost everywhere, with respect to any invariant measure. So, up to dis-
regarding a zeroµ-measure set of points,µx(A) can be non-zero only if
x has some iterate inA ⊂ Z∞ . Let k(z) denote the first backward return
time of a pointz ∈ Z∞, that is, the smallest positive integer such that
f −k(z)(z) ∈ Z∞. This is definedµ-almost everywhere, by Poincaré’s recur-
rence theorem. Observe also thatµz = µ f j (z) for any z and any integerj .
Thus, we can rewrite (32) as

µ(A) =
∫

Z∞
k(z)µz(A)dµ(z)

for any measurable subsetA of Z∞. The next lemma can be inferred from
§3 of Rokhlin [Rok62]. For the reader’s convenience, we state it explicitly
and prove it, after completing the proof of Lemma 6.1.

Lemma 6.2. Letλbe a finite measure on a measure spaceZ, withλ(Z) > 0.
LetK be a measurable partition ofZ, and(λz)z∈Z be a family of finite mea-
sures onZ such that

1. the functionz 7→ λz(A) is measurable, and it is constant on each element
of K, for any measurable setA⊂ Z

2. {w : λz = λw} is a measurable set with fullλz-measure, for everyz ∈ Z.

Assume thatλ(A) = ∫
`(z)λz(A)dλ for some measurable functioǹ :

Z → R+ and any measurable subsetA of Z. Let {λ̃γ , γ ∈ K}, and
{λ̃z,γ , γ ∈K}, be disintegrations ofλ andλz, respectively, into conditional
probability measures along the elements of the partitionK. Then

λ̃z,γ = λ̃γ

for λ-almost everyz ∈ Z and λ̂z-almost everyγ , whereλ̂z is the quotient
measure induced byλz onK.
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We takeZ = Z∞, λ = (µ | Z∞), K = K∞ , λz = (µz | Z∞), and
`(z) = k(z), for eachz ∈ Z∞. It is easy to check that the hypotheses of
Lemma 6.1 are satisfied. The first part of assumption 1 is contained in the
ergodic decomposition theorem, and the second part follows from (30), as
we explained before. LetD be any countable dense subset of the space of
continuous functions onM. Givenz, w ∈ Z∞, thenµz = µw if and only
for everyϕ ∈ D and everyp≥ 1 there existsq ≥ 1 such that∣∣∣∣∣∣1n

n−1∑
j=0

ϕ( f − j (z))− 1

n

n−1∑
j=0

ϕ( f − j (w))

∣∣∣∣∣∣ < 1

p
for anyn ≥ p .

This gives the measurability condition in assumption 2. In this case the last
part of assumption 2 is just a restatement of the fact thatλz = µz is ergodic.

Then, according to Lemma 6.2, the conditional probability measures
µ̃z,γ of (µz | Z∞) along the disksγ ∈ K∞ coincide almost everywhere
with the corresponding conditional measuresµ̃γ of (µ | Z∞). Recall that
we had already shown that the latter are almost everywhere absolutely
continuous with respect to Lebesgue measuremγ . We also have that∫

Z∞
k(z)µz(Z∞)dµ = µ(Z∞) > 0.

It follows that there exists a positiveµ-measure subset of pointsz ∈ Z∞
such thatµz(K∞ ∩ K) ≥ µz(Z∞) > 0, and the restriction ofµz to Z∞ has
conditional measures with respect toK that areµz-almost everywhere ab-
solutely continuous with respect to Lebesgue measure on the corresponding
diskγ ∈ K. Thus, any suchz satisfies the first two claims in the statement
of the lemma.

Finally, sinceK is compact and positively invariant, ergodicity implies
that the support ofµz is contained in∩∞j=0 f j (K). ut

Now we prove Lemma 6.2:

Proof. The idea is quite simple. LetE be the partition of the setZ into
equivalence classes for the equivalence relationz ∼ w ⇔ λz = λw. As-
sumption 2 ensures that the elements ofE are measurable sets, and assump-
tion 1 implies that everyγ ∈ K is contained in some element ofE . Given
anye ∈ E we defineλe = λz, wherez is an arbitrary point ine. We show
that, up to normalization,{λe, e ∈ E} is a disintegration ofλ with respect
to the partitionE . Now, {λ̃e,γ = λ̃z,γ , γ ∈ K, γ ⊂ e} is a disintegration
of λe = λz, with respect to the partition induced byK on eache ∈ E .
It follows that {λ̃e,γ , γ ∈ K, γ ⊂ e, e ∈ E} is a disintegration ofλ with
respect toK (obtained by conditioning first toE , then toK). By (essential)
uniqueness of the disintegration into conditional probability measures, we
must havẽλz,γ = λ̃γ almost everywhere.

Now we give the detailed argument. Letπγ : Z→ K andπe : K → E
be the canonical projections. We represent byB(E) theσ -algebra generated
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byE . Letg : Z→ R+ be a conditional expectation of` relative toE , that is,
a Radon-Nikodym derivative, with respect to the restriction ofλ to B(E),
of the measure defined by

B(E) 3 E 7→
∫

E
` dλ.

In other words,g is aB(E)-measurable function satisfying∫
E
` dλ =

∫
E

g dλ for everyE ∈ B(E). (33)

B(E)-measurability implies thatg is constant on elements ofE . Setg(e) =
g(z) for anye∈ E andz ∈ e. Let us consider the set

{h : Z→ R such that
∫
`h dλ =

∫
gh dλ}.

By (33), every characteristic function of an element ofB(E) is in this set.
Using linearity of the integral and the dominated convergence theorem,
we conclude that the set contains any boundedB(E)-measurable function.
In particular, it containsh(z) = λz(A), for any measurable setA ⊂ Z.
Therefore,

λ(A) =
∫
`(z)λz(A)dλ(z) =

∫
g(z)λz(A)dλ(z) =

∫
g(e)λe(A)de,

(34)

wherede= (πe ◦ πγ)∗λ is the quotient measure induced byλ on E . As-
sumption 2 implies that

g(e)λe(Z \ e) = 0 for anye∈ E . (35)

Then,

g(e)λe(Z) = g(e)λe(e) = 1 for de-almost alle∈ E . (36)

Indeed, letδ > 0 andFδ be the set of alle∈ E for whichg(e)λe(Z) ≥ 1+δ.
DenoteEδ = (πe ◦ πγ)−1(Fδ). Then, using (34) and (35),

de(Fδ) = λ(Eδ) =
∫

g(e)λe(Eδ)de=
∫

Fδ

g(e)λe(Z)de≥ (1+ δ)de(Fδ),

which implies de(Fδ) = 0. Analogously, the set ofe ∈ E for which
g(e)λe(Z) is less than 1− δ has zerode-measure for anyδ > 0. This
proves (36). In this way, we have shown that{g(e)λe, e ∈ E} is a disinte-
gration ofλ with respect to the partitionE .
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Now, for eache∈ E , let λ̂e = (πγ | e)∗λe be the quotient measure ofλe

on (K | e). Moreover, let{λ̃e,γ , γ ∈ K , γ ⊂ e} be a disintegration ofλe

with respect to(K | e). Of course,̃λe,γ = λ̃z,e for anyz ∈ e. Then

λe(A) =
∫
λ̃e,γ (A)dλ̂e(γ) and so

g(e)λe(A) =
∫
λ̃e,γ (A)d(g(e)λ̂e)(γ)

for any measurable setA⊂ Z. Replacing this in (34), we find

λ(A) =
∫ ∫

λ̃e,γ (A)d(g(e)λ̂e)(γ)de. (37)

Denotedγ = (πγ )∗λ, the quotient measure ofλ on K. Note thatde =
(πe)∗dγ , that is,decoincides with the quotient measure ofdγ onE . More-
over,

dγ(Γ) = λ(π−1
γ (Γ)

) = ∫ g(e)λe
(
π−1
γ (Γ)

)
de=

∫
g(e)λ̂e(Γ)de

for every measurable setΓ ⊂ K. This means that{g(e)λ̂e, e ∈ E}, is
a disintegration ofdγ with respect to the partitionE . Thus (37) gives

λ(A) =
∫
λ̃e,γ (A)dγ,

and so{λ̃e,γ , γ ∈K}, is a disintegration ofλwith respect to the partitionK.
Since disintegrations into conditional probability measures, when they exist,
are uniquely defined almost everywhere, it follows thatλ̃e,γ = λ̃γ for dγ -
almost everyγ ∈K. Equivalently, this holds forde-almost everye∈ E and
dλ̂e-almost everyγ ∈ (K | e), which is just the same as the conclusion of
the lemma. ut

Let z ∈ K∞ ∩ K be as in Lemma 6.1. Property 2. above implies that
the measureµ∗ = µz has dimEcu Lyapunov exponents larger than− logσ .
The domination condition implies that all the other exponents are less than
− logσ + logλ < − logσ . So, by Pesin theory [Pes76],µz-almost every
point x has a local strong-unstable manifold which is an embedded disk
whose backward orbits approach the backward ofx at the exponential
rate logσ . Moreover, the disksγ ∈ K∞ contain the local strong-unstable
manifolds of points in their interior.

Combining these remarks with Lemma 6.1, we get

Theorem 6.3. Let f be aC2 diffeomorphism admitting a positively invari-
ant compact set with a dominated splittingEcs⊕ Ecu. Assume thatf is
non-uniformly expanding along the centre-unstable direction, cf. (29). Then
f has some ergodic Gibbscu-stateµ∗ supported in∩∞j=0 f j (K): µ∗ is an
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invariant probability measure whosedim Ecu larger Lyapunov exponents
are positive and whose conditional measures along the corresponding local
strong-unstable manifolds are almost everywhere absolutely continuous
with respect to Lebesgue measure on these manifolds.

If the remaining dimEcs Lyapunov exponents ofµ∗ are all negative then
µ∗ is an SRB measure. This is a well known consequence of the absolute
continuity property ofµ∗ and absolute continuity of the stable lamination
[Pes76]: the union of the stable manifolds through the points whose time
averages are given byµ∗ is a positive Lebesgue measure set contained in
the basin ofµ∗.

Clearly, the centre-stable Lyapunov exponents are indeed negative when-
ever the subbundleEcs is uniformly contracting, which was precisely our
setting in Sects. 2 through 4. In general, if one assumes thatEcs is non-
uniformly contracting

lim sup
n→+∞

1

n

n−1∑
j=0

log
∥∥D f

∣∣Ecs
f j (x)

∥∥ < 0 (38)

on a positive Lebesgue measure subset ofH ⊂ D, it is not clear whether this
information can be passed to a limit Gibbscu-state. There are however some
cases where this can be done, and so our methods do yield SRB measures
supported inK .

A sufficient condition is that there exist a positive Lebesgue measure
set of points inH with many (positive density at infinity)simultaneous
σ -hyperbolic timeswith respect to the two subbundles:

n∏
j=n−k+1

∥∥D f −1
∣∣Ecu

f j (x)

∥∥ ≤ σk and
n−1∏

j=n−k

∥∥D f
∣∣Ecs

f j (x)

∥∥ ≤ σk

for every 0≤ k ≤ n, for someσ < 1.

Proposition 6.4. In the setting of Theorem 6.3, suppose that every point
H has many (positive density at infinity) simultaneousσ -hyperbolic times
for someσ < 1. Then ergodic Gibbscu-states can be constructed as in the
theorem which are SRB measures, and whose basins cover a full Lebesgue
measure subset ofH.

Proof. Let σ < 1 be fixed such that the subsetH(σ) of points with many
simultaneousσ -hyperbolic times has positive Lebesgue measure. Cf. (14) if
n is aσ -hyperbolic time (with respect toEcu) then the tangent space at every
point in the ball of radiusδ1 around f n(x) in f n(D) is uniformly contracted
by the firstn negative iterates off . Up to reducingδ1, we may also suppose
that, whenevern is a simultaneousσ -hyperbolic time then the centre-stable
subbundle isσ j/2-expanded by these iteratesf − j , 1 ≤ j ≤ n, at every
point in that ball. We construct measuresνn as before, except that we take
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into account only simultaneous hyperbolic times. As a consequence,Ecs

is σ j/2-expanded by all negative iteratesf − j , j ≥ 1, at every point in the
support of the limit measureν. In particular, any ergodic Gibbscu-state for
which the support ofν has positive measure must have dimEcs negative
Lyapunov exponents, and so it is an SRB measure.

Moreover, as we have seen in the proof of the Claim in Lemma 4.5,
a definite fraction of measuresνn is carried by disks where points in the cor-
responding iterate ofH(σ) occupy a subset with relative Lebesgue measure
bounded away from zero. Then it is easy to verify that the content of that
Claim is valid for, at least, some Gibbscu-stateµ∗ charging the support
of ν: there exists a sequenceDk of disks in f jk(D) in which f jk(H(σ)) has
relative Lebesgue measure bounded away from zero, converging to some
disk D∞ in the support ofµ∗, tangent to the centre-unstable direction and
such that almost every point inD∞ is in the basin ofµ∗. By Pesin theory
(absolute continuity of the stable lamination [Pes76]) the union of the stable
manifolds of these points inD∞ ∩ B(µ∗) cuts Dk in a subset with relative
Lebesgue measure going to 1 asDk approachesD∞. In particular, since
these stable manifolds are contained inB(µ∗), the basin must contain a pos-
itive Lebesgue measure subset ofH(σ). This proves that Lebesgue almost
every point inH(σ) is in the basin of some SRB measure, for everyσ < 1.

ut
Finally, we describe a simple condition on the diffeomorphismf im-

plying existence of many simultaneous hyperbolic times. This condition is
satisfied by a non-emptyC1 open set of diffeomorphisms of the 4-torus
admitting an invariant set with a dominated splitting (without uniformly
hyperbolic subbundles), as will be shown in the Appendix.

Proposition 6.5. Let f be a C2 diffeomorphism admitting a dominated
splitting Ecs⊕ Ecu on some positively invariant compact setK . Let

Au = sup
f(K)
− log‖D f −1 | Ecu‖ and As = sup

K
− log‖D f | Ecs‖.

Suppose that there exist positive constantscu andcs such that

cu

Au
+ cs

As
> 1 (39)

and

lim sup
n→+∞

1

n

n∑
j=1

log
∥∥D f

∣∣Ecu
f j (x)

∥∥ ≤ −cu,

lim sup
n→+∞

1

n

n−1∑
j=0

log
∥∥D f

∣∣Ecs
f j (x)

∥∥ ≤ −cs

for some pointx ∈ K . Then there existsσ < 1 such that the simultaneous
σ -hyperbolic times ofx have positive density at infinity.
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Proof. This is a direct consequence of the expression of the density bound
θ in Lemma 3.1: givenσ close to 1 then, for every largeN, there existθsN
σ -hyperbolic times with respect toEcs andθuN σ -hyperbolic times with
respect toEcu in the time interval{1, . . . , N}, with

θu = cu + logσ

Au + logσ
and θs = cs+ logσ

As+ logσ
.

If σ is close enough to 1 thenθu + θs > 1 and the simultaneous hyperbolic
times have densityθu + θs− 1> 0. ut

A. Appendix: Applications

Here we present a few simple conditions implying the assumptions of
Theorem A, Corollary D, and Propositions 6.4 and 6.5. They allow us
to exhibit some robust (C1 open) classes of maps to which these results
apply.

Lemma A.1. Given a real numberσ1 and integersp,q ≥ 1 with σ1 > q,
there existsε0 > 0 such that the following holds. LetM be a manifold with
finite volume,f : M→ M be aC1 map, and{B1, . . . , Bp, Bp+1, . . . , Bp+q}
be a covering ofM by measurable sets, such that

1. |detD f(x)| ≥ σ1 for everyx in Bp+1 ∪ · · · Bp+q;
2. ( f | Bi ) is injective for all1≤ i ≤ p+ q.

Then the orbit of Lebesgue almost every pointx ∈ M spends a fractionε0 of
the time inB1∪· · ·∪Bp: that is,#{0≤ j < n : f j (x) ∈ B1∪· · ·∪Bp} ≥ ε0 n
for every largen.

Proof. Let n be fixed, for the time being. Given a sequencei = (i0, i1, . . . ,
i n−1) in {1, . . . , p+ q}, we denote

[i ] = Bi0 ∩ f −1(Bi1) ∩ · · · ∩ f −n+1(Bin−1).

Moreover, we defineg(i ) to be the number of values of 0≤ j ≤ n− 1 for
which i j ≤ p. We begin by noting that, given anyε0 > 0, the total number
of sequencesi for which g(i ) < ε0 n is bounded by∑

k<ε0 n

(
n
k

)
pkqn−k ≤

∑
k≤ε0 n

(
n
k

)
pε0 nqn .

A standard application of Stirling’s formula (see e.g. [BV99, Section 6.3])
gives that the last expression is bounded byeγ0n pε0 nqn, whereγ0 depends
only on ε0 and goes to zero whenε0 goes to zero. On the other hand, as
a consequence of assumptions 1 and 2, Leb([i ]) ≤ Leb(M) σ−(1−ε0)n

1 . Then
the measure of the unionIn of all the sets[i ] with g(i ) < ε0 n is less than

Leb(M)σ−(1−ε0)n
1 eγ0n pε0 nqn.
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Since we supposedq < σ1, we may fixε0 small so thateγ0 pε0q < σ
1−ε0
1 .

This means that the Lebesgue measure ofIn goes to zero exponentially fast
asn→∞. Thus, by the lemma of Borel-Cantelli, Lebesgue almost every
point x ∈ M belongs in only finitely many setsIn. Clearly, any such point
x satisfies the conclusion of the lemma. ut
Proposition A.2. Given real numbersσ1, σ2 > 0 and integersp,q ≥ 1
such thatσ1 > q ≥ 1 > σ2, there existδ0 > 0 and c0 > 0 such that
the following holds. LetM, f : M → M, and B1, . . . , Bp+q be as in
Lemma A.1, and assume that

1. ‖D f(x)−1‖ ≤ σ2 if x ∈ Bi , 1≤ i ≤ p, and
2. ‖D f(x)−1‖ ≤ 1+ δ0 if x ∈ Bi , p+ 1≤ i ≤ p+ q.

Then f is non-uniformly expanding: for Lebesgue almost every pointx ∈ M

lim sup
n→+∞

1

n

n−1∑
j=0

log‖D f( f j (x))−1‖ ≤ −c0 .

Proof. Let ε0 > 0 be the constant given by Lemma A.1. Then, fixδ0 > 0
small enough so thatσε0

2 (1+ δ0) ≤ e−c0 for somec0 > 0. Letx be any point
satisfying the conclusion of the lemma. Then

n−1∏
j=0

‖D f( f j (x))−1‖ ≤ σε0 n
2 (1+ δ0)

(1−ε0)n ≤ e−c0n

for every large enoughn, This means thatx satisfies the conclusion of the
proposition, so the proof is complete. ut
Remark A.3. We also proved that, forf as in Proposition A.2, the Lebesgue
measure of the set{

x ∈ M : ‖D f j (x)−1‖ > e−c0 j for some j ≥ n
}

goes to zero exponentially fast whenn→∞.

With the aid of this proposition we can exhibit an explicit construction
of aC1 open class of maps satisfying the hypotheses of Corollary D. LetM
be any compact manifold supporting some uniformly expanding mapf0:
there existsσ2 < 1 such that

‖v‖ < σ2‖D f0(x)v‖ for everyx ∈ M andv ∈ TxM.

For instance,M could be thed-dimensional torusTd. Let V ⊂ M be some
small compact domain, so that the restriction off0 to V is injective.

Corollary A.4. Let f1 be anyC1 map coinciding withf0 outsideV, and
such that f1 is volume expanding everywhere,|detD f1(x)| > 1 for every
x ∈ M, and f is not too contracting onV: ‖D f1(x)−1‖ ≤ 1 + δ0 for
every x ∈ V and some small enoughδ0 > 0. Then every mapf in a
C1-neighbourhoodN of f1 is non-uniformly expanding.
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Proof. Taking theC1-neighbourhood sufficiently small, we may assume
that there existsσ1 > 1 such that the Jacobian of everyf in it is bounded
from below byσ1. Moreover,‖D f(x)−1‖ ≤ σ2 for everyx outsideV. Let
B1, . . . , Bp, Bp+1 = V be any partition ofM into domains such thatf is in-
jective on eachBj , 1≤ j ≤ p+1. The claim follows from Proposition A.2,
with q = 1. ut
Remark A.5. Maps f1 as in the statement can be obtained, e.g. through
deformation of f0 by isotopy insideV. In general, these maps are not
expanding: deformation can be made in such way thatf1 have periodic
saddles.

Using very similar ideas one can also construct robust classes of partially
hyperbolic diffeomorphisms (or, more generally, diffeomorphisms with
a dominated splitting) whose centre-unstable direction is non-uniformly
expanding. We just sketch the main points.

This time we start with a linear Anosov diffeomorphismf0 on the
d-dimensional torusM = Td, d ≥ 2. We write TM = Eu ⊕ Es the
corresponding hyperbolic decomposition. LetV be a small closed domain
in M, in the following sense: there exist unit open cubesK0 andK1 in Rd

such thatV ⊂ π(K0) and f0(V) ⊂ π(K1), whereπ : Rd → Td is the
canonical projection. Now, letf be a diffeomorphism onTd such that

(a) f admits invariant cone fieldsCcu andCcs, with small widthα > 0 and
containing, respectively, the unstable bundleEu and the stable bundle
Es of the Anosov diffeomorphismf0;

(b) there isσ1 > 1 so that|det(D f | TxD
cu)| > σ1 and |det(D f |

TxD
cs)| < σ−1

1 for any x ∈ M and any disksDcu andDcs through
x tangent, respectively, to the centre-unstable cone fieldCcu and to
centre-stable cone fieldCcs.

(c) f is C1-close to f0 in the complement ofV, so that there existsσ2 < 1
satisfying

‖(D f | TxD
cu)−1‖ < σ2 and ‖(D f | TxD

cs)‖ < σ2

for x ∈ (M\V) and any disksDcu, Dcs tangent toCcu, Ccs, respectively.
(d) there exists some smallδ0 > 0 satisfying

‖(D f | TxD
cu)−1‖ < (1+ δ0) and ‖(D f | TxD

cs)‖ < (1+ δ0)

for anyx ∈ V and any disksDcu, Dcs tangent toCcu, Ccs, respectively.

Closeness in (c) should be enough to ensure thatf(V) is also contained in
the projection of a unit open cube.

For instance, iff1 is a torus diffeomorphism satisfying (a), (b), (d), and
coinciding with f0 outsideV, then any mapf in a C1 neighbourhood of
f1 satisfies all the previous conditions. TheC1 open classes of transitive
non-Anosov diffeomorphisms presented in [BV99, Section 6], as well as
other robust examples from [Mañ78], are constructed in this way and they fit
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in the present setting: both these diffeomorphisms and their inverses satisfy
(a)–(d).

In what is left of this appendix, we argue that anyf satisfying (a)–(d)
is non-uniformly expanding along its centre-unstable direction. More pre-
cisely, condition (2) in Theorem A holds, with limit bounded away from
zero, on a full Lebesgue set of pointsx ∈ M.

To explain this, letB1, . . . , Bp, Bp+1 = V be any partition ofTd into
small domains, in the same sense as before: there exist open unit cubesK0

i
andK1

i in Rd such that

Bi ⊂ π(K0
i ) and f(Bi) ⊂ π(K1

i ). (40)

Let F u
0 be the unstable foliation off0, andF j = f j (F u

0) for every
j ≥ 0. By (a), eachF j is a foliation ofTd tangent to the centre-unstable
cone fieldCcu. For any subsetE of a leaf ofF j , j ≥ 0, we denote Lebj (E)
the Lebesgue measure ofE inside that leaf.

Fix any small diskD0 contained in a leaf of the foliationF 0. Then, for
any sequencei = (i0, . . . , i n−1) in {1, . . . , p, p+ 1}, define

[i ] = {x ∈ D0 : f j (x) ∈ Bi j for 0≤ j < n}.
Claim: There existsC0 > 0 depending only onf such thatLeb0([i ]) ≤
C0σ

−n
1 for every sequencei as above.

Proof. Indeed, letF̃ j be the lift toRd of F j , for j ≥ 0. Using (40) one can
easily conclude, by induction onj , that f j ([i ]) is contained in the image
π(K1

j−1∩ F̃j ) of the intersection ofK1
j−1 with some leafF̃j of F̃ j , for every

0 ≤ j ≤ n. So, using (b) and the fact that(π | K1
n−1) is a diffeomorphism

and an isometry onto its image,

Leb0([i ]) ≤ σ−n
1 Lebn( f n([i ])) ≤ σ−n

1 Lebn(Fn ∩ K1
n−1). (41)

Recall that we tookf0 linear, so that its unstable foliationF u
0 lifts to

a foliation F̃
u
0 of Rd by affine hyperplanes. The leaves of everyF̃ n areC1

submanifolds ofRd transverse to these hyperplanes, with angles uniformly
bounded away from zero at every intersection point. Consequently, the
intersection of a leaf of̃F n with any unit cube inRd has Lebesgue measure
(inside the leaf) bounded by some uniform constantC0. In particular, the
last factor in (41) is bounded byC0. ut

Now, using the same arguments as in Lemma A.1, we may conclude that
Leb0-almost every pointx ∈ D0 spends a positive fractionε0 of the time
outside the domainV. Then, using assumptions (c) and (d) above, there
existsc0 > 0 such that

lim sup
n→∞

1

n

n−1∑
j=0

log
∥∥(D f

∣∣Ecu
f j (x)

)−1∥∥ ≤ −c0
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for Leb0-almost every pointx ∈ D0. SinceD0 was an arbitrary disk inside
a leaf ofF s

0, and the latter is an absolutely continuous foliation, we conclude
that f is non-uniformly expanding alongEcu, Lebesgue almost everywhere
in M = Td.

Remark A.6. These arguments also show thatf is non-uniformly contract-
ing along the centre-stable direction, if it satisfies (a)–(d): Lebesgue almost
everyx ∈ M has

lim sup
n→∞

1

n

n−1∑
j=0

log
∥∥D f

∣∣Ecs
f j (x)

∥∥ ≤ −c0 .

Finally, reducingδ0 if necessary (this can be done without changingc0),
we can makeAu = sup− log‖D f −1 | Ecu‖ and As = sup log‖D f | Ecs‖
arbitrarily close to zero. In particular,c0/Au + c0/As > 1, as in Proposi-
tion 6.5.
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