Topological Data Analysis Part I: Persistent homology

Ulrich Bauer

TUM

February 4, 2015

 \cong

?

?

Persistent homology

Persistent homology is the homology of a filtration.

• A filtration is a certain diagram $K : \mathbf{R} \rightarrow \mathbf{Top}$.

- A filtration is a certain diagram $K : \mathbf{R} \rightarrow \mathbf{Top}$.
 - A topological space K_t for each $t \in \mathbb{R}$

- A filtration is a certain diagram $K : \mathbf{R} \rightarrow \mathbf{Top}$.
 - A topological space K_t for each $t \in \mathbb{R}$
 - An inclusion map $K_s \hookrightarrow K_t$ for each $s \leq t \in \mathbb{R}$

- A filtration is a certain diagram $K : \mathbf{R} \rightarrow \mathbf{Top}$.
 - A topological space K_t for each $t \in \mathbb{R}$
 - An inclusion map $K_s \hookrightarrow K_t$ for each $s \le t \in \mathbb{R}$
- **R** is the poset category of (\mathbb{R}, \leq)

The pipeline of topological data analysis

Simplification & Reconstruction

Problem (Homology inference)

Determine the homology $H_*(\Omega)$ of a shape $\Omega \subset \mathbb{R}^d$ from a finite sample $P \subset \Omega$.

Problem (Homology inference)

Determine the homology $H_*(\Omega)$ of a shape $\Omega \subset \mathbb{R}^d$ from a finite sample $P \subset \Omega$.

Problem (Homological reconstruction)

Problem (Homology inference)

Determine the homology $H_*(\Omega)$ of a shape $\Omega \subset \mathbb{R}^d$ from a finite sample $P \subset \Omega$.

Problem (Homological reconstruction)

Problem (Homology inference)

Determine the homology $H_*(\Omega)$ of a shape $\Omega \subset \mathbb{R}^d$ from a finite sample $P \subset \Omega$.

Problem (Homological reconstruction)

Given a finite sample $P \subset \Omega$, construct a shape X that is geometrically close to Ω and satisfies $H_*(X) \cong H_*(\Omega)$. Idea:

• approximate the shape by a thickening $B_{\delta}(P)$ covering Ω

Problem (Homology inference)

Determine the homology $H_*(\Omega)$ of a shape $\Omega \subset \mathbb{R}^d$ from a finite sample $P \subset \Omega$.

Problem (Homological reconstruction)

- approximate the shape by a thickening $B_{\delta}(P)$ covering Ω
- represent by a homotopy-equivalent simplicial complex

Problem (Homology inference)

Determine the homology $H_*(\Omega)$ of a shape $\Omega \subset \mathbb{R}^d$ from a finite sample $P \subset \Omega$.

Problem (Homological reconstruction)

- approximate the shape by a thickening $B_{\delta}(P)$ covering Ω
- represent by a homotopy-equivalent simplicial complex
 - Čech complex $\operatorname{Cech}_{\delta}(P)$

Problem (Homology inference)

Determine the homology $H_*(\Omega)$ of a shape $\Omega \subset \mathbb{R}^d$ from a finite sample $P \subset \Omega$.

Problem (Homological reconstruction)

- approximate the shape by a thickening $B_{\delta}(P)$ covering Ω
- represent by a homotopy-equivalent simplicial complex
 - Čech complex $\operatorname{Cech}_{\delta}(P)$
 - Delaunay complex $\operatorname{Del}_{\delta}(P)$
Homology inference

Problem (Homology inference)

Determine the homology $H_*(\Omega)$ of a shape $\Omega \subset \mathbb{R}^d$ from a finite sample $P \subset \Omega$.

Problem (Homological reconstruction)

Given a finite sample $P \subset \Omega$, construct a shape X that is geometrically close to Ω and satisfies $H_*(X) \cong H_*(\Omega)$.

Idea:

- approximate the shape by a thickening $B_{\delta}(P)$ covering Ω
- represent by a homotopy-equivalent simplicial complex
 - Čech complex $\operatorname{Cech}_{\delta}(P)$
 - Delaunay complex $\operatorname{Del}_{\delta}(P)$

It is sometimes possible to recover the homology of Ω this way, but the assumptions are guite strong:

Theorem (Niyogi, Smale, Weinberger 2006)

Let *M* be a submanifold of \mathbb{R}^d . Let $P \subset M$ be such that $M \subseteq P^{\delta}$ for some $\delta < \sqrt{3/20} \operatorname{reach}(M)$. Then

Theorem (Niyogi, Smale, Weinberger 2006)

Let *M* be a submanifold of \mathbb{R}^d . Let $P \subset M$ be such that $M \subseteq P^{\delta}$ for some $\delta < \sqrt{3/20} \operatorname{reach}(M)$. Then

 $H_*(M)\cong H_*(P^{2\delta}).$

• $P_{\delta} = B_{\delta}(P)$: δ -neighborhood (union of balls) around P.

Theorem (Niyogi, Smale, Weinberger 2006)

Let *M* be a submanifold of \mathbb{R}^d . Let $P \subset M$ be such that $M \subseteq P^{\delta}$ for some $\delta < \sqrt{3/20} \operatorname{reach}(M)$. Then

- $P_{\delta} = B_{\delta}(P)$: δ -neighborhood (union of balls) around P.
- Points with distance < reach(M) to M have a unique closest point on M

Theorem (Niyogi, Smale, Weinberger 2006)

Let *M* be a submanifold of \mathbb{R}^d . Let $P \subset M$ be such that $M \subseteq P^{\delta}$ for some $\delta < \sqrt{3/20} \operatorname{reach}(M)$. Then

- $P_{\delta} = B_{\delta}(P)$: δ -neighborhood (union of balls) around P.
- Points with distance < reach(M) to M have a unique closest point on M</p>

Theorem (Niyogi, Smale, Weinberger 2006)

Let *M* be a submanifold of \mathbb{R}^d . Let $P \subset M$ be such that $M \subseteq P^{\delta}$ for some $\delta < \sqrt{3/20} \operatorname{reach}(M)$. Then

- $P_{\delta} = B_{\delta}(P)$: δ -neighborhood (union of balls) around P.
- Points with distance < reach(M) to M have a unique closest point on M
- The isomorphism is induced by the inclusion $M \hookrightarrow P^{2\delta}$.

12/25

 $P_{\delta} = B_{\delta}(P)$: δ -neighborhood (union of balls) around P

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005) Let $\Omega \subset \mathbb{R}^d$. Let $P \subset \Omega$ be such that

- $\Omega \subseteq P_{\delta}$ for some $\delta > 0$ and
- both $H_*(\Omega \hookrightarrow \Omega_{\delta})$ and $H_*(\Omega_{\delta} \hookrightarrow \Omega_{2\delta})$ are isomorphisms.

$$H_*(\Omega) \cong \operatorname{im} H_*(P_\delta \hookrightarrow P_{2\delta}).$$

 $P_{\delta} = B_{\delta}(P)$: δ -neighborhood (union of balls) around P

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005) Let $\Omega \subset \mathbb{R}^d$. Let $P \subset \Omega$ be such that

- $\Omega \subseteq P_{\delta}$ for some $\delta > 0$ and
- both $H_*(\Omega \hookrightarrow \Omega_{\delta})$ and $H_*(\Omega_{\delta} \hookrightarrow \Omega_{2\delta})$ are isomorphisms.

$$H_*(\Omega) \cong \operatorname{im} H_*(P_\delta \hookrightarrow P_{2\delta}).$$

 $P_{\delta} = B_{\delta}(P)$: δ -neighborhood (union of balls) around P

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005) Let $\Omega \subset \mathbb{R}^d$. Let $P \subset \Omega$ be such that

- $\Omega \subseteq P_{\delta}$ for some $\delta > 0$ and
- both $H_*(\Omega \hookrightarrow \Omega_{\delta})$ and $H_*(\Omega_{\delta} \hookrightarrow \Omega_{2\delta})$ are isomorphisms.

$$H_*(\Omega) \cong \operatorname{im} H_*(P_\delta \hookrightarrow P_{2\delta}).$$

 $P_{\delta} = B_{\delta}(P)$: δ -neighborhood (union of balls) around P

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005) Let $\Omega \subset \mathbb{R}^d$. Let $P \subset \Omega$ be such that

- $\Omega \subseteq P_{\delta}$ for some $\delta > 0$ and
- both $H_*(\Omega \hookrightarrow \Omega_{\delta})$ and $H_*(\Omega_{\delta} \hookrightarrow \Omega_{2\delta})$ are isomorphisms.

$$H_*(\Omega) \cong \operatorname{im} H_*(P_{\delta} \hookrightarrow P_{2\delta}).$$

 $P_{\delta} = B_{\delta}(P)$: δ -neighborhood (union of balls) around P

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005) Let $\Omega \subset \mathbb{R}^d$. Let $P \subset \Omega$ be such that

- $\Omega \subseteq P_{\delta}$ for some $\delta > 0$ and
- both $H_*(\Omega \hookrightarrow \Omega_{\delta})$ and $H_*(\Omega_{\delta} \hookrightarrow \Omega_{2\delta})$ are isomorphisms.

$$H_*(\Omega) \cong \operatorname{im} H_*(\underline{P_{\delta}} \hookrightarrow \underline{P_{2\delta}}).$$

 $P_{\delta} = B_{\delta}(P)$: δ -neighborhood (union of balls) around P

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005) Let $\Omega \subset \mathbb{R}^d$. Let $P \subset \Omega$ be such that

- $\Omega \subseteq P_{\delta}$ for some $\delta > 0$ and
- both $H_*(\Omega \hookrightarrow \Omega_{\delta})$ and $H_*(\Omega_{\delta} \hookrightarrow \Omega_{2\delta})$ are isomorphisms.

Then

 $H_*(\Omega) \cong \operatorname{im} H_*(P_{\delta} \hookrightarrow P_{2\delta}).$

 $P_{\delta} = B_{\delta}(P)$: δ -neighborhood (union of balls) around P

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005) Let $\Omega \subset \mathbb{R}^d$. Let $P \subset \Omega$ be such that

- $\Omega \subseteq P_{\delta}$ for some $\delta > 0$ and
- both $H_*(\Omega \hookrightarrow \Omega_{\delta})$ and $H_*(\Omega_{\delta} \hookrightarrow \Omega_{2\delta})$ are isomorphisms.

Then

 $H_*(\Omega) \cong \operatorname{im} H_*(P_{\delta} \hookrightarrow P_{2\delta}).$

 $P_{\delta} = B_{\delta}(P)$: δ -neighborhood (union of balls) around P

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005) Let $\Omega \subset \mathbb{R}^d$. Let $P \subset \Omega$ be such that

- $\Omega \subseteq P_{\delta}$ for some $\delta > 0$ and
- both $H_*(\Omega \hookrightarrow \Omega_{\delta})$ and $H_*(\Omega_{\delta} \hookrightarrow \Omega_{2\delta})$ are isomorphisms.

Then

 $H_*(\Omega) \cong \operatorname{im} H_*(P_{\delta} \hookrightarrow P_{2\delta}).$

 $P_{\delta} = B_{\delta}(P)$: δ -neighborhood (union of balls) around P

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005) Let $\Omega \subset \mathbb{R}^d$. Let $P \subset \Omega$ be such that

- $\Omega \subseteq P_{\delta}$ for some $\delta > 0$ and
- both $H_*(\Omega \hookrightarrow \Omega_{\delta})$ and $H_*(\Omega_{\delta} \hookrightarrow \Omega_{2\delta})$ are isomorphisms.

$$H_*(\Omega) \cong \operatorname{im} H_*(P_\delta \hookrightarrow P_{2\delta}).$$

 $P_{\delta} = B_{\delta}(P)$: δ -neighborhood (union of balls) around P

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005) Let $\Omega \subset \mathbb{R}^d$. Let $P \subset \Omega$ be such that

- $\Omega \subseteq P_{\delta}$ for some $\delta > 0$ and
- both $H_*(\Omega \hookrightarrow \Omega_{\delta})$ and $H_*(\Omega_{\delta} \hookrightarrow \Omega_{2\delta})$ are isomorphisms.

$$H_*(\Omega) \cong \operatorname{im} H_*(\underline{P_{\delta}} \hookrightarrow \underline{P_{2\delta}}).$$

 $P_{\delta} = B_{\delta}(P)$: δ -neighborhood (union of balls) around P

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005) Let $\Omega \subset \mathbb{R}^d$. Let $P \subset \Omega$ be such that

- $\Omega \subseteq P_{\delta}$ for some $\delta > 0$ and
- both $H_*(\Omega \hookrightarrow \Omega_{\delta})$ and $H_*(\Omega_{\delta} \hookrightarrow \Omega_{2\delta})$ are isomorphisms.

Then

 $H_*(\Omega) \cong \operatorname{im} H_*(\operatorname{Del}_{\delta}(P) \hookrightarrow \operatorname{Del}_{2\delta}(P)).$

 $P_{\delta} = B_{\delta}(P)$: δ -neighborhood (union of balls) around P

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005) Let $\Omega \subset \mathbb{R}^d$. Let $P \subset \Omega$ be such that

- $\Omega \subseteq P_{\delta}$ for some $\delta > 0$ and
- both $H_*(\Omega \hookrightarrow \Omega_{\delta})$ and $H_*(\Omega_{\delta} \hookrightarrow \Omega_{2\delta})$ are isomorphisms.

Then

$$H_*(\Omega) \cong \operatorname{im} H_*(P_{\delta} \hookrightarrow P_{2\delta}).$$

• We say that *P* is a *homological* δ -sample of Ω .
Homology inference using persistent homology

 $P_{\delta} = B_{\delta}(P)$: δ -neighborhood (union of balls) around P

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005) Let $\Omega \subset \mathbb{R}^d$. Let $P \subset \Omega$ be such that

- $\Omega \subseteq P_{\delta}$ for some $\delta > 0$ and
- both $H_*(\Omega \hookrightarrow \Omega_{\delta})$ and $H_*(\Omega_{\delta} \hookrightarrow \Omega_{2\delta})$ are isomorphisms.

Then

$$H_*(\Omega) \cong \operatorname{im} H_*(P_{\delta} \hookrightarrow P_{2\delta}).$$

- We say that *P* is a *homological* δ -sample of Ω .
- The image im $H_*(P_{\delta} \hookrightarrow P_{2\delta})$ is called a *persistent homology* group.

 $P_{\delta} = B_{\delta}(P)$: δ -neighborhood (union of balls) around P.

Theorem

Let $\Omega \subset \mathbb{R}^d$. Let $P \subset \mathbb{R}^d$ be such that

• $\Omega \subseteq P_{\delta}$ for some $\delta > 0$ (sampling density),

 $P_{\delta} = B_{\delta}(P)$: δ -neighborhood (union of balls) around P.

Theorem

Let $\Omega \subset \mathbb{R}^d$. Let $P \subset \mathbb{R}^d$ be such that

- $\Omega \subseteq P_{\delta}$ for some $\delta > 0$ (sampling density),
- $P \subseteq \Omega_{\epsilon}$ for some $\epsilon > 0$ (sampling error),

 $P_{\delta} = B_{\delta}(P)$: δ -neighborhood (union of balls) around P.

Theorem

Let $\Omega \subset \mathbb{R}^d$. Let $P \subset \mathbb{R}^d$ be such that

- $\Omega \subseteq P_{\delta}$ for some $\delta > 0$ (sampling density),
- $P \subseteq \Omega_{\epsilon}$ for some $\epsilon > 0$ (sampling error),
- $H_*(\Omega \hookrightarrow \Omega_{\delta+\epsilon})$ is an isomorphism, and

 $P_{\delta} = B_{\delta}(P)$: δ -neighborhood (union of balls) around P.

Theorem

Let $\Omega \subset \mathbb{R}^d$. Let $P \subset \mathbb{R}^d$ be such that

- $\Omega \subseteq P_{\delta}$ for some $\delta > 0$ (sampling density),
- $P \subseteq \Omega_{\epsilon}$ for some $\epsilon > 0$ (sampling error),
- $H_*(\Omega \hookrightarrow \Omega_{\delta+\epsilon})$ is an isomorphism, and
- $H_*(\Omega_{\delta+\epsilon} \hookrightarrow \Omega_{2(\delta+\epsilon)})$ is a monomorphism.

 $P_{\delta} = B_{\delta}(P)$: δ -neighborhood (union of balls) around P.

Theorem

Let $\Omega \subset \mathbb{R}^d$. Let $P \subset \mathbb{R}^d$ be such that

- $\Omega \subseteq P_{\delta}$ for some $\delta > 0$ (sampling density),
- $P \subseteq \Omega_{\epsilon}$ for some $\epsilon > 0$ (sampling error),
- $H_*(\Omega \hookrightarrow \Omega_{\delta+\epsilon})$ is an isomorphism, and
- $H_*(\Omega_{\delta+\epsilon} \hookrightarrow \Omega_{2(\delta+\epsilon)})$ is a monomorphism.

Then

$$H_*(\Omega) \cong \operatorname{im} H_*(P_\delta \hookrightarrow P_{2\delta+\epsilon}).$$

 $P_{\delta} = B_{\delta}(P)$: δ -neighborhood (union of balls) around P.

Theorem

Let $\Omega \subset \mathbb{R}^d$. Let $P \subset \mathbb{R}^d$ be such that

- $\Omega \subseteq P_{\delta}$ for some $\delta > 0$ (sampling density),
- $P \subseteq \Omega_{\epsilon}$ for some $\epsilon > 0$ (sampling error),
- $H_*(\Omega \hookrightarrow \Omega_{\delta+\epsilon})$ is an isomorphism, and
- $H_*(\Omega_{\delta+\epsilon} \hookrightarrow \Omega_{2(\delta+\epsilon)})$ is a monomorphism.

Then

$$H_*(\Omega) \cong \operatorname{im} H_*(P_\delta \hookrightarrow P_{2\delta + \epsilon}).$$

We say that *P* is a *homological* (δ, ϵ) -sample of Ω .

This motivates the *homological realization problem*: Problem

Given a simplicial pair $L \subseteq K$, find X with $L \subseteq X \subseteq K$ such that

 $H_*(X) = \operatorname{im} H_*(L \hookrightarrow K).$

This motivates the *homological realization problem*: Problem

Given a simplicial pair $L \subseteq K$, find X with $L \subseteq X \subseteq K$ such that

$$H_*(X) = \operatorname{im} H_*(L \hookrightarrow K).$$

This motivates the *homological realization problem*: Problem

Given a simplicial pair $L \subseteq K$, find X with $L \subseteq X \subseteq K$ such that

 $H_*(X) = \operatorname{im} H_*(L \hookrightarrow K).$

This motivates the *homological realization problem*: **Problem** *Given a simplicial pair* $L \subseteq K$, find X with $L \subseteq X \subseteq K$ such that

$$H_*(X) = \operatorname{im} H_*(L \hookrightarrow K).$$

This motivates the *homological realization problem*: **Problem** *Given a simplicial pair* $L \subseteq K$, find X with $L \subseteq X \subseteq K$ such that

$$H_*(X) = \operatorname{im} H_*(L \hookrightarrow K).$$

This motivates the *homological realization problem*: **Problem** *Given a simplicial pair* $L \subseteq K$, find X with $L \subseteq X \subseteq K$ such that

$$H_*(X) = \operatorname{im} H_*(L \hookrightarrow K).$$

This motivates the *homological realization problem*: **Problem** *Given a simplicial pair* $L \subseteq K$, find X with $L \subseteq X \subseteq K$ such that

$$H_*(X) = \operatorname{im} H_*(L \hookrightarrow K).$$

Theorem (Attali, B, Devillers, Glisse, Lieutier 2012) The homological realization problem is NP-hard, even in \mathbb{R}^3 .

Theorem (Attali, B, Devillers, Glisse, Lieutier 2012) The homological realization problem is NP-hard, even in \mathbb{R}^3 .

Theorem (Attali, B, Devillers, Glisse, Lieutier 2013) Let *P* be a homological δ -sample of $\Omega \subseteq \mathbb{R}^3$. Then the homological realization problem for the pair $\mathrm{Del}_{\delta}(P) \subseteq \mathrm{Del}_{2\delta}(P)$ has a polynomial time algorithm.

Theorem (Attali, B, Devillers, Glisse, Lieutier 2012) The homological realization problem is NP-hard, even in \mathbb{R}^3 .

Theorem (Attali, B, Devillers, Glisse, Lieutier 2013) Let P be a homological δ -sample of $\Omega \subseteq \mathbb{R}^3$. Then the homological realization problem for the pair $\text{Del}_{\delta}(P) \subseteq \text{Del}_{2\delta}(P)$ has a polynomial time algorithm.

Theorem (Attali, B, Devillers, Glisse, Lieutier 2012) The homological realization problem is NP-hard, even in \mathbb{R}^3 .

Theorem (Attali, B, Devillers, Glisse, Lieutier 2013) Let *P* be a homological δ -sample of $\Omega \subseteq \mathbb{R}^3$. Then the homological realization problem for the pair $\mathrm{Del}_{\delta}(P) \subseteq \mathrm{Del}_{2\delta}(P)$ has a polynomial time algorithm.

• If a solution exists, it is a homological reconstruction of Ω .

Theorem (Attali, B, Devillers, Glisse, Lieutier 2012) The homological realization problem is NP-hard, even in \mathbb{R}^3 .

Theorem (Attali, B, Devillers, Glisse, Lieutier 2013) Let *P* be a homological δ -sample of $\Omega \subseteq \mathbb{R}^3$. Then the homological realization problem for the pair $\text{Del}_{\delta}(P) \subseteq \text{Del}_{2\delta}(P)$ has a polynomial time algorithm.

- If a solution exists, it is a homological reconstruction of Ω .
- Provides homological reconstruction under much weaker assumptions

Theorem (Attali, B, Devillers, Glisse, Lieutier 2012) The homological realization problem is NP-hard, even in \mathbb{R}^3 .

Theorem (Attali, B, Devillers, Glisse, Lieutier 2013) Let *P* be a homological δ -sample of $\Omega \subseteq \mathbb{R}^3$. Then the homological realization problem for the pair $\mathrm{Del}_{\delta}(P) \subseteq \mathrm{Del}_{2\delta}(P)$ has a polynomial time algorithm.

- If a solution exists, it is a homological reconstruction of Ω .
- Provides homological reconstruction under much weaker assumptions
- Even though the pair $P_{\delta} \subseteq P_{2\delta}$ has the reconstruction Ω_{δ} , the pair $\text{Del}_{\delta}(P) \subseteq \text{Del}_{2\delta}(P)$ might not have a reconstruction

Computation

Persistent homology of sublevel sets

Persistent homology of sublevel sets

For simplicity:

Finite simplicial complex

For simplicity:

- Finite simplicial complex
- Filtration simplex by simplex

For simplicity:

- Finite simplicial complex
- Filtration simplex by simplex
- Indexed by natural numbers

For simplicity:

- Finite simplicial complex
- Filtration simplex by simplex
- Indexed by natural numbers
- Coefficients in \mathbb{Z}_2

Example: filtration and boundary matrix

Example: filtration and boundary matrix

Pivot of column *m_i*:

largest index with nonzero entry

- while there are i < j with pivot m_i = pivot m_j
 - add m_i to m_j

- while there are i < j with pivot m_i = pivot m_j
 - add m_i to m_j

- while there are i < j with pivot m_i = pivot m_j
 - add m_i to m_j

- while there are i < j with pivot m_i = pivot m_j
 - add m_i to m_j

Column m_i is reduced:

 pivot of col m_j minimal under left-to-right column additions

Matrix *M* is reduced:

all columns are reduced (equivalently: pivots are unique)

Matrix *M* is reduced at index (i, j):

• submatrix with rows $\geq i$ and cols $\leq j$ (lower left) is reduced

- $i = \text{pivot } m_j \text{ and } M \text{ is reduced at index } (i, j) \Rightarrow$
 - column m_j is reduced
 - (*i*, *j*) is a *persistence pair*:
 homology is created at step *i* and killed at step *j*

- $i = \text{pivot } m_j \text{ and } M \text{ is reduced at index } (i, j) \Rightarrow$
 - column m_j is reduced
 - (*i*, *j*) is a *persistence pair*:
 homology is created at step *i* and killed at step *j*

- $i = \text{pivot } m_j \text{ and } M \text{ is reduced at index } (i, j) \Rightarrow$
 - column m_j is reduced
 - (*i*, *j*) is a *persistence pair*:
 homology is created at step *i* and killed at step *j*

- $i = \text{pivot } m_j \text{ and } M \text{ is reduced at index } (i, j) \Rightarrow$
 - column m_j is reduced
 - (*i*, *j*) is a *persistence pair*:
 homology is created at step *i* and killed at step *j*

Theorem

Let *D* be the boundary matrix of a filtered chain complex $C_{n \in \mathbb{N}}$ (with coefficients in a field \mathbb{K} , indices in filtration order).

Theorem

Let D be the boundary matrix of a filtered chain complex $C_{n\in\mathbb{N}}$ (with coefficients in a field \mathbb{K} , indices in filtration order). Let $R = D \cdot V$ be reduced by left-to right column additions (i.e., R is reduced and V is full rank upper triangular).

Theorem

Let D be the boundary matrix of a filtered chain complex $C_{n \in \mathbb{N}}$ (with coefficients in a field \mathbb{K} , indices in filtration order). Let $R = D \cdot V$ be reduced by left-to right column additions (i.e., R is reduced and V is full rank upper triangular).

Then the persistence barcode of $H_*(C_n)$ consists of

 $\{[i,j): i = \text{pivot } r_j\} \cup \{[i,\infty): r_i = 0, i \neq \text{pivot } r_j \text{ for any } j\},\$

where r_j is the *j*th column of *R*.

Let v_i denote the *i*th column of V and r_j the *j*th column of R. For each k:

▶ Basis for cycles of C_k : $b_Z = \{v_i : r_i = 0, i \le k\}$

Let v_i denote the *i*th column of V and r_j the *j*th column of R. For each k:

- ▶ Basis for cycles of C_k : $b_Z = \{v_i : r_i = 0, i \le k\}$
- ▶ Basis for boundaries of C_k : $b_B = \{r_j \neq 0 : j \leq k\}$

Let v_i denote the *i*th column of V and r_j the *j*th column of R. For each k:

- Basis for cycles of C_k : $b_Z = \{v_i : r_i = 0, i \le k\}$
- ▶ Basis for boundaries of C_k : $b_B = \{r_j \neq 0 : j \leq k\}$
- Extend this basis to another basis for cycles:

 $\tilde{b}_Z = \{r_j \neq 0 : \text{pivot } r_j \leq k\} \cup \{v_i : r_i = 0, i \leq k, i \neq \text{pivot } r_j \text{ for all } j\}$

Let v_i denote the *i*th column of V and r_j the *j*th column of R. For each k:

- Basis for cycles of C_k : $b_Z = \{v_i : r_i = 0, i \le k\}$
- ▶ Basis for boundaries of C_k : $b_B = \{r_j \neq 0 : j \leq k\}$
- Extend this basis to another basis for cycles:

$$\tilde{b}_Z = \{r_j \neq 0 : \text{pivot } r_j \leq k\} \cup \{v_i : r_i = 0, i \leq k, i \neq \text{pivot } r_j \text{ for all } j\}$$

The additional cycles generate a basis for homology:

$$b_H = \tilde{b}_Z \setminus b_B = \{r_j \neq 0 : i \le k < j, i = \text{pivot } r_j\} \cup \{v_i : r_i = 0, i \le k, i \neq \text{pivot } r_j \text{ for all } j\}$$

Let v_i denote the *i*th column of V and r_j the *j*th column of R. For each k:

- Basis for cycles of C_k : $b_Z = \{v_i : r_i = 0, i \le k\}$
- ▶ Basis for boundaries of C_k : $b_B = \{r_j \neq 0 : j \leq k\}$
- Extend this basis to another basis for cycles:

$$\tilde{b}_Z = \{r_j \neq 0 : \text{pivot } r_j \leq k\} \cup \{v_i : r_i = 0, i \leq k, i \neq \text{pivot } r_j \text{ for all } j\}$$

The additional cycles generate a basis for homology:

$$b_H = \tilde{b}_Z \setminus b_B = \{r_j \neq 0 : i \le k < j, i = \text{pivot } r_j\} \cup \{v_i : r_i = 0, i \le k, i \neq \text{pivot } r_j \text{ for all } j\}$$