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What is persistent homology?

Persistent homology is the homology of a filtration.

» Afiltration is a certain diagram K : R — Top.

» Atopological space K; foreach t € R
» Aninclusion map K; — K; foreachs<teR

» Ris the poset category of (R, <)
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The pipeline of topological data analysis
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Homology inference

Problem (Homology inference)

Determine the homology H, (Q) of a shape Q c R?
from a finite sample P c Q).

Problem (Homological reconstruction)

Given a finite sample P c Q, construct a shape X that is
geometrically close to Q) and satisfies H,(X) = H.(Q).

Idea:
» approximate the shape by a thickening Bs(P) covering Q
» represent by a homotopy-equivalent simplicial complex
» Cech complex Cechs(P)
» Delaunay complex Dels(P)
It is sometimes possible to recover the homology of Q this way,
but the assumptions are quite strong:
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Homology reconstruction using union of balls

Theorem (Niyogi, Smale, Weinberger 2006)
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Homology reconstruction using union of balls

Theorem (Niyogi, Smale, Weinberger 2006)

Let M be a submanifold of R4. Let P ¢ M be such that M c P? for
some § < \/3/20reach(M). Then

H.(M) = H.(P?).

» Ps = Bs(P): 6-neighborhood (union of balls) around P.

» Points with distance < reach(M) to M have a unique
closest pointon M

» The isomorphism is induced by the inclusion M < P2,
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Homology inference using persistent homology

Ps = Bs(P): 8-neighborhood (union of balls) around P

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)
Let Q) c R4, Let P c Q) be such that
» Q) ¢ Psforsomed > 0and
» both H,(Q = Qs) and H,(Qs = Q,4) are isomorphisms.
Then
H.(Q) 2 im H,(Ps = Py).

» We say that P is a homological §-sample of Q.
» Theimage im H, (Ps — Pys) is called a persistent homology
group.
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Theorem (Attali, B, Devillers, Glisse, Lieutier 2012)
The homological realization problem is NP-hard, even in R3.

Theorem (Attali, B, Devillers, Glisse, Lieutier 2013)
Let P be a homological §-sample of Q ¢ R>.

Then the homological realization problem for the pair
Dels(P) € Delys(P) has a polynomial time algorithm.

» If a solution exists, it is a homological reconstruction of Q.

» Provides homological reconstruction under much weaker
assumptions

» Even though the pair Ps € P,45 has the reconstruction Qy,
the pair Dels(P) < Del,s(P) might not have a
reconstruction
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S A

N Y| W N~
—
[a—
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Matrix reduction
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Matrix reduction
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—_
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Matrix M is reduced at index (i, ) :

» submatrix with rows > i and cols < j (lower left) is reduced
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Matrix reduction

Theorem
Let D be the boundary matrix of a filtered chain complex C,.y
(with coefficients in a field K, indices in filtration order).
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Matrix reduction

Theorem

Let D be the boundary matrix of a filtered chain complex C,.y
(with coefficients in a field K, indices in filtration order).

Let R = D - V be reduced by left-to right column additions
(i.e., Ris reduced and V is full rank upper triangular).

Then the persistence barcode of H,(C,,) consists of
{[i,j) : i = pivotrj} u{[i,00) : r; = 0,i # pivotr; for any j},

where r; is the jth column of R.
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