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Summary. Regional marketing strategies involve usually a fixed and a flexible
spending component. A recent article of Kao et al. ([1]) suggested to use a class
of production functions under optimization constraints to estimate the sales effec-
tiveness of marketing strategies. In this approach we suggest to extend this ap-
proach in two directions: First we want to model explicitly a spatial component
in the production function and secondly, we will explore the use of a hierarchical
model in the clustering of regional sales claims in order to optimize the geographic
cost-effectiveness ratio of marketing strategies. We propose a new class of (spatial)
sales-response functions based on hierarchical non-linear models that follow a CES
type production function with interactions and spatial regressors for modeling the
fixed (cross-sectional) and variable (time-dynamic) input components. The goal is to
test the effectiveness of existing regional marketing expenditures and to suggest new
expenditure patterns across time and space. The hierarchical extension of the model
will be in the spirit of Rossi et al. ([2]) and models the idea, that the sales elasticities
of the fixed and variable input components can vary geographically across macro-
regions. The model choice in this new family of spatially enhanced sales response
functions will be done in a Bayesian way using marginal likelihoods and Bayesian
model averaging (BMA). The optimal clustering of the sales response function into
geographic macro regions will be modeled by a normal mixture model. The modeling
approach will be demonstrated using synthetic and pharma- marketing data.

Key words: Production Functions, Geographic Cost-Effectiveness, Hierarchical
Spatial Models, MCMC, Model Choice by BMA.

1 Introduction

2 The multiplicative cross sectional sales response model

We will develop in the first step a cross-sectional sales response (CSSR)
and then we add the spatial dimension. While the original model of Kao
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et al.(2005) is a panel model that estimates the responses parameter across
time, we are forced to a CSSR model, because we observe only 2 time points.
The CSSR model with partial derivative restrictions is defined as multiplica-
tive model

y = γxβ1zβ2eε (1)

or taking logs we find for β = (β0, β1, β2)′ with β0 = log(γ)

ln y ∼ N(Xβ, σ2
yIn) (2)

This is a homoscedastic log-linear model with conditional mean µy = Xβ.
Adding the partial derivative restrictions for the 2 regressors, which imposes
the theoretical optimality conditions that the marginal allocations should be
equal across units, in a stochastic way we obtain

ln x ∼ N(µx, σ2
xIn) (3)

ln z ∼ N(µz, σ2
zIn) (4)

where the variances control the tightness of the optimality constraints: larger
variances allow for more deviations from the optimal strategy. The conditional
means µx = µx(β, λ) and µz = µz(β, λ) are given by

µx = (β0 + ln β1 − λ1 + β2ln z)/(1− β1) (5)
µz = (β0 + ln β2 − λ2 + β1ln x)/(1− β2).

This follows from both partial derivatives:

∂y/∂x = yx = β0β1x
β1−1zβ2 (6)

∂y/∂z = yz = β0β2x
β1zβ2−1.

Since x and z are fully observed quantities (like money expenses or sales
efforts via local and global advertising), these restrictions take a specific but
known values for each observation, if the parameters of the SRF (β, σ2

y are
fully known. Now we assume that the model can be estimated by imposing
stochastic partial derivatives (SPD) constraints in the following form:

log(yx) ∼ N [λ1, τ
2
1 ] (7)

log(yz) ∼ N [λ2, τ
2
2 ]

Now we have 4 additional parameters and it would be interesting to estimate
at least some of them - together with the SRF. The λi’s could be interpreters
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as some kind of average utility level of the sales responses while the τ2
i ’s take

the role of tightness parameters across observations in the sample. It seems
reasonable to fix the as hyper-parameters and the average marginal utilities
(AMU), i.e. the λi’s should be estimated.
A further aspect of the SPD constraints are that by including marginal utility
demons to a SRF we actually endogenize the inputs of the SRF and more
complicated estimation techniques are needed.
Note that in this interpretation the SRF model is a simultaneous equation
system that has cross-equation coefficients restrictions. Now the question is:
By imposing the SPD constraints in the estimation of the SRF (1) would that
improve the forecasting abilities of the model? Kao et al. (2005) argue that
this was the case in their applications. The nest section develops a MCMC
routine for the simplest case. We will report in a further paper about the
Bayesian system equation approach to estimate the SRF.

2.1 Bayesian Inference by MCMC

The parameters of the model are θ = (β0, ..., β2, λ1, λ2, σ
2
y, σ

2
x, σ

2
z). Assuming

block-wise independence, the prior distribution is given by

p(θ) = N [β | β∗, H∗]
2∏
j

N [λj | λj∗, τ2
j∗]

3∏
j

Ga[σ2
j | σ2

j∗nj∗/2, nj∗/2] (8)

We adopt the convention that all parameters with a star are known hyper-
parameters of the prior distribution and those with ** are known hyper-
parameters of the posterior distribution. Let D = {y, x, z} denote the observed
data, then the likelihood function is

l(ln y | D, θ) = N [ln y | Xβ, σ2
ε In]N [ln x | µx, σ2

xIn]N [ln z | µz, σ2
zIn]∗J (9)

where J is the appropriate Jacobian of the model. For the multiplicative
model this is J = 1− β1

1−β1

β2
1−β2

. From the posterior distribution for θ, which
is proportional to the likelkihood*prior

p(θ | D) ∝ l(ln y | x, z, θ)p(θ) (10)

we can work out the posterior simulator for θ by MCMC.
The full conditional distributions (fcd) for the posterior are given by
1. The fcd for β

p(β | y, ...) ∝ N [β | β∗, H∗]l(ln y | x, z, θ)N [ln x | µx, σ2
xIn]N [ln z | µz, σ2

zIn]
(11)

The last 2 components contain also β′s because of the SPD constraints. Since
this is not a known density we have to employ a Metropolis step, e.g. a random
walk chain for the proposal βnew
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βnew = βold +N [0, cβI3] (12)

where βold is the previous generated value and cβ is a tuning constant for the
variance. The acceptance probability involves the whole posterior density in
(10) and is

α(βold, βnew) = min

(
p(βnew)
p(βold)

, 1
)
, (13)

2. The fcd for λj , j = 1, 2
The average utility level can be estimated in the ’usual’ way.

p(λ1 | y, ...) ∝ N [λ1 | λ1∗, τ1∗]N [ln x | µx, σ2
xIn] (14)

p(λ2 | y, ...) ∝ N [λ2 | λ2∗, τ2∗]N [ln z | µz, σ2
zIn] (15)

where the second normal kernels can be viewed as sort of likelihood function.
Again we need a Metropolis step:

λnewj = λoldj +N [0, cλ,j ] (16)

where cλ,j is a small proposal variance. The acceptance probability is

α(λoldj , λnewj ) = min

(
p(λnewj )
p(λoldj )

, 1
)
, (17)

where p(.) is the full conditional distribution in (9).
A direct derivation shows that the pdf is a conjugate normal density:

τ−2
1∗∗ = τ−2

1∗ + σ−2
x (1− β1)2 (18)

and
λ1∗∗ = τ2

1∗∗[τ
−2
1∗ λ1∗ + σ−2

x (1− β1)2λ1]. (19)

3. The fcd for σj , j ∈ y, x, z

p(σ2
j | y, ...) ∝ Ga[σ2

j | σ2
j∗∗nj∗∗/2, nj∗∗/2] (20)

with
nj∗∗ = nj∗ + n

and
nj∗∗σ

2
j∗∗ = nj∗σ

2
j∗ + e′jej

where ej = lnj − µj being the current residuals of the 3 regression equa-
tions and for j ∈ y, x, z.
Finally, MCMC in the CSSR model takes the following steps:

1. Starting values: set β = βOLS and λ = 0
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2. Draw σ−2
y from Γ [σ−2

y | s2y∗∗, ny∗∗]
3. Draw σ−2

x from Γ [σ−2
x | s2x∗∗, nx∗∗]

4. Draw σ−2
z from Γ [σ−2

z | s2z∗∗, nz∗∗]
5. Draw λj from p(λj | λj∗∗, σ−2

j∗∗)
6. Draw β from p [β | b∗,H∗] l(θ | y)
7. Repeat until convergence.

The marginal likelihood is computed by the Newton-Raftery formula

m̂(y | ...)−1 =
1

nrep

nrep∑
i=1

l(ln y | D, θ)−1 (21)

with the parameters given for iteration i by θ(i) and the likelihood in (33).
Note: Extension of the model involving a market competetion variable: Let s
be the vetcor of share of the sales of the own product in each region, then we
can add the log share variable in the model equation:

ln y = β0 + β1ln x+ β2ln z + β3ln s+ ε (22)

Conveniently, this adds one more β parameter in the estimation procedure
and one more data set in d.

3 A spatial auto-regressive extension of the sales
response model

Since the seminal work by Anselin (1988), spatial interactions have become
an important tool in econometrics. Spatial applications have become popular
in applied sciences,like in economics and also social sciences.

3.1 Spatial lags

Consider a regression model where the dependent variable y = (y1, . . . , yn)′

is not independently observed but can be spatially correlated given the n×K
matrix of independent observations X. To model the spatial dependence we
have to know (or specify) a spatial weight matrix W which has 3 properties:

1. All entries are positive,
2. The main diagonal elements are zero, and
3. All row sums are 1, i.e.

W1n = 1n

where 1n is a n× 1 vector of ones.
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Such a weight matrix could be a distance matrix if the y’s are observed at
geographical locations, it could the first nearest neighbor only, but also a set
of all contiguous neighbors. More can be found in Anselin (1998). This allows
us to specify a spatial lag variable of the dependent variable

ỹ = Wy. (23)

Each element of ỹ, i.e., ỹj = wjy is a new ”neighborhood observation”, which
summarizes the influence of the neighbors in form of a weighted average of the
dependent variable and the jth row vector wj . Therefore we can formulate a
’structural’ form of the spatial SAR model in the following form:

y = Xβ + ρWy + ε, ε ∼ N
[
0, σ2In

]
, (24)

where In is the n× n identity matrix and ρ is the spatial correlation param-
eter. If ρ is zero then the model reduces to a simple regression model with
independent errors. (Therefore we could test for spatial dependence by testing
the restriction ρ = 0).
Next, we obtain a reduced form if we shift all dependent variables on the left
hand side:

z = y + ρWy = Xβ + ε, ε ∼ N
[
0, σ2In

]
, (25)

Using the spread matrix R and its inverse

R−1 = (In − ρW)−1.

we obtain the reduced form

y ∼ N
[
R−1Xβ, σ2(R′R)−1

]
, (26)

because V ar(Rε) = σ2RR′. The prior distribution for the parameter θ =
(β, σ−2, ρ) is given by the product of (independent) blocks of normal and
gamma distributions:

p(β, σ−2, ρ) = p(β) · p(σ−2) ·Unif[ρ | −1, 1] (27)

= N [β | b∗,H∗] · Γ [σ−2 | s2∗, n∗]
1
2
, (28)

where Unif [−1, 1] stands for a uniform distribution in the interval (−1, 1).
Because of restrictions, the interval of feasible ρ’s depends on λmin and λmax,
the minimum and maximum eigenvalue of W. It can be shown λ−1

min < 0
and λ−1

max > 0 and therefore ρt must lie between these bounds. Therefore, we
restrict the prior space of ρ to the interval (λ−1

min, λ
−1
max). The joint distribution

for y and the parameter θ = (β, σ2, ρ) is

p(β, σ−2, ρ,y) ∝ N
[
y | Xβ, σ2

]
· N [β | b∗,H∗] · Γ [σ−2 | s2∗, n∗]. (29)
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3.2 The CSSR-SAR model

The CSSR-SAR model is the CSSR model as in (49) with a spatial lag:

ln y ∼ N(µy = ρWln y +Xβ, σ2
yIn) (30)

or
ln y = ρWln y + β0 + β1ln x+ β2ln z + ε

with ε ∼ N(0, σ2
yIn). The partial derivative restrictions in (3) for the 2

regressors stay the same:

ln x ∼ N(µx, σ2
xIn), ln z ∼ N(µz, σ2

zIn) (31)

The parameter vector now is θ = (β0, ..., β2, λ1, λ2, σ
2
y, σ

2
x, σ

2
z , ρ) and in-

cludes the spatial ρ. The prior is - proportionally - the same (constant) since
we assume uniform prior for ρ: Unif[ρ | −1, 1] = 1/2. The reduced form of the
model is

ln y ∼ N
[
R−1Xβ, σ2(R′R)−1

]
, (32)

because V ar(Rε) = σ2RR′. This expression will now be used in the likelihood
function

l(ln y | D, θ) = N [ln y | Xβ, σ2
ε (R′R)−1]N [ln x | µx, σ2

xIn]N [ln z | µz, σ2
zIn]∗J

(33)
where J is the Jacobian of the model as before. For MCMC we can use

the fcd results of the previous section we just have to specify the additional
fcd for ρ :
4. The fcd for ρ:

p(ρ | y, ...) ∝ |In − ρW | exp
(
−
ε′ρερ

2σ2
y

)
(34)

where the residuals of the spatial regression are

ερ = ln y −Xβ − ρWln y.

We make a normal proposal:

ρnew = ρold + cρφ, φ ∼ N [0, 1]. (35)

The scalar cρ is a tuning parameter and ρold is the parameter of the previous
value. The acceptance probability is

α(ρold, ρnew) = min

(
p(ρnew)
p(ρold)

, 1
)
, (36)
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where p is the full conditional distribution in (34).
Finally, the MCMC procedure has just to add one more draw for the ρ

parameter:

1. Starting values: set ρ = 0, β = βOLS and λ = 0
2. Draw σ−2

y from Γ [σ−2
y | s2y∗∗, ny∗∗]

3. Draw σ−2
x from Γ [σ−2

x | s2x∗∗, nx∗∗]
4. Draw σ−2

z from Γ [σ−2
z | s2z∗∗, nz∗∗]

5. Draw λj from p(λj | λj∗∗, σ−2
j∗∗)

6. Draw β from p [β | b∗,H∗] l(θ | y)
7. Draw ρ using p(ρ | β, σ−2

y )
8. Repeat until convergence.

4 Simulation of data for the SRF

In this section we show how to simulate from a bivariate sales response func-
tion (SRF2) where the x regressor is generated according to the stochastic
derivative constraint (SDC): ∂y/∂x ∼ N [µx, τ2

x ] where τ2
x is the variance of

the constraint, indicating the looseness or strength of the optimality enforce-
ment.
The bivariate sales response function (SRF2) has the following form

y = γxβ1eε (37)

or taking logs we find with β0 = log(γ)

ln y ∼ N(µy = Xβ, σ2
yIn) (38)

Adding the partial derivative restrictions for the 2 regressors, which im-
poses the theoretical optimality conditions that the marginal allocations (and
therefor utility) should be equal across units: in a stochastic framework we
impose the condition

ln x ∼ N(µx, τ2
xIn) (39)

which implies an endogeneity for x.

Example 1. : The bivariate sales response function (SRF2)
We specify the bivariate SRF by y = eβ0 ∗ xβ1 or

ln y ∼ N(µy = β0 + β1ln x, σ
2
ε In) (40)

∼ N(µy = 2 + 1.5ln x, .92I20) (41)
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with sample size n = 20, coefficients β0 = 2 and β1 = 1.5, residual variance
σ2
y = .81. The derivative constraint has mean λ = 3 and variance τ2

x = 1.

The first derivative is

∂y /∂x = eβ0β1 ∗ xβ1−1 = λ (42)

or
ln λ = ln β0 + ln β1 + (β1 − 1)ln x ∼ N [µλ, τ2

λ ].

The x-regressor is simulated by making x in the constraint as the dependent
variable

µx = (ln β0 + ln β1 − ln λ)/(β1 − 1)

The whole regressor is simulated from a normal density:

ln x ∼ N(µx, σ2
xI20)

with σ2
x = τ2

λ/(β1 − 1)2.
From the figures 1-3 we see that the regression coefficients are far away from
β0 = 2 and β1 = 1.5.

5 R routines

In the appendix we have listed the R Program:

#Generate a biv. constraint SR function SRF2:
#W.Polasek, March09
# see Kao et al 05 and BP09
#
#1. Parameter set up
n=20 # sample size
#target is biv. response function y = b0*x^b1 with
b0=2 #and
b1=1.5
# regressor generator is
lam = 3 #and
siglam = 1
#
#1. generate n=20 x-observations
# x-mean = (ln b0 + ln b1 - ln lam)/(b1-1)
xm = (log(b0) + log(b1) -log(lam))/(b1-1)
#variance of x is
xvar = siglam^2/(1-b1)^2
xsig=sqrt(xvar)
#
# 2. Simulation of log x and log y
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#
lx = rnorm(n,xm,xsig)
hist(lx)
yvar =.81
ysig = sqrt(yvar)
#
ym = log(b0)+ b1*lx
ym
ly = rnorm(n,ym,ysig)
#
#simple log regression
#
ll =lsfit(ly,lx)
ll$coefficients
v=var(ll$residuals)

Fig. 1. beta0

6 MCMC in the SRF2 model

Following the reasoning in Kao et al. (2005), see section 2, the likelihood
function is

l(ln y | D, θ) = N [ln y | µy, σ2
ε In]N [ln x | µx, σ2

xIn] ∗ J (43)

with µy = β0 + β1ln x and µx = (ln β0 + ln β1 − µλ)/(β1 − 1) and σ2
x =

τ2
λ/(β1 − 1)2, since the whole regressor is simulated from a normal density:
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Fig. 2. beta1

Fig. 3. variance

ln x ∼ N(µx, σ2
xI20).

The log posterior distribution for β is

p(β | D) ∝ (ln y − µy)2/σ2
ε + (ln x− µx)2/σ2

x + n ∗ ln σ2
x (44)

6.1 SRF2: MCMC for simulated data

We have generated n = 20 observations. We make the following assignments
of hyper parameters:

The MCMC iteration is done in the following order
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1. The fcd for λ The average utility level can be estimated in the ’usual’ way.

p(λ | y, ...) ∝ N [λ | λ1∗, τ1∗]N [ln x | µx, σ2
xIn] (45)

2. The fcd for β

p(β | y, ...) ∝ N [β | β∗, H∗]l(ln y | x, z, θ)N [ln x | µx, σ2
xIn] (46)

3. The fcd for σj , j ∈ y, x, z

p(σ2
j | y, ...) ∝ Ga[σ2

j | σ2
j∗∗nj∗∗/2, nj∗∗/2] (47)

with nj∗∗ = nj∗ + n and nj∗∗σ
2
j∗∗ = nj∗σ

2
j∗ + e′jej , where ej = lnj − µj

being the current residuals of the 3 regression equations and for j ∈ y, x, z.

Finally, MCMC in the SRF2 model takes the following steps:

1. Starting values: set β = βOLS and λ = 0
2. Draw λ from p(λ | λ∗∗, τ−2

∗∗ )
3. Draw β from p [β | b∗,H∗] l(θ | y)
4. Draw σ−2

y from Γ [σ−2
y | s2y∗∗, ny∗∗]

5. Draw σ−2
x from Γ [σ−2

x | s2x∗∗, nx∗∗]
6. Repeat until convergence.

The results for 1000 repetitions are: The acceptance rate is 55.3 % The
mean (and sd) of the betas are: 0.725 (.304) and 1.525 (.138)
The distribution of the parameters are

Fig. 4. beta0 and beta1

The means of the σ’s and λ’s across the simulation are:
mean(lams) = 3.8652
mean(sigma) = 0.7736
The main simulation program is
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Fig. 5. lambda and sigma

#Testing the bivariate srf wp March09
n=1000

#Initialize arrays
sigs = lams =rep(0,n)
acceptmu = 0 #start counters
bols= solve(t(X)%*%X )%*%t(X)%*%y
e=y-X%*%bols;sigy=sd(e)
thx=list(bx=c(0,0),Hxi=diag(2)/1000,s2x=0,nux=1)
lamx=list(sx=3,lam1x=1)
lam = log(mean(y/x) ) #starting value
beta=bols
for(i in 1:n) {

#Sampling beta
sb = samplebeta(y,x,X,beta,sig,a=2,thx,lam)
beta =sb$bet
betas= rbind(betas, beta ) #store beta
acceptmu = acceptmu + sb$accept #counter mu

#Sampling sig
ss = samplesig(y,X,beta,thx)
sig = ss$sig
sigs[i] = sig #store sig
ll = samplelam(y,x,beta,sig,lamx)
lam = ll$lam
lams[i] = lam #store sig
print(c(i,beta,lam,sig))
}

apply(betas,2,mean) ; apply(betas,2,sd);mean(acceptmu)
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7 Sales in pharma marketing

We have observed regional whole sales in Germany for a certain product and
we want to relate it to the intensity of doctors visits in a region. The variable
a (promotional expenditures) is calculated as number of visits divided by the
number of doctors.
The sales response model can be set up in the same way as in the SFR CSSR
model. As the first model we look at the sales U2007 and the visits. The scatter
plots are seen in figures (??) and (??) An interesting variance convergence

Fig. 6. Visits M11/M13 and sales U2008 (logs)

relationship is given by the plot ( ??) on per capita Visits M13 and sales
U2008 (logs):

The model ”visits M11 pc and U2008 pc”: The estimates (posterior means
and SD) for this model are: beta0(SD) = 1.121(0.0827)

beta1(SD) = 0.321(0.0222)
acceptance rate = 50.8
lambda (SD) = 27.8 ( 1.678 )
sigma (SD) = 1.26 ( 0.021 )

OLS fit:\\
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Fig. 7. per capita Visits M13 and sales U2008 pc(logs)

Residual Standard Error=1.2581, R-Square=0.1502 \\
F-statistic (df=1, 1898)=335.4101, p-value=0

Estimate Std.Err t-value Pr(>|t|)
Intercept 1.1237 0.0673 16.6984 0
X 0.3222 0.0176 18.3142 0

The results of the model ”visitsM11 and U2008”: The estimates (posterior
means and SD) for this model are:

beta1: 6.36583618 (0.07469582)
beta2: 0.05815747 (0.02210080)
acceptance rate= 37.6
mean(SD) of $\lambda$: 8.026314 (2.933747)
mean(sigs); sd(sigs) 0.9877118 (0.01610788)

The model ”visitsM13andU2007” : TheposteriormeansandSDforthismodelare :

beta_0 (SD) = 6.497 ( 0.0452 )\\
beta_1 (SD) = 0.033 ( 0.0197 )\\
acceptance rate = 50 %
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Fig. 8. Betas of visits and sales U2008 per capita (pc)

lambda (SD) = 11.753 ( 6.734 )
sigma (SD) = 0.991 ( 0.016 )

\begin{tabular}{|||||||||||||||}
\hline
% after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...

area vis_M11 vis_M12 vis_M13 visits DocsM Docs A2007 U2008_M1 U2008_M2 Pop PPP U2008 U2007
area 1.00 0.20 -0.40 0.27 0.06 0.08 0.03 0.08 -0.07 0.04 -0.01 0.00 0.03 0.02
vis_M11 0.20 1.00 -0.07 0.29 0.84 0.77 0.09 -0.23 -0.20 0.04 0.16 0.06 0.12 0.52
vis_M12 -0.40 -0.07 1.00 -0.29 0.34 0.33 0.13 -0.23 0.00 -0.05 0.23 0.00 0.04 0.33
vis_M13 0.27 0.29 -0.29 1.00 0.39 0.48 0.17 -0.09 -0.15 0.00 0.13 -0.03 0.00 0.18
visits 0.06 0.84 0.34 0.39 1.00 0.99 0.25 -0.34 -0.22 0.00 0.33 0.03 0.11 0.66
DocsM 0.08 0.77 0.33 0.48 0.99 1.00 0.29 -0.34 -0.22 0.00 0.36 0.02 0.10 0.65
Docs 0.03 0.09 0.13 0.17 0.25 0.29 1.00 -0.26 -0.10 0.02 0.39 -0.28 0.07 0.49
A2007 0.08 -0.23 -0.23 -0.09 -0.34 -0.34 -0.26 1.00 0.13 0.04 -0.27 0.02 0.36 -0.38
U2008_M1 -0.07 -0.20 0.00 -0.15 -0.22 -0.22 -0.10 0.13 1.00 0.10 -0.12 -0.02 0.06 -0.17
U2008_M2 0.04 0.04 -0.05 0.00 0.00 0.00 0.02 0.04 0.10 1.00 0.00 -0.02 0.07 0.03
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Fig. 9. Lam, sig of visits and sales U2008 pc

Pop -0.01 0.16 0.23 0.13 0.33 0.36 0.39 -0.27 -0.12 0.00 1.00 -0.32 0.01 0.37
PPP 0.00 0.06 0.00 -0.03 0.03 0.02 -0.28 0.02 -0.02 -0.02 -0.32 1.00 -0.04 -0.10
U2008 0.03 0.12 0.04 0.00 0.11 0.10 0.07 0.36 0.06 0.07 0.01 -0.04 1.00 0.22
U2007 0.02 0.52 0.33 0.18 0.66 0.65 0.49 -0.38 -0.17 0.03 0.37 -0.10 0.22 1.00

\hline
\end{tabular}

8 Extensions with exogenous variables

In this section we estimate the model as before but we include 2 more regres-
sors: ”visitsM13 ” and PPP. The correlation with the PPP regressor is quite
non-linear and negative, see figure (14):

The Bayesian SRF estimation results are:

beta_0 (SD) = 1.152 ( 0.2507 )
beta_1 (SD) = 0.22 ( 0.0251 )
beta_2 (SD) = 0.19 ( 0.0239 )
beta_3 (SD) = 0.19 ( 0.0359 )
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Fig. 10. visits M11 and sales U2008

acceptance rate = 51 %

lambda (SD) = 22.478 ( 2.268 )
sigma (SD) = 1.225 ( 0.02 )

The OLS fit is [ ls.print(lsfit(cbind(l11pc,l13pc,lppp),y)) ]

Residual Standard Error=1.2238, R-Square=0.1967
F-statistic (df=3, 1896)=154.7628, p-value=0

Estimate Std.Err t-value Pr(>|t|)
Intercept 1.1510 0.1987 5.7925 0e+00
l11pc 0.2197 0.0197 11.1394 0e+00
l13pc 0.1893 0.0191 9.9163 0e+00
lppp 0.0962 0.0283 3.3938 7e-04

The distribution of the parameters are shown in the next figures:
The correlation matrix for the log-transformed variables is
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Fig. 11. visitsM11 and sales U2008

l2008pc l2007pc l11pc l12pc l13pc ldocs ldocsm a2007
l2008pc 1.00 0.74 0.39 0.35 0.37 0.68 0.62 0.16
l2007pc 0.74 1.00 0.36 0.37 0.36 0.69 0.61 0.09
l11pc 0.39 0.36 1.00 0.18 0.49 0.47 0.74 0.09
l12pc 0.35 0.37 0.18 1.00 -0.02 0.49 0.50 0.05
l13pc 0.37 0.36 0.49 -0.02 1.00 0.51 0.62 -0.04
ldocs 0.68 0.69 0.47 0.49 0.51 1.00 0.82 -0.04
ldocsm 0.62 0.61 0.74 0.50 0.62 0.82 1.00 0.01
a2007 0.16 0.09 0.09 0.05 -0.04 -0.04 0.01 1.00

9 2 endogenous variables in the SRF

In this section we consider the SRF with 2 endogenous variables:

y = γxβ1
1 xβ2

2 eε (48)

or taking logs we find for β = (β0, β1, β2)′ with β0 = log(γ)
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ln y ∼ N [µy = Xβ, σ2
yIn] (49)

If both input regressors x1 and x2 are measure on the same scale we can
make the following SPD assumption:

∂y/∂x1 = dy1 = β0β1x
β1−1zβ2 (50)

∂y/∂x2 = dy2 = β0β2x
β1zβ2−1

and we impose stochastic partial derivatives (SPD) constraints in the fol-
lowing form:

log(dy1) = log
yβ1

x1
∼ N [λ1, τ

2
1 ] (51)

log(dy2) = log
yβ2

x2
∼ N [λ2, τ

2
2 ]

This defines a simultaneous equation system in the endogenous variables. A
special case is obtained if we set with λ1 = λ2.
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Fig. 14. Betas of PPP and sales U2008pc

Let us assume for the moment that the βi coefficients and the regressors xi
are fixed. Then we can determine the variances τ2

i in (51) by

log(yi)− log(xi) + log(βi) = ηi with ηi ∼ N [λi, τ2
i ], i = 1, 2; (52)

with the moments Eηi = λi and

V ar(ηi) = τ2
i = σ2

i , i = 1, 2 (53)

The 2 partial derivatives constitute now a simultaneous regression system
- for fixed β coefficients - in the x and λ variables. By writing the 2 derivatives
in matrix form we can make the following stochastic normal assumption about
the sizes of the individual derivatives:

λ = γ0 +Bx ∼ N [µλ, Σλ] (54)

where µλ and Σλ are the unknown parameters of the observable stochastic
partial derivatives (SPD). Now we define the vectors



22 Daniel Baier and Wolfgang Polasek

γ0 =
(
ln β0 + ln β1

ln β0 + ln β2

)
and γ = B−1γ0. (55)

which are needed if we express the endogenous regressor variables as func-
tions of the SPD’s:

x = B−1(λ− γ0)or
(
ln x1

ln x2

)
=
(
β1 − 1 β1

β2 β2 − 1

)−1(
ln λ1 − ln β0 − ln β1

ln λ2 − ln β0 − ln β2

)
The Jacobian J is just the determinant of the B−1 matrix: J = |B|−1 =

[(β1 − 1)(β2 − 1)− β1β2]−1 with

B =
(
β1 − 1 β1

β2 β2 − 1

)
(56)

Next we have to find the variance of the endogenous ln x = (ln x1, ln x2)′

variable vector

V ar(ln x | β) = V ar(B−1λ) = B−1ΣλB
−1′ = (B′Σ−1

λ B)−1 (57)

and the therefore the whole distribution is normal:
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ln x | β ∼ N [µx = γ +B−1λ,Σx = (B′Σ−1
λ B)−1] (58)

The fcd for the λ = (λ1, λ2)′ parameters are proportional to

p(λ | θc) ∝ N [λ∗, Σλ,∗]l(λ | y) ∝ N [λ∗∗, Σλ,∗∗] (59)

where θc are the remaining parameters and the likelihood function l(λ | y)
is given by (51,52) in the following way by the moments of the stochastic
derivatives:

E(dy(i) | θc) = λi (60)

σ2
dy,i = V ar(dy(i) | θc) = V ar(log(yi)− log(xi)) = (61)

= V ar(log(yi) + V ar(log(xi)− 2Cov(log(xi), log(yi)) =
= σ2

y + σx,ii − 2σxy,i,

= σ2
y + σx,ii − 2βiσx,ii

= σ2
y + σx,ii(1− 2βi) i = 1, 2

because of (49), (58) with
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Fig. 17. Lam, sigma of the 2+2 model on sales U2008pc

Σx =
(
σx,11 σx,12
σx,21 σx,22

)
(62)

and the covariance term is

Cov(log(xi), log(yi)) = σxy,i = E[(log(xi)− µi)(log(yi)− µy)] (63)
= E[(log(xi)− µi)(...+ β1log(x1) + β2log(x2) + ...− µy)]
= βiσx,ii

with µy given in (49) and µi in (58). Finally we can write briefly dy(i) |
θc ∼ N [λi, σ2

dy,i] for i = 1, 2.
If we assume independence between the 2 stochastic derivatives we can esti-
mate each λi separately by a univariate Bayesian normal model. For the n
observed values of the i-th stochastic derivatives we use the formula (52) and
the fcd’s for the λi are given by a conjugate normal density:

τ−2
i∗∗ = τ−2

i∗ + σ−2
dyin (64)

for i = 1, 2 and
λi∗∗ = τ2

i∗∗[τ
−2
i∗ λ1∗ + σ−2

dyinµλi
], (65)
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with µλi
= 1

n

∑
j dyij being the observed mean of the i-th stochastic deriva-

tives and σ2
dyi = 1

n

∑
j(dyij − µλi

)2 the observed variance of the i-th SPD.
Note that a joint bivariate estimation of the λi’s is possible and also a pooled
estimation if we assume only one common λi = λ parameter.

τ−2
∗∗ = τ−2

∗ + σ−2
dy1n+ σ−2

dy2n (66)

λ∗∗ = τ2
∗∗[τ

−2
∗ λ∗ + σ−2

dy1nµλ1 + σ−2
dy2nµλ2 ]. (67)

9.1 Example with 2 edogenous variables

We consider the pharma sales examples again, but now we estimate the whole-
sales (y) by two visits of 2 different products (x11 and x13) from the same
company. Is there a joint optimal effect visible in the estimates?
The coefficient estimates are

beta_0 (SD) = 7.992 ( 0.1018 )
beta_1 (SD) = 0.458 ( 0.0169 )
beta_2 (SD) = 0.19 ( 0.0148 )
acceptance rate = 49 %
sigma (SD) = 0.946 ( 0.015 )
lambda1 (SD) = 46.648 ( 58.328 )
lambda2 (SD) = 1435.612 ( 2577.229 )

With 3 more exogenous variables log U2007 (previous year sales), logPPP
(purchasing power potential) and logPop (population) we get the following
result
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beta_0 (SD) = 6.155 ( 0.3103 )
beta_1 (SD) = 0.396 ( 0.017 )
beta_2 (SD) = 0.309 ( 0.0188 )
acceptance rate = 53 %
sigma (SD) = 0.969 ( 0.097 )
lambda1 (SD) = 40.568 ( 51.176 )
lambda2 (SD) = 1675.359 ( 1664.061 )
OLS:
Residual Standard Error=0.8928,R-Square=0.9891
F-statistic (df=6, 1894)=28635.66 ,p-value=0

Estimate Std.Err t-value Pr(>|t|)
6.2078 0.2463 25.2089 0.0000

x11 0.3956 0.0152 26.1093 0.0000
x13 0.3100 0.0148 20.9276 0.0000
u2007 0.0463 0.0207 2.2381 0.0253
ppp -0.0248 0.0209 -1.1881 0.2349
pop 0.3713 0.0253 14.6627 0.0000
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10 with growth Dummy variable

We define a dummy variable Dposg which splits the observation into 2 groups:
positive or negative total sales growth in the year 2007/2008. (if(g78[i] ¿0)
Dposg[i] =1 )
1. MARKET SHARE
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beta_0 (SD) = 10.827 ( 0.5485 )
beta_1 (SD) = 0.701 ( 0.0443 )
beta_2 (SD) = 0.421 ( 0.0493 )
acceptance rate = 51 %
sigma (SD) = 6.928 ( 0.834 )
lambda1 (SD) = 211.75 ( 406.737 )
lambda2 (SD) = 1592.964 ( 3476.425 )
OLS
Residual Standard Error=1.5038. R-Square=0.9829
F-statistic (df=6, 1894)=18180.42, p-value=0

Estimate Std.Err t-value Pr(>|t|)
10.8503 0.3351 32.3750 0

x11 0.6986 0.0255 27.3926 0
x13 0.4203 0.0250 16.8147 0
u2007 -0.4202 0.0350 -12.0169 0
Dposg -0.7949 0.0805 -9.8682 0
pop 0.5762 0.0421 13.6733 0

beta_3 (SD) = 0.423 ( 0.0605 )
beta_4 (SD) = 0.761 ( 0.1423 )
beta_5 (SD) = 0.578 ( 0.0841 )
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2. M1 sales

beta_0 (SD) = 5.911 ( 0.2625 )
beta_1 (SD) = 0.391 ( 0.0194 )
beta_2 (SD) = 0.31 ( 0.0164 )
acceptance rate = 49.5 %
sigma (SD) = 0.891 ( 0.013 )
lambda1 (SD) = 42.511 ( 63.35 )
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lambda2 (SD) = 1860.641 ( 2827.231 )
beta_3 (SD) = 0.053 ( 0.0261 )
beta_4 (SD) = 0.181 ( 0.0596 )
beta_5 (SD) = 0.369 ( 0.0291 )
OLS
Residual Standard Error=0.8897, R-Square=0.9892
F-statistic (df=6, 1894)=28838.04, p-value=0

Estimate Std.Err t-value Pr(>|t|)
5.9080 0.1983 29.7938 0.0000

x11 0.3910 0.0151 25.9110 0.0000
x13 0.3064 0.0148 20.7195 0.0000
u2007 0.0529 0.0207 2.5559 0.0107
Dposg 0.1825 0.0477 3.8290 0.0001
pop 0.3665 0.0249 14.6987 0.0000
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11 Summary

In this paper we have developed a spatial extension for a cross-sectional sales
response model which obeys stochastic constraints, as it was suggested by Kao
et al.(2005). Again, a simple MCMC estimation of the model turns out to be
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quite straightforward, despite the many constraints. Nevertheless, the SRF
with stochastic partial derivative (SPD) constraints leave many problem of
the appropriate estimation method and for model choice open. In a simulation
study we have shown that the estimation without the optimality constraints
create biases in the coefficient estimates. The SRF can be extended to a spatial
cross-sectional sales response model that takes the neighborhood structure of
the observations into account. We demonstrate this approach by a regional
pharmaceutical sale models for Germany.

12 Appendix: MCMC in the SAR model

[MCMC in the Normal-Gamma SAR model]

1. Starting values: set β = βOLS and ρ = 0
2. Draw σ−2 from Γ [σ−2 | s2∗∗, n∗∗]
3. Draw β from N [β | b∗∗,H∗∗]
4. Draw ρ from p(ρ | β, σ−2)
5. Repeat until convergence.

The full conditional distributions are:

1. For the regression coefficients β

p(β | σ−2, ρ,y) ∝ N [β | b∗∗,H∗∗] (68)

with the hyper-parameters

H−1
∗∗ = H−1

∗ + σ−2XX, (69)
b∗∗ = H∗∗

[
H−1
∗ b∗ + σ−2XRy

]
. (70)
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2. We find for the residual variance σ2

p(σ−2 | β, ρ,y) ∝ Γ [σ−2 | s2∗∗, n∗∗], (71)

a gamma distribution with the parameters

n∗∗ = n∗ + n, (72)
n∗∗s

2
∗∗ = n∗s

2
∗∗ + (Ry −Xβ)(Ry −Xβ). (73)

3. The full conditional distribution for the spatial correlation coefficients ρ
is proportional to

p(ρ | β, σ−2,y) ∝ |In − ρW | exp
(
−
ε′ρερ

2σ2

)
(74)

where the residuals of the spatial regression are

ερ = y −Xβ − ρWy

. We sample ρnewt from a normal proposal:

ρnewt = ρoldt + cφ, φ ∼ N [0, 1]. (75)

The scalar c is a tuning parameter and ρold is the parameter of the previous
sampling step. Next, we evaluate the acceptance probability

α(ρoldt , ρnewt ) = min

(
p(ρnewt )
p(ρoldt )

, 1
)
, (76)

where p is the full conditional distribution in (??) and, of course, ρt in ερ
also changes to ρnewt in p(ρnewt ). Finally we set ρt = ρnewt with probability
α(ρoldt , ρnewt ), otherwise ρt = ρoldt .

The scalar c is tuned to produce an acceptance rate between 10% and
30% as is suggested in Holloway et al. (2002). It should be mentioned that the
proposal density of ρt is not truncated to the interval (λ−1

min, λ
−1
max) since the

constraint is part of the target density. Thus, if the proposal value of ρ is not
within the interval, the conditional posterior is zero, and the proposal value
is rejected with probability one (see Chib and Greenberg, 1998).
The likelihood function is given by

pN (y | β, σ−2, ρ,X,W) = (2πσ2)−1/2|In − ρW| (77)

· exp
(
− (ỹ −Xβ)(ỹ −Xβ)

2σ2

)
(78)

The marginal likelihood is given by the Newton-Raftery formula

pN (y | ...)−1 =
1

nrep

nrep∑
i=1

pN (y | θ(i),X,W)−1 (79)

with the parameters given for simulation i by θ(i) = (β(i), σ
−2
(i) , ρ(i)) and the

likelihood pN (y | θ(i),X,W).
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