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Abstract. VAR-GARCH-M models have become increasingly important for esti-
mating volatility returns and exogenous shocks for international finance data. Based
on the Bayesian VAR-GARCH-M approach of Polasek and Ren (1999) we propose
a new concept of generalized impulse response function based on a posterior sample
of an MCMC estimation method. The proposal is an extension of the Koop et al.
(1996) approach and can be calculated for shocks in the mean and variances of the
time series. We apply this approach to international daily stock returns from June
21°¢, 1996 to June 227, 1998. _

1 Introduction

Various methods have been recently applied to explore the international fi-
nancial markets by econometric volatility models. In this paper we extend the
estimation approach of Polasek and Ren (1999) to analyse the transmission
of shocks in a country AR-GARCH-M model.

For the estimation approach we have chosen a Bayesian MCMC (Markov
Chain Monte Carlo) method since reliable methods for the likelihood estima-
tion of the VARCH-M model seem to be difficult to obtain in closed form.
Furthermore, the MCMC approach allows the introduction, of new concepts
and to find exact (small sample) results for characteristics of the dynamic
process, like the impulse response function or the predictive distributions.

In section 2 we introduce the basic VAR-GARCH-M model and in section
3 we present the estimation results. We show how the Gibbs sampler and the
Metropolis step for the ARCH parameters is implemented in the simulation
using the full conditional distributions. The lag orders of the model are esti-
mated by the marginal likelihoods criterion (see Pelloni and Polasek 1998).
The time series are checked for stationarity using the fractional marginal like-
lihood approach as in Polasek and Ren (1998). Since the VAR-GARCH-M
model is a nonlinear multivariate model we have to extend the concept of
the impulse response function to mean and volatility response. This is done
using the concept of Koop et al. (1996) by defining the impulse response
function as a numerical derivative for the s-step ahead forecast with respect
to a unit shock. In a similar way we define impulse response functions for




the conditional variances. A previous classical approach can be found in Lin
(1997). .

The posterior mean of the estimated coeflicients shows that there is a rich
interaction pattern between the coefficients of the mean equation and the
volatility equations. The ARCH-M coefficients exhibit a substantial reaction
to volatilities and all the impulse response function have a quick decay. The
predictive distributions are compared to the usual VAR approach and they
show considerable improvements. Section 2 introduces the VAR-GARCH-M
model and section 3 the generalized impulse response function. Section 4
describes the 3-dimensional model on international stock returns and in a
final section we conclude our approach.

N

2 Modeling and estimation

The modeling of financial time series has been enriched by the class of ARCH-
in-mean or ARCH-M processes which were introduced by Engle, Lilien and
Robins (1987). The following section describes the extension of ARCH-in-
mean models to multivariate VAR-GARCH-M processes from a Bayesian
point of view. The models are estimated by MCMC methods and model
selection is done using the marginal likelihood criterion.

2.1 The VAR-GARCH-M model

To describe the interactions of returns and conditional variances in a VAR
model we extend the univariate ARCH-M model of Engle et al. (1987) to the
multivariate case. Thus, we define 2 VAR(k) model of dimension M, i.e. the
VAR(k)-GARCH(p,g)-M(r) model, in the following way:

M k M r
vi=B0+ Y B+ DY A+l (1)

m=1 i=1 m=1 i=1

with heteroskedastic errors u} ~ N[0,h}), [ = 1,..., M. The conditional
variance is parameterized as

M P q
hi = o + M AM af™hi; + MU U ), 2
=1

m=1 i=1 .

where the parameters for each ! satisfy the stationarity condition

M p q
YO e+ > ¢hm <1, 3)
i=1

m=1 {=1

D SV T Sy N

with all coefficients being positive: o™ > 0, al™ > 0, ¢{™ > 0 and SL.H
1,...,M. Equation (1) can be written as

. k 7
ye=PBo+ D Biyi—i+ Y FvechHe ;i +u = pe + 1, 4

i=1 i=1
where y; = (yi1,... ,ytm)' is an M x 1 vector of observed time mmamm at
timet, B; i=1,...,k)and ¥; (i = 1,... ,) are fixed M x M coefficient
matrices, fo = (Bro,.-- ,Pmo)" is a fixed M x 1 vector of intercept terms,
pe = (ul,... ,uM) is the M x 1 vector of conditional means m:a.m: =
(ue1,--- .::xvﬂ is an M x 1 vector of error terms. H; is the conditional

covariance matrix of the M dimensional observation at time ¢ and vechH, is
the vectorization of the lower half of the covariance matrix.
The above model is rewritten as a multivariate regression system

Y =BX +PH + U, (5)

with Y = [y1,...,¥7)(muxr) and U = [u1,... ,ur)mxT), where the coeffi-
cient matrices are defined as

B= ﬁﬁofmug... uQ#H_AEXQwN#.TCVu U= T@HV... vGLQSXE?.V.

The regressor matrices are partitioned in transposed form as

X =[xo,-- -, X1l immyxry H= [ho, - shraa] (e xr)
with the columns defined with M = M(M + 1)/2 as

1 vechH;

emcbmsls.z

Yi—k+1
We now show that the conditional structure of the proposed sﬁwom-g
model makes the MCMC and the Gibbs sampler convenient to apply in blocks

of the parameters. . .
The Bayesian VAR(k)-GARCH(p,g)-M(r) model is then given by

Y ~ Npxm[BX + WH, diag(Hy, ... ,Hr)), (6)

g P
vechH; = o + MU azvech(ug—u's_;) + M &;vechHy.. ;,
i=1 j=1
and the prior distributions are chosen from the families of normal &mivc-
tions, hence

¢

B ~ Nyryistry[Bes 2. @ Ind], (7)



- ¥ ~ NypsesielZer Do @ Tnd),
where all of the hyper-parameters (which are denoted with a star) are known

a priori. The joint distribution for the data Y and the parameters § =
(B,¥, A, $)is with A = (ag,01,..- ,0) and & = (o, ¢1,--- ,Pp)

p(6,Y) = N[Y|BX + ¥H, diag(H,, ... , Hr)]
..Z_uw_uwf Y, ® H>L . .wa_ﬁf Yy, ® HEH_

P g
I Nseladlat, Bail - ] N&°[9:195, Zai)- (8)
. i=0 i=1
As prior distribution for the GARCH coefficients we use the positive trun-
cated normal distribution (Ng°) since the variance components of the GARCH
equation showed be positive. For the VAR regression coefficients we use the
»tightness prior” of Litterman (1986) since the GARCH coefficients have to
be positive for the prior means we assume o, = 0.01111p14 and for the VAR
coefficients B, = 0, ¥, = 0 and for the prior precision matrices we assume
the following diagonal tightness structure g, = diag(e, 1,... , k), o=
diag(l,...,7), MM_._H =il g, M_Mm = il, and for the inverse variance of
the intercepts we choose € to be a small number like 106,

2.2 The full conditional distributions (f.c.d.)

This section derives the full conditional distributions (f.c.d.) for the MCMC
sampling simulation process. To simplify notation for the f.c.d. of the pa-
rameters we introduce the following notation for a partitioned matrix. If
H = diag(Hy,... ,Hy) isaTM x TM, W ar x T, and V a T x k matrix,
then we define the special matrix

< wHve >emskm = (W ® Ing)diag(Hy, ... ,Hr)(V ® In)
Mn d<....anH»<:_ ey Mﬁ d<:mn<:n

MU» éﬁnmud\z P M« .ﬂxlm:\;

The f.c.d. for the regression coefficients B. The full conditional density
for B is a multivariate normal distribution

p(B|Y,6°) = ZEXAI.@EE*:UP;, ©)
with the parameters
D3l =In ® Zp 4 < xH'x, >,
B.. = Dp_, [vec(Z5.B.+ < x,H; '3 >)],

where ¥; is the tt* row of Y = Y — UH and 6° = (¥, A, $) denotes a vector
of all parameters save the arguments of the full conditional distribution.

i
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:
;
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!
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The f.c.d. for the regression coefficients ¥, 'The f.c.d. 13 givew Ly
BAG_M\umnv = ZEXNQLG**.U%:H AHOV

with » '
Dyl =In®Zy +< xH 1%, >,

@,, = Dy, [vec(Ze, Uit < Nwmﬂu%» >

and § is the ttP row of ¥ =Y - BX. o
Note that the Gibbs sampling steps in step a) and b) can be combined if
there is enough computational capacities available.

The f.c.d. for the GARCH coefficients. For the f.c.d. of o; and MP. we
use the Metropolis-within-Gibbs step with a normal distribution which is
obtained by an iteration proposal given by

veca; ~ Nlvecé, S,
vecd; ~ N{vecd;, 5.
and the f.c.d. is given by

T
p(o, 8Y,6°) = [ [ Nlyelue, Hil (11)

t=1

with . given in (4) and the normal distribution being proportional to

1 _
Nlyipe, Hy) o< ELLE@E!MGJ — ) H  ye — )}

3 The generalized impulse response function

Impulse response function are used in VAR systems to describe @ro %nmn.mo
behaviour of the time series system with respect to unit shocks in the S.ma-
uals of the time series. For non-linear time, series systems like multivariate
GARCH models the concept has to be extended to generalized impulse re-
sponse function. .
Based on the approach of Koop et al. (1996) we propose the following
definition for the generalized impulse response function for the VAR-GARCH-

M model

(B (¥etslue, 2e-1) — Ei(yers|2-1)),  (12)

1
Ngwtﬂmvﬁ? bmlwv = ..m

where 2, is the information set up to time t and u; is an magna.mg mE.%m:a
shock. We will use unit-vectors or 1 standard deviation shocks (with different
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signs) for exploring the dynamic behavior of the estimated system. The ex-
pectation is taken as the mean of the predictive distribution and is estimated
by the average over the simulated future paths of the MCMC output.

The estimates of the s-step future mean observations at time ¢ Virs =
E(¥t+5]-..) are given by

M k
H T
5 — (m) N
Jors = 37 sM Hw B +3 H” B{" E§iso—i + 3 0 ™MvechH™ |, (13)
= = i=1

‘where the conditional expectation is given by

m nSiEZMP
nVanu—-u A%ﬁnu_lb *.OH s V Oa AH%V

and the variance equation is also calculated recursively with conditional
means for the residual, i.e.

g P
vechH{T) = A{™ + MU LPMS:SQ@@A=~+Ts.=m+.ml.v + MU Qmsvcmnvasv

P = tts—j°
(15)
The conditional expectation of the residuals at time ¢ is defined by
E _ ¢4 for s <0,
tUt+s A 0 fors>0, (16)

where Uzt are the residuals of the m-th simulation of the MCMC output.
The conditional mean for the ”additive shock” conditional expectation is
given by

5 (m)
4,,; fors<9,
mﬁ?m.ﬂw_:ﬁﬁ, ) = u; fors=0 (17)
0 fors>1,

where u; could be the j-th unity vector (e; of dimension M) or scaled by one
standard error. A negative shock u; = —e; could also be used as could any
other interesting design of shocks.

In the same line we can define the generalized impulse response function
for the volatilities .

1
IMPg(s,us,2;_,) = wrm,%m“i_:r 1) ~ Ey(Hyqs]92—1)]-

As U.mwozw, the estimates of the future volatility matrices are given by the
conditional expectation at time ¢, i.e. Hyy o = E; (Htys]. ..) and are calculated

i
i
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from the MCMC output as )

. M q
vechH(T) = MH\N MU [al™ + Mﬁmsvemorg?ﬁiicp i)

m=1 i==1

P

+) ﬁmsveankmm.ﬁwl il
Jj=1
where the u; are the base line shocks in (16) or the additive shock in (17).
In particular we are interested in the impulse responses of the main diago-

nal of H,, which are the variances h¢ 11, ... , he,ma with respect to a squared
shock ,

1
IMP(s,u};, 21) = mv@?&.mi_zr 1) — Ey(hjjevs|2e-1))s

e.g.,

, . 1. 2
IMP(hyysli ~ j) w?&gi?wi =1)— r.:.,im?wﬁi = 0)]

=1lpe RO,

s i—=] i
where mmwu. = hjj(slu?,,; = 1) is the j-th diagonal element of H,,, if the
additive impulse is set to u;341 = 1 in the i-th. component and mmu.v:. is
the diagonal element of H,,, if the base line shocks are used. Hi,, is the
mean of the MCMC forecast sample. Standard deviations of the impulse
response function can be estimated by calculating the standard deviations of
the MCMC forecast sample (and the above formulas).

4 Example: International stock returns

We have estimated a 3 dimensional VAR-GARCH-M model for the Nikkei,
the DAX and the Dow Jones stock returns, daily data from June 21, 1996 to
June 2274, 1998. We have tested for a break point and found Oct. 23, 1997 to
be one (see Polasek and Ren 1999). The marginal likelihoods are calculated
from the MCMC output by the method of Chib and Jeliazkov (1999). The
marginal likelihood is the nominator and the denominator of a Bayes factor
and can be described as the "mean value” of the likelihood function after the
parameters are integrated out with an informative prior distribution ()

mly = \ p(y162)p(6:)d6),

ml; denotes the likelihood of the model and p(y|6;) is the conditional likeli-
hood function and 6, are the parameters of the (first) model. The values of
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Fig. 1. Stock indices of Japan, Germany and USA (Nikkei, DAX and Dow Jones)
from June, 21°¢, 1996 to June, 2974 1998, first row: daily data, second row: first
differences of logs.

total | period 1 period 2
k|r|p|q|06.21.96-06.22.98 06.21.96-10.23.97|10.24.97-06.22.98
1{olojo] -3417.2881 -1932.6271 -1305.7182
11§11 -3276.5365 -1894.6250 -1112.5263
112|131 -3140.5312 -1441.6236 -1273.9072
111|121 -2571.9042 -1632.7321 -1128.6527
1111142 -2469.5412 -1638.5326 -1038.2091
111(2{2] -2249.6109* -1397.7273 -1226.9042
210|010 -3511.7826 -1987.1281 -1321.7281
2|1]2(2 -2636.4545 -1497.6242 -1077.4233
2(1j1|1| -2844.3320 -1354.6271 -1005.1167*
2112|121 -3122.5321 -1232.6477 -1025.6277
212(2)2 -3368.7743 -1155.7272* -1263.7273

Table 1. The log marginal likelihoods (ML) for the VAR(k)-GARCH(p,q)-M(r)
model (for y = Nikkei, y? = DAX, y? = Dow Jones)

the marginal likelihoods for the different order of the VAR-GARCH-M model
can be found in Table 1. .

For the total period the VAR(1)-GARCH(2,2)-M(1) is the best while
for the first period before the Asian crisis the VAR(2)-GARCH(2,2)-M(2)

et e ot R A AR

VAR-GARCH-M VAR
mean |Std. error| mean |Std. error
Nikkei |-0.00029| 0.00085 0.00373 | 0.00147 .
DAX 10.00139| 0.00201 0.00089 ) 0.00501

Dow Jones|-0.00049] 0.00099 -0.00149| 0.00149

Table 2. The mean .mb@ standard error of the one step ahead forecast period for
stock indices with the <>HueCV-Q>WOmeY§Gv and the VAR(2) models

model turns out to be the best while after Oct. 24, 1997 it is the VAR(2)-
GARCH(1,1)-M(1) model.

The impulse response functions are shown in Figure 2 and 3 for the whole
period, while Figures 8 and 4 show the pre-Asian-crisis period and Figures 6
and 7 for the period after Oct. 24, 1997.
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Fig. 2. Impulse response plots (for means) of stock returns for the VAR(1)-
GARCH(2,2)-M(1) model: unit impulses for Nikkei, DAX and Dow Jones

The biggest change can be found for the volatility: Because dynamic interac-
tions between volatilities are more active in the period before the Asia crisis,
the impulse response have been reacting longer to shocks in the period be-
fore than in the period after Oct. 24, 1997. Interestingly, the DAX volatilities
in the first period than the other two stock returns. Except for the Nikkei
response, the impulse response functions of the mean returns are :smm.wnﬁma
by the Asia crisis and very short lived in the period before and after Oct. 24,

1997.
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Fig. 3. Impulse response function (for the volatilities) of stock returns of the
VAR(1)-GARCH(2,2)-M(1) model: unit impulses for Nikkei, DAX and Dow Jones
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Fig. 4. Impulse response plots (for means) of stock returns for the

GARCH(2,2)-M(1) model: unit impulses for Nikkei, DAX
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Fig. 5. Impulse response function (for the volatilities) of stock returns of the
VAR(1)-GARCH(2,2)-M(1) model: unit impulses for Nikkei, DAX and Dow Jones

from 06.21.96 to 10.23.97
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Finally we have compared the one step ahead predictive densities fo

i i aller
the information gain in the VAR-GARCH-M model is reflected in smalier
variances of the predictive density.
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simple VAR model with the VAR-GARCH-M model in Figure 8, Weseet
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5 Conclusions

In Polasek and Ren (1999) a 3-dimensional model for stocks returns in the
US, Germany and Japan was estimated by MCMC methods and tested for
structural breaks. It was found that Oct. 24**, 1997 was a break point for
the 3 time series. A new concept of impulse response functions was proposed
for this type of non-linear multivariate time series models, which is evaluated
for MCMC outputs. The results are extended to impulse responses of the
volatilities and we have compared the impulse response function of the VAR-
GARCH-M model before and after the break point. Because of smaller lag
interactions, the impulse response die off after the break point factor than
before the ”Asia” break point. The one step ahead prediction of the VAR-
GARCH-M model shows a smaller variance and is also better in terms of the

MSE (further details on forecast comparisons for volatile time series can be
found in Polasek 1999).
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