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Abstract

Standard forecasting criteria like the mean square error �MSE�
compare point forecasts or a location parameter of the forecasting
distribution with actual observations� Such criteria are less suited to
comparing forecasts of volatile time series� Therefore we use the aver�
age predictive ordinate �APOC� criterion which evaluates the ordinate
of the predictive distribution� Using the comparison to a no�change
forecasting rule� we suggest taking the RPOC� the ratio of predictive
ordinate criteria� We also suggest comparing two volatile forecasts
by a decomposition of the squared distances of ordinates into a bias�
variance and noise component� The new criteria are demonstrated
for stock indices and exchange rates forecasts�

Keywords� Forecasting comparison� predictive ordinates� APOC�
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� Introduction

Forecast evaluations are important for applied time series analysis� Successful
time series models are often measured in terms of their forecasting perfor�
mance� like the mean squared error �MSE� or the root MSE �RMSE�� If
xT �h� denotes the forecast of a time series at point T for a h�step ahead
observation yT�h� then the MSE is de�ned as

MSE �
�

H

HX
h��

�xT �h�� xT�h�
��

where H is the time series horizon for which the forecasts are evaluated� For
better interpretation� the square root of the MSE� RMSE �

p
MSE can

be used� There are two possibilities for calculating the MSE�
�� Keep the forecast origin T �xed and evaluate the forecasts for evolving
lead times� e�g� xT ���� � � � � xT �H� up to the time horizon H�
�� Keep the lead time �xed� e�g� one�step ahead forecasts� but evaluate the
forecasts for evolving time origins� like

xT ���� xT������ � � � � xT�H������

In this case the information set for the forecasts is expanding� but the forecast
errors will be measured for a constant step size into the future� We will denote
this measure by

MSE� �
�

H

H��X
h��

�xT�h��� � xT�h���
�

if the lead time is one �equi�distant� time step� This concept can be extended
for MSE�k� if k�step ahead forecasts have to be evaluated for an expanding
information set�
One disadvantage of theMSE is the focus on point forecasts� but the advan�
tage is the simplemathematical tractability and the connection to conditional
expectations� Also� the MSE can	t discriminate between forecasts coming
from homoskedastic or heteroskedastic time series models� In order to evalu�
ate forecasts from a volatile time series model� we have to take into account
the whole forecasting distribution�
In this paper we will propose a forecast evaluation criterion which is based on






the whole forecasting �predictive� distribution� At the time T forecast origin�
we can make a forecast for the next step by a predictive distribution which
means that we quantify the uncertainty of the future observation by a prob�
ability distribution� When the new observation realizes� we can calculate the
probability density of the new observation� Choosing between two predictive
distributions� we prefer the predictive distribution where the new observation
falls into a more likely density region� Such a measure is provided by the
ordinate of the predictive distribution� A new observation which realizes just
at the mode of the predictive distribution attains the maximum ordinate� If
the observation realizes in the tails of the predictive distribution then the
predictive ordinates will be small� Thus� we suggest taking the average of
the predictive ordinates as a new evaluation criterion for forecasts� As before�
we can distinguish between two cases�
�� Keep the forecast origin T �xed and consider evolving lead times up to
horizon H� Then we get as average ordinate criteria �APOC�

APOC �
�

H
�dT ��� � � � �� dT �H���

where dT �h� is the ordinate of the predictive density p�xT�hjIT �� given the
information set IT � evaluated at the actual observation xT�h�
�� Keep the lead time �xed and evaluate the predictive density for evolving
time origins up to horizon H� This leads to the criterion

APOC� �
�

H
�dT ��� � � � �� dT�H�������

where dT�h��� is the ordinate of the predictive density p�xT�hjIT�h��� and
IT�h�� is the information set up to time T � h� ��
The plan of the paper is as follows� In section � we introduce the APOC
and the relative predictive ordinate criterion for comparing the APOC of the
current model with the APOC of the no�change forecasts� Section 
 reviews
the mean square error �MSE� criterion and discusses the extension to the
multivariate case� Also� the Theil decomposition of the MSE of the point
forecasts and for the predictive ordinates are discussed in Section �� Also we
show how the APOC criterion can be used in extended to the multivariate
case� In the last section we discuss an example involving the VAR�GARCH
model of international stock and exchange rate markets� We conclude with
some �nal remarks�
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� The relative mean square error

We denote by 
xT��� � � � � 
xT�H the point forecasts of the current time series
model at time T for the horizon H� Then the MSE �mean square error� for
horizon H is given by

MSE� �
�

H

HX
h��

�
xT�h � xT�h�
�� ���

where 
xT�h denotes the successive one step ahead forecasts over the horizon
H� The no�change mean square error �MSEN

� � for one step ahead predictions
is given by

MSEN
� �

�

H

HX
h��

�xT�h � xT�h���
��

The relative improvement of the root MSE �RMSE� over the no�change
forecasts is given by

RMSE� �

s
MSE�

MSEN
�

� �
�

This criterion can be evaluated over di�erent time horizons H�

��� The MSE matrix

In the multivariate case we have H forecasts f�xT��� � � � � �xT�Hg of dimension
M and the forecasting properties can be summarized in a MSE matrix� i�e�

MSE� �
�

H

HX
h��

��xT�h � xT�h���xT�h � xT�h�
�� ���

where the �xT�h are successive one step ahead forecasts over the horizon H�
The no�change MSE matrix for one step ahead prediction is given by

MSEN
� �

�

H

HX
h��

��xT�h � xT�h�����xT�h � xT�h���
��

A simple generalization of the univariate ratio of root mean square error in
the multivariate case is given by the ratio of the root of the determinants�

RMSE� �

vuut det�MSE��

det�MSEN
� �

� ���

�



Note� An alternative is to calculate the relative gain in eigenvalues� i�e�

��
�N�

� � � � �
�p
�Np

with ��� � � � � �p being the eigenvalues of MSE� and �N� � � � � � �
N
p from those of

MSEN
� �

��� The Theil decomposition of the mean square error

The following decomposition of the MSE is explained� e�g� in Pindyck and
Rubinfeld ������ and relates to the inequality coe�cients developed in Theil
�������

Theorem ��� The ordinary Theil decomposition of the MSE
Let xt be the actual observations and yt the forecasts from a model� Then
the mean square error decomposition for the horizon H is

�d� �
�

H

X
�xt � yt�

�

� ��xt � �yt�
� � ��x � �y�

� � 
��� ���x�y ���

or
�d� � bias� � variance� noise�

where the relative proportions of the decomposition are given as

Dbias � ��x� �y����d��

Dvar � ��x � �y�
���d��

Dnoise � ��� �xy��x�y��d
� ���

with

��x �
�

H

X
�xt � �x��� and ��y �

�

H

X
�yt � �y���

�x �
�

H

X
xt� and �y �

�

H

X
yt�

�



and

� �
�

H

�

�x�y

X
�xt � �x��yt � �y��

Proof� Follows from standard manipulations�

The bias proportion Dbias measures the discrepancy of the average forecasts
over the forecast horizon� For �unbiased� forecasts we expect this proportion
to be close to zero�
Any large deviation from zero will cast doubt on the forecasting model�
The variance proportion Dvar shows if the variability of the forecasts is in
agreement with the variability of the observations� If the variance term is
not close to zero then we are faced with a mismatch in the volatility of the
observed and predicted series� This could be because the forecasts are over�
or underestimating the standard deviation of the observations� To justify
forecasts of volatility models� this component should indicate if the volatil�
ity component of a model should be changed� Finally� the noise proportion
Dnoise measures the unexplained proportion of the MSE� It is called noise
component because it measures the uncorrelatedness of the current forecasts
with comparable observations� If �xy is zero� then Dnoise is close to � and we
have found satisfactory forecasts� If the variance and the bias term is close to
zero� then the noise term will be close to �� Thus� good forecasting models in
the the mean square sense are found ifDnoise can be made as large as possible�

Theorem ��� The alternative Theil decomposition of the MSE
Let yt be the actual values and xt the predicted values of the time series�
Then the MSE given by

�d� �
�

H

X
�xt � yt�

�

can be alternatively decomposed as

�d� � ��x� �y�� � ��x � ��y�
� � ��� �����y

� bias� �Adj�variance�mmse� ���

where MMSE stands for minimum mean squared error�
The relative decomposition is given by

Dbias �Dadjvar �Dmmse � �� ���

�



Dbias � ��x� �y����d��

Dadjvar � ��x � ��y�
���d��

Dmmse � �� � ����y��d
��

with

� �
�

H

�

�x�y

X
�xt � �x��yt � �y��

Proof� Squaring the nominators of the last two terms in ��� gives

��x � ����y � 
��x�y � ��y � ����y�

where as squaring the last two terms in ��� gives

��x � 
�x�y � ��y � 
�x�y � 
��x�y�

Note that these expressions are equal�
If theMSE is minimized then the minimumMSE is given by the remainder
term in ����

MMSE �
Min
xt �d

� � �� � �����y� ���

As Clements and Hendry ������ P� ��� point out� the characteristics of the
minimumMSE forecasts are given by the solutions of the �rst order condi�
tions�

��d�

��x
� �
��x� �y� � ��

��d�

��x
� �
��x � ��y� � �� ����

��d�

��
� �
�x�y � ��

Thus ��� will be minimized if �x � �y and �x � ��y� The minimum in ���
is obtained by substitution� The ratio �d��MMSE can be interpreted as a
scale independent potential MSE which can be reduced�
The di�erence between the two Theil decompositions lies in the Dvar and the
Dadjvar terms� If the correlation coe�cients between actual and forecasted
values is low� then condition ���� implies that the MSE is minimized if the
variance of the forecasts is su�ciently small� The MMSE prefers smooth
predictions over erratic ones�

�



��� Forecasting volatilities

Consider the following AR�GARCH model

yt � �� �
kX
i��

yt�i�i � �t� t � �� � � � � T� �t � N ��� ht�� ����

ht � 	� �
pX

i��

	iht�i �
qX

i��


i�
�

t�i� ��
�

We can extend theMSE decomposition for the predictions of the volatilities
in an AR�GARCH model with


yt � 
�� �
kX
i��


yt�i 
�i�

then the observed volatility is ht � 
��t � �yt� 
yt��� The predicted volatilities
are given by


ht � 	� �
pX
i��

	i
ht�i �
qX

i��


i
�
�

t�i�

If 
ht � xt then the following decomposition holds�

�d� �
�

H

X
�ht � xt�

�

� ��h� �x�� � ��h � �x�
� � 
�� � ���h�x

or in relative term
Dbias �Dvar �Dnoise � � ����

with
Dbias � ��h� �x����d��

Dvar � ��h � �x�
���d��

Dnoise � ��� �hx��h�x��d
�

with

��h �
�

H

X
�ht � �h��� and ��x �

�

H

X
�xt � �x���

�



�h �
�

H

X
ht� and �x �

�

H

X
xt�

and

� �
�

H

�

�h�x

X
�ht � �h��xt � �x��

The one step ahead forecasts of the AR�GARCH model are given by

yt � x
�

t� � �t� var��t� � ht�

or
yt � N �x

�

t�� ht � z
�

t��� t � �� � � � � T�

where the conditional variance ht is parameterized as in ��
��

��� The multivariate MSE decomposition

This section shows how the Theil decomposition of the MSE can be gen�
eralized for multivariate time series� First� we de�ne the MSE matrix and
then we proceed with the Theil decomposition�

Theorem ���� Multivariate MSE decomposition
We consider two multivariate models which produce the forecasts x�� � � � �xH
and y�� � � � �yH� The MSE matrix for the horizon H de�ned as

D �
�

H

X
t

�xt � yt��xt � yt�
�

can be decomposed as

D �M � �����
xx

�����
yy

�� � 
�����
xx
����
yy

��xy� ����

with
M � ��x� �y���x� �y���

�xx �
�

H

X
t

�xt � �x��xt � �x���

�yy �
�

H

X
t

�yt � �y��yt � �y���

�



�xy �
�

H

X
t

�xt � �x��yt � �y���

and ����� is de�ned as ����� � Udiag��
���
� � � � � � �

���
M �UT � where EV ��� �

���� � � � � �M� are the eigenvalues of � and U is associated matrix of eigen�
vectors� Now we can de�ne two multivariate MSE decompositions�
a� In terms of the determinants the generalizedMSE decomposition is given
by

Dbias �
jMj
jDj �

Dvar �
j�xx

��� ��yy
���j�

jDj �

Dnoise � ��Dbias �Dvar�

b� In terms of the eigenvalues of D� we use the ��M vector of eigenvalues by
EV �D� � ��D� � � � � � �

D
M� for the M �dimensional relativeMSE decomposition

de�ned as
D�

mean � EV �M� � � � EV �D��

D�
var � EV ��xx

��� ��yy
����� � � � EV �D��

D�
noise � ��D�

mean �D�
var�

where � � � denotes elementwise division�
Note that all components of the decomposition add up to ��
Proof� First note that as in the univariate case we �nd

D �
�

H
��xt � yt��xt � yt�

�

�
�

H
���x� �y���x� �y�� �

�

H
��xt � �x� �y� yt��xt � �x� �y� yt�

�

� M�R�

Furthermore� the last term can be decomposed into

R �
�

H
��xt � �x��xt � �x�� �

�

H
��yt � �y��yt � �y�� � 


H
��xt � �x��yt � �y��

� �xx ��yy � 
�xy�

For numerical calculations we use

��xx
��� ��yy

����� � �xx ��yy � 
�xx
����yy

����

��



Substituting all these terms gives �����
Note� A further multivariate decomposition of the MSE matrix is given by
the trace of MSE matrix D� This is equivalent to a summation over the M
univariate components�

trD �
MX
m��

���xm � �ym�
� � ��x�m � �y�m�

� � 
�� � �xy�m��x�m�y�m��

with

�xy�m �
�

�x�m�y�m
��xt�m � �xm��yt�m � �ym��

Since this trace measure depends on the scale of the M components it is of
little practical use� It could serve only as a reasonable summary measure for
multivariate observations measured on the same scale�
As in the univariate context� the multivariate proportional contributions can
be interpreted as before� Good forecasts are those where Dbias and Dvar are
close to zero and Dnoise is close to ��

� The Average Predictive Ordinate Crite�

rion �APOC�

Consider a time series fx�� � � � � xTg for which at time T we calculateH predic�
tive densities for future observations xT�� � � � xT�H� i�e�fT���x�� � � � � fT�H�x��
The predictive ordinate criterion �POC� is the average predictive ordinate�
de�ned for a horizon of length H as

APOC �
�

H

HX
h��

fT�h�xT�hj
�T �� ����

where 
�T is the estimated parameter of the time series model for time T � For
one�step ahead forecasts we de�ne

APOC� �
�

H

HX
h��

fT�h�xT�hj
�T�h���

e�g� for the one�step ahead normal distribution this is

APON� �
�

H

HX
h��

N �xT�hj

T�h��� 
��T�h����

��





T�h and 
��T�h are the mean and the variance of the one�step predictive
densities at time h of the time horizon H starting at time T �
The relative improvement to no�change forecasts is given by the relative
predictive ordinate criterion �RPOC� for one�step ahead predictions over
the horizon H�

RPOC� �
APOC�

APON�

� ����

where the APOC of the simpler �or no�change normal distribution� predic�
tion is given by

APON� �
�

H

HX
h��

N �xT�hjxT�h��� 
���

with


�� �
�

T � �

T��X
t��

�xt�� � xt�
��

��� The decomposition of the APOC

In analogy to the Theil decomposition of the MSE we can decompose the
squared distance of the APOC criterion for any predictive ordinate of a
model or the no�change forecasts� Let dt be the predictive ordinate for the
ARCHmodel and let dNt be the predictive ordinate for the no�change forecasts
assuming a normal distribution

�d� �
�

H

X
�dt � dNt �

� � � �d� �dN �� � �� � �N�
� � 
�� � ����N � ����

or
�d� � bias� � variance� noise�

where � � cov�dt� d
N
t ����N is the correlation between the predictive ordi�

nates of the two models�
In terms of relative proportions the � components of the mean squared pre�
dictive ordinate �MSPO� criterion is

a� MSPO bias�
Dbias � � �d � �dN ����d��

�




b� MSPO variance�
Dvar � �� � �N �

���d��

c� MSPO noise�
Dnoise � ��Dbias �Dvar�

with

�� �
�

H

X
�dt � �d��� �d �

�

H

X
dt�

and

��N �
�

H

X
�dNt � �dN ��� �dN �

�

H

X
dNt �

Note that the correlation between the predictive ordinates could be estimated
by

� �
�

H

�

��N

X
�dt � �d��dNt � �dN ��

In the case of the Theil decomposition of the MSPO we need a slightly
di�erent interpretation of the � components� Since we compare no�change
forecasts with forecasts from another model� we generally expect that elabo�
rate models �e�g� a GARCH model� forecast better than no�change models�
This implies that the predictive ordinates of the elaborate model are larger
than the ordinates of the no�change model� Thus� the bias term will only be
close to zero if the current model is equally good �or bad� as the no�change
model� If the current model beats the no�change model� we expect the bias
term to be large as well�
Interestingly� the variance term in the MSPO decomposition doesn	t imply
anything about the volatility in the model� The variances of the predictive
ordinates are measuring how the actual observations are scattered in terms
of the ordinates under the predictive distribution of both models� Thus�
the variance term should be close to zero� If this is not the case� then the
predictive ordinates are di�erently scattered for both models under consid�
eration� In this case the predictive distributions should be checked as well
as the choice of the horizon period� This might be the case because a period
of unusual observations could have been observed� The noise term can be
interpreted like before as the remainder term in the decomposition� Now a
good predictive model is not only characterized by a noise component close
to �� Since the bias term can be large� the MSPO can be split into the bias
and the noise component�

��



��� A Multivariate Predictive Ordinate Criterion

Consider a time series fx�� � � � �xTg for which we want to predict H one�step
ahead forecasts at time T �

fT���x�� � � � � fT�H�x��

For one�step ahead forecasts at time T and for horizon H we de�ne the
average predictive ordinate criterion

APOC� �
�

H

HX
h��

fT�h�xT�hj��T�h���� ����

e�g� for one�step ahead forecasts assuming a multivariate normal distribution�
the APOC is

APOC� �
�

H

HX
h��

N �xT�hj�xT�h��� ����

For no�change prediction we calculate a ratio of average predictive ordinates
assuming a multivariate normal distribution

RPOC� �
APOC�

APON�

� ����

with

APON� �
�

H

HX
h��

N �xT�hjxT�h��� ����

where �� is calculated as the covariance matrix of the �rst di�erences of the
time series which is de�ned as

�� �
�

T � �

T��X
t��

�xt�� � xt��xt�� � xt�
��

To demonstrate the application of the above formulas we consider the fol�
lowing
Example� Consider the AR����ARCH����� model with xt � ��� yt��� and
zt � ��� ht��� ��t����

��



For h � � the one step ahead predictions are


t�� � E�yt��� � �� � ��yt�

ht�� � V ar�yt��� � �� � ��ht � ���
�

t �

with the residual

�t � yt � 
t

� yt � �� � ��yt���

For h � 
 the forecasting equations are


t�� � E�yt��� � �� � ��yt���

ht�� � V ar�yt��� � �� � ��ht�� � ���
�

t���

�t�� � yt�� � �� � ��yt�

and similarly for higher order predictions�

� Forecasting exchange rates and stock re�
turns

Financial time series like stock returns or returns on exchange rates have
been modeled in recent times by a wide variety of ARCH models and this
has led to the discussion of how to compare forecast performances of volatile
time series�
Therefore we consider the forecasts of daily exchange rates of the Deutsche
Mark and the Japanese Yen against the US dollar and the DM�Yen exchange
rates and stock returns in the US� Germany and Japan�
Exchange rates exhibit volatile behavior� we have therefore estimated uni�
variate AR�GARCH����� models for the returns of the stock market and the
exchange rates for Japan� German and the US in Tables 
 and �� Table 

shows the RPOC for daily one�step ahead forecasts starting on June �
� ����
for �� days� The smallest improvement over the no�change prediction can
be seen for the one�step forecasts for exchange rates and for stock indices�
The picture changes for large time horizons� starting from a horizon length
of two days� where the improvement in ordinate length is at least ���� The

��



maximum improvement is attained with RPOC � 
�
 for horizon length
H � � for the US��DM exchange rate� For stock indices the improvement
in the RPOC is in general a little bit higher� The best improvement can be
found for the Nikkei index for horizon length H � � �RPOC � 
���� It is
interesting to note that the RPOC increases only for the Nikkei index while
RPOC decreases for the DAX and the Dow Jones indices after the horizon
length H � 
�
The picture is di�erent if we look at the relative mean square error �RMSE�
in Table �� The RMSE seems to stabilize for large horizon length H and
gives improvements of about ��� for the DM�Yen� ��� for the US��Yen
and 
�� for the US��DM�
The RMSE behavior is again di�erent for stock indices� The best RMSE
can be found in long horizons H for the Nikkei index� followed by the DAX
and the Dow Jones indices� This result is similar to the analysis for the
RPOC criterion�
Table � shows the MSPO decomposition for AR����GARCH����� models
for exchange rates and stock returns individually� The bias proportion for
exchange rates lies between �� and ��� and the rest of the decomposition
lies in the bias component� This result makes sense� since we see that the
average predictive ordinate for the AR�GARCH model is larger than the one
for the no�change model� but the variances are about the same� The picture
is di�erent for the returns of the stock indices� Only the Nikkei index shows
the same behavior as the exchange rates� For the DAX and the Dow Jones
indices the bias proportion lies between � and �� while the variance propor�
tion is large� 
�� for the DAX and �
� for the Dow Jones returns� Also we
see from the �rst line in Table � that the MSPO is two to three times larger
than the MSPO of the other time series� This shows that we have serious
mismatch between the observed values and the predictive distributions for
the returns in the evaluation period June �
 to June 

� ����� Tables �� and
�� show the multivariate gain in predictive ordinates �RPOC� for one�step
ahead forecasts of the VAR��� model of exchange rates and the univariate
and multivariate RMSE� Table �� shows the RPOC for the ��dimensional
forecasting distribution and we can see that the RPOC increases over a hori�
zon period up to six days� after day six the predictive power of the model
declines� Not surprising is the low performance of the point forecasts for the
relative gain in the root mean square error� The improvement lies between 
�
and �
� below the no�change root MSE� Also� the picture is con�rmed for

��



the ��dimensional model� where we compare the improvement with regard to
the root determinant� The last column of Table �� shows that the improve�
ments lie between �� and ��� percent� Table �� contains the above analysis
for the stock returns� The �rst column shows that the RPOC for the VAR���
model increases only up to lag three and then starts decreasing slowly� The
RMSEs for the three stock returns are decreasing to a smaller degree than
for the exchange rates� The RMSE of the ��dimensional system lies between

� and ���� The APOC decomposition for the ��dimensional VAR��� model
is displayed in Table �
� Now the squared distances for exchange rates and
stock returns are about the same size and the bias proportion is about ����
leaving 
�� for the noise term� This shows that substantial predictive im�
provements can be found in a multivariate model�

� Conclusions

The paper proposes an alternative for the usual evaluations of forecasts by
the MSE or the RMSE� The new average predictive ordinate criterion
�APOC� evaluates the actual observation given a parametric conditional
predictive density� This concept allows the comparison of forecasts of volatile
time series� since it takes into account the quality of the predictions if the
variances change over time� This APOC criterion can be compared with a no�
change forecast for a normal distribution and leads to the relative predictive
ordinate criterion �RPOC� which is a measure of increase or decrease of
the predictability between two models� The APOC and RPOC are also
extended to the multivariate case for joint predictions�
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Table �� The marginal likelihood for the AR�k��GARCH�p�q��M�r� model
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� Relative predictive ordinate criterion RPOC� of AR�GARCH�M
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Table �� The relative mean square error of AR�GARCH�M model for daily
exchange rates and stock indices from June� 
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� ����
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Table �� The decomposition of APOC for AR�GARCH�M model for daily
exchange rates and stock indices from June� 
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� ����


�



US��DM US��Yen DM�Yen Nikkei DAX Dow Jones

�d� 
�



�� 
�




� 
�



�� 
�

���� 
�


��
 
�


��

Dbias 
�
��	�� 
�

�
�� 
�
����� 
�
��
�
 
�
�
��
 
��	�	��
Dvar 
�

�
�� 
�

��
	 
�

���
 
�

�		� 
�

�	�� 
�
�����
Dnoise 
������	 
����	�� 
���	��� 
��
��
� 
���
�	� 
�
���
�

Dadjvar 
�
����	 
����

� 
������	 
�

	��
 
������� 
����
��
Dmmse 
���
��� 
�	����	 
�

��	� 
���
�
� 
�


��� 
�	����


��x 
�




	 
�



�� 
�



�� 
�


��
 
�


��� 
�



��
�x 
�


��� �
�

���	 �
�


��� 
�

�
�� 
�

�
�� 
�

��	

��y 
�



�
 
�



�
 
�



�� 
�


��
 
�


��� 
�


��	
�y 
�

��	
 �
�

��
� �
�

��
� 
�

�
�� 
�

�
�� 
�

�	��
� 
���
	�	 
������� 
��	�	�� 
������� 
�
����� 
��	�	��

Table �� The returns MSE decomposition for AR�GARCH�M forecasts of
daily exchange rates and stock indices from June� 
�� ���� to June� �
� ����
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Table �� The forecasts of volatilities MSE decomposition for AR�GARCH�
M model for daily exchange rates and stock indices from June� 
�� ���� to
June� �
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Table �� The marginal likelihood for the VAR�k��GARCH�p�q��M�r� model
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Table ��� The multivariate relative predictive ordinate criterion RPOC� and
the relative mean square error of the VAR��� model for daily exchange rates
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Table ��� The multivariate relative predictive ordinate criterion RPOC� and
the relative mean square error of the VAR��� model for daily Stock indices
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