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1 Introduction

The seemingly unrelated regression (SUR) model was first proposed by Zellner

(1962) and has been widely used for estimating system equations. Zellner (1971)

and Box and Tiao (1973) studied the model from a Bayesian point of view and

Percy (1992), Chib and Greenberg (1995) and Koop (2003) used the Markov

chain Monte Carlo (MCMC) methods to estimate SUR models.

Since the seminal work by Anselin (1988), spatial interactions have become

an important tool in econometrics. Spatial applications have become popular

in applied sciences,like in economics and also social sciences; A special topic is

the distribution of crime incidents, see e.g. Anselin (1988) or Kakamu et al.

(2005) and in economics, Case (1991) studied the spatial patterns in household

demand. However, all theses estimations are mostly done by univariate spatial

models. In this paper, we consider the spatial SUR model, which takes the

multivariate case into account, from a Bayesian point of view and construct the

estimation methods of the model using MCMC methods. Also we introduce the

marginal likelihood to compare the models with and without spatial interac-

tion. Moreover, we illustrate our approach by estimating a regional production

function for 47 Japanese regions and we study spatial spill-over effects.

For the regional production function, we study the economics of agglomera-

tion with and without interregional spill-over effects using panel data during the

period 1991 to 2000, which is called in Japan the ”lost decade”. Our estimation

results show that the spatial autoregressive SUR model is the preferred model

and that (1) average total factor productivity is the driving force of economic

growth in manufacturing industries in Japan; (2) manufacturing industries in

Japan became more labor intensive; (3) the economics of agglomeration became

smaller over time; and (4) the spill-over effects play a small but important role.

The rest of this paper is organized as follows. In Section 2, we introduce the

spatial SUR model. Section 3 describes the joint posterior distribution and dis-

cusses the computational approach by the MCMC method. Section 4 explains

the MCMC estimation of the spatial autoregressive (SAR-SUR) and the spatial

error model (SUR-SEM). We also derive how to calculate marginal likelihoods
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for the spatial model selection. In Section 5, we introduce the regional pro-

duction function model and examine the economics of agglomeration in Japan

during the period 1991 to 2000. Finally, brief conclusions are given in Section

5.

2 Spatial SUR Models

For the estimation of the regional production function we consider a multivariate

regression model (a panel data set) where a cross sectional production function

is estimated for each time point t across n regions. Let yit denote the dependent

variable on i -th unit (region) and the t-th equation, let xit, which also includes

the constant term, denote independent variables, where xit is a 1× k vector of

all the i -th units in the t-th equation, and let wij denote the ij -th element of

the weight matrix W . Also suppose that

y =


y1

...

yT

 , yt =


y1t

...

yNt

 , X =


X1

. . .

XT

 , Xt =


x1t

...

xNt

 ,

β =


β1

...

βT

 , Dρ = diag(ρ1, · · · , ρT ), Dρ ⊗W =


ρ1W

. . .

ρT W

 ,

where the matrices are y : NT × 1, yt : N × 1, X : NT × kT , Xt : N × k and

β : kT × 1 , respectively.

In this cross-sectional SUR model, the equations can be correlated and there-

fore we define by Ω the covariance matrix across equations. Then the spatial

autoregressive SUR (or SAR-SUR) model contains the parameters (β, Ω−1, Dρ)

is written as follows;

y = Xβ + (Dρ ⊗W )y + ε, ε ∼ N (0,Ω⊗ IN ) , (1)

where IN is N ×N unit matrix.
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Lemma: The likelihood function L of the model (??) is given by;

L(y|β, Ω−1, Dρ, X,W )

=
1

√
2π

NT
|Ω−1|N/2|INT − (Dρ ⊗W )| exp

[
−e′(Ω−1 ⊗ IN )e

2

]
, (2)

where e = y −Xβ − (Dρ ⊗W )y.

Proof : The model is y = Xβ + (Dρ ⊗W )y + ε, ε ∼ N (0,Ω⊗ IN ). We rewrite

it as y = F−1Xβ + F−1ε, where F = (INT −Dρ ⊗W ). Then, the variance of

F−1ε is:

V ar(F−1ε) = J(F
′−1)(Ω⊗ IN )J(F−1)

=
1

|F ′−1| 12 |F−1| 12
(Ω⊗ IN )

=
1

|F−1|
(Ω⊗ IN )

= |F |(Ω⊗ IN )

= |INT −Dρ ⊗W |(Ω⊗ IN ). (3)

Therefore, the determinant appears in (??), as the Jacobian of the transforma-

tion is | ∂ε
∂y | = |F |. Q.E.D.

3 Posterior analysis of the spatial SUR models

3.1 Joint posterior distribution of SAR-SUR model

Since we adopt a Bayesian approach, we complete the model by specifying the

prior distribution for all the parameters. Therefore, we assume the following

priors;

p(β, Ω−1, Dρ) = p(β)p(Ω−1)
T∏

t=1

p(ρt),

and

β ∼ N (β∗,Σ∗), Ω−1 ∼ W(Ω∗, ν∗),

ρt ∼ U(λ−1
min, λ−1

max), t = 1, · · · , T,
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where W(A, b) denotes a Wishart distribution with scale parameter A and de-

grees of freedom b. λmin and λmax denote the minimum and maximum eigen-

values of W . As is shown in Sun et al. (1999), it is well known that λ−1
min < 0

and λ−1
max > 0 and ρt must lie in the interval. Therefore, we restrict the prior

space as ρt ∈ (λ−1
min, λ−1

max).

Using the prior density p(β, Ω−1, Dρ) and the likelihood function as in (??),

the joint posterior distribution can be expressed as

p(β, Ω−1, Dρ|y, X,W )

∝ p(β, Ω−1, Dρ)L(y|β, Ω−1, Dρ, X,W )

∝ |Σ∗|−1 exp
[
− (β − β∗)Σ−1

∗ (β − β∗)
2

]
×|Ω−1|(ν∗−T−1)/2 exp

[
− tr(Ω−1Ω−1

∗ )
2

]
×|Ω−1|N/2|INT − (Dρ ⊗W )| exp

[
−e′(Ω−1 ⊗ IN )e

2

]
. (4)

3.2 Posterior simulation of the SAR-SUR model

Based on the joint posterior distribution given in (??), we can now derive con-

ditional distributions for the MCMC estimation. The Markov chain sampling

scheme is now constructed from the following full conditional distributions of β,

Ω−1 and ρt for t = 1, · · · , T .

3.2.1 Sampling ρt for t = 1, · · · , T

We know |INT − (Dρ ⊗W )| =
∏T

t=1 |IN − ρtW | by the properties of a block di-

agonal matrix. Using (??), the full conditional distribution of ρt is proportional

to

p(ρt|β, Ω−1, Dρ−t
, y,X, W ) ∝ |IN − ρtW | exp

(
− tr(E′EΩ−1)

2

)
, (5)

where E is the residual matrix with vec(E) = e. Since this expression cannot

be sampled by standard methods, we adopt a random-walk Metropolis step at

this point of the sampler (see e.g., Tierney, 1994). 1

1We also tried to apply the independence chain. However, we recommend the random-walk

chain, because it is faster. Some more discussions are found in Appendix B.
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We sample ρnew
t from

ρnew
t = ρold

t + cφ, φ ∼ N (0, 1). (6)

The scaler c is called tuning parameter and ρold is the parameter of the previous

sampling. Next, we evaluate the acceptance probability

α(ρold
t , ρnew

t ) = min

(
p(ρnew

t )
p(ρold

t )
, 1
)

, (7)

where p is the full conditional distribution in (??) and, of course, ρt in E

also changes to ρnew
t in p(ρnew

t ). Finally we set ρt = ρnew
t with probability

α(ρold
t , ρnew

t ), otherwise ρt = ρold
t . The scalar c is tuned to produce an accep-

tance rate between 10% and 30% as is suggested in Holloway et al. (2002). It

should be mentioned that the proposal density of ρt is not truncated to the

interval (λ−1
min, λ−1

max) since the constraint is part of the target density. Thus,

if the proposal value of ρt is not within the interval, the conditional posterior

is zero, and the proposal value is rejected with probability one (see Chib and

Greenberg, 1998).

In the sampling of ρt for t = 1, · · · , T , the following density is used;

p(ρ1|β, Ω−1, ρold
2 , · · · , ρold

T ),

p(ρ2|β, Ω−1, ρ1, ρ
old
3 , · · · , ρold

T ),
...

p(ρT |β, Ω−1, ρ1, · · · , ρT−1).

3.2.2 Sampling the other parameters

The full conditional distribution for β is given by

p(β|Ω−1, Dρ, y,X, W )

∝ exp
[
− (β − β∗)Σ−1

∗ (β − β∗)
2

]
exp

[
−e′(Ω−1 ⊗ IN )e

2

]
∝ N (β∗∗,Σ∗∗), (8)

where β∗∗ = Σ∗∗(X ′(Ω−1 ⊗ IN )(y − (Dρ ⊗W )y) + Σ−1
∗ β∗), Σ∗∗ = (X ′(Ω−1 ⊗

IN )X + Σ−1
∗ )−1.
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The full conditional distribution for Ω−1 is given by

p(Ω−1|β, Dρ, y,X, W )

∝ |Ω−1|(ν∗−T−1)/2 exp
[
− tr(Ω−1Ω−1

∗ )
2

]
|Ω−1|N/2 exp

[
− tr(Ω−1E′E)

2

]
∝ W(Ω∗∗, ν∗∗), (9)

where Ω∗∗ = (E′E + Ω−1
∗ )−1 and ν∗∗ = N + ν∗.

These fcd’s are easily sampled through the Gibbs sampler (see e.g., Gelfand

and Smith, 1990).

4 The SUR spatial error model (SUR-SEM)

The spatial error SUR (SEM-SUR) model conditioned on parameters (β, Ω−1, Dρ)

is written as follows;

y = Xβ + (Dρ ⊗W )u + ε, ε ∼ N (0,Ω⊗ IN ) , (10)

where u = y −Xβ.

Then, we will introduce the likelihood function L of the model (??) as follows;

L(y|β, Ω−1, Dρ, X,W )

=
1

√
2π

NT
|Ω−1|N/2|INT − (Dρ ⊗W )| exp

[
−e′(Ω−1 ⊗ IN )e

2

]
,(11)

where e = y −Xβ − (Dρ ⊗W )(y −Xβ).

The full conditional distributions of the model are as follows:

p(ρt|β, Ω−1, Dρ−t
, y,X, W ) ∝ |IN − ρtW | exp

(
− tr(E′EΩ−1)

2

)
, (12)

p(β|Ω−1, Dρ, y,X, W ) ∝ N (β∗∗,Σ∗∗), (13)

p(Ω−1|β, Dρ, y,X, W ) ∝ W(Ω∗∗, ν∗∗), (14)

where β∗∗ = Σ∗∗((X − (Dρ ⊗ W )X)′(Ω−1 ⊗ IN )(y − (Dρ ⊗ W )y) + Σ−1
∗ β∗),

Σ∗∗ = ((X − (Dρ ⊗ W )X)′(Ω−1 ⊗ IN )(X − (Dρ ⊗ W )X) + Σ−1
∗ )−1, Ω∗∗ =

(E′E + Ω−1
∗ )−1 and ν∗∗ = N + ν∗. Eq. (??) cannot be sampled by standard

methods. Therefore, we also adopt the random-walk Metropolis algorithm as is

stated in Section 3.2.1.
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4.1 Model selection by marginal likelihoods

For model Mk, let L(y|θk,Mk) and p(θk|Mk) be the likelihood and prior for the

model, respectively. Then, the marginal likelihood of the model is defined as

m(y) =
∫

L(Y |θk,Mk)p(θk|Mk)dθk.

Since the marginal likelihood can be written as

m(y) =
L(y|θk,Mk)p(θk|Mk)

p(θk|y, Mk)
,

Chib (1995) suggests to estimate the log marginal likelihood from the expression

log m(y) = log L(y|θ∗k,Mk) + log p(θ∗k|Mk)− log p(θ∗k|y, Mk),

where θ∗k is a particular high density point (typically the posterior mean or

the maximum likelihood (ML) estimate). He also provides a computationally

efficient method to estimate the posterior ordinate p(θ∗k|y, Mk) in the context

of Gibbs sampling and Chib and Jeliazkov (2001) provides the method in the

context of Metropolis-Hasting sampling. In the SUR-SAR model, for example,

we set θk = (β, Ω, Dρ) and estimate the posterior ordinate p(θ∗k|y, Mk) via the

decomposition

p(θ∗k|y, Mk)

= p(β∗|D∗
ρ,Ω∗, y,X, W )p(Ω∗|β∗, D∗

ρ, y,X, W )
T∏

t=1

p(ρt|β∗,Ω∗, D∗
ρ−t

, y,X, W ).

The terms p(β∗|D∗
ρ,Ω∗, y,X, W ) and p(Ω∗|β∗, D∗

ρ, y,X, W ) are calculated from

the Gibbs output (see Chib, 1995) and p(ρt|β∗,Ω∗, D∗
ρ−t

, y,X, W ) is calculated

from the Metropolis-Hasting output (see Chib and Jeliazkov, 2001 ). Using

marginal likelihoods, we can now compare the following models: SUR, SAR-

SUR, and SEM-SAR. 2

2Note that if we drop the last term in ??
QT

t=1 p(ρt|β∗, Ω∗, D∗
ρ−t

, y, X, W ), then we get

the posterior ordinate of the ordinary SUR model.
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5 Estimating the regional production function

5.1 A regional economic model for Japan 1991-2000

We extend the regional production function model of Kanemoto et al. (1996) to

include a spatial agglomeration parameter for the 47 Japanese prefectures dur-

ing the decade from 1991 to 2000. We estimate the Cobb-Douglas production

function using all 47 prefectures and we are interested in the magnitude of ur-

ban agglomeration and interregional spill-over effects. The regional production

function in a prefecture is specified as Y = F (L,K, S), where L, K, S, and Y

are respectively the employment, the private capital, the spill-overs, and the to-

tal production (or value added) in a prefecture. We assume that in the absence

of agglomeration economies the production function exhibits constant returns

to scale with respect to labor and capital inputs. The degree of agglomeration

economies can then be measured by the degree of increasing returns to scale of

the estimated production function.

This spatial extension of the production function is justified if there ex-

ist technological externalities between firms across prefectures. For example,

suppose a firm in a prefecture receives external benefits from an urban agglom-

eration, measured by the total employment L, and the spill-overs are measured

by S. Assuming that the firm uses labor n and (private) capital k as inputs,

we can write the production function as f(n, k, L, S). For simplicity, we as-

sume that all firms are identical. The total production in a prefecture is then

Y = mf(L/m, K/m, L, S), where m is the number of firms in a prefecture.

Free entry of firms guarantees that the size of an individual firm is determined

such that the production function of an individual firm, f(n, k, L, S), exhibits

constant returns to scale with respect to n and k. This condition determines

the number of firms m as a function of other variables, m∗(m,L,K, S). The

aggregate production function is then

F (L,K, S) = m∗(m,L,K, S)f

(
L

m∗(m,L,K, S)
,

K

m∗(m,L,K, S)
, L, S

)
.
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This aggregate production function satisfies

FL(L,K, S) = m

[
1
m

fn + fL

]
+ m∗

L[f − fn − kfk]

= fn(n, k, L, S) + mfL(n, k, L, S),

where subscripts denote partial derivatives and the second expression in square

brackets equals zero because of constant-returns-to-scale condition. The last

term mfL measures the marginal benefits of the urban agglomeration economies.

Although a variety of functional forms are possible for the regional produc-

tion function, we start with a simple Cobb-Douglas type function:

Yit = AitK
αt
it Lγt

it . (15)

The magnitude of urban agglomeration economy can be measured by the degree

of the scale economy, αt + γt − 1.

Next, we will introduce the interregional spill-overs. We specify an interre-

gional spill-over parameter using the spatial econometrics approach. Suppose

that the interregional spill-overs could change the total factor productivity Ait

and is related to the regional weights wij and the ratio Yjt

Ljt
. Then we yield the

following expression for the total factor productivity:

Ait = A0t ×
∏
j

(
Yjt

Ljt

)ρtwij

, (16)

where ρ is interpreted as the intensity of the spatial interactions. Substitute

(??) for (??) and rearrange terms to obtain the equation;

ln

(
Yit

Lit

)
= ln A0t + ρt

∑
j

wij ln

(
Yjt

Ljt

)
+ a1t ln

(
Kit

Lit

)
+ a2t ln(Lit), (17)

where αt = a1t and γt = a1t + a2t. Then, the economics of agglomeration

coefficient is measured by a2 (see also Kanemoto et al., 1996) and thus can be

estimate by a SAR model. However, as we use a time panel data set, we have to

consider the correlation among periods. Therefore, we will use our SAR-SUR

model3.
3If we replace the spill-over in (??) to Ait = A0t ×

Q
j(Yjt/A0tLα

jtK
γ
jt)

ρtwij , then we can

construct SEM-SUR model. Furthermore, if we assume that all Ait’s are equal across regions,

then the model reduces to simple (i.e. non-spatial) SUR model.
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Note that an alterntive estimation equation can be obtained by

ln

(
Yit

Kit

)
= ln A0t + ρt

∑
j

wij ln

(
Yjt

Kjt

)
+ a1t ln

(
Lit

Kit

)
+ a2t ln(Kit). (18)

5.2 Estimation results

Before we describe the empirical results, we explain the data set we use in

this paper. Our data set stems from the Census of Manufactures prepared

by the Ministry of International Trade and Industry (MITI) of Japan. For

47 prefectures, the total production is the ’added value of the manufacturing

industries’, the total capital is the ’amount at hand of permanent assets’ and

the total employment is the number of full time employees, which exclude part

time labor. As a weight matrix W , we use the contiguity matrix of Japanese

prefectures as in Kakamu et al. (2005), which represents the spatial connection

or the ’geography’ of economic activities 4 and the average number of dummy

variables are 4. For the prior distributions we have specified the following hyper-

parameters;

β∗ = 0, Σ∗ = 100IkT , Ω∗ = 100IT , ν∗ = T + 1,

Finally, we ran the MCMC algorithm using 10’000 iterations and discarded the

first 5000 iterations. All programming results reported here were generated by

the Ox programming language, version 4.02 (see Doornik, 2001).

Table ?? shows the marginal likelihoods of all models: SAR-SUR, SEM-

SUR, SUR and independent SAR models. Note, that the SAR-SUR model is

the best model. Therefore, we will refer only to the parameters of the SAR-SUR

model hereafter. We have also added the results of the SUR model, since we

want to compare the SAR-SUR models with the simple SUR model.
4All except one of the Japanese prefectures (Okinawa) are situated on the four major islands

of Japan: Hokkaido, Honshu, Shikoku and Kyushu. All these four islands are connected by

train and roads, and eases the fact that islands are separate geographical entities but also

connected by ships and ferries. For example, the most northern island Hokkaido is connected

by the Seikan railway tunnel to the main island Honshu. And Honshu is connected by 2 large

bridge systems, the Awaji and Seto bridge to Shikoku, and the southern island of Kyushu

is also connected by the Kanmon tunnel and a bridge to Honshu. Therefore, the island of

Okinawa is the only prefecture which is independent of all other prefectures.
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Table ?? shows the coefficient estimates of SAR-SUR model. First of all,

note that all the coefficients are ’significant’ in the Bayesian sense of lying out-

side the 4σ interval around zero. 5. The (marginal) posterior distributions of the

coefficients, lnA0, a1 a2 and ρ, are shown in Figure ?? by box plots. Note that in

general, the marginal distributions of lnA0 became larger over time. This means

that the average TFP is a driving force for the economic growth in Japanese

manufacturing industries. On the other hand, the capital-labor intensity a1

became smaller over time. This could show that the manufacturing industries

in Japan became slightly more labor intensive. The economics of agglomera-

tion coefficient, a2, also became smaller. From this evidence, we conclude that

the power of economics of agglomeration is getting smaller and smaller after

the collapse of economic bubble in 1991. Therefore the 1990 decade, which is

sometimes called the “lost decade”, is associated with a declining importance of

the era of the economics of agglomeration. Finally, for the spill-over effect, ρt,

we note that all the parameters are estimated significantly but small and they

make a large jump in 2000.

Table ?? shows the variance-covariance and correlation matrices of the em-

pirical example and Figure ?? shows the box plots (of off-diagonal elements),

which can be interpreted as implied autocorrelation function. From the corre-

lation matrix, we see that there exist serious time-correlation among equations.

It shows that the serial correlation plays an important role in analysing pro-

duction function in manufacturing industries. This high high serial correlations

can also be seen from the box plots in Figure ??.

Table The entries ?? and ?? show the posterior means, the variance-covariance

and correlation matrices of the simple SUR model. Note that the SUR correla-

tion matrix Ω for the simple SUR and the SAR-SUR model are quite similar.

Furthermore, we find that many coefficients are of the same size, but the co-

efficients lnA0 and a2 are overestimated if we ignore the possibility of spatial

interactions. This shows that if we ignore spatial interaction we might misin-

terpret the source of economic growth because the ln A0 and a2, the TFP and
5i.e. significant means that the 95% credible interval does not include zero.
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the economics of agglomeration coefficients are overestimated in case assuming

a simple SUR model. Finally we note that the spatial ρt coefficients, i.e. the

spill-over effects play a small but important role on our approach, because they

increase the model fit substantially.

Summarizing our estimation results, we are making the following implica-

tions: (1) Average TFP seems to be the major source of economic growth in the

manufacturing industries of Japan. (2) Manufacturing industries have become

more labor intensive. (3) The economics of agglomeration became smaller over

time, but (4) The spill-over effects play a small but important role. From the

SUR correlation matrix we see that the manufacturing production function in

Japan is serially correlated.

6 Conclusions

This paper studied the SUR model with spatial dependency from a Bayesian

point of view. We derived the joint posterior distribution, and proposed MCMC

methods to estimate the parameters of the model. We have illustrated our

approach using Japanese real data and analyzed the economics of agglomeration

in Japan during the decade from 1991 to 2000.

Summarizing, we draw the following conclusions: (1) Average TFP is a

strong source for economic growth in manufacturing industries in Japan. (2)

Manufacturing industries in Japan have become more labor intensive in the

1990s. (3) The economics of agglomeration became smaller over time, but (4)

The spill-over effects play a small but important role. These effects do not

show any specific trend except for an outlier in the year 2000 which could

be an indicator of the existenc3e of a possible slight spatial interrelationship

and a potential structural change. This finding needs to be explored in more

detail in some future studies. Not surprisingly, we see from the SUR correlation

matrix that the manufacturing production function in Japan is strongly serially

correlated across the years. A box plot of all theses same’ off-diagonal correlation

elements of the estimated SUR covariance-matrix is given in Figure 2.
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Appendix A

Alternatives for sampling ρ First, we will introduce the independence Metropolis-

Hastings proposal step to sample ρt for the Gibbs sampler. The following step

is used: Sample ρnew
t from

ρnew
t ∼ N (ρ̂t, σ̂

2
t ), (19)

ρ̂t = {(Wyt)′(Wyt)}−1(Wyt)′(yt −Xtβt), (20)

σ̂2
t = ωt{(Wyt)′(Wyt)}−1, (21)

where ωt is the tt-th element of Ω.

Next, we evaluate the acceptance probability

α(ρold
t , ρnew

t ) = min

(
p(ρnew

t )/q(ρnew
t )

p(ρold
t )/q(ρold

t )
, 1
)

, (22)

where p is the full conditional distribution in (??), q is the proposal density

given in (??) and, of course, ρt in E also changes to ρnew
t in p(ρnew

t ). Finally

we set ρt = ρnew
t with probability α(ρold

t , ρnew
t ), otherwise ρt = ρold

t . It should

be mentioned that the proposal density of ρt is not truncated to the interval

(λ−1
min, λ−1

max) since the constraint is part of the target density. Thus, if the

proposal value of ρt is not within the interval, the conditional posterior is zero,

and the proposal value is rejected with probability one (see Chib and Greenberg,

1998).

Figure ?? shows the autocorrelation function (ACF) of two Metropolis-

Hastings proposals for ρt in 1991. The estimated parameters are very similar

and the decay of the acf’s are also quite similar. However, in sampling ρt by

an independence step, we need to calculate ρ̂t and σ̂2
t in (??) and (??) for each

t and each iteration. Because of the calculations, it takes a longer time for

convergence of the sampler than using a random-walk proposal. Therefore, we

used the random-walk proposals in all the MCMC programs.
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Figure 1: Box plots of lnA0, a1, a2 and ρ

Figure 2: Box plot autocorrelation function

Figure 3: Autocorrelation function for random-walk and independence chains
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