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Learning a Class from Examples 
 Class C of a “family car” 

 Prediction: Is car x a family car? 

 Knowledge extraction: What do people expect from a 
family car? 

 Output:  

  Positive (+) and negative (–) examples 

 Input representation:  

  x1: price, x2 : engine power 
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Error of h on H 
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S, G, and the Version Space 
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most specific hypothesis, S 

most general hypothesis, G 

h H, between S and G is 
consistent  
and make up the  
version space 
(Mitchell, 1997) 



Margin 
 Choose h with largest margin 
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Noise and Model Complexity 
Use the simpler one because 
 Simpler to use  

 (lower computational  

 complexity) 

 Easier to train (lower  

 space complexity) 

 Easier to explain  

 (more interpretable) 

 Generalizes better (lower  

 variance - Occam’s razor) 
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Multiple Classes, Ci i=1,...,K 
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Train hypotheses  
hi(x), i =1,...,K: 



Face Recognition 
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Regression 
 Example: Price of a used 

car 

 x : car attributes 

 y : price 

  y = g (x|q) 

 g ( ) model, 

 qparameters 

y = wx+w0 
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Regression Applications 
 Navigating a car: Angle of the steering wheel 

 Kinematics of a robot arm 

α1= g1(x,y) 

α2= g2(x,y) 

α1 

α2 

(x,y) 

 Response surface design 
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Supervised Learning: Uses 
 Prediction of future cases: Use the rule to predict the 

output for future inputs 

 Knowledge extraction: The rule is easy to understand 

 Compression: The rule is simpler than the data it explains 

 Outlier detection: Exceptions that are not covered by the 
rule, e.g., fraud 
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Triple Trade-Off 
 There is a trade-off between three factors (Dietterich, 

2003): 

1. Complexity of H, c (H), 

2. Training set size, N,  

3. Generalization error, E, on new data 

 As N,E 

 As c (H),first Eand then E 
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Cross-Validation 
 To estimate generalization error, we need data unseen 

during training. We split the data as 

 Training set (50%) 

 Validation set (25%) 

 Test (publication) set (25%) 

 Resampling when the data set is small 
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Dimensions of a Supervised 
Learner 
1. Model:  

   

2. Loss function: 

   

3. Optimization procedure: 

    

 q|xg
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Model Selection & Generalization 
 Learning is an ill-posed problem; data is not sufficient to 

find a unique solution 

 The need for inductive bias, assumptions about H 
 Generalization: How well a model performs on new data 

 Overfitting: H more complex than C or f  

 Underfitting: H less complex than C or f 
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Estimating Probabilities 
 Family car or not: Inputs are engine power and price.  
  Output is family-car vs not-family-car. 
 Input: x = [x1,x2]T ,Output: C  {0,1} 
 Prediction:   
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Bayes’ Rule 
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posterior 

likelihood prior 

evidence 



Bayes’ Rule: K>2 Classes 
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Losses and Risks 
 Actions: αi   

 Loss of αi when the state is Ck : λik  

 Expected risk (Duda and Hart, 1973) 
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Losses and Risks: 0/1 Loss 
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For minimum risk, choose the most probable class 
Action of “reject” 
Misclassification costs may not be symmetric 



Discriminant Functions 
  Kigi ,, , 1x   xx kkii ggC max if  choose 

    xxx kkii gg max| R
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Parametric Estimation of Densities 
 X = { xt }t where xt ~ p (x) 

 Parametric estimation:  

 Assume a form for p (x |q ) and estimate q , its sufficient 
statistics, using X 

 e.g., N ( μ, σ2) where q = { μ, σ2} 
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Maximum Likelihood Estimation 
 Likelihood of q given the sample X 
  l(θ|X) = p(X|θ) = ∏

t
 p(xt|θ) 

 

 Log likelihood 

   L(θ|X) = log l(θ|X) = ∑
t
 log p(xt|θ) 

 

 Maximum likelihood estimator (MLE) 

  θ* = argmaxθ L(θ|X) 
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Bayes’ Estimator 
 Treat θ as a random var with prior p (θ) 

 Bayes’ rule: p(θ|X) = p(X|θ) p(θ) / p(X)  

 Full: p(x|X) = ∫p(x|θ) p(θ|X) dθ 

 Maximum a Posteriori (MAP): θMAP = argmaxθ p(θ|X) 

 Maximum Likelihood (ML): θML = argmaxθ p(X|θ) 

 Bayes’: θBayes’ = E[θ|X] = ∫ θ p(θ|X) dθ  
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Parametric Classification 
 If p (x | Ci ) ~ N ( μi , ∑i ) 

 

 

 

 Discriminant functions 
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29 

likelihoods 

posterior for C1 

discriminant:  
P (C1|x ) = 0.5 



Model Selection 
Assumption Covariance matrix No of parameters 

Shared, Hyperspheric Si=S=s2I 1 

Shared, Axis-aligned Si=S, with sij=0 d 

Shared, Hyperellipsoidal Si=S d(d+1)/2 

Different, Hyperellipsoidal Si K d(d+1)/2 
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 As we increase complexity (less restricted S), bias 
decreases and variance increases 

 Assume simple models (allow some bias) to control 
variance (regularization) 



31 



Bias and Variance 
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Unknown parameter q
Estimator di = d (Xi) on sample Xi  
 
Bias: bq(d) = E [d] – q 
Variance: E [(d–E [d])2] 
 
Mean square error:  
r (d,q) = E [(d–q)2] 
 = (E [d] – q)2 + E [(d–E [d])2] 
 = Bias2 + Variance  

q 
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Polynomial Regression 
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Best fit “min error” 
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Best fit, “elbow” 



Model Selection 
 Cross-validation: Measure generalization accuracy by 

testing on data unused during training 

 Regularization: Penalize complex models 

  E’=error on data + λ model complexity 

 Minimum description length (MDL): Kolmogorov 
complexity, shortest description of data 

 Structural risk minimization (SRM) 
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Bayesian Model Selection 
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 Prior on models, p(model) 

 

 

 

 Regularization, when prior favors simpler models 

 Bayes, MAP of the posterior, p(model|data) 

 Average over a number of models with high posterior 
(voting, ensembles: see Part II) 

 



Regression example 
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Coefficients increase in 
magnitude as order 
increases: 
1: [-0.0769, 0.0016] 
2: [0.1682, -0.6657, 0.0080] 
3: [0.4238, -2.5778, 3.4675, 
-0.0002 
4: [-0.1093, 1.4356,  
-5.5007, 6.0454, -0.0019] 
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Nonparametric Estimation 
 Parametric (single global model), semiparametric (small 

number of local models) 

 Nonparametric: Similar inputs have similar outputs 

 Functions (pdf, discriminant, regression) change smoothly 

 Keep the training data;“let the data speak for itself” 

 Given x, find a small number of closest training instances 
and interpolate from these 

 Aka lazy/memory-based/case-based/instance-based 
learning 
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 Given the training set X={xt}t drawn iid from p(x) 

 Divide data into bins of size h 

 Histogram: 

 

 Naive estimator: 

 

 or 

 

 

Density Estimation 

 
 

Nh

xx
xp

t  as bin same the in #
ˆ 

40 

 
 

Nh

hxxhx
xp

t

2




#
ˆ

   


 








 
 

 otherwise

 if
   

0

1211

1

u
uw

h

xx
w

Nh
xp

N

t

t /
ˆ



41 



42 



43 



 Instead of fixing bin width h and counting the number of 
instances, fix the instances (neighbors) k and check bin 
width 

 

 

 

 dk(x), distance to kth closest instance to x 

k-Nearest Neighbor Estimator 
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 Kernel density estimator 
 
 
 

 Multivariate Gaussian kernel 
 
 spheric 
 
 ellipsoid 

Multivariate Data 
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 Estimate p(x|Ci) and use Bayes’ rule 

 Kernel estimator 

 

 

 

 

 k-NN estimator 

Nonparametric Classification 
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Nonparametric Regression 
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 Aka smoothing models 

 Regressogram 
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Running Mean/Kernel Smoother 
 Running mean smoother 

 

 

 

 

 

 

 

 

 

 

 Running line smoother 

 Kernel smoother 

 

 

 

 

 

  

 where K( ) is Gaussian 

 

 Additive models (Hastie and 
Tibshirani, 1990)  
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How to Choose k or h? 
 When k or h is small, single instances matter; bias is 

small, variance is large (undersmoothing): High 
complexity 

 As k or h increases, we average over more instances and 
variance decreases but bias increases (oversmoothing): 
Low complexity 

 Cross-validation is used to finetune k or h. 
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Likelihood- vs. Discriminant-based 
Classification 
 Likelihood-based: Assume a model for p(x|Ci), use Bayes’ 

rule to calculate P(Ci|x)  

  gi(x) = log P(Ci|x) 

 Discriminant-based: Assume a model for gi(x|Φi); no 
density estimation 

 Estimating the boundaries is enough; no need to 
accurately estimate the densities inside the boundaries 
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 Linear discriminant: 

 

 

 Advantages: 
 Simple: O(d) space/computation  

 Knowledge extraction: Weighted sum of attributes; 
positive/negative weights, magnitudes (credit scoring) 

 Optimal when p(x|Ci) are Gaussian with shared cov matrix; 
useful when classes are (almost) linearly separable 

Linear Discriminant 
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 Quadratic discriminant: 

 

 

 Higher-order (product) terms: 

 

  

 Map from x to z using nonlinear basis functions and use a 
linear discriminant in z-space 

Generalized Linear Model 
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Multilayer Perceptrons 
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(Rumelhart et al., 1986) 
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x1 XOR x2 = (x1 AND ~x2) OR (~x1 AND x2) 
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Kernel Machines 
 Discriminant-based: No need to estimate densities first 

 Define the discriminant in terms of support vectors 

 The use of kernel functions, application-specific measures 
of similarity 

 No need to represent instances as vectors 

 Convex optimization problems with a unique solution 
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Optimal Separating Hyperplane 

(Cortes and Vapnik, 1995; Vapnik, 1995) 
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Margin 
 Distance from the discriminant to the closest instances on 

either side 

 Distance of x to the hyperplane is 

 

 To max margin 
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Most αt are 0 and only a small number have αt >0; they are 
the support vectors 
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Soft Margin Hyperplane 

 Not linearly separable 

 

 

 Soft error 
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Hinge Loss 
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Kernel Trick 

 Preprocess input x by basis functions 

  z = φ(x)  g(z)=wTz   

     g(x)=wT φ(x) 

 The SVM solution  
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Vectorial Kernels 

 Polynomials of degree q: 
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Vectorial Kernels 

 Radial-basis functions: 
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Defining kernels 
 Kernel “engineering” 

 Defining good measures of similarity 

 String kernels, graph kernels, image kernels, ... 

 Empirical kernel map: Define a set of templates mi and 
score function s(x,mi) 

  (xt)=[s(xt,m1), s(xt,m2),..., s(xt,mM)] 

 and  

 K(x,xt)=(x)T (xt) 
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 Fixed kernel combination 

 

 

 Adaptive kernel combination 

 

 

 

 

 Localized kernel combination (see Part II) 

Multiple Kernel Learning 
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SVM for Regression 

 Use a linear model (possibly kernelized) 

   f(x)=wTx+w0 

 Use the є-sensitive error function 
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Kernel Regression 

 Polynomial kernel  Gaussian kernel 
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One-Class Kernel Machines 
 Consider a sphere with center a and radius R 
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Conclusions 
 So many algorithms, so little time 

 Choosing the best model; statistical tests. 

 No Free Lunch theorem 

 Do different methods make different errors? See Part II. 
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