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What is persistent homology?

Persistent homology is the homology of a Bltration.

▸ A Bltration is a certain diagram K ∶ R→ Top.

▸ A topological space Kt for each t ∈ R
▸ An inclusion map Ks ↪ Kt for each s ≤ t ∈ R

▸ R is the poset category of (R, ≤)
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The pipeline of topological data analysis
Data point cloud

Geometry function

Topology topological spaces

Algebra vector spaces

Combinatorics intervals

distance

sublevel sets

homology

barcode
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SimpliBcation &
Reconstruction
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Homology inference
Problem (Homology inference)
Determine the homologyH∗(Ω) of a shapeΩ ⊂ Rd

from a Bnite sample P ⊂ Ω.

Problem (Homological reconstruction)
Given a Bnite sample P ⊂ Ω, construct a shapeX that is

geometrically close toΩ and satisBesH∗(X) ≅ H∗(Ω).

Idea:

▸ approximate the shape by a thickening Bδ(P) covering Ω
▸ represent by a homotopy-equivalent simplicial complex

▸ Čech complex Cechδ(P)
▸ Delaunay complexDelδ(P)

It is sometimes possible to recover the homology of Ω this way,
but the assumptions are quite strong:
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Homology reconstruction using union of balls

Theorem (Niyogi, Smale, Weinberger 2006)
LetM be a submanifold ofRd. Let P ⊂M be such thatM ⊆ Pδ for

some δ <
√
3/20 reach(M). Then

H∗(M) ≅ H∗(P2δ).

▸ Pδ = Bδ(P): δ-neighborhood (union of balls) around P.

▸ Points with distance < reach(M) to M have a unique
closest point on M

▸ The isomorphism is induced by the inclusion M ↪ P2δ .
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Homology inference using persistent homology
Pδ = Bδ(P): δ-neighborhood (union of balls) around P

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)
LetΩ ⊂ Rd. Let P ⊂ Ω be such that

▸ Ω ⊆ Pδ for some δ > 0 and

▸ bothH∗(Ω ↪ Ωδ) andH∗(Ωδ ↪ Ω2δ) are isomorphisms.

Then

H∗(Ω) ≅ imH∗(Pδ ↪ P2δ).

▸ We say that P is a homological δ-sample of Ω.

▸ The image imH∗(Pδ ↪ P2δ) is called a persistent homology

group.
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Homology inference with sampling error

Pδ = Bδ(P): δ-neighborhood (union of balls) around P.

Theorem
LetΩ ⊂ Rd. Let P ⊂ Rd be such that

▸ Ω ⊆ Pδ for some δ > 0 (sampling density),

▸ P ⊆ Ωє for some є > 0 (sampling error),

▸ H∗(Ω ↪ Ωδ+є) is an isomorphism, and

▸ H∗(Ωδ+є ↪ Ω2(δ+є)) is amonomorphism.

Then

H∗(Ω) ≅ imH∗(Pδ ↪ P2δ+є).

We say that P is a homological (δ, є)-sample of Ω.
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Proof.

H∗(

Ω

) H∗(

Ωδ+є

) H∗(

Ω2(δ+є)

)

H∗(

Pδ

) H∗(

P2δ+є

)

imH∗(Pδ ↪ P2δ+є)
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Homological realization
This motivates the homological realization problem:

Problem
Given a simplicial pair L ⊆ K, BndX with L ⊆ X ⊆ K such that

H∗(X) = imH∗(L↪ K).
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Homological realization in R3

Theorem (Attali, B, Devillers, Glisse, Lieutier 2012)
The homological realization problem is NP-hard, even inR3.

Theorem (Attali, B, Devillers, Glisse, Lieutier 2013)
Let P be a homological δ-sample ofΩ ⊆ R3.

Then the homological realization problem for the pair

Delδ(P) ⊆ Del2δ(P) has a polynomial time algorithm.

▸ If a solution exists, it is a homological reconstruction of Ω.
▸ Provides homological reconstruction under much weaker
assumptions

▸ Even though the pair Pδ ⊆ P2δ has the reconstruction Ωδ ,
the pair Delδ(P) ⊆ Del2δ(P) might not have a
reconstruction

18 / 25



Homological realization in R3

Theorem (Attali, B, Devillers, Glisse, Lieutier 2012)
The homological realization problem is NP-hard, even inR3.

Theorem (Attali, B, Devillers, Glisse, Lieutier 2013)
Let P be a homological δ-sample ofΩ ⊆ R3.

Then the homological realization problem for the pair

Delδ(P) ⊆ Del2δ(P) has a polynomial time algorithm.

▸ If a solution exists, it is a homological reconstruction of Ω.
▸ Provides homological reconstruction under much weaker
assumptions

▸ Even though the pair Pδ ⊆ P2δ has the reconstruction Ωδ ,
the pair Delδ(P) ⊆ Del2δ(P) might not have a
reconstruction

18 / 25



Homological realization in R3

Theorem (Attali, B, Devillers, Glisse, Lieutier 2012)
The homological realization problem is NP-hard, even inR3.

Theorem (Attali, B, Devillers, Glisse, Lieutier 2013)
Let P be a homological δ-sample ofΩ ⊆ R3.

Then the homological realization problem for the pair

Delδ(P) ⊆ Del2δ(P) has a polynomial time algorithm.

▸ If a solution exists, it is a homological reconstruction of Ω.
▸ Provides homological reconstruction under much weaker
assumptions

▸ Even though the pair Pδ ⊆ P2δ has the reconstruction Ωδ ,
the pair Delδ(P) ⊆ Del2δ(P) might not have a
reconstruction

18 / 25



Homological realization in R3

Theorem (Attali, B, Devillers, Glisse, Lieutier 2012)
The homological realization problem is NP-hard, even inR3.

Theorem (Attali, B, Devillers, Glisse, Lieutier 2013)
Let P be a homological δ-sample ofΩ ⊆ R3.

Then the homological realization problem for the pair

Delδ(P) ⊆ Del2δ(P) has a polynomial time algorithm.

▸ If a solution exists, it is a homological reconstruction of Ω.

▸ Provides homological reconstruction under much weaker
assumptions

▸ Even though the pair Pδ ⊆ P2δ has the reconstruction Ωδ ,
the pair Delδ(P) ⊆ Del2δ(P) might not have a
reconstruction

18 / 25



Homological realization in R3

Theorem (Attali, B, Devillers, Glisse, Lieutier 2012)
The homological realization problem is NP-hard, even inR3.

Theorem (Attali, B, Devillers, Glisse, Lieutier 2013)
Let P be a homological δ-sample ofΩ ⊆ R3.

Then the homological realization problem for the pair

Delδ(P) ⊆ Del2δ(P) has a polynomial time algorithm.

▸ If a solution exists, it is a homological reconstruction of Ω.
▸ Provides homological reconstruction under much weaker
assumptions

▸ Even though the pair Pδ ⊆ P2δ has the reconstruction Ωδ ,
the pair Delδ(P) ⊆ Del2δ(P) might not have a
reconstruction

18 / 25



Homological realization in R3

Theorem (Attali, B, Devillers, Glisse, Lieutier 2012)
The homological realization problem is NP-hard, even inR3.

Theorem (Attali, B, Devillers, Glisse, Lieutier 2013)
Let P be a homological δ-sample ofΩ ⊆ R3.

Then the homological realization problem for the pair

Delδ(P) ⊆ Del2δ(P) has a polynomial time algorithm.

▸ If a solution exists, it is a homological reconstruction of Ω.
▸ Provides homological reconstruction under much weaker
assumptions

▸ Even though the pair Pδ ⊆ P2δ has the reconstruction Ωδ ,
the pair Delδ(P) ⊆ Del2δ(P) might not have a
reconstruction

18 / 25



Computation
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Persistent homology of sublevel sets
Data point cloud

Geometry function
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Computational assumptions

For simplicity:

▸ Finite simplicial complex

▸ Filtration simplex by simplex

▸ Indexed by natural numbers

▸ Coe?cients in Z2

21 / 25



Computational assumptions

For simplicity:

▸ Finite simplicial complex

▸ Filtration simplex by simplex

▸ Indexed by natural numbers

▸ Coe?cients in Z2

21 / 25



Computational assumptions

For simplicity:

▸ Finite simplicial complex

▸ Filtration simplex by simplex

▸ Indexed by natural numbers

▸ Coe?cients in Z2

21 / 25



Computational assumptions

For simplicity:

▸ Finite simplicial complex

▸ Filtration simplex by simplex

▸ Indexed by natural numbers

▸ Coe?cients in Z2

21 / 25



Example: Bltration and boundary matrix

1 2 3 4 5 6 7
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Matrix reduction

1 2 3 4 5 6 7
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Pivot of column mj:

▸ largest index with nonzero entry
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▸ while there are i < jwith pivotmi = pivotmj

▸ add mi to mj
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= D ⋅

1 2 3 4 5 6 7
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2 1
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4 1
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6 1
7 1

Column mj is reduced:

▸ pivot of col mj minimal under left-to-right column
additions

23 / 25



Matrix reduction

1 2 3 4 5 6 7

1 2 3 4 5 6 7
1 1 1
2 1
3 1
4 1
5 1
6 1
7

= D ⋅

1 2 3 4 5 6 7
1 1
2 1
3 1 1
4 1
5 1 1
6 1
7 1

MatrixM is reduced:

▸ all columns are reduced (equivalently: pivots are unique)
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= D ⋅

1 2 3 4 5 6 7
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4 1
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7 1

MatrixM is reduced at index (i, j) :

▸ submatrix with rows ≥ i and cols ≤ j (lower left) is reduced
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i = pivotmj and M is reduced at index (i, j) ⇒
▸ column mj is reduced
▸ (i, j) is a persistence pair:

homology is created at step i and killed at step j
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Matrix reduction

Theorem
LetD be the boundarymatrix of a Bltered chain complexCn∈N

(with coe?cients in a BeldK, indices in Bltration order).

Let R = D ⋅V be reduced by left-to right column additions

(i.e., R is reduced andV is full rank upper triangular).

Then the persistence barcode ofH∗(Cn) consists of

{[i, j) ∶ i = pivot rj} ∪ {[i,∞) ∶ ri = 0, i ≠ pivot rj for any j},

where rj is the jth column of R.
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Proof.
Let vi denote the ith column of V and rj the jth column of R.
For each k:

▸ Basis for cycles of Ck: bZ = {vi ∶ ri = 0, i ≤ k}

▸ Basis for boundaries of Ck: bB = {rj ≠ 0 ∶ j ≤ k}
▸ Extend this basis to another basis for cycles:

b̃Z ={rj ≠ 0 ∶ pivot rj ≤ k} ∪ {vi ∶ ri = 0, i ≤ k, i ≠ pivot rj for all j}

▸ The additional cycles generate a basis for homology:

bH = b̃Z ∖ bB = {rj ≠ 0 ∶ i ≤ k < j, i = pivot rj} ∪
{vi ∶ ri = 0, i ≤ k, i ≠ pivot rj for all j}
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