Topological Data Analysis Part I: Persistent homology

Ulrich Bauer

TUM
February 4, 2015

Persistent homology

What is persistent homology?

What is persistent homology?

What is persistent homology?

Persistent homology is the homology of a filtration.

What is persistent homology?

Persistent homology is the homology of a filtration.

- A filtration is a certain diagram $K: \mathbf{R} \rightarrow$ Top.

What is persistent homology?

Persistent homology is the homology of a filtration.

- A filtration is a certain diagram $K: \mathbf{R} \rightarrow$ Top.
- A topological space K_{t} for each $t \in \mathbb{R}$

What is persistent homology?

Persistent homology is the homology of a filtration.

- A filtration is a certain diagram $K: \mathbf{R} \rightarrow$ Top.
- A topological space K_{t} for each $t \in \mathbb{R}$
- An inclusion map $K_{s} \leftrightarrow K_{t}$ for each $s \leq t \in \mathbb{R}$

What is persistent homology?

Persistent homology is the homology of a filtration.

- A filtration is a certain diagram $K: \mathbf{R} \rightarrow$ Top.
- A topological space K_{t} for each $t \in \mathbb{R}$
- An inclusion $\operatorname{map} K_{s} \rightarrow K_{t}$ for each $s \leq t \in \mathbb{R}$
- \mathbf{R} is the poset category of (\mathbb{R}, \leq)

The pipeline of topological data analysis

Geometry

Topology

Algebra

Combinatorics
point cloud
\downarrow distance
function

topological spaces

vector spaces

intervals

Simplification \&

Reconstruction

Homology inference

Problem (Homology inference)

Determine the homology $H_{*}(\Omega)$ of a shape $\Omega \subset \mathbb{R}^{d}$ from a finite sample $P \subset \Omega$.

Homology inference

Problem (Homology inference)

Determine the homology $H_{*}(\Omega)$ of a shape $\Omega \subset \mathbb{R}^{d}$ from a finite sample $P \subset \Omega$.

Problem (Homological reconstruction)

Given a finite sample $P \subset \Omega$, construct a shape X that is geometrically close to Ω and satisfies $H_{*}(X) \cong H_{*}(\Omega)$.

Homology inference

Problem (Homology inference)

Determine the homology $H_{*}(\Omega)$ of a shape $\Omega \subset \mathbb{R}^{d}$ from a finite sample $P \subset \Omega$.

Problem (Homological reconstruction)

Given a finite sample $P \subset \Omega$, construct a shape X that is geometrically close to Ω and satisfies $H_{*}(X) \cong H_{*}(\Omega)$. Idea:

Homology inference

Problem (Homology inference)

Determine the homology $H_{*}(\Omega)$ of a shape $\Omega \subset \mathbb{R}^{d}$ from a finite sample $P \subset \Omega$.

Problem (Homological reconstruction)

Given a finite sample $P \subset \Omega$, construct a shape X that is geometrically close to Ω and satisfies $H_{*}(X) \cong H_{*}(\Omega)$. Idea:

- approximate the shape by a thickening $B_{\delta}(P)$ covering Ω

Homology inference

Problem (Homology inference)

Determine the homology $H_{*}(\Omega)$ of a shape $\Omega \subset \mathbb{R}^{d}$ from a finite sample $P \subset \Omega$.

Problem (Homological reconstruction)

Given a finite sample $P \subset \Omega$, construct a shape X that is geometrically close to Ω and satisfies $H_{*}(X) \cong H_{*}(\Omega)$. Idea:

- approximate the shape by a thickening $B_{\delta}(P)$ covering Ω
- represent by a homotopy-equivalent simplicial complex

Homology inference

Problem (Homology inference)

Determine the homology $H_{*}(\Omega)$ of a shape $\Omega \subset \mathbb{R}^{d}$ from a finite sample $P \subset \Omega$.

Problem (Homological reconstruction)

Given a finite sample $P \subset \Omega$, construct a shape X that is geometrically close to Ω and satisfies $H_{*}(X) \cong H_{*}(\Omega)$. Idea:

- approximate the shape by a thickening $B_{\delta}(P)$ covering Ω
- represent by a homotopy-equivalent simplicial complex
- Čech complex $\operatorname{Cech}_{\delta}(P)$

Homology inference

Problem (Homology inference)

Determine the homology $H_{*}(\Omega)$ of a shape $\Omega \subset \mathbb{R}^{d}$ from a finite sample $P \subset \Omega$.

Problem (Homological reconstruction)

Given a finite sample $P \subset \Omega$, construct a shape X that is geometrically close to Ω and satisfies $H_{*}(X) \cong H_{*}(\Omega)$. Idea:

- approximate the shape by a thickening $B_{\delta}(P)$ covering Ω
- represent by a homotopy-equivalent simplicial complex
- Čech complex $\operatorname{Cech}_{\delta}(P)$
- Delaunay complex $\operatorname{Del}_{\delta}(P)$

Homology inference

Problem (Homology inference)

Determine the homology $H_{*}(\Omega)$ of a shape $\Omega \subset \mathbb{R}^{d}$ from a finite sample $P \subset \Omega$.

Problem (Homological reconstruction)

Given a finite sample $P \subset \Omega$, construct a shape X that is geometrically close to Ω and satisfies $H_{*}(X) \cong H_{*}(\Omega)$. Idea:

- approximate the shape by a thickening $B_{\delta}(P)$ covering Ω
- represent by a homotopy-equivalent simplicial complex
- Čech complex $\operatorname{Cech}_{\delta}(P)$
- Delaunay complex $\operatorname{Del}_{\delta}(P)$

It is sometimes possible to recover the homology of Ω this way, but the assumptions are quite strong:

Homology reconstruction using union of balls

Theorem (Niyogi, Smale, Weinberger 2006)
Let M be a submanifold of \mathbb{R}^{d}. Let $P \subset M$ be such that $M \subseteq P^{\delta}$ for some $\delta<\sqrt{3 / 20} \operatorname{reach}(M)$. Then

$$
H_{*}(M) \cong H_{*}\left(P^{2 \delta}\right) .
$$

Homology reconstruction using union of balls

Theorem (Niyogi, Smale, Weinberger 2006)

Let M be a submanifold of \mathbb{R}^{d}. Let $P \subset M$ be such that $M \subseteq P^{\delta}$ for some $\delta<\sqrt{3 / 20} \operatorname{reach}(M)$. Then

$$
H_{\star}(M) \cong H_{\star}\left(P^{2 \delta}\right)
$$

- $P_{\delta}=B_{\delta}(P): \delta$-neighborhood (union of balls) around P.

Homology reconstruction using union of balls

Theorem (Niyogi, Smale, Weinberger 2006)

Let M be a submanifold of \mathbb{R}^{d}. Let $P \subset M$ be such that $M \subseteq P^{\delta}$ for some $\delta<\sqrt{3 / 20} \operatorname{reach}(M)$. Then

$$
H_{*}(M) \cong H_{*}\left(P^{2 \delta}\right) .
$$

- $P_{\delta}=B_{\delta}(P): \delta$-neighborhood (union of balls) around P.
- Points with distance < reach (M) to M have a unique closest point on M

Homology reconstruction using union of balls

Theorem (Niyogi, Smale, Weinberger 2006)

Let M be a submanifold of \mathbb{R}^{d}. Let $P \subset M$ be such that $M \subseteq P^{\delta}$ for some $\delta<\sqrt{3 / 20} \operatorname{reach}(M)$. Then

$$
H_{*}(M) \cong H_{*}\left(P^{2 \delta}\right) .
$$

- $P_{\delta}=B_{\delta}(P): \delta$-neighborhood (union of balls) around P.
- Points with distance < reach (M) to M have a unique closest point on M

Homology reconstruction using union of balls

Theorem (Niyogi, Smale, Weinberger 2006)

Let M be a submanifold of \mathbb{R}^{d}. Let $P \subset M$ be such that $M \subseteq P^{\delta}$ for some $\delta<\sqrt{3 / 20} \operatorname{reach}(M)$. Then

$$
H_{*}(M) \cong H_{*}\left(P^{2 \delta}\right) .
$$

- $P_{\delta}=B_{\delta}(P): \delta$-neighborhood (union of balls) around P.
- Points with distance < reach (M) to M have a unique closest point on M
- The isomorphism is induced by the inclusion $M \rightarrow P^{2 \delta}$.

Homology inference using persistent homology

$P_{\delta}=B_{\delta}(P): \delta$-neighborhood (union of balls) around P
Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)
Let $\Omega \subset \mathbb{R}^{d}$. Let $P \subset \Omega$ be such that

- $\Omega \subseteq P_{\delta}$ for some $\delta>0$ and
- both $H_{*}\left(\Omega \hookrightarrow \Omega_{\delta}\right)$ and $H_{*}\left(\Omega_{\delta} \hookrightarrow \Omega_{2 \delta}\right)$ are isomorphisms.

Then

$$
H_{*}(\Omega) \cong \operatorname{im} H_{*}\left(P_{\delta} \hookrightarrow P_{2 \delta}\right) .
$$

Homology inference using persistent homology

$P_{\delta}=B_{\delta}(P): \delta$-neighborhood (union of balls) around P
Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)
Let $\Omega \subset \mathbb{R}^{d}$. Let $P \subset \Omega$ be such that

- $\Omega \subseteq P_{\delta}$ for some $\delta>0$ and
- both $H_{*}\left(\Omega \hookrightarrow \Omega_{\delta}\right)$ and $H_{*}\left(\Omega_{\delta} \hookrightarrow \Omega_{2 \delta}\right)$ are isomorphisms.

Then

$$
H_{*}(\Omega) \cong \operatorname{im} H_{*}\left(P_{\delta} \hookrightarrow P_{2 \delta}\right) .
$$

Homology inference using persistent homology

$P_{\delta}=B_{\delta}(P): \delta$-neighborhood (union of balls) around P
Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)
Let $\Omega \subset \mathbb{R}^{d}$. Let $P \subset \Omega$ be such that

- $\Omega \subseteq P_{\delta}$ for some $\delta>0$ and
- both $H_{*}\left(\Omega \hookrightarrow \Omega_{\delta}\right)$ and $H_{*}\left(\Omega_{\delta} \hookrightarrow \Omega_{2 \delta}\right)$ are isomorphisms.

Then

$$
H_{*}(\Omega) \cong \operatorname{im} H_{*}\left(P_{\delta} \hookrightarrow P_{2 \delta}\right) .
$$

Homology inference using persistent homology

$P_{\delta}=B_{\delta}(P): \delta$-neighborhood (union of balls) around P
Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)
Let $\Omega \subset \mathbb{R}^{d}$. Let $P \subset \Omega$ be such that

- $\Omega \subseteq P_{\delta}$ for some $\delta>0$ and
- both $H_{*}\left(\Omega \hookrightarrow \Omega_{\delta}\right)$ and $H_{*}\left(\Omega_{\delta} \hookrightarrow \Omega_{2 \delta}\right)$ are isomorphisms.

Then

$$
H_{*}(\Omega) \cong \operatorname{im} H_{*}\left(P_{\delta} \hookrightarrow P_{2 \delta}\right) .
$$

Homology inference using persistent homology

$P_{\delta}=B_{\delta}(P): \delta$-neighborhood (union of balls) around P
Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)
Let $\Omega \subset \mathbb{R}^{d}$. Let $P \subset \Omega$ be such that

- $\Omega \subseteq P_{\delta}$ for some $\delta>0$ and
- both $H_{*}\left(\Omega \hookrightarrow \Omega_{\delta}\right)$ and $H_{*}\left(\Omega_{\delta} \hookrightarrow \Omega_{2 \delta}\right)$ are isomorphisms.

Then

$$
H_{\star}(\Omega) \cong \operatorname{im} H_{\star}\left(P_{\delta} \hookrightarrow P_{2 \delta}\right) .
$$

Homology inference using persistent homology

$P_{\delta}=B_{\delta}(P): \delta$-neighborhood (union of balls) around P
Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)
Let $\Omega \subset \mathbb{R}^{d}$. Let $P \subset \Omega$ be such that

- $\Omega \subseteq P_{\delta}$ for some $\delta>0$ and
- both $H_{\star}\left(\Omega \hookrightarrow \Omega_{\delta}\right)$ and $H_{\star}\left(\Omega_{\delta} \hookrightarrow \Omega_{2 \delta}\right)$ are isomorphisms.

Then

$$
H_{*}(\Omega) \cong \operatorname{im} H_{*}\left(P_{\delta} \hookrightarrow P_{2 \delta}\right)
$$

Homology inference using persistent homology

$P_{\delta}=B_{\delta}(P): \delta$-neighborhood (union of balls) around P
Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)
Let $\Omega \subset \mathbb{R}^{d}$. Let $P \subset \Omega$ be such that

- $\Omega \subseteq P_{\delta}$ for some $\delta>0$ and
- both $H_{\star}\left(\Omega \hookrightarrow \Omega_{\delta}\right)$ and $H_{\star}\left(\Omega_{\delta} \hookrightarrow \Omega_{2 \delta}\right)$ are isomorphisms.

Then

$$
H_{*}(\Omega) \cong \operatorname{im} H_{*}\left(P_{\delta} \hookrightarrow P_{2 \delta}\right)
$$

Homology inference using persistent homology

$P_{\delta}=B_{\delta}(P): \delta$-neighborhood (union of balls) around P
Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)
Let $\Omega \subset \mathbb{R}^{d}$. Let $P \subset \Omega$ be such that

- $\Omega \subseteq P_{\delta}$ for some $\delta>0$ and
- both $H_{\star}\left(\Omega \hookrightarrow \Omega_{\delta}\right)$ and $H_{\star}\left(\Omega_{\delta} \hookrightarrow \Omega_{2 \delta}\right)$ are isomorphisms.

Then

$$
H_{*}(\Omega) \cong \operatorname{im} H_{*}\left(P_{\delta} \hookrightarrow P_{2 \delta}\right)
$$

Homology inference using persistent homology

$P_{\delta}=B_{\delta}(P): \delta$-neighborhood (union of balls) around P
Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)
Let $\Omega \subset \mathbb{R}^{d}$. Let $P \subset \Omega$ be such that

- $\Omega \subseteq P_{\delta}$ for some $\delta>0$ and
- both $H_{*}\left(\Omega \hookrightarrow \Omega_{\delta}\right)$ and $H_{*}\left(\Omega_{\delta} \hookrightarrow \Omega_{2 \delta}\right)$ are isomorphisms.

Then

$$
H_{*}(\Omega) \cong \operatorname{im} H_{*}\left(P_{\delta} \hookrightarrow P_{2 \delta}\right) .
$$

Homology inference using persistent homology

$P_{\delta}=B_{\delta}(P): \delta$-neighborhood (union of balls) around P
Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)
Let $\Omega \subset \mathbb{R}^{d}$. Let $P \subset \Omega$ be such that

- $\Omega \subseteq P_{\delta}$ for some $\delta>0$ and
- both $H_{*}\left(\Omega \hookrightarrow \Omega_{\delta}\right)$ and $H_{*}\left(\Omega_{\delta} \hookrightarrow \Omega_{2 \delta}\right)$ are isomorphisms.

Then

$$
H_{\star}(\Omega) \cong \operatorname{im} H_{\star}\left(P_{\delta} \hookrightarrow P_{2 \delta}\right) .
$$

Homology inference using persistent homology

$P_{\delta}=B_{\delta}(P): \delta$-neighborhood (union of balls) around P
Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)
Let $\Omega \subset \mathbb{R}^{d}$. Let $P \subset \Omega$ be such that

- $\Omega \subseteq P_{\delta}$ for some $\delta>0$ and
- both $H_{*}\left(\Omega \hookrightarrow \Omega_{\delta}\right)$ and $H_{*}\left(\Omega_{\delta} \hookrightarrow \Omega_{2 \delta}\right)$ are isomorphisms.

Then

$$
H_{\star}(\Omega) \cong \operatorname{im} H_{*}\left(\operatorname{Del}_{\delta}(P) \hookrightarrow \operatorname{Del}_{2 \delta}(P)\right)
$$

Homology inference using persistent homology

$P_{\delta}=B_{\delta}(P): \delta$-neighborhood (union of balls) around P
Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)
Let $\Omega \subset \mathbb{R}^{d}$. Let $P \subset \Omega$ be such that

- $\Omega \subseteq P_{\delta}$ for some $\delta>0$ and
- both $H_{*}\left(\Omega \hookrightarrow \Omega_{\delta}\right)$ and $H_{*}\left(\Omega_{\delta} \hookrightarrow \Omega_{2 \delta}\right)$ are isomorphisms.

Then

$$
H_{*}(\Omega) \cong \operatorname{im} H_{*}\left(P_{\delta} \hookrightarrow P_{2 \delta}\right) .
$$

- We say that P is a homological δ-sample of Ω.

Homology inference using persistent homology

$P_{\delta}=B_{\delta}(P): \delta$-neighborhood (union of balls) around P
Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)
Let $\Omega \subset \mathbb{R}^{d}$. Let $P \subset \Omega$ be such that

- $\Omega \subseteq P_{\delta}$ for some $\delta>0$ and
- both $H_{*}\left(\Omega \hookrightarrow \Omega_{\delta}\right)$ and $H_{*}\left(\Omega_{\delta} \hookrightarrow \Omega_{2 \delta}\right)$ are isomorphisms.

Then

$$
H_{*}(\Omega) \cong \operatorname{im} H_{*}\left(P_{\delta} \hookrightarrow P_{2 \delta}\right) .
$$

- We say that P is a homological δ-sample of Ω.
- The image $\operatorname{im} H_{*}\left(P_{\delta} \hookrightarrow P_{2 \delta}\right)$ is called a persistent homology group.

Homology inference with sampling error

$P_{\delta}=B_{\delta}(P): \delta$-neighborhood (union of balls) around P.
Theorem
Let $\Omega \subset \mathbb{R}^{d}$. Let $P \subset \mathbb{R}^{d}$ be such that

- $\Omega \subseteq P_{\delta}$ for some $\delta>0$ (sampling density),

Homology inference with sampling error

$P_{\delta}=B_{\delta}(P): \delta$-neighborhood (union of balls) around P.
Theorem
Let $\Omega \subset \mathbb{R}^{d}$. Let $P \subset \mathbb{R}^{d}$ be such that

- $\Omega \subseteq P_{\delta}$ for some $\delta>0$ (sampling density),
- $P \subseteq \Omega_{\epsilon}$ for some $\epsilon>0$ (sampling error),

Homology inference with sampling error

$P_{\delta}=B_{\delta}(P): \delta$-neighborhood (union of balls) around P.
Theorem
Let $\Omega \subset \mathbb{R}^{d}$. Let $P \subset \mathbb{R}^{d}$ be such that

- $\Omega \subseteq P_{\delta}$ for some $\delta>0$ (sampling density),
- $P \subseteq \Omega_{\epsilon}$ for some $\epsilon>0$ (sampling error),
- $H_{*}\left(\Omega \rightarrow \Omega_{\delta+\epsilon}\right)$ is an isomorphism, and

Homology inference with sampling error

$P_{\delta}=B_{\delta}(P): \delta$-neighborhood (union of balls) around P.
Theorem
Let $\Omega \subset \mathbb{R}^{d}$. Let $P \subset \mathbb{R}^{d}$ be such that

- $\Omega \subseteq P_{\delta}$ for some $\delta>0$ (sampling density),
- $P \subseteq \Omega_{\epsilon}$ for some $\epsilon>0$ (sampling error),
- $H_{*}\left(\Omega \hookrightarrow \Omega_{\delta+\epsilon}\right)$ is an isomorphism, and
- $H_{*}\left(\Omega_{\delta+\epsilon} \hookrightarrow \Omega_{2(\delta+\epsilon)}\right)$ is a monomorphism.

Homology inference with sampling error

$P_{\delta}=B_{\delta}(P): \delta$-neighborhood (union of balls) around P.
Theorem
Let $\Omega \subset \mathbb{R}^{d}$. Let $P \subset \mathbb{R}^{d}$ be such that

- $\Omega \subseteq P_{\delta}$ for some $\delta>0$ (sampling density),
- $P \subseteq \Omega_{\epsilon}$ for some $\epsilon>0$ (sampling error),
- $H_{*}\left(\Omega \leftrightarrow \Omega_{\delta+\epsilon}\right)$ is an isomorphism, and
- $H_{*}\left(\Omega_{\delta+\epsilon} \hookrightarrow \Omega_{2(\delta+\epsilon)}\right)$ is a monomorphism.

Then

$$
H_{\star}(\Omega) \cong \operatorname{im} H_{\star}\left(P_{\delta} \hookrightarrow P_{2 \delta+\epsilon}\right)
$$

Homology inference with sampling error

$P_{\delta}=B_{\delta}(P): \delta$-neighborhood (union of balls) around P.
Theorem
Let $\Omega \subset \mathbb{R}^{d}$. Let $P \subset \mathbb{R}^{d}$ be such that

- $\Omega \subseteq P_{\delta}$ for some $\delta>0$ (sampling density),
- $P \subseteq \Omega_{\epsilon}$ for some $\epsilon>0$ (sampling error),
- $H_{*}\left(\Omega \rightarrow \Omega_{\delta+\epsilon}\right)$ is an isomorphism, and
- $H_{*}\left(\Omega_{\delta+\epsilon} \leftrightarrow \Omega_{2(\delta+\epsilon)}\right)$ is a monomorphism.

Then

$$
H_{*}(\Omega) \cong \operatorname{im} H_{*}\left(P_{\delta} \hookrightarrow P_{2 \delta+\epsilon}\right) .
$$

We say that P is a homological (δ, ϵ)-sample of Ω.

Proof.

Proof.

Proof.

Proof.

$$
H_{*}(\Omega) \longleftrightarrow H_{*}\left(\Omega_{\delta+\epsilon}\right) \longleftrightarrow H_{*}\left(\Omega_{2(\delta+\epsilon)}\right)
$$

Proof.

Proof.

$$
\begin{aligned}
& H_{*}(\Omega) \longrightarrow H_{*}\left(\Omega_{\delta+\epsilon}\right) \longleftrightarrow H_{*}\left(\Omega_{2(\delta+\epsilon)}\right) \\
& \searrow{ }^{\pi} \uparrow \underset{i}{i} \downarrow \\
& H_{*}\left(P_{\delta}\right) \stackrel{\doteq}{\vdots} \quad H_{*}\left(P_{2 \delta+\epsilon}\right) \\
& \operatorname{im} H_{*}\left(P_{\delta} \hookrightarrow P_{2 \delta+\epsilon}\right)
\end{aligned}
$$

Proof.

$$
\begin{aligned}
& H_{*}(\Omega) \smile \cong \rightarrow H_{*}\left(\Omega_{\delta+\epsilon}\right) \longleftrightarrow H_{*}\left(\Omega_{2(\delta+\epsilon)}\right) \\
& \searrow \ggg \\
& H_{*}\left(P_{\delta}\right) \\
& \stackrel{\stackrel{1}{\leftrightharpoons}}{\stackrel{1}{1}} H_{*}\left(P_{2 \delta+\epsilon}\right) \\
& \operatorname{im} H_{*}\left(P_{\delta} \hookrightarrow P_{2 \delta+\epsilon}\right)
\end{aligned}
$$

Homological realization

This motivates the homological realization problem:
Problem
Given a simplicial pair $L \subseteq K$, find X with $L \subseteq X \subseteq K$ such that

$$
H_{*}(X)=\operatorname{im} H_{*}(L \hookrightarrow K) .
$$

Homological realization

This motivates the homological realization problem:

Problem

Given a simplicial pair $L \subseteq K$, find X with $L \subseteq X \subseteq K$ such that

$$
H_{*}(X)=\operatorname{im} H_{*}(L \hookrightarrow K) .
$$

Homological realization

This motivates the homological realization problem:
Problem
Given a simplicial pair $L \subseteq K$, find X with $L \subseteq X \subseteq K$ such that

$$
H_{*}(X)=\operatorname{im} H_{*}(L \hookrightarrow K) .
$$

Homological realization

This motivates the homological realization problem:

Problem

Given a simplicial pair $L \subseteq K$, find X with $L \subseteq X \subseteq K$ such that

$$
H_{*}(X)=\operatorname{im} H_{*}(L \hookrightarrow K) .
$$

This is not always possible:

Homological realization

This motivates the homological realization problem:

Problem

Given a simplicial pair $L \subseteq K$, find X with $L \subseteq X \subseteq K$ such that

$$
H_{*}(X)=\operatorname{im} H_{*}(L \hookrightarrow K) .
$$

This is not always possible:

Homological realization

This motivates the homological realization problem:

Problem

Given a simplicial pair $L \subseteq K$, find X with $L \subseteq X \subseteq K$ such that

$$
H_{*}(X)=\operatorname{im} H_{*}(L \hookrightarrow K) .
$$

This is not always possible:

Homological realization

This motivates the homological realization problem:

Problem

Given a simplicial pair $L \subseteq K$, find X with $L \subseteq X \subseteq K$ such that

$$
H_{*}(X)=\operatorname{im} H_{*}(L \hookrightarrow K) .
$$

This is not always possible:

Homological realization in \mathbb{R}^{3}

Theorem (Attali, B, Devillers, Glisse, Lieutier 2012)
The homological realization problem is NP-hard, even in \mathbb{R}^{3}.

Homological realization in \mathbb{R}^{3}

Theorem (Attali, B, Devillers, Glisse, Lieutier 2012)
The homological realization problem is $N P$-hard, even in \mathbb{R}^{3}.
Theorem (Attali, B, Devillers, Glisse, Lieutier 2013)
Let P be a homological δ-sample of $\Omega \subseteq \mathbb{R}^{3}$.
Then the homological realization problem for the pair
$\operatorname{Del}_{\delta}(P) \subseteq \operatorname{Del}_{2 \delta}(P)$ has a polynomial time algorithm.

Homological realization in \mathbb{R}^{3}

Theorem (Attali, B, Devillers, Glisse, Lieutier 2012)
The homological realization problem is $N P$-hard, even in \mathbb{R}^{3}.
Theorem (Attali, B, Devillers, Glisse, Lieutier 2013) Let P be a homological δ-sample of $\Omega \subseteq \mathbb{R}^{3}$.
Then the homological realization problem for the pair $\operatorname{Del}_{\delta}(P) \subseteq \operatorname{Del}_{2 \delta}(P)$ has a polynomial time algorithm.

Homological realization in \mathbb{R}^{3}

Theorem (Attali, B, Devillers, Glisse, Lieutier 2012)
The homological realization problem is $N P$-hard, even in \mathbb{R}^{3}.
Theorem (Attali, B, Devillers, Glisse, Lieutier 2013)
Let P be a homological δ-sample of $\Omega \subseteq \mathbb{R}^{3}$.
Then the homological realization problem for the pair
$\operatorname{Del}_{\delta}(P) \subseteq \operatorname{Del}_{2 \delta}(P)$ has a polynomial time algorithm.

- If a solution exists, it is a homological reconstruction of Ω.

Homological realization in \mathbb{R}^{3}

Theorem (Attali, B, Devillers, Glisse, Lieutier 2012)

The homological realization problem is NP-hard, even in \mathbb{R}^{3}.
Theorem (Attali, B, Devillers, Glisse, Lieutier 2013)
Let P be a homological δ-sample of $\Omega \subseteq \mathbb{R}^{3}$.
Then the homological realization problem for the pair
$\operatorname{Del}_{\delta}(P) \subseteq \operatorname{Del}_{2 \delta}(P)$ has a polynomial time algorithm.

- If a solution exists, it is a homological reconstruction of Ω.
- Provides homological reconstruction under much weaker assumptions

Homological realization in \mathbb{R}^{3}

Theorem (Attali, B, Devillers, Glisse, Lieutier 2012)

 The homological realization problem is NP-hard, even in \mathbb{R}^{3}.Theorem (Attali, B, Devillers, Glisse, Lieutier 2013)
Let P be a homological δ-sample of $\Omega \subseteq \mathbb{R}^{3}$.
Then the homological realization problem for the pair
$\operatorname{Del}_{\delta}(P) \subseteq \operatorname{Del}_{2 \delta}(P)$ has a polynomial time algorithm.

- If a solution exists, it is a homological reconstruction of Ω.
- Provides homological reconstruction under much weaker assumptions
- Even though the pair $P_{\delta} \subseteq P_{2 \delta}$ has the reconstruction Ω_{δ}, the pair $\operatorname{Del}_{\delta}(P) \subseteq \operatorname{Del}_{2 \delta}(P)$ might not have a reconstruction

Computation

Persistent homology of sublevel sets

Persistent homology of sublevel sets

Computational assumptions

For simplicity:

- Finite simplicial complex

Computational assumptions

For simplicity:

- Finite simplicial complex
- Filtration simplex by simplex

Computational assumptions

For simplicity:

- Finite simplicial complex
- Filtration simplex by simplex
- Indexed by natural numbers

Computational assumptions

For simplicity:

- Finite simplicial complex
- Filtration simplex by simplex
- Indexed by natural numbers
- Coefficients in \mathbb{Z}_{2}

Example: filtration and boundary matrix

Example: filtration and boundary matrix

$D=$| | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | | | 1 | | 1 | | |
| 2 | | | 1 | | | 1 | |
| 3 | | | | | | | 1 |
| 4 | | | | | 1 | 1 | |
| 5 | | | | | | | 1 |
| 6 | | | | | | | 1 |
| 7 | | | | | | | |

Matrix reduction

Matrix reduction

	1	2	3	4	5	6	7
1			1		1		
2			1			1	
3							1
4					1	1	
5							1
6							1
7							

	1	2	3	4	5	6	7
1	1						
2		1					
3			1				
4				1			
5					1		
6						1	
7							1

Pivot of column m_{j} :

- largest index with nonzero entry

Matrix reduction

	1	2	3	4	5	6	7
1			1		1		
2			1			1	
3							1
4					1	1	
5							1
6							1
7							

	1	2	3	4	5	6	7
1	1						
2		1					
3			1				
4				1			
5					1		
6						1	
7							1

Matrix reduction algorithm:

- while there are $i<j$ with pivot $m_{i}=\operatorname{pivot} m_{j}$
- add m_{i} to m_{j}

Matrix reduction

	1	2	3	4	5	6	7
1			1		1	1	
2			1			1	
3							1
4					1	0	
5							1
6							1
7							

	1	2	3	4	5	6	7
1	1						
2		1					
3			1				
4				1			
5					1	1	
6						1	
7							1

Matrix reduction algorithm:

- while there are $i<j$ with pivot $m_{i}=\operatorname{pivot} m_{j}$
- add m_{i} to m_{j}

Matrix reduction

	1	2	3	4	5	6	7
1			1		1	1	
2			1			1	
3							1
4					1		
5							1
6							1
7							

	1	2	3	4	5	6	7
1	1						
2		1					
3			1				
4				1			
5					1	1	
6						1	
7							1

Matrix reduction algorithm:

- while there are $i<j$ with pivot $m_{i}=\operatorname{pivot} m_{j}$
- add m_{i} to m_{j}

Matrix reduction

	1	2	3	4	5	6	7
1			1		1	0	
2			1			0	
3							1
4					1		
5							1
6							1
7							

	1	2	3	4	5	6	7
1	1						
2		1					
3			1			1	
4				1			
5					1	1	
6						1	
7							1

Matrix reduction algorithm:

- while there are $i<j$ with pivot $m_{i}=\operatorname{pivot} m_{j}$
- add m_{i} to m_{j}

Matrix reduction

	1	2	3	4	5	6	7
1			1		1		
2			1				
3							1
4					1		
5							1
6							1
7							

	1	2	3	4	5	6	7
1	1						
2		1					
3			1			1	
4				1			
5					1	1	
6						1	
7							1

Column m_{j} is reduced:

- pivot of col m_{j} minimal under left-to-right column additions

Matrix reduction

	1	2	3	4	5	6	7
1			1		1		
2			1				
3							1
4					1		
5							1
6							1
7							

	1	2	3	4	5	6	7
1	1						
2		1					
3			1			1	
4				1			
5					1	1	
6						1	
7							1

Matrix M is reduced:

- all columns are reduced (equivalently: pivots are unique)

Matrix reduction

	1	2	3	4	5	6	7									
1			1		1											
2			1													
3							1									
4					1											
5							1									
6							1									
7								\quad		1	2	3	4	5	6	7
:---	:---	:---	:---	:---	:---	:---	:---									
1	1															
2		1														
3			1			1										
4				1												
5					1	1										
6						1										
7							1									

Matrix M is reduced at index (i, j) :

- submatrix with rows $\geq i$ and cols $\leq j$ (lower left) is reduced

Matrix reduction

	1	2	3	4	5	6	7
1			1		1		
2			1				
3							1
4					1		
5							1
6							1
7							

	1	2	3	4	5	6	7
1	1						
2		1					
3			1			1	
4				1			
5					1	1	
6						1	
7							1

$i=\operatorname{pivot} m_{j}$ and M is reduced at index $(i, j) \Rightarrow$

- column m_{j} is reduced
- (i, j) is a persistence pair: homology is created at step i and killed at step j

Matrix reduction

	1	2	3	4	5	6	7
1			1		1		
2			1				
3							1
4					1		
5							1
6							1
7							

	1	2	3	4	5	6	7
1	1						
2		1					
3			1			1	
4				1			
5					1	1	
6						1	
7							1

$i=\operatorname{pivot} m_{j}$ and M is reduced at index $(i, j) \Rightarrow$

- column m_{j} is reduced
- (i, j) is a persistence pair: homology is created at step i and killed at step j

Matrix reduction

	1	2	3	4	5	6	7
1			1		1		
2			1				
3							1
4					1		
5							1
6							1
7							

	1	2	3	4	5	6	7
1	1						
2		1					
3			1			1	
4				1			
5					1	1	
6						1	
7							1

$i=\operatorname{pivot} m_{j}$ and M is reduced at index $(i, j) \Rightarrow$

- column m_{j} is reduced
- (i, j) is a persistence pair: homology is created at step i and killed at step j

Matrix reduction

	1	2	3	4	5	6	7
1			1		1		
2			1				
3							1
4					1		
5							1
6							1
7							

	1	2	3	4	5	6	7
1	1						
2		1					
3			1			1	
4				1			
5					1	1	
6						1	
7							1

$i=\operatorname{pivot} m_{j}$ and M is reduced at index $(i, j) \Rightarrow$

- column m_{j} is reduced
- (i, j) is a persistence pair: homology is created at step i and killed at step j

Matrix reduction

Theorem
Let D be the boundary matrix of a filtered chain complex $C_{n \in \mathbb{N}}$ (with coefficients in a field \mathbb{K}, indices in filtration order).

Matrix reduction

Theorem

Let D be the boundary matrix of a filtered chain complex $C_{n \in \mathbb{N}}$ (with coefficients in a field \mathbb{K}, indices in filtration order). Let $R=D \cdot V$ be reduced by left-to right column additions (i.e., R is reduced and V is full rank upper triangular).

Matrix reduction

Theorem

Let D be the boundary matrix of a filtered chain complex $C_{n \in \mathbb{N}}$ (with coefficients in a field \mathbb{K}, indices in filtration order). Let $R=D \cdot V$ be reduced by left-to right column additions (i.e., R is reduced and V is full rank upper triangular).

Then the persistence barcode of $H_{*}\left(C_{n}\right)$ consists of

$$
\left\{[i, j): i=\operatorname{pivot} r_{j}\right\} \cup\left\{[i, \infty): r_{i}=0, i \neq \operatorname{pivot} r_{j} \text { for any } j\right\}
$$

where r_{j} is the j th column of R.

Proof.
Let v_{i} denote the i th column of V and r_{j} the j th column of R.
For each k :

- Basis for cycles of $C_{k}: \quad b_{Z}=\left\{v_{i}: r_{i}=0, i \leq k\right\}$

Proof.

Let v_{i} denote the i th column of V and r_{j} the j th column of R.
For each k :

- Basis for cycles of $C_{k}: \quad b_{Z}=\left\{v_{i}: r_{i}=0, i \leq k\right\}$
- Basis for boundaries of $C_{k}: \quad b_{B}=\left\{r_{j} \neq 0: j \leq k\right\}$

Proof.

Let v_{i} denote the i th column of V and r_{j} the j th column of R.
For each k :

- Basis for cycles of $C_{k}: \quad b_{Z}=\left\{v_{i}: r_{i}=0, i \leq k\right\}$
- Basis for boundaries of $C_{k}: \quad b_{B}=\left\{r_{j} \neq 0: j \leq k\right\}$
- Extend this basis to another basis for cycles:

$$
\tilde{b}_{Z}=\left\{r_{j} \neq 0: \operatorname{pivot} r_{j} \leq k\right\} \cup\left\{v_{i}: r_{i}=0, i \leq k, i \neq \operatorname{pivot} r_{j} \text { for all } j\right\}
$$

Proof.

Let v_{i} denote the i th column of V and r_{j} the j th column of R.
For each k :

- Basis for cycles of $C_{k}: b_{Z}=\left\{v_{i}: r_{i}=0, i \leq k\right\}$
- Basis for boundaries of $C_{k}: \quad b_{B}=\left\{r_{j} \neq 0: j \leq k\right\}$
- Extend this basis to another basis for cycles:

$$
\tilde{b}_{Z}=\left\{r_{j} \neq 0: \operatorname{pivot} r_{j} \leq k\right\} \cup\left\{v_{i}: r_{i}=0, i \leq k, i \neq \operatorname{pivot} r_{j} \text { for all } j\right\}
$$

- The additional cycles generate a basis for homology:

$$
\begin{aligned}
b_{H}=\tilde{b}_{Z} \backslash b_{B}= & \left\{r_{j} \neq 0: i \leq k<j, i=\operatorname{pivot} r_{j}\right\} \cup \\
& \left\{v_{i}: r_{i}=0, i \leq k, i \neq \operatorname{pivot} r_{j} \text { for all } j\right\}
\end{aligned}
$$

Proof.

Let v_{i} denote the i th column of V and r_{j} the j th column of R.
For each k :

- Basis for cycles of $C_{k}: b_{Z}=\left\{v_{i}: r_{i}=0, i \leq k\right\}$
- Basis for boundaries of $C_{k}: \quad b_{B}=\left\{r_{j} \neq 0: j \leq k\right\}$
- Extend this basis to another basis for cycles:

$$
\tilde{b}_{Z}=\left\{r_{j} \neq 0: \operatorname{pivot} r_{j} \leq k\right\} \cup\left\{v_{i}: r_{i}=0, i \leq k, i \neq \operatorname{pivot} r_{j} \text { for all } j\right\}
$$

- The additional cycles generate a basis for homology:

$$
\begin{aligned}
b_{H}=\tilde{b}_{Z} \backslash b_{B}= & \left\{r_{j} \neq 0: i \leq k<j, i=\operatorname{pivot} r_{j}\right\} \cup \\
& \left\{v_{i}: r_{i}=0, i \leq k, i \neq \operatorname{pivot} r_{j} \text { for all } j\right\}
\end{aligned}
$$

