Machine Learning Part I: Introduction

Ethem Alpaydın alpaydin@boun.edu.tr

Ref: E. Alpaydın (2010). Introduction to Machine Learning, 2e, The MIT Press.

Learning a Class from Examples

- Class C of a "family car"
- Prediction: Is car x a family car?
- Knowledge extraction: What do people expect from a family car?
- Output:

Positive (+) and negative (-) examples

- Input representation:
x_{1} : price, x_{2} : engine power

Training set \mathcal{X}

Hypothesis class \mathcal{H}

S, G, and the Version Space

Margin

- Choose h with largest margin

Noise and Model Complexity

Use the simpler one because

- Simpler to use
(lower computational complexity)
- Easier to train (lower space complexity)
- Easier to explain (more interpretable)
- Generalizes better (lower variance - Occam's razor)

θ

\ominus

Multiple Classes, $C_{\mathrm{i}} \mathrm{i}=1, \ldots, \mathrm{~K}$

Face Recognition

Training examples of a person and negative examples

Test image

ORL dataset,
AT\&T Laboratories, Cambridge UK

Regression

- Example: Price of a used car
- x : car attributes y : price

$$
y=g(x \mid \theta)
$$

$g()$ model,
θ parameters

Regression

$$
\begin{aligned}
& \mathcal{X}=\left\{x^{t}, r^{t}\right\}_{t=1}^{N} \\
& r^{t} \in \mathfrak{R} \\
& r^{t}=f\left(x^{t}\right)+\varepsilon \\
& E(g \mid X)=\frac{1}{N} \sum_{t=1}^{N}\left[r^{t}-g\left(x^{t}\right)\right]^{2} \\
& E\left(w_{1}, w_{0} \mid X\right)=\frac{1}{N} \sum_{t=1}^{N}\left[r^{t}-\left(w_{1} x^{t}+w_{0}\right)\right]^{2} \\
&
\end{aligned}
$$

Regression Applications

- Navigating a car: Angle of the steering wheel
- Kinematics of a robot arm

Response surface design

Supervised Learning: Uses

- Prediction of future cases: Use the rule to predict the output for future inputs
- Knowledge extraction: The rule is easy to understand
- Compression: The rule is simpler than the data it explains
- Outlier detection: Exceptions that are not covered by the rule, e.g., fraud

Triple Trade-Off

- There is a trade-off between three factors (Dietterich, 2003):

1. Complexity of $\mathcal{H}, c(\mathcal{H})$,
2. Training set size, N,
3. Generalization error, E, on new data
$\square \quad$ As $N, E \downarrow$
$\square \quad \operatorname{Asc}(\mathcal{H})$, first $E \downarrow$ and then E

Cross-Validation

- To estimate generalization error, we need data unseen during training. We split the data as
- Training set (50\%)
- Validation set (25\%)
- Test (publication) set (25\%)
- Resampling when the data set is small

Dimensions of a Supervised Learner

1. Model: $g(\mathbf{x} \mid \theta)$
2. Loss function:

$$
E(\theta \mid \mathcal{X})=\sum_{t} \iota\left(r^{t}, g\left(\mathbf{x}^{t} \mid \theta\right)\right)
$$

3. Optimization procedure:

$$
\theta^{*}=\underset{\theta}{\operatorname{argmin}} E(\theta \mid \mathcal{X})
$$

Model Selection \& Generalization

- Learning is an ill-posed problem; data is not sufficient to find a unique solution
- The need for inductive bias, assumptions about \mathcal{H}
- Generalization: How well a model performs on new data
- Overfitting: \mathcal{H} more complex than $\operatorname{Cor} f$
- Underfitting: \mathcal{H} less complex than \mathcal{C} or f

Bayesian Decision Theory

Estimating Probabilities

- Family car or not: Inputs are engine power and price.

Output is family-car vs not-family-car.

- Input: $\boldsymbol{x}=\left[x_{1}, x_{2}\right]^{\top}$,Output: $\mathrm{C} \in\{0,1\}$
- Prediction:

$$
\text { choose }\left\{\begin{array}{l}
C=1 \text { if } P\left(C=1 \mid x_{1}, x_{2}\right)>0.5 \\
C=0 \text { otherwise }
\end{array}\right.
$$

or
choose $\left\{\begin{array}{l}C=1 \text { if } P\left(C=1 \mid x_{1}, x_{2}\right)>P\left(C=0 \mid x_{1}, x_{2}\right) \\ C=0 \text { otherwise }\end{array}\right.$

Bayes' Rule

prior likelihood
posterior

$$
P(C \mid \mathbf{x})=\frac{P(C) p(\mathbf{x} \mid C)}{p(\mathbf{x})}
$$

evidence

$$
\begin{aligned}
& P(C=0)+P(C=1)=1 \\
& p(\mathbf{x})=p(\mathbf{x} \mid C=1) P(C=1)+p(\mathbf{x} \mid C=0) P(C=0) \\
& p(C=0 \mid \mathbf{x})+P(C=1 \mid \mathbf{x})=1
\end{aligned}
$$

Bayes' Rule: K>2 Classes

$$
\begin{aligned}
& P\left(C_{i} \mid \mathbf{x}\right)=\frac{p\left(\mathbf{x} \mid C_{i}\right) P\left(C_{i}\right)}{p(\mathbf{x})} \\
& =\frac{p\left(\mathbf{x} \mid C_{i}\right) P\left(C_{i}\right)}{\sum_{k=1}^{K} p\left(\mathbf{x} \mid C_{k}\right) P\left(C_{k}\right)} \\
& P\left(C_{i}\right) \geq 0 \text { and } \sum_{i=1}^{K} P\left(C_{i}\right)=1
\end{aligned}
$$

choose C_{i} if $P\left(C_{i} \mid \mathbf{x}\right)=\max _{k} P\left(C_{k} \mid \mathbf{x}\right)$

Losses and Risks

- Actions: α_{i}
- Loss of α_{i} when the state is $C_{k}: \lambda_{i k}$
- Expected risk (Duda and Hart, 1973)

$$
\begin{aligned}
& R\left(\alpha_{i} \mid \mathbf{x}\right)=\sum_{k=1}^{K} \lambda_{i k} P\left(C_{k} \mid \mathbf{x}\right) \\
& \operatorname{choose} \alpha_{i} \text { if } R\left(\alpha_{i} \mid \mathbf{x}\right)=\min _{k} R\left(\alpha_{k} \mid \mathbf{x}\right)
\end{aligned}
$$

Losses and Risks: 0/1 Loss

$$
\begin{aligned}
& \lambda_{i k}=\left\{\begin{array}{l}
0 \text { if } i=k \\
1 \text { if } i \neq k
\end{array}\right. \\
& \begin{aligned}
R\left(\alpha_{i} \mid \mathbf{x}\right) & =\sum_{k=1}^{k} \lambda_{i k} P\left(c_{k} \mid \mathbf{x}\right) \\
& =\sum_{k \neq i} P\left(C_{k} \mid \mathbf{x}\right) \\
& =1-P\left(c_{i} \mid \mathbf{x}\right)
\end{aligned}
\end{aligned}
$$

For minimum risk, choose the most probable class Action of "reject"
Misclassification costs may not be symmetric

Discriminant Functions

$\operatorname{chooseC}_{i}$ if $g_{i}(\mathbf{x})=\max _{k} g_{k}(\mathbf{x})$

$$
g_{i}(\mathbf{x})=\left\{\begin{array}{l}
-R\left(\alpha_{i} \mid \mathbf{x}\right) \\
P\left(C_{i} \mid \mathbf{x}\right) \\
p\left(\mathbf{x} \mid C_{i}\right) P\left(C_{i}\right)
\end{array}\right.
$$

K decision regions $\mathcal{R}_{1}, \ldots, \mathcal{R}_{K}$

$$
\mathcal{R}_{t}=\left\{\mathbf{x} \mid g_{i}(\mathbf{x})=\max _{k} g_{k}(\mathbf{x})\right\}
$$

$g_{i}(\mathbf{x}), i=1, \ldots, K$

Parametric Estimation of Densities

- $\mathcal{X}=\left\{x^{t}\right\}_{t}$ where $x^{t \sim} p(x)$
- Parametric estimation:

Assume a form for $p(x \mid \theta)$ and estimate θ, its sufficient statistics, using X
e.g., $N\left(\mu, \sigma^{2}\right)$ where $\theta=\left\{\mu, \sigma^{2}\right\}$

Maximum Likelihood Estimation

- Likelihood of θ given the sample X

$$
l(\theta \mid \mathcal{X})=p(X \mid \theta)=\Pi_{t} p\left(x^{t} \mid \theta\right)
$$

- Log likelihood

$$
L(\theta \mid X)=\log l(\theta \mid X)=\sum_{t} \log p\left(x^{t} \mid \theta\right)
$$

- Maximum likelihood estimator (MLE)

$$
\theta^{*}=\operatorname{argmax}_{\theta} L(\theta \mid \chi)
$$

Bayes' Estimator

- Treat θ as a random var with prior $p(\theta)$
- Bayes' rule: $p(\theta \mid \mathcal{X})=p(X \mid \theta) p(\theta) / p(X)$
- Full: $p(x \mid \mathcal{X})=\int p(x \mid \theta) p(\theta \mid X) d \theta$
- Maximum a Posteriori (MAP): $\theta_{\text {MAP }}=\operatorname{argmax}_{\vartheta} p(\theta \mid X)$
- Maximum Likelihood (ML): $\theta_{\mathrm{ML}}=\operatorname{argmax}_{\vartheta} p(X \mid \theta)$
- Bayes': $\theta_{\text {Bayes }}=\mathrm{E}[\theta \mid \mathcal{X}]=\int \theta p(\theta \mid \mathcal{X}) d \theta$

Parametric Classification

- If $p\left(x \mid C_{i}\right) \sim N\left(\mu_{i}, \Sigma_{i}\right)$

$$
p\left(\mathbf{x} \mid C_{i}\right)=\frac{1}{(2 \pi)^{d / 2}\left|\Sigma_{i}\right|^{1 / 2}} \exp \left[-\frac{1}{2}\left(\mathbf{x}-\boldsymbol{\mu}_{i}\right)^{\top} \Sigma_{i}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{i}\right)\right]
$$

- Discriminant functions

$$
\begin{aligned}
g_{i}(\mathbf{x}) & =\log p\left(\mathbf{x} \mid C_{i}\right)+\log P\left(C_{i}\right) \\
& =-\frac{d}{2} \log 2 \pi-\frac{1}{2} \log \left|\Sigma_{i}\right|-\frac{1}{2}\left(\mathbf{x}-\mu_{i}\right)^{\top} \Sigma_{i}^{-1}\left(\mathbf{x}-\mu_{i}\right)+\log P\left(C_{i}\right)
\end{aligned}
$$

likelihoods
x_{2}
discriminant:

$$
P\left(C_{1} \mid x\right)=0.5
$$

Model Selection

Assumption	Covariance matrix	No of parameters
Shared, Hyperspheric	$S_{i}=\mathbf{S}=s^{2} \mathbf{I}$	1
Shared, Axis-aligned	$\mathbf{S}_{i}=\mathbf{S}$, with $s_{i j}=0$	d
Shared, Hyperellipsoidal	$\mathbf{S}_{i}=\mathbf{S}$	$d(d+1) / 2$
Different, Hyperellipsoidal	\mathbf{S}_{i}	$K d(d+1) / 2$

- As we increase complexity (less restricted \mathbf{S}), bias decreases and variance increases
- Assume simple models (allow some bias) to control variance (regularization)

Population likelihoods and posteriors

Arbitrary covar.

Diag. covar.

Equal var.

Bias and Variance

Unknown parameter θ
Estimator $d_{i}=d\left(\mathrm{X}_{i}\right)$ on sample X_{i}
variance
Bias: $b_{\theta}(d)=E[d]-\theta$
Variance: $E\left[(d-E[d])^{2}\right]$

Mean square error:
$r(d, \theta)=E\left[(d-\theta)^{2}\right]$

$\mathrm{E}[d]$
\longleftrightarrow
$=(E[d]-\theta)^{2}+E\left[(d-E[d])^{2}\right]$
$=$ Bias $^{2}+$ Variance
(a) Function and data

(c) Order 3

(b) Order 1

(d) Order 5

Polynomial Regression

(a) Data and fitted polynomials

(b) Error vs polynomial order

Model Selection

- Cross-validation: Measure generalization accuracy by testing on data unused during training
- Regularization: Penalize complex models
$E^{\prime}=e r r o r$ on data $+\lambda$ model complexity
- Minimum description length (MDL): Kolmogorov complexity, shortest description of data
- Structural risk minimization (SRM)

Bayesian Model Selection

- Prior on models, p (model)

$$
p(\text { mode } \| \mathrm{data})=\frac{p(\text { data } \mid \text { mode }) p(\text { mode })}{p(\text { data })}
$$

- Regularization, when prior favors simpler models
- Bayes, MAP of the posterior, p(model|data)
- Average over a number of models with high posterior (voting, ensembles: see Part II)

Regression example

Coefficients increase in magnitude as order increases:
1: [-0.0769, 0.0016]
2: [0.1682, -0.6657, 0.0080]
3: [0.4238, -2.5778, 3.4675,
-0.0002
4: [-0.1093, 1.4356,
$-5.5007,6.0454,-0.0019]$

regularization: $E(\mathbf{w} \mid \mathcal{X})=\frac{1}{2} \sum_{t=1}^{N}\left[r^{t}-g\left(x^{t} \mid \mathbf{w}\right)\right]^{2}+\lambda \sum_{i} w_{i}^{2}$

Nonparametric Estimation

- Parametric (single global model), semiparametric (small number of local models)
- Nonparametric: Similar inputs have similar outputs
- Functions (pdf, discriminant, regression) change smoothly
- Keep the training data;"let the data speak for itself"
- Given \boldsymbol{x}, find a small number of closest training instances and interpolate from these
- Aka lazy/memory-based/case-based/instance-based learning

Density Estimation

- Given the training set $X=\left\{x^{t}\right\}_{t}$ drawn iid from $p(x)$
- Divide data into bins of size h
- Histogram:

$$
\hat{p}(x)=\frac{\#\left\{x^{t} \text { in the samebinas } x\right\}}{N h}
$$

- Naive estimator:

$$
\hat{p}(x)=\frac{\#\left\{x-h<x^{t} \leq x+h\right\}}{2 N h}
$$

or

$$
\hat{p}(x)=\frac{1}{N h} \sum_{t=1}^{N} w\left(\frac{x-x^{t}}{h}\right) w(u)= \begin{cases}1 / 2 & \text { if }|u|<1 \\ 0 & \text { otherwise }\end{cases}
$$

Naive estimator: h=2

Kernel estimator: $\mathrm{h}=1$

k-Nearest Neighbor Estimator

- Instead of fixing bin width h and counting the number of instances, fix the instances (neighbors) k and check bin width

$$
\hat{p}(x)=\frac{k}{2 N d_{k}(x)}
$$

$d_{k}(x)$, distance to k th closest instance to x
$\mathrm{k}-\mathrm{NN}$ estimator: $\mathrm{k}=5$

Multivariate Data

- Kernel density estimator

$$
\hat{p}(\mathbf{x})=\frac{1}{N h^{d}} \sum_{t=1}^{N} K\left(\frac{\mathbf{x}-\mathbf{x}^{t}}{h}\right)
$$

Multivariate Gaussian kernel
spheric

$$
\begin{aligned}
& K(\mathbf{u})=\left(\frac{1}{\sqrt{2 \pi}}\right)^{d} \exp \left[-\frac{\|\mathbf{u}\|^{2}}{2}\right] \\
& K(\mathbf{u})=\frac{1}{(2 \pi)^{d / 2} \mid \mathbf{S}^{1 / 2}} \exp \left[-\frac{1}{2} \mathbf{u}^{\top} \mathbf{S}^{-1} \mathbf{u}\right]
\end{aligned}
$$

ellipsoid

Nonparametric Classification

- Estimate $p\left(\boldsymbol{x} \mid \mathrm{C}_{\mathrm{i}}\right)$ and use Bayes' rule
- Kernel estimator

$$
\begin{aligned}
& \hat{p}\left(\mathbf{x} \mid C_{i}\right)=\frac{1}{N_{i} h^{d}} \sum_{t=1}^{N} K\left(\frac{\mathbf{x}-\mathbf{x}^{t}}{h}\right) r_{i}^{t} \hat{P}\left(C_{i}\right)=\frac{N_{i}}{N} \\
& g_{i}(\mathbf{x})=\hat{p}\left(\mathbf{x} \mid C_{i}\right) \hat{P}\left(C_{i}\right)=\frac{1}{N h^{d}} \sum_{t=1}^{N} K\left(\frac{\mathbf{x}-\mathbf{x}^{t}}{h}\right) r_{i}^{t}
\end{aligned}
$$

- k-NN estimator

$$
\hat{p}\left(\mathbf{x} \mid C_{i}\right)=\frac{k_{i}}{N_{i} V^{k}(\mathbf{x})} \hat{P}\left(C_{i} \mid \mathbf{x}\right)=\frac{\hat{p}\left(\mathbf{x} \mid C_{i}\right) \hat{P}\left(C_{i}\right)}{\hat{p}(\mathbf{x})}=\frac{k_{i}}{k}
$$

Nonparametric Regression

- Aka smoothing models
- Regressogram

$$
\hat{g}(x)=\frac{\sum_{t=1}^{N} b\left(x, x^{t}\right) r^{t}}{\sum_{t=1}^{N} b\left(x, x^{t}\right)}
$$

where
$b\left(x, x^{t}\right)= \begin{cases}1 & \text { if } x^{t} \text { is in the samebin with } x \\ 0 & \text { otherwise }\end{cases}$

Regressogram smoother: $\mathrm{h}=6$

Regressogram linear smoother: $h=6$

Running Mean/Kernel Smoother

- Running mean smoother

$$
\hat{g}(x)=\frac{\sum_{t=1}^{N} w\left(\frac{x-x^{t}}{h}\right) r^{t}}{\sum_{t=1}^{N} w\left(\frac{x-x^{t}}{h}\right)}
$$

where

$$
w(u)= \begin{cases}1 & \text { if }|u|<1 \\ 0 & \text { otherwise }\end{cases}
$$

- Kernel smoother

$$
\hat{g}(x)=\frac{\sum_{t=1}^{N} K\left(\frac{x-x^{t}}{h}\right) r^{t}}{\sum_{t=1}^{N} K\left(\frac{x-x^{t}}{h}\right)}
$$

where $K()$ is Gaussian

- Additive models (Hastie and Tibshirani, 1990)
- Running line smoother

Running mean smoother: $\mathrm{h}=6$

Running line smooth: $h=6$

Kernel smooth: $h=1$

How to Choose k or h?

- When k or h is small, single instances matter; bias is small, variance is large (undersmoothing): High complexity
- As k or h increases, we average over more instances and variance decreases but bias increases (oversmoothing): Low complexity
- Cross-validation is used to finetune k or h.

Kernel estimator for two classes: $\mathrm{h}=1$

Discriminant-Based Models

Likelihood- vs. Discriminant-based Classification

- Likelihood-based: Assume a model for $p\left(\boldsymbol{x} \mid \mathrm{C}_{i}\right)$, use Bayes' rule to calculate $P\left(C_{i} \mid \boldsymbol{x}\right)$

$$
g_{i}(x)=\log P\left(C_{i} \mid x\right)
$$

- Discriminant-based: Assume a model for $g_{i}\left(x \mid \Phi_{i}\right)$; no density estimation
- Estimating the boundaries is enough; no need to accurately estimate the densities inside the boundaries

Linear Discriminant

- Linear discriminant:

$$
g_{i}\left(\mathbf{x} \mid \mathbf{w}_{i}, w_{i 0}\right)=\mathbf{w}_{i}^{\top} \mathbf{x}+w_{i 0}=\sum_{j=1}^{d} w_{i j} x_{j}+w_{i 0}
$$

- Advantages:
- Simple: O(d) space/computation
- Knowledge extraction: Weighted sum of attributes; positive/negative weights, magnitudes (credit scoring)
- Optimal when $p\left(\boldsymbol{x} \mid \mathrm{C}_{i}\right)$ are Gaussian with shared cov matrix; useful when classes are (almost) linearly separable

Generalized Linear Model

- Quadratic discriminant:

$$
g_{i}\left(\mathbf{x} \mid \mathbf{W}_{i}, \mathbf{w}_{i}, w_{i 0}\right)=\mathbf{x}^{\top} \mathbf{W}_{i} \mathbf{x}+\mathbf{w}_{i}^{\top} \mathbf{x}+w_{i 0}
$$

- Higher-order (product) terms:

$$
z_{1}=x_{1}, z_{2}=x_{2}, z_{3}=x_{1}^{2}, z_{4}=x_{2}^{2}, z_{5}=x_{1} x_{2}
$$

Map from \boldsymbol{x} to \boldsymbol{z} using nonlinear basis functions and use a linear discriminant in z-space

$$
g_{i}(\mathbf{x})=\sum_{j=1}^{k} w_{i j} \phi_{j}(\mathbf{x})
$$

Multilayer Perceptrons

x_{1} XOR $x_{2}=\left(x_{1}\right.$ AND $\left.{ }^{\sim} x_{2}\right)$ OR $\left(\sim_{1}\right.$ AND $\left.x_{2}\right)$

Kernel Machines

- Discriminant-based: No need to estimate densities first
- Define the discriminant in terms of support vectors
- The use of kernel functions, application-specific measures of similarity
- No need to represent instances as vectors
- Convex optimization problems with a unique solution

Optimal Separating Hyperplane

$$
\mathcal{X}=\left\{\mathbf{x}^{t}, r^{t}\right\}_{t} \text { where } r^{t}= \begin{cases}+1 & \text { if } \mathbf{x}^{t} \in C_{1} \\ -1 & \text { if } \mathbf{x}^{t} \in C_{2}\end{cases}
$$

find w and w_{0} such that
$\mathbf{w}^{\top} \mathbf{x}^{t}+w_{0} \geq+1$ for $r^{t}=+1$
$\mathbf{w}^{\top} \mathbf{x}^{t}+w_{0} \leq+1$ for $r^{t}=-1$
which can be rewritten as
$r^{t}\left(\mathbf{w}^{\top} \mathbf{x}^{t}+w_{0}\right) \geq+1$
(Cortes and Vapnik, 1995; Vapnik, 1995)

Margin

- Distance from the discriminant to the closest instances on either side
- Distance of x to the hyperplane is $\frac{\left|\mathbf{w}^{\top} \mathbf{x}^{t}+w_{0}\right|}{\|\mathbf{w}\|}$
- To max margin

$$
\min \frac{1}{2}\|\mathbf{w}\|^{2} \text { subjectto } r^{t}\left(\mathbf{w}^{\top} \mathbf{x}^{t}+w_{0}\right) \geq+1, \forall t
$$

Margin

$$
\begin{aligned}
& \min \frac{1}{2}\|\mathbf{w}\|^{2} \text { subjectto } r^{t}\left(\mathbf{w}^{\top} \mathbf{x}^{t}+w_{0}\right) \geq+1, \forall t \\
& L_{p}=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{t=1}^{N} \alpha^{t}\left[r^{t}\left(\mathbf{w}^{\top} \mathbf{x}^{t}+w_{0}\right)-1\right] \\
& \quad=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{t=1}^{N} \alpha^{t} r^{t}\left(\mathbf{w}^{\top} \mathbf{x}^{t}+w_{0}\right)+\sum_{t=1}^{N} \alpha^{t} \\
& \frac{\partial L_{p}}{\partial \mathbf{w}}=0 \Rightarrow \mathbf{w}=\sum_{t=1}^{N} \alpha^{t} r^{t} \mathbf{x}^{t} \\
& \frac{\partial L_{p}}{\partial w_{0}}=0 \Rightarrow \sum_{t=1}^{N} \alpha^{t} r^{t}=0
\end{aligned}
$$

$$
\begin{aligned}
L_{d} & =\frac{1}{2}\left(\mathbf{w}^{\top} \mathbf{w}\right)-\mathbf{w}^{\top} \sum_{t} \alpha^{t} r^{t} \mathbf{x}^{t}-w_{0} \sum_{t} \alpha^{t} r^{t}+\sum_{t} \alpha^{t} \\
& =-\frac{1}{2}\left(\mathbf{w}^{\top} \mathbf{w}\right)+\sum_{t} \alpha^{t} \\
& =-\frac{1}{2} \sum_{t} \sum_{s} \alpha^{t} \alpha^{s} r^{t} r^{s}\left(\mathbf{x}^{t}\right)^{T} \mathbf{x}^{s}+\sum_{t} \alpha^{t}
\end{aligned}
$$

subjectto $\sum_{t} \alpha^{t} r^{t}=0$ and $\alpha^{t} \geq 0, \forall t$

Most α^{t} are 0 and only a small number have $\alpha^{t}>0$; they are the support vectors

Soft Margin Hyperplane

- Not linearly separable

$$
r^{t}\left(\mathbf{w}^{T} \boldsymbol{x}^{t}+w_{0}\right) \geq 1-\xi^{t}
$$

- Soft error

$$
\sum_{t} \xi^{t}
$$

- New primal is

$$
L_{p}=\frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{t} \xi^{t}-\sum_{t} \alpha^{t}\left[r^{t}\left(\mathbf{w}^{\top} x^{t}+w_{0}\right)-1+\xi^{t}\right]-\sum_{t} \mu^{t} \xi^{t}
$$

Hinge Loss
 $L_{\text {hinge }}\left(y^{t}, r^{t}\right)=\left\{\begin{array}{cc}0 & \text { if } y^{t} r^{t} \geq 1 \\ 1-y^{t} r^{t} & \text { otherwise }\end{array}\right.$

Kernel Trick

- Preprocess input \boldsymbol{x} by basis functions

$$
z=\varphi(x) \quad \begin{array}{ll}
g(z)=w^{\top} z \\
& g(x)=w^{\top} \varphi(x)
\end{array}
$$

- The SVM solution

$$
\begin{aligned}
& \mathbf{w}=\sum_{t} \alpha^{t} r^{t} \mathbf{z}^{t}=\sum_{t} \alpha^{t} r^{t} \varphi\left(\mathbf{x}^{t}\right) \\
& g(\mathbf{x})=\mathbf{w}^{T} \varphi(\mathbf{x})=\sum_{t} \alpha^{t} r^{t} \varphi\left(\mathbf{x}^{t}\right)^{T} \varphi(\mathbf{x}) \\
& g(\mathbf{x})=\sum_{t} \alpha^{t} r^{t} K\left(\mathbf{x}^{t}, \mathbf{x}\right)
\end{aligned}
$$

Vectorial Kernels

- Polynomials of degree q :

$$
K\left(\mathbf{x}^{t}, \mathbf{x}\right)=\left(\mathbf{x}^{\top} \mathbf{x}^{t}+1\right)^{a}
$$

$$
K(\mathbf{x}, \mathbf{y})=\left(\mathbf{x}^{\top} \mathbf{y}+1\right)^{2}
$$

$$
=\left(x_{1} y_{1}+x_{2} y_{2}+1\right)^{2}
$$

$$
=1+2 x_{1} y_{1}+2 x_{2} y_{2}+2 x_{1} x_{2} y_{1} y_{2}+x_{1}^{2} y_{1}^{2}+x_{2}^{2} y_{2}^{2}
$$

$$
\phi(\mathbf{x})=\left[1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, \sqrt{2} x_{1} x_{2}, x_{1}^{2}, x_{2}^{2}\right]^{\top}
$$

Vectorial Kernels

- Radial-basis functions:

$$
K\left(\mathbf{x}^{t}, \mathbf{x}\right)=\exp \left[-\frac{\left\|\mathbf{x}^{t}-\mathbf{x}\right\|^{2}}{2 s^{2}}\right]
$$

Defining kernels

- Kernel "engineering"
- Defining good measures of similarity
- String kernels, graph kernels, image kernels, ...
- Empirical kernel map: Define a set of templates \boldsymbol{m}_{i} and score function $s\left(\boldsymbol{x}, \boldsymbol{m}_{i}\right)$

$$
\begin{aligned}
& \phi\left(\boldsymbol{x}^{t}\right)=\left[s\left(\boldsymbol{x}^{t}, \boldsymbol{m}_{1}\right), s\left(\boldsymbol{x}^{t}, \boldsymbol{m}_{2}\right), \ldots, s\left(\boldsymbol{x}^{t}, \boldsymbol{m}_{M}\right)\right] \\
& \text { and }
\end{aligned}
$$

$K\left(\boldsymbol{x}, \boldsymbol{x}^{t}\right)=\phi(\boldsymbol{x})^{\top} \phi\left(\boldsymbol{x}^{t}\right)$

Multiple Kernel Learning

- Fixed kernel combination

$$
K(\mathbf{x}, \mathbf{y})=\left\{\begin{array}{c}
c K(\mathbf{x}, \mathbf{y}) \\
K_{1}(\mathbf{x}, \mathbf{y})+K_{2}(\mathbf{x}, \mathbf{y}) \\
K_{1}(\mathbf{x}, \mathbf{y}) K_{2}(\mathbf{x}, \mathbf{y})
\end{array}\right.
$$

- Adaptive kernel combination

$$
\begin{aligned}
& K(\mathbf{x}, \mathbf{y})=\sum_{i=1}^{m} \eta_{i} K_{i}(\mathbf{x}, \mathbf{y}) \\
& L_{d}=\sum_{t} \alpha^{t}-\frac{1}{2} \sum_{t} \sum_{s} \alpha^{t} \alpha^{s} r^{t} r^{s} \sum_{i} \eta_{i} K_{i}\left(\mathbf{x}^{t}, \mathbf{x}^{s}\right) \\
& g(\mathbf{x})=\sum_{t} \alpha^{t} r^{t} \sum_{i} \eta_{i} K_{i}\left(\mathbf{x}^{t}, \mathbf{x}\right)
\end{aligned}
$$

- Localized kernel combination (see Part II)

$$
g(\mathbf{x})=\sum_{t} \alpha^{t} r^{t} \sum_{i} \eta_{i}(\mathbf{x} \mid \theta) K_{i}\left(\mathbf{x}^{t}, \mathbf{x}\right)
$$

SVM for Regression

- Use a linear model (possibly kernelized)

$$
f(\boldsymbol{x})=\boldsymbol{w}^{\top} \boldsymbol{x}+w_{0}
$$

- Use the ϵ-sensitive error function

$$
\begin{aligned}
& \begin{array}{l}
e_{\varepsilon}\left(r^{t}, f\left(\mathbf{x}^{t}\right)\right)=\left\{\begin{array}{l}
0 \\
1 r^{t}-f\left(x^{t}\right.
\end{array}\right. \\
\|\mathbf{w}\|^{2}+C \sum_{t}\left(\xi_{+}^{t}+\xi_{-}^{t}\right)
\end{array} \\
& r^{t}-\left(\mathbf{w}^{\top} \mathbf{x}+w_{0}\right) \leq \varepsilon+\xi_{+}^{t} \\
& \left(\mathbf{w}^{\top} \mathbf{x}+w_{0}\right)-r^{t} \leq \varepsilon+\xi_{-}^{t} \\
& \xi_{+}^{t}, \xi_{-}^{t} \geq 0
\end{aligned}
$$

Kernel Regression

- Polynomial kernel

- Gaussian kernel
(a) $\mathrm{s}^{2}=5$

(8)

One-Class Kernel Machines

- Consider a sphere with center \boldsymbol{a} and radius R $\min R^{2}+C \sum_{t} \xi^{t}$
subjectto

$$
\begin{gathered}
\left\|\mathbf{x}^{t}-a\right\| \leq R^{2}+\xi^{t}, \xi^{t} \geq 0 \\
L_{d}=\sum_{t} \alpha^{t}\left(x^{t}\right)^{\top} x^{s}-\sum_{t=1}^{N} \sum_{s} \alpha^{t} \alpha^{s} r^{t} r^{s}\left(x^{t}\right)^{T} x^{s}
\end{gathered}
$$

subjectto

$$
0 \leq \alpha^{t} \leq C, \sum_{t} \alpha^{t}=1
$$

Conclusions

- So many algorithms, so little time
- Choosing the best model; statistical tests.
- No Free Lunch theorem
- Do different methods make different errors? See Part II.

