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Abstract
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1 Introduction

We propose a space-time model for predicting regional business cycle from a

Bayesian point of view. Since the seminal work by Anselin (1988), spatial

interaction becomes one of the concerns in economics. Therefore, the spatial

dependency is modeled for several econometric models. However, the concerns

are moved to space-time model (see e.g. Banerjee et al., 2003).

Analyzing regional business cycles by regional models have become an impor-

tant issue in recent time, since the phenomenon of non-convergence has gained

more attention in the debate of regional convergence in an enlarged European

Union. Therefore we approach this problem from a new econometric perspec-

tive using a new class of space-time models, the AR nearest neighbor models.

Kakamu and Wago (2005) have pointed out that the spatial interaction plays

an important role in regional business cycle analysis in Japan. They considered

the panel probit model with spatial dependency from a Bayesian point of view

and analysed the spatial interactions in regional business cycles in Japan.

The goal of this paper is to construct a model for predicting regional business

cycle and to model the regional GDP dynamics of 227 regions in six countries

of central Europe during the period 1995 to 2001. Furthermore, we use the

concept of nearest neighbors (NN) and propose the tightness prior. Our results

show that the spatial correlations are high and the serial correlations are small.

The rest of this paper is organized as follows. In Section 2, we will explain

the autoregressive nearest neighbor model for regional modeling. In Section 3,

wedescribe the computations by the MCMC method and the model selection

procedure and extend to the one with exogenous variables and the hierarchical

prior models. In Section 4, we will analyze the GDP growth in 227 regions

across six countries in central Europe. Finally, some conclusions are given in

Section 5.
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2 Regional ARNN modeling

We consider a dynamic panel data matrix Y of order (N ×T ), where usually the

time dimension T is much smaller than N . Let yt denote the t-th column of Y ,

then we define the k-nearest neighbor matrix as W1 = NN(1) until Wn = NN(n)

where W1 denotes the (N × N) 0-1 matrix with a 1 in each row indicating the

nearest neighbor (NN) for each region, i.e. for each row. Thus, Wk denotes the

matrix of the k-th nearest neighbors for each region.

2.1 Some properties of ARNN processes

Definition 1: The ARNN(p, n) processes

We consider a dynamic N × T panel data matrix and using the time lag

operator L, defined by Lyt = yt−1 and the NN weight matrices W1, · · · , Wn of

a vectorized time series y = vecY the ARNN(p, n) process is given by

β(L ◦ W )yt = ut, for t = 1, · · · , T

where ut, is a white noise process and the ARNN polynomial is given by

β(L ◦ W ) = (1 − β(L) ◦ W ) = (1 − β1(L)W1 − · · ·βn(L)Wn)

This implies the following decomposition of the ARNN process

β(L ◦ W ))yt = (1 − β(L) ◦ W )yt =

(1 − β1(L)W1 − · · ·βn(L)Wn)yt =

yt − β1(L)y1
t − · · ·βn(L)yn

t

with yn
t = Wnyt. We define the extension of the spatial operator to include the

pure AR operator.

β0(L ◦ W ) = (1 − β0(L) ◦ W ) = (1 − β0(L) − β1(L)W1 − · · · − βn(L)Wn)

Definition 2: Stationary ARNN model

a) Stationarity condition: The ARNN(p, n) process is stationary if the pure

AR(p) polynomial of the ARNN polynomial has all roots outside the unit circle.

β0(L) = 1 − β10L − β20L
2 − · · · − βp0L

p,
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b) The ARNN(p, n) process is called NN-stationary if the n spatial sub-

processes yi
t = Wiyt, i = 1, ..., n are also stationary and the roots of the p

polynomials lie outside the unit circle:

βk(L) = 1 − βi1L − βi2L
2 − · · · − βinLn, for i = 1, · · · , p.

Note that the evaluation of the ARNN polynomial follows a matrix scheme:

β(L ◦ W )yt = (1 − β(L) ◦ W )yt = (1 − β1(L)W1 − · · ·βn(L)Wn)yt

= (1 − β11LW1 − · · · − β1nLWn − · · ·

−βp1L
pW1 − · · · − βpnLpWn)yt = ut

2.2 Estimation of ARNN processes

The dependent variable is given by the most recent observed cross section col-

umn of matrix Y , i.e. y = yT . Now we define a spatial AR model for each

region

y = β10yt−1 + β11W1yt−1 + β12W2yt−1 + · · · + β1nWnyt−1 + · · ·

+βp0yt−p + βp1W1yt−p + βp2W2yt−p + · · · + βpnWnyt−p + u,

= (yt−1, W1yt−1, W2yt−1, · · · , Wnyt−1)β1 + · · ·

+(yt−p, W1yt−p, W2yt−p, · · · , Wnyt−p)βp + u,

= Xp,n
1 vecB + u, u ∼ N (0, σ2IN ), (1)

where the (N × (n + 1)p) regressor matrix is given by

Xp,n
1 = (yt−1, y

1
t−1, · · · , yn

t−1, · · · , yt−p, y
1
t−p, · · · , yn

t−p), (2)

with yk
t−j = Wkyt−j that is the k-th nearest neighbor of the time lag j.

And the coefficients in the columns of B, like β1 = (β10, · · · , β1n)′ is the (n+

1)-dimensional spatial AR regression vector. The whole regression coefficient

matrix is now given by (n + 1) × p matrix B = (β1 · · · , βp).

For the prior distribution of the regression coefficients we assume a tightness

covariance matrix and we assume linear decreasing variance factors across the

diagonal of the covariance matrix:

Din = diag(1/i, 1/i, 1/i2, · · · , 1/in), (3)
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so that for each time lag i we think that the coefficients are similar and can make

the same tightness distributional assumption for the regression coefficients: the

i-th row vector βi of the matrix B follows a distribution with center 0 and a

variance that is closer to zero, the higher the lag order is:

βi ∼ N (0, τ2
∗
Din), for i = 1, · · · , p (4)

where each diagonal element of Dn decrease with larger distance, that is, a

closer region can have more coefficient variation than a on than a region that is

farther away.

We write the simple Bayesian ARNN(p, n) model in the compact matrix

form given by

y = Xp,n
1 vecB + u, u ∼ N (0, σ2IN ). (5)

Then, the likelihood function is as follows;

L(y|Xp,n
1 , vecB, σ2) =

1
√

2πσ2
N

exp

(

− e′e

2σ2

)

, (6)

where the residuals are calculated e = y − Xp,n
1 vecB and the prior information

follows a normal gamma model or is specified independently as

vecB ∼ N (0, τ2
∗
P ⊗ Dn), σ2 ∼ G−1(ν∗/2, λ∗/2), (7)

where P = diag(1, 1/2, · · · , 1/p) and G−1(a, b) denotes inverse gamma distribu-

tion with parameters a and b.

The following conditions are needed to obtain a NN-stationary solution (see

definition 2). The roots of the polynomials

1 − β10L − β20L
2 − · · · − βp0L

p,

1 − β11L − β12L
2 − · · · − β1nLn,

...

1 − βp1L − βp2L
2 − · · · − βpnLn,

are all outside the unit circle.

Given the prior density p(vecB, σ2) = p(vecB|σ2)p(σ2) and the likelihood

function given in (6), the joint posterior distribution can be expressed as

p(vecB, σ2|y, Xp,n
1 ) = p(vecB, σ2)L(y|vecB, σ2, Xp,n

1 ). (8)
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Since the joint posterior distribution given by (8) can be simplified, we can

now use MCMC methods. The Markov chain sampling scheme is constructed

from the full conditional distributions of vecB and σ2.

For vecB given σ2, it can be easily obtained by Gibbs sampler (see Gelfand

and Smith, 1990) that

vecB|σ2, y, Xp,n
1 ∼ N (vecB∗∗, Σ∗∗) (9)

where vecB∗∗ = Σ∗∗(σ
−2Xp,n′

1 y), Σ∗∗ = (σ−2Xp,n′

1 Xp,n
1 + Σ−1

∗
)−1 and Σ∗ =

τ2
∗
P ⊗ Dn. However, It may not be sampled within the desired interval (−1, 1)

and/or not satisfy the polynomial conditions, that is, all the roots of the polyno-

mials are outside the unit circle. Then we will reject the sample with probability

one.

Given vecB, the full conditional distribution of σ2 follows;

σ2|vecB, y, Xp,n
1 ∼ G−1(ν∗∗/2, λ∗∗/2) (10)

where ν∗∗ = ν∗ + N and λ∗∗ = λ∗ + e′e.

Table 1 shows the simulation results of ARNN(1,2) using 6000 iterations

and discarding the first 1000 iterations. The simulated data are generated as

follows:

1. Set N = 50

2. Generate coordinate data from χ2(8) and χ2(6), respectively.

3. Generate y1 from N (0, 0.52IN ).

4. Generate yt from

0.8yt−1 + 0.6W1yt−1 + 0.1W2yt−1 + u, u ∼ N (0, 0.52IN ), t = 2, · · · , 5.

And we use the hyper-parameters as follows:

τ∗ = 0.01, ν∗ = 2, λ∗ = 0.01.

From the table, we can find that the posterior means are estimated around

true value and the MSEs are very small.
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2.3 Model selection

Since we have to choose the lag and nearest neighbor order, model selection is

one of the important issues in ARNN model. Familiar order selection is done

by information criteria like AIC and BIC. They are calculated as follows;

AIC(vecB, σ2) = −2 ln(L(y|Xp,n
1 , vecB, σ2)) + 2k,

BIC(vecB, σ2) = −2 ln(L(y|Xp,n
1 , vecB, σ2)) + k ln(N),

where k is the number of parameters.

However, if we also want to compare the validity of nearest neighbor matrix,

that is, we choose the distance when we use the different distances in making

weight matrix, it is difficult to compare the models by AIC or BIC.

In a Bayesian framework, alternative models are usually compared by marginal

likelihoods and/or by Bayes factors. Then, we calculate the marginal likelihood

by Chib’s (1995) method. The formula is in Appendix.

This approach can be also use to test for outliers. We simply extend the

univariate ARNN model by an additive dummy variable Dk, k = 1, ..., n. We

write the simple Bayesian ARNN(p, n) with outliers as

y = Xp,n
1 vecB + Dkγ + u, , k = 1, · · · , n, u ∼ N (0, σ2IN ). (11)

and then we can test or calculate the marginal likelihoods.

3 Extension of ARNN(p, n) model

3.1 The ARXNN(p, n) model

We can extend the univariate ARXNN(p, n) model by extending the regressor

matrix by another exogenous variable, which follows also a space-time pattern

as the dependent variable.

y = Xp,n
1 vecB1 + Xp,n

2 vecB2 + u, u ∼ N (0, σ2IN ). (12)

Now the second regressor matrix Xp,n
2 is built up in the same way from the

observed exogenous N × T panel matrix X as for the first variable Xp,n
1 , i.e.

Xp,n
2 = (xt−1, x

1
t−1, · · · , xn

t−1, · · · , xt−p, x
1
t−p, · · · , xn

t−p),
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with xk
t−j = Wkxt−j that is the k-th nearest neighbor of the time lag j.

This model can be easily estimated by MCMC. Let Z and vecB be (Xp,n′

1 Xp,n′

2 )′

and vec(B1, B2), respectively and change the prior distribution as

N (0, τ2
∗
P ⊗ D)

where D = diag(Dn, Dn). If we replace Xp,n
1 and Dn in (9) and (10) by Z and

D, we can use the same MCMC sampling methods.

Table 2 shows the simulation results of ARXNN(1,2) using 6000 iterations

and discarding the first 1000 iterations. The simulated data are generated as

follows:

1. Set N = 50

2. Generate coordinate data from χ2(8) and χ2(6), respectively.

3. Generate xt from N (0, IN ) for t = 1, · · · , T .

4. Generate y1 from N (0, 0.52IN ).

5. Generate yt from

0.8yt−1 +0.6W1yt−1 +0.1W2yt−1 +0.3xt−1 +0.2W1xt−1 +0.1W2xt−1 +u,

u ∼ N (0, 0.52IN ), t = 2, · · · , 5.

And we use the same hyper-parameters as ARNN(p, n) model in the previous

section. From the table, we can also find that the posterior means are estimated

around true value and the MSEs are very small.

3.2 Hierarchical ARNN(p, n) model

Note that because the dependent variable is essentially a multivariate dynamic

matrix observation we can specify the model similar to a SUR system with a

hierarchical prior for the coefficients. We assume that the cross sections are

correlated across time for each year, i.e.,

vecB ∼ N (0, Σ ⊗ τ2Dn), σ2 ∼ G−1(νσ∗/2, λσ∗/2),

τ2 ∼ G−1(ντ∗/2, λτ∗/2), Σ−1 ∼ W(η∗, S∗). (13)
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Then, we can estimate the model from the following full conditional distri-

butions:1

vecB|σ2, τ2, Σ, y, Xp,n
1 ∼ N (vecB∗∗, H∗∗), (14)

σ2|vecB, τ2, Σ, y, Xp,n
1 ∼ G−1(νσ∗∗/2, λσ∗∗/2), (15)

τ2|vecB, σ2, Σ, y, Xp,n
1 ∼ G−1(ντ∗∗/2, λτ∗∗/2), (16)

Σ−1|vecB, σ2, τ2, y, Xp,n
1 ∼ W(η∗∗, S∗∗), (17)

where vecB∗∗ = H(σ−2Xp,n′

1 y), H∗∗ = {σ−2Xp,n′

1 Xp,n
1 + τ−2(Σ ⊗ D−1

n )}−1,

νσ∗∗ = N+νσ∗, λσ∗∗ = e′e+λσ∗, e = y−Xp,n
1 vecB, ντ∗∗ = p(n+1)+ντ∗, λτ∗∗ =

vecB′(Σ ⊗ Dn)−1vecB + λτ∗, η∗∗ = n + 1 + η∗ and S∗∗ = (B′D−1
n B + S−1

∗
)−1.

Table 3 shows the simulation results of hierarchical ARNN(2,2) using 6000

iterations and discarding the first 1000 iterations. The simulated data are gen-

erated as follows:

1. Set N = 50

2. Generate coordinate data from χ2(8) and χ2(6), respectively.

3. Suppose σ2 = 0.05, τ2 = 0.5 and Σ =





0.5 0.2

0.2 0.4



.

4. Generate vecB from N (0, Σ ⊗ τ2Dn)

5. Generate y1 from N (0, σ2IN ).

6. Generate y2 from [y1, W1y1, W2, y1]β1 + u, u ∼ N (0, σ2IN ).

7. Generate yt from [yt−1, W1yt−1, W2, yt−1, yt−2, W1yt−2, W2, yt−2]vecB +

ut, ut ∼ N (0, σ2IN ).

And we use the following hyper-parameters.

νσ∗ = 0.01, λσ∗ = 0.01, ντ∗ = 0.01, λτ∗ = 0.01, η∗ = p + 1, S∗ = S, (18)

where S is also tightness prior, S = diag(1, 1/2, · · · , 1/p).

From the table, we can also find that the posterior means are estimated

around true value and the MSEs are very small.
1The derivation of full conditional distributions are in Appendix A.
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3.3 Hierarchical ARXNN(p, n) model

Next, we will consider the hierarchical ARXNN(p, n) model. We assume like

the hierarchical ARNN(p, n) model that the cross sections are correlated across

time for each year, i.e.,

vecB1 ∼ N (0, Σ1 ⊗ τ2
1 Dn), τ2

1 ∼ G−1(ντ1∗
/2, λτ1∗

/2), Σ−1
1 ∼ W(η1∗, S1∗),

vecB2 ∼ N (0, Σ2 ⊗ τ2
2 Dn), τ2

2 ∼ G−1(ντ2∗
/2, λτ2∗

/2), Σ−1
2 ∼ W(η2∗, S2∗),

σ2 ∼ G−1(νσ2∗
/2, λσ2∗

/2).

Then, we can estimate the model from the following full conditional distri-

butions:2

vecBi|vecB−i, σ
2, τ2

1 , τ2
2 , Σ1, Σ2, y, Xp,n

1 , Xp,n
2 ∼ N (vecBi∗∗, Hi∗∗),

σ2|vecB1, vecB2, τ
2
1 , τ2

2 , Σ1, Σ2, y, Xp,n
1 , Xp,n

2 ∼ G−1(νσ∗∗/2, λσ∗∗/2),

τ2
i , |vecB1, vecB2, σ

2, τ2
−i, Σ1, Σ2, y, Xp,n

1 , Xp,n
2 ∼ G−1(ντi∗∗

/2, λτi∗∗
/2),

Σ−1
i |vecB1, vecB2, σ

2, τ2
1 , τ2

2 , Σ−i, y, Xp,n
1 , Xp,n

2 ∼ W(ηi∗∗, Si∗∗), (19)

where vecBi = Hi∗∗(σ
−2Xp,n′

i (y − Xp,n
−i vecB−i)), Hi∗∗ = (σ−2Xp,n′

i Xp,n
i +

τ−2
i (Σi ⊗ Dn)−1)−1, νσ∗∗ = N + νσ∗, λσ∗∗ = e′e + λσ∗, e = y − Xp,n

1 vecB1 −
Xp,n

2 vecB2, ντi∗∗
= n + 1 + ντi∗

, λτi∗∗
= vecB′

i(Σi ⊗ Dn)−1vecBi + λτi∗
,

ηi∗∗ = n + 1 + ηi∗ and Si∗∗ = (B′

iD
−1
n Bi + S−1

i∗ )−1.

Table 4 shows the simulation results of hierarchical ARXNN(2,2) using 6000

iterations and discarding the first 1000 iterations. The simulated data are gen-

erated as follows:

1. Set N = 50

2. Generate coordinate data from χ2(8) and χ2(6), respectively.

3. Suppose σ2 = 0.05, τ2
1 = 0.5, τ2

2 = 0.5 and Σ1 =





0.5 0.2

0.2 0.4



 and

Σ2 =





0.4 0.2

0.2 0.3



.

2The derivation of full conditional distributions are also in Appendix B.
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4. Generate vecB1 and vecB2 from N (0, Σ1 ⊗ τ2Dn) and N (0, Σ2 ⊗ τ2Dn),

respectively.

5. Generate xt from N (0, IN ) for t = 1, · · · , T .

6. Generate y1 from N (0, σ2IN ).

7. Generate y2 from [y1, W1y1, W2, y1]β1 + [x1, W1x1, W2, x1]γ1 + u, u ∼
N (0, σ2IN ), where γ1 is the first column of vecB2.

8. Generate yt from [yt−1, W1yt−1, W2, yt−1, yt−2, W1yt−2, W2, yt−2]vecB1 +

[xt−1, W1xt−1, W2, xt−1, xt−2, W1xt−2, W2, xt−2]vecB2+ut, ut ∼ N (0, σ2IN ).

From the table, we can also find that the posterior means are estimated

around true value and the MSEs are very small.

4 Empirical results

4.1 Data set

First, we will explain the data set. We use the growth rates of Gross Domes-

tic Product (GDP) of 227 regions in central Europe from 1995 to 2001. We

use GDP in real term (1995 = 100), take log from and we use centered, i.e.

de-meaned data: GDPit − ¯GDP , where ¯GDP = N−1
∑N

i=1 GDPit. As an ex-

ogenous variable, we consider the population data. As same as the endogenous

variable, we take log from and use centered, i.e. de-meaned data. To construct

nearest neighbors, we need some kind of distance metric between the regions.

As we mentioned in the previous section, we want to compare different type of

weight matrices. First of all, we use the coordinate data of the cell centers and

secondly, we use travel time data to construct the nearest neighbor matrix.

4.2 The results of the ARNN estimation

For the tightness prior distributions, the hyper-parameters are specified as fol-

lows;

τ∗ = 0.01, ν∗ = 2, λ∗ = 0.01.
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We ran the MCMC algorithm, using 6000 iterations and discarding the first

1000 iterations.

First of all, we have to choose the numbers of lags and neighbors and weight

matrix. Table 5 shows the results of the AIC, BIC estimation, log marginal

likelihood and the acceptance rate. From Table 5 we see that both AIC and BIC

are minimal for the values p = 4 and n = 1 and p = 1 and n = 1, respectively,

when we use the coordinate data. However, when we use as distance metric

the travel time data, both the AIC and BIC criteria take the minimum for the

values of p = 1 and n = 3. Therefore, we can not say which model is the best

by AIC or BIC. When we compare the marginal likelihood of p = 1 and n = 3

with coordinate data to with travel time data, we can find that the using the

model ARNN(1,3) with travel time data is the best model in ARNN. Therefore

we will choose the ARNN(1,3) model based on coordinate data. Furthermore

we can see that the acceptance rate becomes smaller as the numbers of p and n

increases.

4.3 The results of the ARXNN estimation

For the tightness prior distributions, we use the same hyper-parameter in the

previous subsection. And we ran the MCMC algorithm, using 6000 iterations

and discarding the first 1000 iterations.

First of all, we also have to choose the numbers of lags and neighbors and

weight matrix. Table 6 shows the results of the AIC, BIC estimation, marginal

likelihood and the acceptance rate. From Table 6 we see that both AIC and

BIC are minimal for the values p = 1 and n = 1, when we use the coordinate

data. However, when we use as distance metric the travel time data, the AIC

and BIC criteria take the minimum for the values of p = 1 and n = 3 and p = 1

and n = 1, respectively. Therefore, we can not say which model is the best in

this class of model. When we compare the marginal likelihood, we can find that

ARXNN(1,1) using travel time data is the best model. Therefore we will choose

the ARXNN(1,1) model based on travel time data.
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4.4 The results of the hierarchical ARNN estimation

For the tightness prior distributions, the hyper-parameters are specified as fol-

lows;

νσ∗ = 0.01, λσ∗ = 0.01, ντ∗ = 0.01, λτ∗ = 0.01, η∗ = p + 1, S∗ = S.

We ran the MCMC algorithm, using 6000 iterations and discarding the first

1000 iterations.

First of all, we also have to choose the numbers of lags and neighbors and

weight matrix. Table 7 shows the results of the marginal likelihood and the

acceptance rate. In hierarchical model, as we cannot evaluate by AIC or BIC, we

will compare the models by marginal likelihood. From Table 7, when we compare

the marginal likelihood, we can find that the the hierarchical ARNN(3,2) model

with travel time data is the best model in the class of hierarchical ARNN model.

4.5 The results of the hierarchical ARXNN estimation

For the tightness prior distributions, the hyper-parameters are specified as fol-

lows;

νσ∗ = 0.01, λσ∗ = 0.01, ντ1∗
= 0.01, λτ1∗

= 0.01, ντ2∗
= 0.01,

λτ2∗
= 0.01, η1∗ = p + 1, S1∗ = S, η2∗ = p + 1, S2∗ = S.

We ran the MCMC algorithm, using 6000 iterations and discarding the first

1000 iterations.

First of all, we also have to choose the numbers of lags and neighbors and

weight matrix. Table 8 shows the results of the marginal likelihood and the

acceptance rate. From Table 8, when we compare the marginal likelihood, we

can find that the the hierarchical ARXNN(3,4) model with travel time data is

the best model in the class of hierarchical ARNN model.

4.6 Posterior means

Table 9 shows the posterior means and standard deviations of ARNN(1,3)

model. From the result, we find that the serial correlation is not significant
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and small. On the other hand, the spatial correlation is larger than serial cor-

relation and NN3 is significant. It implies that the economic activity affets to

the third nearest neighbors.

5 Conclusion

This paper has defined a new class of spatio-temporal models, and we estimated

the autoregressive nearest neighbor (ARNN) model from a Bayesian point of

view and proposed the tightness prior for the model. We derived the joint

posterior distribution and proposed MCMC methods to estimate the parameters

of the model and extended to the model with exogenous variables. We examined

the regional GDP dynamics of 227 regions in six countries of central Europe

during the period 1995 to 2001. Our results show a high spatial correlation and

a rather small serial (time) correlation in the estimation of regional GDP.

Appendix A: Calculation of marginal likelihood

The calculation of marginal likelihood from the Gibbs output is shown in Chib

(1995) in detail. However, we will sketch the calculation way, briefly.

Under model Mk, let L(y|θk, Mk) and p(θk|Mk) be likelihood and prior for

the model, respectively. Then, the marginal likelihood of the model is defined

as

m(y) =

∫

L(y|θk, Mk)p(θk|Mk). (20)

Since the marginal likelihood can be written as

m(y) =
L(y|θk, Mk)p(θk|Mk)

p(θk|y, Mk)
, (21)

Chib (1995) suggests to estimate the marginal likelihood from the expression

log m(y) = log L(y|θ∗k, Mk) + log p(θ∗k|Mk) − log p(θ∗k|y, Mk), (22)

where θ∗k is a particular high density point (typically the posterior mean or the

ML estimate). He also provides a computationally efficient method to estimate

the posterior ordinate p(θ∗k|y, Mk) in the context of Gibbs sampling.
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The method in our model is as follows: In ARNN model, for example, we

set θk = (vecB, σ2) and estimate the posterior ordinate p(θ∗k|y, Mk) via the

decomposition

p(θ∗k|y, Mk) = p(vecB∗|σ∗2, y)p(σ∗2|vecB∗, y). (23)

p(vecB∗|σ∗2, y) and p(σ∗2|vecB∗, y) are calculated from the Gibbs output as

follows:

p(vecB∗|σ∗2, y) =
1

iter

iter
∑

g=1

p(vecB∗|vecB(g)
∗∗

, Σ
(g)
∗∗ ), (24)

p(σ∗2|vecB∗, y) =
1

iter

iter
∑

g=1

p(σ∗2|ν∗∗/2, λ
(g)
∗∗ /2), (25)

where, it should be noted, vecB(g)
∗∗

, Σ
(g)
∗∗ and λ

(g)
∗∗ are produced as a by-product

of the sampling.

Appendix B: Hierarchical ARNN(p, n) model

Posterior distribution of hierarchical ARNN (p, n) model is written as

p(vecB, σ2, Σ, τ2|y, Xp,n
1 ) ∝ L(y|vecB, σ2, Xp,n

1 )p(vecB, σ2, τ2, Σ),

∝ L(y|vecB, σ2Xp,n
1 )p(vecB|τ2, Σ)p(σ2)p(τ 2)p(Σ),

∝ (σ2)−
N
2 exp

{

− (y − Xp,n
1 vecB)′(y − Xp,n

1 vecB)

2σ2

}

×|Σ ⊗ τ2Dn|−
1
2 exp

{

− vecB′(Σ ⊗ Dn)−1vecB

2τ2

}

×(σ2)−( νσ∗

2 +1) exp

{

− λσ∗

2σ2

}

×(τ2)−( ντ∗

2 +1) exp

{

− λτ∗

2τ2

}

×|Σ−1| η∗−p−1
2 exp

{

− 1

2
tr(Σ−1S−1

∗
)

}

. (26)

Then, the full conditional distribution of vecB is as follows:

p(vecB|σ2, τ2, Σ, y, Xp,n
1 ) ∝ exp

{

− (y − Xp,n
1 vecB)′(y − Xp,n

1 vecB)

2σ2

}

× exp

{

− vecB′(Σ ⊗ Dn)−1vecB

2τ2

}

,

∝ N (vecB∗∗, H∗∗), (27)
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where vecB∗∗ = H∗∗(σ
−2Xp,n′

1 y) and H∗∗ = {σ−2Xp,n′

1 Xp,n
1 +τ−2(Σ⊗Dn)−1}−1.

The full conditional distribution of σ2 is as follows:

p(σ2|vecB, τ2, Σ, y, Xp,n
1 ) ∝ (σ2)−

N
2 exp

{

− (y − Xp,n
1 vecB)′(y − Xp,n

1 vecB)

2σ2

}

×(σ2)−( νσ∗

2 +1) exp

{

− λσ∗

2σ2

}

,

∝ G−1(νσ∗∗/2, λσ∗∗/2), (28)

where νσ∗∗ = N + νσ∗, λσ∗∗ = e′e + λσ∗ and e = y − Xp,n
1 vecB.

The full conditional distribution of τ2 is as follows:

p(τ 2|vecB, σ2, Σ, y, Xp,n
1 ) ∝ |Σ ⊗ τ2Dn|−

1
2 exp

{

− vecB′(Σ ⊗ Dn)−1vecB

2τ2

}

×(τ2)−( ντ∗

2 +1) exp

{

− λτ∗

2τ2

}

∝ (τ 2)−
p(n+1)

2 exp

{

− vecB′(Σ ⊗ Dn)−1vecB

2τ2

}

×(τ2)−( ντ∗

2 +1) exp

{

− λτ∗

2τ2

}

∝ G−1(ντ∗∗/2, λτ∗∗/2), (29)

where ντ∗∗ = p(n + 1) + ντ∗ and λτ∗∗ = vecB′(Σ ⊗ Dn)−1vecB + λτ∗

Finally, the full conditional distribution of Σ is as follows:

p(Σ−1|vecB, σ2, τ2, y, Xp,n
1 ) ∝ |Σ ⊗ τ2Dn|−

1
2 exp

{

− vecB′(Σ ⊗ Dn)−1vecB

2τ2

}

×|Σ−1| η∗−p−1
2 exp

{

− 1

2
tr(Σ−1S−1

∗
)

}

∝ |Σ−1|n+1
2 exp

{

− 1

2
tr(Σ−1B′D−1

n B)

}

×|Σ−1| η∗−p−1
2 exp

{

− 1

2
tr(Σ−1S−1

∗
)

}

∝ W(η∗∗, S∗∗), (30)

where η∗∗ = n + 1 + η∗ and S∗∗ = (B′D−1
n B + S−1

∗
)−1.

Appendix C: Hierarchical ARXNN(p, n) model

Posterior distribution of hierarchical ARXNN (p, n) model is written as

p(vecB1, vecB2, σ
2, τ2

1 , τ2
2 , Σ1, Σ2|y, Xp,n

1 , Xp,n
2 )
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∝ L(y|vecB1, vecB2, σ
2y, Xp,n

1 , Xp,n
2 )p(vecB1, vecB2, σ

2, τ2
1 , τ2

2 , Σ1, Σ2),

∝ L(y|vecB, σ2)p(vecB1|τ2
1 , Σ1)p(vecB2|τ2

2 , Σ2)p(σ2)p(τ 2
1 )p(τ 2

2 )p(Σ1)p(Σ2),

∝ (σ2)−
N
2 exp

{

− (y − Xp,n
1 vecB1 − Xp,n

2 vecB2)
′(y − Xp,n

1 vecB1 − Xp,n
2 vecB2)

2σ2

}

×|Σ1 ⊗ τ2
1 Dn|−

1
2 exp

{

− vecB′

1(Σ1 ⊗ Dn)−1vecB1

2τ2
1

}

×|Σ2 ⊗ τ2
2 Dn|−

1
2 exp

{

− vecB′

2(Σ2 ⊗ Dn)−1vecB2

2τ2
2

}

×(σ2)−( νσ∗

2 +1) exp

{

− λσ∗

2σ2

}

×(τ2
1 )−(

ντ1∗

2 +1) exp

{

− λτ1∗

2τ2
1

}

×(τ2
2 )−(

ντ2∗

2 +1) exp

{

− λτ2∗

2τ2
2

}

×|Σ−1
1 |

η1∗−p−1

2 exp

{

− 1

2
tr(Σ−1

1 S−1
1∗ )

}

×|Σ−1
2 |

η2∗−p−1

2 exp

{

− 1

2
tr(Σ−1

2 S−1
2∗ )

}

. (31)

Then, the full conditional distribution of vecBi for i = 1, 2 is as follows:

p(vecBi|vecB−i, σ
2, τ2

1 , τ2
2 , Σ1, Σ2, y, Xp,n

1 , Xp,n
2 )

∝ exp

{

− (y − Xp,n
1 vecB1 − Xp,n

2 vecB2)
′(y − Xp,n

1 vecB1 − Xp,n
2 vecB2)

2σ2

}

×|Σi ⊗ τ2
i Dn|−

1
2 exp

{

− vecB′

i(Σi ⊗ Dn)−1vecBi

2τ2
i

}

∝ N (vecBi∗∗, Hi∗∗), (32)

where vecBi = Hi∗∗(σ
−2Xp,n′

i (y − Xp,n
−i vecB−i)) and Hi∗∗ = (σ−2Xp,n′

i Xp,n
i +

τ−2
i (Σi ⊗ Dn)−1)−1.

The full conditional distribution of σ2 is as follows:

p(σ2|vecB1, vecB2, τ
2
1 , τ2

2 , Σ1, Σ2, y, Xp,n
1 , Xp,n

2 )

∝ (σ2)−
N
2 exp

{

− (y − Xp,n
1 vecB1 − Xp,n

2 vecB2)
′(y − Xp,n

1 vecB1 − Xp,n
2 vecB2)

2σ2

}

×(σ2)−( νσ∗

2 +1) exp

{

− λσ∗

2σ2

}

∝ G−1(νσ∗∗/2, λσ∗∗/2), (33)

where νσ∗∗ = N + νσ∗, λσ∗∗ = e′e + λσ∗ and e = y − Xp,n
1 vecB1 − Xp,n

2 vecB2.
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Then, the full conditional distribution of τ2
i for i = 1, 2 is as follows:

p(τ 2
i , |vecB1, vecB2, σ

2, τ2
−i, Σ1, Σ2, y, Xp,n

1 , Xp,n
2 )

∝ |Σi ⊗ τ2
i Dn|−

1
2 exp

{

− vecB′

i(Σi ⊗ Dn)−1vecBi

2τ2
i

}

×(τ2
i )−(

ντi∗

2 +1) exp

{

− λτi∗

2τ2
i

}

∝ τ
−

n+1
2

i exp

{

− vecB′

i(Σi ⊗ Dn)−1vecBi

2τ2
i

}

×(τ2
i )−(

ντi∗

2 +1) exp

{

− λτi∗

2τ2
i

}

∝ G−1(ντi∗∗
/2, λτi∗∗

/2), (34)

where ντi∗∗
= n + 1 + ντi∗

and λτi∗∗
= vecB′

i(Σi ⊗ Dn)−1vecBi + λτi∗
.

Finally, the full conditional distribution of Σi for i = 1, 2 is as follows:

p(Σ−1
i |vecB1, vecB2, σ

2, τ2
1 , τ2

2 , Σ−i, y, Xp,n
1 , Xp,n

2 )

∝ |Σi ⊗ τ2
i Dn|−

1
2 exp

{

− vecB′

i(Σi ⊗ Dn)−1vecBi

2τ2
i

}

×|Σ−1
i |

ηi∗−p−1

2 exp

{

− 1

2
tr(Σ−1

i S−1
i∗ )

}

∝ |Σi|−
n+1

2 exp

{

− 1

2τ2
i

tr(Σ−1
i B′

iD
−1
n Bi)

}

×|Σ−1
i |

ηi∗−p−1

2 exp

{

− 1

2
tr(Σ−1

i S−1
i∗ )

}

∝ W(ηi∗∗, Si∗∗), (35)

where ηi∗∗ = n + 1 + ηi∗ and Si∗∗ = (B′

iD
−1
n Bi + S−1

i∗ )−1.
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Table 1: Simulation result of ARNN(1,2): Posterior means, standard deviations
(in parenthes) and MSE

True value Estimated MSE
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Table 2: Simulation result of ARXNN(1,2): Posterior means, standard devia-
tions (in parenthes) and MSE

True value Estimated MSE

AR(1) 0.800 0.682 0.024
(0.099)

NN(1) 0.600 0.739 0.036
(0.129)

NN(2) 0.100 0.113 0.012
(0.107)

XAR(1) 0.300 0.308 0.006
(0.080)

XNN(1) 0.200 0.416 0.058
(0.108)

XNN(2) 0.100 -0.035 0.044
(0.160)

σ2 0.500 0.433 0.013
(0.093)

Table 3: Simulation result of hierarchical ARNN(2,2): Posterior means, stan-
dard deviations (in parenthes) and MSE

True value Estimated MSE

AR1 0.061 0.061 0.013
(0.115)

NN(1) −0.177 0.056 0.076
(0.145)

NN(2) 0.372 0.249 0.058
(0.208)

AR2 0.489 0.488 0.014
(0.117)

NN(1) −0.391 −0.171 0.072
(0.153)

NN(2) 0.368 0.112 0.121
(0.236)

σ
2 0.050 0.041 0.000

(0.007)
τ

2 0.500 1.202 0.855
(0.601)

True value

0.500 0.200
0.200 0.400

Estimated

0.409 0.019
0.019 0.807
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Table 4: Simulation result of hierarchical ARNN(2,2): Posterior means, stan-
dard deviations (in parenthes) and MSE

True value Estimated MSE True value Estimated MSE

AR1 0.327 0.269 0.019 XAR1 0.422 0.467 0.004
(0.127) (0.049)

NN(1) 0.076 −0.048 0.028 XNN(1) 0.653 0.623 0.007
(0.111) (0.076)

NN(2) −0.286 −0.139 0.037 XNN(2) 0.016 0.030 0.010
(0.125) (0.100)

AR2 0.147 0.179 0.010 XAR2 0.211 0.194 0.007
(0.097) (0.080)

NN(1) −0.015 0.040 0.011 XNN(1) 0.293 0.340 0.012
(0.088) (0.097)

NN(2) 0.334 0.238 0.019 XNN(2) 0.288 0.326 0.011
(0.100) (0.099)

τ
2

1 0.500 1.205 0.878 τ
2

2 0.500 1.201 0.890
(0.618) (0.631)

σ
2 0.050 0.074 0.001 σ

2

(0.013)

Σ1 Σ2

True value True value

0.500 0.200 0.400 0.200
0.200 0.400 0.200 0.300

Estimated Estimeted

0.394 −0.015 0.562 0.116
−0.015 0.716 0.116 0.857
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Table 5: Information criteria, marginal likelihood and acceptance rate of ARNN
model

Distance
n p AIC BIC log marginal acceptance

1 1 -983.282 -973.007* 483.884* 1.000
1 2 -981.478 -964.353 480.812 1.000
1 3 -982.957 -958.982 479.853 0.999
1 4 -985.098* -954.273 479.298 0.999
1 5 -982.756 -945.081 476.577 1.000
2 1 -982.801 -969.102 483.298 1.000
2 2 -979.153 -955.178 479.082 0.999
2 3 -980.105 -945.855 477.951 0.999
2 4 -981.487 -936.963 477.385 0.999
2 5 -977.401 -922.602 474.404 0.999
3 1 -982.634 -965.509 483.290 0.994
3 2 -977.811 -946.986 478.757 0.990
3 3 -977.052 -932.528 477.332 0.992
3 4 -978.127 -919.903 476.940 0.966
3 5 -974.992 -903.068 474.637 0.967

Travel time
n p AIC BIC log marginal acceptance

1 1 -983.587 -973.312 484.178 1.000
1 2 -981.473 -964.348 480.953 1.000
1 3 -979.029 -955.054 478.239 0.999
1 4 -975.583 -944.759 475.357 0.999
1 5 -973.190 -935.516 472.725 1.000
2 1 -986.741 -973.041 485.256 0.991
2 2 -983.220 -959.245 481.208 0.998
2 3 -983.758 -949.509 479.828 0.997
2 4 -979.252 -934.727 476.914 0.998
2 5 -974.037 -919.238 473.639 0.995
3 1 -992.228* -975.103* 487.698* 0.945
3 2 -985.071 -954.247 482.422 0.940
3 3 -984.264 -939.740 481.164 0.959
3 4 -985.198 -926.974 480.513 0.939
3 5 -978.328 -906.404 476.929 0.934
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Table 6: Information criteria, marginal likelihood and acceptance rate of
ARXNN model

Distance
n p AIC BIC log marginal acceptance

1 1 -979.813* -962.688* 480.573* 1.000
1 2 -977.009 -946.184 476.076 0.999
1 3 -976.139 -931.615 473.369 1.000
1 4 -974.514 -916.290 470.553 0.999
1 5 -969.193 -897.269 466.663 0.999
2 1 -977.538 -953.563 479.065 0.999
2 2 -971.813 -927.289 473.122 0.999
2 3 -969.424 -904.350 469.679 0.999
2 4 -965.585 -879.961 466.032 0.999
2 5 -956.251 -850.077 460.965 0.999
3 1 -975.695 -944.870 478.469 1.000
3 2 -967.569 -909.345 471.671 1.000
3 3 -961.022 -875.398 467.190 0.999
3 4 -955.043 -842.020 463.246 0.999
3 5 -945.377 -804.954 458.445 0.999

Travel time
n p AIC BIC log marginal acceptance

1 1 -988.260 -971.135* 485.086* 1.000
1 2 -983.461 -952.636 479.803 0.999
1 3 -976.823 -932.298 474.582 1.000
1 4 -970.202 -911.978 469.858 0.999
1 5 -964.357 -892.433 465.814 0.999
2 1 -988.191 -964.217 484.470 0.999
2 2 -981.514 -936.990 478.340 0.999
2 3 -979.574 -914.500 474.701 0.999
2 4 -969.580 -883.956 468.702 0.999
2 5 -958.648 -852.474 463.207 0.999
3 1 -988.650* -957.826 484.913 1.000
3 2 -979.076 -920.852 477.832 0.999
3 3 -975.893 -890.269 474.295 0.999
3 4 -972.646 -859.623 471.066 0.999
3 5 -957.881 -817.458 464.510 0.999
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Table 7: Marginal likelihood and acceptance rate of hierarchical ARNN model

Distance Travel time
n p log marginal acceptance log marginal acceptance

1 2 469.643* 1.000 469.784 1.000
1 3 469.201 1.000 467.589 1.000
1 4 469.414 0.999 465.470 0.999
1 5 467.887 0.999 464.038 0.999
2 2 468.352 1.000 470.315 0.997
2 3 467.325 0.999 469.164 0.999
2 4 466.761 0.999 466.221 0.999
2 5 463.801 0.999 462.952 0.995
3 2 468.226 0.999 471.355* 0.980
3 3 466.216 0.997 469.761 0.981
3 4 465.720 0.925 469.263 0.927
3 5 463.029 0.942 464.795 0.881
4 2 468.186 0.898 470.870 0.934
4 3 465.845 0.760 468.785 0.877
4 4 465.804 0.605 467.858 0.641
4 5 461.961 0.614 462.642 0.599

Table 8: Marginal likelihood and acceptance rate of hierarchical ARXNN model

Distance Travel time
n p log marginal acceptance log marginal acceptance

1 2 464.105 1.000 464.003 1.000
1 3 464.013 0.999 461.824 0.999
1 4 464.485 0.999 460.160 0.999
1 5 465.588* 0.999 462.509 0.999
2 2 463.133 1.000 465.519 0.994
2 3 462.038 0.999 465.545 0.997
2 4 462.016 0.999 462.945 0.995
2 5 461.472 0.999 462.972 0.985
3 2 463.135 0.997 466.643 0.971
3 3 461.812 0.996 467.936 0.970
3 4 461.251 0.947 468.885* 0.907
3 5 460.214 0.965 466.867 0.853
4 2 463.589 0.897 466.759 0.911
4 3 461.922 0.789 467.710 0.857
4 4 461.041 0.648 468.510 0.595
4 5 461.519 0.629 465.823 0.545
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Table 9: Empirical result of ARNN model with travel time data: Posterior
means and standard deviations (in parenthes)

ARNN(1,3)

AR1 0.02189
0.06656

NN1 -0.12883
0.11309

NN2 -0.07791
0.18462

NN3 0.43697
0.15925

σ2 0.00076
0.00007
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