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Abstract

Standard forecasting criteria like the mean square error (MSE)
compare point forecasts or a location parameter of the forecasting
distribution with actual observations. Such criteria are less suited to
comparing forecasts of volatile time series. Therefore we use the aver-
age predictive ordinate (APOC') criterion which evaluates the ordinate
of the predictive distribution. Using the comparison to a no-change
forecasting rule, we suggest taking the RPOC, the ratio of predictive
ordinate criteria. We also suggest comparing two volatile forecasts
by a decomposition of the squared distances of ordinates into a bias,
variance and noise component. The new criteria are demonstrated
for stock indices and exchange rates forecasts.
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1 Introduction

Forecast evaluations are important for applied time series analysis. Successful
time series models are often measured in terms of their forecasting perfor-
mance, like the mean squared error (M SFE) or the root MSE (RMSE). If
x7(h) denotes the forecast of a time series at point T for a h-step ahead
observation yryp, then the MSFE is defined as

H

1
MSE == E Z(Q?T(h) — $T+h)27
h=1

where H is the time series horizon for which the forecasts are evaluated. For
better interpretation, the square root of the MSFE, RMSFE = v MSE can
be used. There are two possibilities for calculating the M SE:

1) Keep the forecast origin T fixed and evaluate the forecasts for evolving
lead times, e.g. x7(1),...,27(H) up to the time horizon H.

2) Keep the lead time fixed, e.g. one-step ahead forecasts, but evaluate the
forecasts for evolving time origins, like

J}T(l), J}T_H(l), Ce 7$T-|—H—1(1)-

In this case the information set for the forecasts is expanding, but the forecast
errors will be measured for a constant step size into the future. We will denote
this measure by

1 H-1
MSEl = E Z(xT‘l'h(l) — J/’T_|_h_|_1)2
h=0

if the lead time is one (equi-distant) time step. This concept can be extended
for MSE(k) if k-step ahead forecasts have to be evaluated for an expanding
information set.

One disadvantage of the M SF is the focus on point forecasts, but the advan-
tage is the simple mathematical tractability and the connection to conditional
expectations. Also, the MSFE can’t discriminate between forecasts coming
from homoskedastic or heteroskedastic time series models. In order to evalu-
ate forecasts from a volatile time series model, we have to take into account
the whole forecasting distribution.

In this paper we will propose a forecast evaluation criterion which is based on



the whole forecasting (predictive) distribution. At the time T' forecast origin,
we can make a forecast for the next step by a predictive distribution which
means that we quantify the uncertainty of the future observation by a prob-
ability distribution. When the new observation realizes, we can calculate the
probability density of the new observation. Choosing between two predictive
distributions, we prefer the predictive distribution where the new observation
falls into a more likely density region. Such a measure is provided by the
ordinate of the predictive distribution. A new observation which realizes just
at the mode of the predictive distribution attains the maximum ordinate. If
the observation realizes in the tails of the predictive distribution then the
predictive ordinates will be small. Thus, we suggest taking the average of
the predictive ordinates as a new evaluation criterion for forecasts. As before,
we can distinguish between two cases:

1) Keep the forecast origin T' fixed and consider evolving lead times up to
horizon H. Then we get as average ordinate criteria (APOC)

1
APOC = = (dr(1) + ...+ dr(H)),

where dr(h) is the ordinate of the predictive density p(xpyn|lr), given the
information set I, evaluated at the actual observation z7yp,.
2) Keep the lead time fixed and evaluate the predictive density for evolving
time origins up to horizon H. This leads to the criterion

APOC, = %(dT(l) bt (1)),
where dryp,(1) is the ordinate of the predictive density p(@rip|lr4r-1) and
I7y_1 1s the information set up to time 7'+ h — 1.
The plan of the paper is as follows: In section 3 we introduce the APOC
and the relative predictive ordinate criterion for comparing the APOC of the
current model with the APOC of the no-change forecasts. Section 2 reviews
the mean square error (MSFE) criterion and discusses the extension to the
multivariate case. Also, the T'heil decomposition of the M SFE of the point
forecasts and for the predictive ordinates are discussed in Section 3. Also we
show how the APOC criterion can be used in extended to the multivariate
case. In the last section we discuss an example involving the VAR-GARCH
model of international stock and exchange rate markets. We conclude with
some final remarks.



2 The relative mean square error

We denote by Z741,..., 271 the point forecasts of the current time series
model at time T for the horizon H. Then the M SE (mean square error) for
horizon H is given by
1 H
MSEy = =3 (&1 — v140)?, (1)
H h=1
where Z7,; denotes the successive one step ahead forecasts over the horizon
H. The no-change mean square error (M SEY) for one step ahead predictions

is given by
H

1
MSE{V == E Z(xT-I-h — $T+h—1)2-

h=1
The relative improvement of the root MSE (RMSFE) over the no-change

forecasts is given by
MSE,
RMSFE, = : 2
"V MSEY )

This criterion can be evaluated over different time horizons H.

2.1 The MSE matrix

In the multivariate case we have H forecasts {X741,...,Xpypg} of dimension
M and the forecasting properties can be summarized in a M SFE matrix, i.e.
1 H
MSE, = i Y (Rrgn — X748)(Rrgn — X748) (3)
h=1
where the X7,; are successive one step ahead forecasts over the horizon H.
The no-change M S E matrix for one step ahead prediction is given by
1
MSEY = i > (Xrph — Xr4h-1)(Xr4h — XT48-1)
h=1
A simple generalization of the univariate ratio of root mean square error in
the multivariate case is given by the ratio of the root of the determinants:

det(MSEl)

RMSE, = | —— "/
'\ det(MSEY)

(4)



Note: An alternative is to calculate the relative gain in eigenvalues, i.e.

A\ A

_N7...7 N
AT

with Aj,..., A, being the eigenvalues of MSE; and AV, ..., )\;V from those of
MSEY.

2.2 The Theil decomposition of the mean square error

The following decomposition of the M SE is explained, e.g. in Pindyck and
Rubinfeld (1998) and relates to the inequality coefficients developed in Theil
(1961).

Theorem 2.1 The ordinary T'he:l decomposition of the MSFE
Let x; be the actual observations and y; the forecasts from a model. Then
the mean square error decomposition for the horizon H is

AP = Y (e
= (T = 40)° + (00 — 0,)* +2(1 — p)o,oy (5)

or
Ad? = bias® + variance + noise,

where the relative proportions of the decomposition are given as
Dyis = (2 — 5)? /A,
Dyay = (0, — )} | Ad?,
Dioise = (1 — pxy)axay/Adz (6)
with | |
0'3, = EZ(:pt — :Z')z, and 05 =7 Z(?Jt — g)27

1 1
T = sztv and y = EZym



and

11
p_HUxay

> (@ =By — 7).

Proof: Follows from standard manipulations.

The bras proportion Dy;,s measures the discrepancy of the average forecasts
over the forecast horizon. For 'unbiased’ forecasts we expect this proportion
to be close to zero.

Any large deviation from zero will cast doubt on the forecasting model.
The vartance proportion D,,, shows if the variability of the forecasts is in
agreement with the variability of the observations. If the variance term is
not close to zero then we are faced with a mismatch in the volatility of the
observed and predicted series. This could be because the forecasts are over-
or underestimating the standard deviation of the observations. To justify
forecasts of volatility models, this component should indicate if the volatil-
ity component of a model should be changed. Finally, the noitse proportion
D, pise measures the unexplained proportion of the MSE. 1t is called noise
component because it measures the uncorrelatedness of the current forecasts
with comparable observations. If p,, is zero, then D, ;s 1s close to 1 and we
have found satisfactory forecasts. If the variance and the bias term is close to
zero, then the notse term will be close to 1. Thus, good forecasting models in
the the mean square sense are found it D,,,;sc can be made as large as possible.

Theorem 2.2 The alternative T heitl decomposition of the MSFE
Let y, be the actual values and x; the predicted values of the time series.

Then the MSFE given by

1
A = 23— i)

can be alternatively decomposed as
Ad* = (2 —y)" + (0w —poy)* + (1= p’)o,
= bias® + Adj.variance + mmse, (7)

where MM SE stands for minimum mean squared error.
The relative decomposition is given by

Dbias + Dadjvar + Dmmse = 17 (8)



Dyins = (2 — )*/Ad®,
Dadjvar = (02 — poy)? | Ad?,
Dymse = (1 — p)ai/Adz,
with
1 1
=

Ho,o,

> (xe = 2)(y: — 7).
Proof: Squaring the nominators of the last two terms in (7) gives

2 2 2 2 2 2
o, +po, —2poyo,+0,—po,,

where as squaring the last two terms in (5) gives
0'3, — 20,0y + 05 + 20,0y + 2po,0y,.

Note that these expressions are equal.
If the M SFE is minimized then the minimum M SFE is given by the remainder
term in (7):
N

MMSE = 2 Ad* = (1 — p*)o™. (9)
As Clements and Hendry (1998, P. 64) point out, the characteristics of the
minimum M SF forecasts are given by the solutions of the first order condi-
tions:

ONAd? o
ONAd?
9o = —2(0, — poy) =0, (10)
ONAd?
p = 20,0, = 0.

Thus (7) will be minimized if & = y and 0, = po,. The minimum in (9)
is obtained by substitution. The ratio Ad*/MMSE can be interpreted as a
scale independent potential M.SE which can be reduced.

The difference between the two T heil decompositions lies in the D,,, and the
Dygjuar terms. If the correlation coefficients between actual and forecasted
values is low, then condition (10) implies that the M.SE is minimized if the
variance of the forecasts is sufficiently small. The MMSE prefers smooth
predictions over erratic ones.



2.3 Forecasting volatilities

Consider the following AR-GARCH model

k
ytzﬂo‘l’zyt—iﬁi‘l'gta tzlv"'vTv gtNN[Ovht]v (11)
=1
P q
hy = ag+ Z aihy_; + Z dicy_;. (12)
=1 =1

We can extend the M S FE decomposition for the predictions of the volatilities
in an AR-GARCH model with

k
Yt = Po + Z Yi—i Bs,
=1

then the observed volatility is h, = €7 = (y; — 3;)?. The predicted volatilities
are given by

p 9
he = ag + Z aihi; + Z Gi;_;.
=1 =1
If ilt = x; then the following decomposition holds:

A = %Z(ht — )
= (h—2) 4+ (op —0,)2 +2(1 — p)oo,

or in relative term

Diigs + Dyar + Dpoise =1 (13)
with B
Dyns = (h— 22/ AL,
Dyay = (01, — 02)* | Ad?,
Dioise = (1 = pro)onoa/Ad?
with

. 1
UfL — Ez(ht — h)z, and 0925 =7 Z(:z;t — :Z')z,



- 1 _ 1
h:Eth, and [E:EZ(E“

11 - _
= Hoo > (hy = h)(xy — ).

The one step ahead forecasts of the AR-GARCH model are given by

and

Y, = x;ﬂ + e, var(e) = hy,

or

ytNN[x;ﬂvht:Z;7]7 tzlv"'vTv

where the conditional variance h; is parameterized as in (12).

2.4 The multivariate M SE decomposition

This section shows how the T'heil decomposition of the MSFE can be gen-
eralized for multivariate time series. First, we define the M SFE matrix and

then we proceed with the Theitl decomposition.

Theorem 2.3: Multivariate M S FE decomposition

We consider two multivariate models which produce the forecasts x, ...

and yq,...,yg. The MSFE matrix for the horizon H defined as

1

D = In Zt:(Xt —yo) (% —y:)

can be decomposed as
D =M + (2 = S0 + 2T — Syy)

with
M=(x-y)x-y),
1 - —\/
Yxx = T Zt:(Xt — X)(x¢ — %)/,
Sy = Y- V) 9.

t

y XH

(14)



2Xy = i Z(Xt - X)(Yt - y)/v

5
and 2712 is defined as B2 = Udiag()\}m, . .,)\}\//IZ)UT, where FV(X) =
(M, ..., An) are the eigenvalues of ¥ and U is associated matrix of eigen-

vectors. Now we can define two multivariate M .S E decompositions:
a) In terms of the determinants the generalized M S F decomposition is given

by

b M
ID|’

D B |EXX1/2 o 2yy1/2|2
D

Dnoise =1- Dbias - Dvar-

b) In terms of the eigenvalues of D, we use the 1 x M vector of eigenvalues by
EV(D) = (AP,... A}}) for the M-dimensional relative MSE decomposition
defined as

D). ..=FEV(M):/: EV(D),

D), = EV(Zxx'* = Byy /)2 : /. EV(D),
DN =1-D D

noise mean var?

where : / : denotes elementwise division.
Note that all components of the decomposition add up to 1.
Proof: First note that as in the univariate case we find

1
D = EZ(Xt_Yt)(Xt_yt)/
1. . 1 o o
= SUX-YE-Y) S X+ Y -y (xe - X4y -y
= M+ R.

Furthermore, the last term can be decomposed into

1 7 7 1 7 _ 2 _ _
R = 230 =x)0 =%)'+ 225y = y)(ye =¥) = 20 = x)(y: —y)

For numerical calculations we use

(EXXI/Q _ 2yy1/2)2 — EXX _I_ Eyy _ 22xxl/22yy1/2-

10



Substituting all these terms gives (14).

Note: A further multivariate decomposition of the M SFE matrix is given by
the trace of M S E matrix D. This is equivalent to a summation over the M
univariate components:

M
tTD — Z [(j;m - ﬂm)Z —I' (O-x,m - Uy,m)2 - 2(1 - pwy,m(o-x,mo-y,m)]
m=1

with 1
Prym = 7Z(xt7m - i’m)(yt,m o ?jm)

OzmTy,m
Since this trace measure depends on the scale of the M components it is of
little practical use. It could serve only as a reasonable summary measure for
multivariate observations measured on the same scale.
As in the univariate context, the multivariate proportional contributions can
be interpreted as before: Good forecasts are those where Dy;.s and D, are
close to zero and D,,,;. 1s close to 1.

3 The Average Predictive Ordinate Crite-
rion (APOC)

Consider a time series {1, ..., 27} for which at time T" we calculate H predic-
tive densities for future observations w741 ... xrym, t.e. froa(x), ..., from(x).
The predictive ordinate criterion (POC') is the average predictive ordinate,
defined for a horizon of length H as

1 & A
APOC = I Z Jron(ernlfr), (15)
h=1

where 07 is the estimated parameter of the time series model for time 7'. For
one-step ahead forecasts we define

1 & A
APOC, = E Z fT+h(51?T+h|9T+h—1)

h=1
e.g. for the one-step ahead normal distribution this is

H

1 . .
APONy = = 3 Nlarsnlitrin-, 6715-1].
h=1

11



fir4r, and 67, are the mean and the variance of the one-step predictive
densities at time h of the time horizon H starting at time T'.

The relative improvement to no-change forecasts is given by the relative
predictive ordinate criterion (RPOC') for one-step ahead predictions over

the horizon H:
APOC,

APON;’
where the APOC of the simpler (or no-change normal distribution) predic-

tion is given by

1 & .
APONl == E Z N[$T+h|$T-|—h—17 0'2]
h=1
with
1 T-1

g = ﬁ Z($t+1 — (Et)z.

t=1

3.1 The decomposition of the APOC

In analogy to the T'heil decomposition of the M SFE we can decompose the
squared distance of the APOC criterion for any predictive ordinate of a
model or the no-change forecasts. Let d; be the predictive ordinate for the
ARCH model and let dY be the predictive ordinate for the no-change forecasts
assuming a normal distribution

Ad? = %Z(dt — div)2 = (J— JN)Q + (o — O'N)2 +2(1 — p)oon, (17)

or
Ad? = bias® + variance + noise,

where p = cov(d;,dN)/ooy is the correlation between the predictive ordi-
nates of the two models.

In terms of relative proportions the 3 components of the mean squared pre-
dictive ordinate (M SPO) criterion is

a) MSPO bias: -
Dyias = (d — dV)? /] Ad>.

12



b) MSPO variance:
Dyar = (0 — on)?/Ad%.

c) MSPO noise:
Dnoise =1- Dbias - Dvara
with

1 - |
O'QZEZ(dt—d)z, d= Ezd“

and

1 . ~ 1
ol = EZ(dgv—dN)Z, dN = Engv.

Note that the correlation between the predictive ordinates could be estimated
by
1 1 ~/aN 3N
p= Sy -
ooON
In the case of the Theil decomposition of the MSPO we need a slightly
different interpretation of the 3 components. Since we compare no-change
forecasts with forecasts from another model, we generally expect that elabo-
rate models (e.g. a GARCH model) forecast better than no-change models.
This implies that the predictive ordinates of the elaborate model are larger
than the ordinates of the no-change model. Thus, the bzas term will only be
close to zero if the current model is equally good (or bad) as the no-change
model. If the current model beats the no-change model, we expect the bias
term to be large as well.
Interestingly, the variance term in the M S PO decomposition doesn’t imply
anything about the volatility in the model. The variances of the predictive
ordinates are measuring how the actual observations are scattered in terms
of the ordinates under the predictive distribution of both models. Thus,
the variance term should be close to zero. If this is not the case, then the
predictive ordinates are differently scattered for both models under consid-
eration. In this case the predictive distributions should be checked as well
as the choice of the horizon period. This might be the case because a period
of unusual observations could have been observed. The noise term can be
interpreted like before as the remainder term in the decomposition. Now a
good predictive model is not only characterized by a noise component close
to 1. Since the bias term can be large, the M.SPO can be split into the bias
and the noise component.

13



3.2 A Multivariate Predictive Ordinate Criterion

Consider a time series {xy,...,x7} for which we want to predict H one-step
ahead forecasts at time 7' :

Jra(x), . fren(X).

For one-step ahead forecasts at time 1" and for horizon H we define the
average predictive ordinate criterion

1 &I A
APOCl = E Z fT-|—h(XT-|—h|(9T-|—h—1)7 (18)

h=1

e.g. for one-step ahead forecasts assuming a multivariate normal distribution,

the APOC is
1 & .
APOCl = — Z N[XT_|_}L|)A(T_|_;L_1, 2]
H h=1
For no-change prediction we calculate a ratio of average predictive ordinates
assuming a multivariate normal distribution

APOC,

RPOC = 255N

(19)
with

A

1 H
APON, = — > Nxrgnlxrin-1, 3],
h=1

where 3 is calculated as the covariance matrix of the first differences of the
time series which is defined as

1 T-1

N= Z(Xt-l—l — %) (Xe1 — i)'
T—17

To demonstrate the application of the above formulas we consider the fol-
lowing

Example: Consider the AR(1)-ARCH(1,1) model with x; = (1,y,-1) and
ze= (1, heer 87 ).

14



For h =1 the one step ahead predictions are

tir1 = FE(yir1) = Bo + Brye,
hiyr = Var(yi) = v + y1he + ’72537
with the residual

E = Y — MUy
= Y — Bo— B1Yi-1.

For h = 2 the forecasting equations are

tir2 = E(yir2) = Bo+ Pryist,
hiya = Var(yirz) = Y0 + 1l + 72534.17
Ei41 = Ytr1 — Po — Py,

and similarly for higher order predictions.

4 Forecasting exchange rates and stock re-
turns

Financial time series like stock returns or returns on exchange rates have
been modeled in recent times by a wide variety of ARCH models and this
has led to the discussion of how to compare forecast performances of volatile
time series.

Therefore we consider the forecasts of daily exchange rates of the Deutsche
Mark and the Japanese Yen against the US dollar and the DM /Yen exchange
rates and stock returns in the US, Germany and Japan.

Exchange rates exhibit volatile behavior; we have therefore estimated uni-
variate AR-GARCH(1,1) models for the returns of the stock market and the
exchange rates for Japan, German and the US in Tables 2 and 3. Table 2
shows the RPOC for daily one-step ahead forecasts starting on June 12, 1998
for 10 days. The smallest improvement over the no-change prediction can
be seen for the one-step forecasts for exchange rates and for stock indices.
The picture changes for large time horizons, starting from a horizon length
of two days, where the improvement in ordinate length is at least 50%. The

15



maximum improvement is attained with RPOC = 2.2 for horizon length
H =5 for the US$/DM exchange rate. For stock indices the improvement
in the RPOC is in general a little bit higher. The best improvement can be
found for the Nikkei index for horizon length H = 7 (RPOC = 2.8). It is
interesting to note that the RPOC increases only for the Nikkei index while
RPOC decreases for the DAX and the Dow Jones indices after the horizon
length H = 2.

The picture is different if we look at the relative mean square error (RMSFE)
in Table 3. The RMSFE seems to stabilize for large horizon length H and
gives improvements of about 50% for the DM/Yen, 35% for the US$/Yen
and 25% for the US$/DM.

The RMSE behavior is again different for stock indices. The best RMSFE
can be found in long horizons H for the Nikkei index, followed by the DAX
and the Dow Jones indices. This result is similar to the analysis for the
RPOC criterion.

Table 4 shows the MSPO decomposition for AR(1)-GARCH(1,1) models
for exchange rates and stock returns individually. The bzas proportion for
exchange rates lies between 11 and 16% and the rest of the decomposition
lies in the bras component. This result makes sense, since we see that the
average predictive ordinate for the AR-GARCH model is larger than the one
for the no-change model, but the variances are about the same. The picture
is different for the returns of the stock indices. Only the Nikkei index shows
the same behavior as the exchange rates. For the DAX and the Dow Jones
indices the bias proportion lies between 4 and 6% while the variance propor-
tion is large: 24% for the DAX and 32% for the Dow Jones returns. Also we
see from the first line in Table 4 that the M SPO is two to three times larger
than the M SPO of the other time series. This shows that we have serious
mismatch between the observed values and the predictive distributions for
the returns in the evaluation period June 12 to June 22, 1998. Tables 10 and
11 show the multivariate gain in predictive ordinates (RPOC') for one-step
ahead forecasts of the VAR(1) model of exchange rates and the univariate
and multivariate RMSFE. Table 10 shows the RPOC' for the 3-dimensional
forecasting distribution and we can see that the RPOC' increases over a hori-
zon period up to six days; after day six the predictive power of the model
declines. Not surprising is the low performance of the point forecasts for the
relative gain in the root mean square error. The improvement lies between 27
and 52% below the no-change root M SE. Also, the picture is confirmed for

16



the 3-dimensional model, where we compare the improvement with regard to
the root determinant. The last column of Table 10 shows that the improve-
ments lie between 40 and 48% percent. Table 11 contains the above analysis
for the stock returns. The first column shows that the RPOC for the VAR(1)
model increases only up to lag three and then starts decreasing slowly. The
RM S FEs for the three stock returns are decreasing to a smaller degree than
for the exchange rates. The RM SE of the 3-dimensional system lies between
28 and 41%. The APOC decomposition for the 3-dimensional VAR(1) model
is displayed in Table 12. Now the squared distances for exchange rates and
stock returns are about the same size and the bias proportion is about 1/3,
leaving 2/3 for the noise term. This shows that substantial predictive im-
provements can be found in a multivariate model.

5 Conclusions

The paper proposes an alternative for the usual evaluations of forecasts by
the MSFE or the RMSE. The new average predictive ordinate criterion
(APOC) evaluates the actual observation given a parametric conditional
predictive density. This concept allows the comparison of forecasts of volatile
time series, since it takes into account the quality of the predictions if the
variances change over time. This APOC criterion can be compared with a no-
change forecast for a normal distribution and leads to the relative predictive
ordinate criterion (RPOC') which is a measure of increase or decrease of
the predictability between two models. The APOC and RPOC are also

extended to the multivariate case for joint predictions.
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=l

o

Marginal likelihood

US$/DM | US$/Yen | DM/Yen Nikkei DAX Dow Jones
11111 ]1] -674.4645 | -609.9565 | -629.8232 | -607.3409 | -654.2450 | -637.5071
112111 -636.3213 | -550.2960 | -572.8846 | -673.2638 | -639.5340 | -597.2565
11112 ]|1] -696.6606 | -520.3694 | -640.3129 | -661.6067 | -625.3239 | -630.8174
111 1]2] -673.4059 | -492.0668* | -578.4710 | -677.2201 | -663.6978 | -584.5854
11|22 -644.8745 | -596.9241 | -611.4474 | -494.4379* | -610.9003 | -635.0603
211122 -629.5650 | -601.5632 | -552.8091 | -546.2119 | -587.0933* | -651.9961
2 (1] 1]1]-613.5182% | -588.4128 | -591.0394 | -685.4334 | -646.1929 | -571.2153
2 (1]2]1] -639.3854 | -571.6018 | -545.5851* | -550.5207 | -684.1608 | -561.1770*
2(2]2]2] -669.0917 | -565.1104 | -508.5802 | -590.0872 | -629.6237* | -653.3686

Table 1: The marginal likelihood for the AR(k)-GARCH(p,q)-M(r) model

(USS/DM,US$/Yen, DM/Yen, Nikkei, DAX and Dow Jones) from June,
21, 1996 to June, 12, 1998

H | US$/DM | US$/Yen | DM/Yen | Nikkei | DAX | Dow Jones
1 1.1250 1.2260 1.1384 | 1.3028 | 1.6392 1.3777
2 1.4389 1.2647 1.3313 1.5965 | 1.7129 1.3343
3 1.4394 1.4315 1.6757 | 1.5747 | 1.7245 1.3144
4 1.4517 1.4338 1.5869 | 1.5558 | 1.7787 1.3019
) 1.4424 1.4407 1.5720 1.5333 | 1.7068 1.2812
6 1.4398 1.4754 1.5677 | 1.5242 | 1.6975 1.2718
7 1.4220 1.4256 1.5552 1.4708 | 1.6828 1.2663
8 1.3605 1.4234 1.4984 | 1.4600 | 1.6373 1.2585
9 1.2878 1.3589 1.4810 1.4203 | 1.6283 1.2354
10 1.2726 1.2641 1.4798 1.4125 | 1.6189 1.2235

Table 2: Relative predictive ordinate criterion RPOC; of AR-GARCH-M

model for daily exchange rates and stock indices from June, 21, 1996 to

June, 12, 1998
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US$/DM | US$/Yen | DM/Yen | Nikkei | DAX | Dow Jones
0.6467 0.8153 0.7310 | 0.5303 | 0.5204 0.8352
0.7565 0.9176 0.7552 | 0.6115 | 0.5581 0.7338
0.7687 0.7419 0.6464 | 0.6293 | 0.6249 0.6835
0.7755 0.7371 0.6312 | 0.6387 | 0.6324 0.6450
0.7937 0.7125 0.7247 | 0.6584 | 0.6508 0.6244
0.8076 0.9742 0.8164 | 0.6655 | 0.6475 0.5843
0.8427 0.8364 0.7522 | 0.7656 | 0.6630 0.5642
0.9117 0.8302 0.7497 | 0.7902 | 0.7730 0.5476
0.9321 0.8148 0.7250 | 0.8799 | 0.7200 0.5107
0.9173 0.7837 0.7176 | 0.7887 | 0.7168 0.4915

50 0 1o Ot W |

Table 3: The relative mean square error of AR-GARCH-M model for daily
exchange rates and stock indices from June, 21, 1996 to June, 12, 1998

US$/DM | US$/Yen | DM/Yen | Nikkei | DAX | Dow Jones
Ad? 0.8165 1.1185 0.8861 | 0.8375 | 2.0506 2.8296
Drias 0.1611 0.1153 0.1120 | 0.1820 | 0.0622 0.0403
Dyar 0.0023 0.0060 0.0050 | 0.0414 | 0.2265 0.3041

Dioise 0.8376 0.8787 0.8830 | 0.7766 | 0.7113 0.6556

o? 0.7430 1.1365 0.7722 1.1414 | 1.6400 2.2462
d 4.6861 4.4841 4.5003 | 3.6980 | 3.8174 4.1001
o% 0.6839 1.0305 0.7046 | 0.9421 | 2.3215 3.2329
av 4.3201 4.1251 4.1756 | 3.3022 | 3.4516 3.7622
P 0.5222 0.5440 0.4719 | 0.6763 | 0.5239 0.5128

Table 4: The decomposition of APOC for AR-GARCH-M model for daily
exchange rates and stock indices from June, 21, 1996 to June, 12, 1998
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US$/DM | US$/Yen | DM/Yen | Nikkei DAX | Dow Jones
Ad? 0.000033 | 0.000075 | 0.000099 | 0.001213 | 0.000450 | 0.000227
Drias 0.032622 | 0.003052 | 0.093545 | 0.013030 | 0.037227 | 0.161651
Dyar 0.078032 | 0.008306 | 0.009920 | 0.008668 | 0.075611 | 0.042444

Doise | 0.889346 | 0.988641 | 0.896535 | 0.978302 | 0.887163 | 0.795904

Dydgjvar | 0.019886 | 0.348702 | 0.135186 | 0.076497 | 0.231242 | 0.212792

Dmse | 0.947492 | 0.648246 | 0.771269 | 0.910473 | 0.000288 | 0.625557

ol 0.000006 | 0.000039 | 0.000029 | 0.000357 | 0.000124 | 0.000081
z 0.000532 | -0.002886 | -0.000933 | 0.001058 | 0.001014 | 0.003367
U; 0.000017 | 0.000050 | 0.000041 | 0.000490 | 0.000289 | 0.000146
] 0.001567 | -0.002408 | -0.003971 | 0.005034 | 0.003081 | 0.002691
P 0.397616 | 0.159952 | 0.269685 | 0.418399 | 0.731531 | 0.169651

Table 5: The returns M SFE decomposition for AR-GARCH-M forecasts of
daily exchange rates and stock indices from June, 21, 1996 to June, 12, 1998

US$/DM | US$/Yen | DM/Yen | Nikkei | DAX | Dow Jones
Ad? 0.0085 0.0078 0.0027 | 0.0045 | 0.0036 0.0032
Dpigs 0.1122 0.0097 0.3959 | 0.0422 | 0.0001 0.1155
Dyar 0.0159 0.0202 0.0061 | 0.0010 | 0.0199 0.0024

Dioise 0.8719 0.9702 0.5980 | 0.9569 | 0.9799 0.8821

Ddjvar 0.0812 0.0582 0.1505 | 0.0487 | 0.4869 0.2952

Dimse 0.8066 0.9322 0.4535 | 0.9091 | 0.5130 0.5893

o? 0.0022 0.0021 0.0011 | 0.0014 | 0.0020 0.0013
h 0.0507 0.0597 0.0394 | 0.0721 | 0.0584 0.0577
ol 0.0034 0.0034 0.0014 | 0.0013 | 0.0013 0.0011
z 0.0815 0.0510 0.0721 | 0.0583 | 0.0577 0.0770
P 0.3522 0.4194 0.3528 | 0.6386 | 0.0817 0.1642

Table 6: The forecasts of volatilities M.SE decomposition for AR-GARCH-
M model for daily exchange rates and stock indices from June, 21, 1996 to
June, 12, 1998
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Marginal likelihood

N NN — /=)= =N
DO = = = = = el N |
NN — NN~ N~ = =D

N /= NN N /== =D

-4188.5511
-3902.6256
-3783.0488
-4425.1437
-3526.0746
-3271.3936*
-3702.6883
-3902.6256
-4246.0742
-4372.8123

-4124.1339
-4567.3613
-4487.5251
-3764.4254
-3959.6954
-3169.1208*
-3432.3842
-4567.3613
-4347.4885
-4687.9028

Table 7: The marginal likelihood for the VAR(k)-GARCH(p,q)-M(r) model
(for y} = US$/DM, y? = US$/Yen, y; = DM/Yen and y; = Nikkei, y}

DAX, y? = Dow Jones)
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H| RPOC, | RMSE{ | RMSE? | RMSE}
=US$/DM | =US$/Yen | =DM /Yen
1] 15.3543 0.6884 0.6682 0.6316
2 | 19.6335 0.6524 0.6246 0.6291
3| 22.0070 0.6239 0.6166 0.6053
4 | 24.3516 0.5801 0.5837 0.5977
5 | 25.7497 0.5283 0.5647 0.5111
6 | 30.5997 0.5133 0.5039 0.4661
7| 18.1786 0.5553 0.5443 0.5350
8 | 17.5643 0.6489 0.6778 0.5479
9 | 16.8179 0.7507 0.6888 0.5538

Table 8: The multivariate relative predictive ordinate criterion RPOC; and
the relative mean square error of VAR-GARCH-M(1,1,2,2) model for daily

exchange rates for x; =US$/DM, x7 =US$/Yen and x? =DM/Yen from
June, 21, 1996 to June, 12, 1998
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an

RPOC, | RMSE} | RMSE? RMSFE}
=Nikkei | =DAX | =Dow Jones
5.7065 | 0.6318 0.9064 0.7814
6.5556 | 0.8098 0.8403 0.6490
7.2495 | 0.6017 0.8264 0.5893
54773 | 0.8805 0.9089 0.6821
4.8234 | 0.7404 0.8609 0.7518
4.0215 | 0.7773 0.9291 0.8383
3.2283 | 0.7929 0.9524 0.6838
2.6568 | 0.7842 0.9772 0.7469
2.5859 | 0.7782 0.9101 0.6923

O 00 ~1 O U = W N

Table 9: The multivariate relative predictive ordinate criterion RPOC; and
the relative mean square error of VAR-GARCH-M(1,1,2,2) model for daily
Stock indices of Japan, German and USA (x; =Nikkei, x; =DAX and
x; =Dow Jones) from June, 21, 1996 to June, 12, 1998
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H | RPOC, | RMSE{ | RMSE? | RMSE; | RMSE
US$/DM | USS/Yen | DM/Yen
1] 1.3288 | 0.5220 0.6227 0.6231 | 0.5875
2 | 1.3545 | 0.6197 0.5764 0.5818 | 0.5719
3| 1.4582 | 0.5305 0.5889 0.5158 | 0.5638
4 | 1.5617 | 0.6985 0.5592 0.4953 | 0.5402
5| 1.5928 | 0.6475 0.5749 0.4832 | 0.5357
6 | 1.9192 | 0.4840 0.5171 0.4673 | 0.5297
7| 1.6533 | 0.6623 0.7300 0.5299 | 0.5889
8 | 1.4416 | 0.6561 0.6695 0.5342 | 0.6077
9 | 1.3243 | 0.7462 0.6754 0.5400 | 0.6147

Table 10: The multivariate relative predictive ordinate criterion RPOC, and
the relative mean square error of the VAR(1) model for daily exchange rates

for x; =US$/DM, x? =US$/Yen and x? =DM/Yen from June, 21, 1996 to

June, 12, 1998

H | RPOC, | RMSE{ | RMSE? | RMSE} | RMSE
Nikkei DAX Dow Jones
1| 1.5290 0.6780 0.7475 0.7773 0.7236
2 | 1.6170 0.8004 0.7347 0.6492 0.6100
3 | 1.9890 0.6026 0.7022 0.5927 0.5774
4 | 1.7786 0.8861 0.9328 0.6863 0.5969
51 1.6224 0.7452 0.9870 0.7545 0.6112
6 | 1.5535 0.7837 0.9571 0.8408 0.6132
7| 1.5383 0.8002 0.9677 0.6857 0.6253
8 | 1.4828 0.7917 0.9888 0.7479 0.6333
9 | 1.4570 0.8789 0.9220 0.6933 0.7039

Table 11: The multivariate relative predictive ordinate criterion RPOC, and
the relative mean square error of the VAR(1) model for daily Stock indices
of Japan, German and USA (x; =Nikkei, x} =DAX and x? =Dow Jones)

from June, 21, 1996 to June, 22, 1998
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Exchange rates | Stock indices

Ad? 1.0875 1.0701
Dyias 0.3227 0.3483
Dy 0.0258 0.0461
Doise 0.6514 0.6056
o? 1.3354 1.5465
d 9.3134 7.5807
o3 1.1678 1.3244
dV 8.7210 6.9702
P 0.7074 0.7594

Table 12: The APOC decomposition for the VAR(1) model for daily ex-
change rates (US$/DM, US$/Yen and DM/Yen) and stock indices (Nikkei,
DAX and Dow Jones) from June, 21, 1996 to June, 12, 1998

Exchange rates | Stock indices

D 0.00017 0.00471
Dyias 0.02954 0.00983
Do 0.10199 0.22520

D,pise 0.86847 0.76498

Table 13: The multivariate M SFE decomposition of the VAR-GARCH-M
model for daily exchange rates (US$/DM, US$/Yen and DM/Yen) and stock
indices (Nikkei, DAX and Dow Jones) from June, 21, 1996 to June, 12, 1998
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Table 14:

Exchange rates | Stock indices
0.0006942 0.0208560
0.0003514 0.0121810
0.0001715 0.0024779

EV(D) for daily exchange rates (US$/DM, US$/Yen and
DM/Yen) and stock indices (Nikkei, DAX and Dow Jones) from June, 21,
1996 to June, 12, 1998

Exchange rates

Stock indices

Al

A2

A3

Al

A2

A3

0.00747
0.12700
0.86553

0.00000
0.11306
0.88694

0.00000
0.17348
0.82652

0.00465
0.10782
0.88753

0.00000
0.12212
0.87788

0.00000
0.16972
0.83028

Table 15:

The relative MSFE decomposition for daily exchange rates

(US$/DM, US$/Yen and DM/Yen) and stock indices (Nikkei, DAX and Dow
Jones) from June, 21, 1996 to June, 12, 1998
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