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Abstract

The presence of outliers and break points are important questions
in any applications of econometric time series analysis. This paper
shows how Bayes tests for different type and complexity can be con-
structed using the concept of marginal likelihood. The results can be
viewed as an extension of Polasek and Ren (1997). If the location
of the break point is not known, the lag length, and possible het-
eroskedastic errors are present, one can calculate the Bayes factors in
a normal-gamma regression model quite easily. The search for outliers
and break points can be extended to the multivariate normal-Wishart
regression model. The approach is demonstrated with Swiss macro-
economic time series GNP and consumption.
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1 Introduction

The selection of models for practical applications is despite many discussions
and many new developments an unsolved problem. Automatic model selec-
tion from a Bayesian perspective is very time consuming as well since the
calculations of Bayes factors always requires is the concept of informative
criteria as e.g. AIC and BIC (Aitkin 1973). Recently, the advance of the
automatic model selection by intrinsic Bayes factors (Berger and Perrichi
1996) and fractional Bayes factors (O’Hagen 1995) have become a model in
Bayesian statistics. Therefore we will make an attempt in this paper to show
how the marginal likelihood differ by assuming a full conjugate prior and a
a fractional approach.

Time series models react very sensitive on the presence of outliers and break
points. Therefore the detection of "change” in a time series is a topic with a
long history from a classical point of view (see e.g. Hackl 1989) and in recent
time also from a Bayesian perspective. Modeling outliers have become easy
using the Gibbs sampler (Verdinelli and Wasserman (1990)), but also struc-
tural breaks can be analysed from different perspective as in Polasek and
Ren (1997). This paper is concerned with the question if the two problems,
outliers and structural breaks, can be analysed in a combined way using the
concept of marginal likelihood.

For simplicity reasons we put the time series data for the autoregressive
processes into linear regression framework. Assuming a conjugate normal-
Wishart distribution we can use the closed integration formula of Polasek and
Ren (1997) to calculate the marginal likelihoods. In their discussion, Bar-
bieri and Conigliani (in Polasek 1997) showed how the marginal likelihood
(and the fractional Bayes factors) can be calculated if the exact likelihood
function for AR process is used.

Therefore we analyse in section 2 the problem of univariate outliers and break
points and in section 3 the problem of multivariate outliers and break points.
In section 4 we demonstrate the approach by economic examples. Section 5
concludes with the discussions.



2 Marginal likelihood for outliers

2.1 Univariate outlier models

In this section we consider the univariate regression model with outliers. Let
y be a T x 1 vector of the dependent variable and X a 7' x & matrix of full
rank of independent variables. In case of an AR(p) process the first column
of X is a vector of ones and the other columns are p lags such that £ = p+1.
We consider T' outlier models, indexed by j =1,...,T, i.e.

y:X]‘ﬂ]‘—I-D]‘@—I-aS, jzl,...,T, (1)

where D; is a dummy variable, i.e. the j-th unity vector of length 7.
The model can be written in compact form as

y =X +¢ (2)

with )N(j = (X : Dj) and Bj = (B : ). If no confusion is possible, we will
drop the index j. The OLS estimate of model (2) is given by

A

B, = (X, X)) X0y, (3)

To carry out a Bayes test we need an informative prior distribution. We
suggest the following simple procedure which is based on the idea of tightness
restriction as in Litterman (1986) for the outlier model

B|a2~zvlé*:(%),ﬁ*:([é* fz)] (1)

where b, can be set to zero or a unity vector if we believe in a random walk
prior distribution. For H, we assume the tightness structure

H, = diag(h™',1,...,p,52),

where h is a small number to ensure a non-informative prior for the inter-
cept. For the variance of the outlier we assume simply that it is about the
same size as the data dispersion: s? = var(y). Thus, we assume for the prior
precision o? ~ TI'(s7%/2,n./2) a gamma distribution, where n, = 1 is the

minimum number of prior degree of freedoms.
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In the next theorem we will derive the marginal likelihood for the informa-
tive model. As special cases we list subsequently the results for the non-
informative and the fractional marginal likelihood cases

Theorem 2.1 The marginal likelihood for informative priors
Consider the regression model with outliers as in (1) with informative (con-
jugate) prior distribution (see also Polasek 1997 or Poirier 1996)

(67 0-2) ~ NP(B*? [:I*v Siv n*)
Then the marginal likelihood for the event “outlier at point j” is given by

*

|[:]*|1/2 : ['(n./2) (nses?,) 2

P P(na/2)  (nas?)¥

f(y|j):7r ) (5)

where
N = Nu + 1,
HZ' = X'X 4+ HY,
st = nos? 4 BSS 4 (B — BY(K7X) 4+ )7 (B — B,
ESS =y~ X3)'(y - X0
and Bj is the OLS estimate given in (3).

Proof:
See Polasek and Ren (1997).

Lemma 2.1.a Regression models and outliers with non-informative
prior
The marginal likelihood for the model (1) is given by

ki) = XA (s = 2 T (=) 2 @

with



ESS = (y — Xb)'(y — Xb),
and the OLS estimate is
b= (X’X)_IX’y.
Proof:

Insert the stacked model (2) into the marginal likelihood of the linear regres-
sion model given in Polasek and Ren (1997), and note that

XX = [X'X||L = 2 (X'X) | = [ XX |y (8)
with h; given as in (7) and

2
el

ESS; = ESS — %,
J

j=1,...,T. 9)
Lemma 2.1.b The fractional marginal likelihood for AR(p) model
with outliers

Consider the univariate outlier model as in (1), then the fractional marginal
likelihood is given by

Rl =0 sy e (L) e (B o)

Proof:

O’Hagan (1995) considers for the regression model the non-informative class
of priors p(f3,0?) o 0*" where ¢ can be any integer. In this paper we will use
t =1 for all fractional priors. For details see also Polasek and Ren (1997).

2.2 The homoskedastic AR(p) break point models
with outlier

Consider the homoskedastic break point model with outlier

(2)- (1) () oo

where D; is a T x 1 vector with a 1 in the 7 — {h position.
Theorem 2.2 The marginal likelihood for informative priors
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For the homoskedastic break point regression model we assume the following
conjugate prior distribution

Bl 2 bl* 2 17
SN (COR]

o7% ~ T(s2, n,).

and

Then the marginal likelihood is given by

2\nx /2
fly) = (2L
10 (n.2)
Tk ~ 1 ~ 1 Tk
Y Pl Hing [ H 2 (naws?,) T2 - D(1a/2) (12)
m=k+1
with parameters
Thsex = Ty T+ T7
- C e e
Hmj = H*j + X;anmjv

rrmy—1 r7—1 v yvm

J

Maes?, = st ESS; + ESST + (biey — Byy) (XL Xowg) ™ 4 Hog) ™M biwj — By)) +

+ (bpj = By (XX ™ 4 Heg) ™ (ba — By),

and

51]‘ = (X;anmj)_IX;njym7 52]‘ = (X;n/j(;n)_lj(;ﬂym- (13)

Lemma 2.2.a The marginal likelihood with non-informative prior
The marginal likelihood for the homoskedastic model with non-informative
prior

T—k 1
fli) = 20 palX, Xa XX 72h,;
m=k+1
T A € \-Lik
F(g—k)r P (ESSm—l—ESSm—h—) 2T (14)
m



where the leverage points are given by

I 1 —2(X™X™) ey df  j>m,

and x; = X'Dj is the j-th vector of the regression matrix and the residuals
are .
fweah i i<, y
b= [t (16)
yj — By if j>m.

Lemma 2.2.b The fractional marginal likelihood (for 0 < b < 1) is given by

T—k
Liyli) = D pwb 2 (TESS,; + TESSM)™ 2

m=k+1

T (T;Zk)/r (Tb;%) (a7

For b = 2k/T we have

T-k
T—2k

RO = 3 e, +apssy 2 (T52). oy

m=k+1

2.3 The heteroskedastic AR(p) break point model
with outlier

For the heteroskedastic break point regression model with outlier

Y1 X1ﬂ1 U%]m 0
S0 R (5 R0 T | R

Theorem 2.3 The marginal likelihood for informative priors
we assume the following conjugate prior distribution

) () = (0 i, )]
) ~ N[ i, = ) ,
( Bajlo; Do ! 0 o3l

-2 2 .
o7 ~T(s;,,ni), 1i=1,2.

and
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Then the marginal likelihood (conditional that point j is an outlier) is given

by

) P e/
=1 [ Hij| 2T (4 /2)
T—k 2 |1 L
N el T 2)

—
m=k+1 =1 (nz**szz**/Q) 12**

flyly) = (2m)”

with parameters
Mies = N1x T m,

Nowx = n2*‘|’T_m7

2 = 2+ S, %

[EEI [EY)
NisnS o = Minst + ESS 4 (bing — By (XGXi)) ™ 4 Hing) ™ (biny — Byj),

ESSM = (yi — Xuﬂw) (yi — Xi;8,;),

and

52']‘ = (ijj(ij)_lj(ijm i=1,2.
Lemma 2.3.a The marginal likelihood with non-informative prior
The marginal likelihood for the heteroskedastic model with non-informative

prior is given by

T—k

FWli) = 3 pulXiX |3 XLX, |
m=k+1
F(m—k)F(T—m—k)
2 2
B2 (mESS,) (B8 Sy)” TR (21)

with the leverage point h;, given as in (15). Note that we need for j =
1,...,T the following expressions for the error sum of squares

ESSi; = (n — X1 5) (5 — X1 51) — €/ hjm, (22)

i ysm: { ESS5; = (12 — Xa ) (42 — Xafa),



or

if j>m: { BSS); = (1 = X181 (1 = Xiy),
ESSQJ' = (yz - Xzﬂz)/( X252) /hjmv

and the residual e; given as in (16) with the OLS estimates

A= (Xy X)Xy and Xy = (Xy: Dyj), (23)
or

52 = (leXz)_lelyz and X, = (X2 : Dyy)
with e1; : m x 1 and ey : (T'—m) x 1 being the dummy variable or the j-th
unity vector, respectively.

Lemma 2.3.b The fractional marginal likelihood for the heteroskedastic
break point model (with b € (m™',1 —m™")) is given by

Bl) = % b (Tk) /F(mb;k)

m=k+1
T—-m—k
_(r—-m)(1-b) F ( o )
2 - = 7

[}

(7ESS,) T (R ESSy)

2.4 A Bayes test for outliers

Let H; = {outlier at j} be the hypothesis that there is an outlier at point
J =1,...,T. The hypothesis Hs = {outlier in the time series} is given by
the union of events .
Hy=J H;.
7=1
The posterior odds for the test of Hy = {no outlier} over H, are given by
br(Holy) _ foly) ~ Pr(Ho)
P.(Haly)  faly) Pr(Ha)

and the marginal likelihood of the alternative is

(25)

]~

faly) = flylg)-p

1

= nylj fy), (26)

]=1

ECH
Il

—_

9



and for the null-hypothesis

foly) = XX H (rmss) T (SR (1)

where we assume equal probability for the presence of an outlier at any time
point: p; = 1/T. Then the Bayes factor is

B — foly) _ T- (WESS)—T_é’_lF(T—p—l)
faly) T

— (28)

(r(ESS — )= b

71=1

2.5 Bayes test for break points in an AR(p) process

Denote the following hypotheses as H,, = {break point at m} and H, =
{order of the AR process is p}. We want to test the hypotheses that there
is a break point across different orders of the AR process.

Thus, we consider the null-hypotheses and the modified null hypothesis

Hy = Hy U {outlier at point j}, i.e.

Hy = {The AR model is of order 1, or 2, or ..., Pmax!-

Pmazx - Pmazx T
Hy = U Hpv (HO = U Hp U Hj)v (29)
p=1 p=1 j=1

and the alternative is that there is additionally a break point:
Pmax T—k ~ T
Hy = U H, U H,, (HA:HAUHj). (30)
p=1 m=k+1 =1

The marginal likelihood for null-hypothesis is

Pmazx

Jow)=>_ fly1p) pp (31)

p=1

where p, is the prior probability of an AR(p) model with lag p and

T—p—1
2

T—p—1
2

fln =1 )X X, | H (S, ) (32)
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N

with X, = (1, 21,...,2,), ESS, = (y — Xpo)’(y — Xp)-
Also, we find for the alternative hypothesis

Fal) = =32 ) 3

with the average marginal likelihood given as

flylp) = T_l% >y | pom), (34)

m=k+1

and f(y | p,m) is the marginal likelihood of an AR(p) model with breakpoint
m given by

T—p—2

)1 X H(ESS,)FE, (39)

f(ylp,m)zr<¥

where X, and ESS, ,, are a function of p as well.

Then Bayes factor is
B— foly)

faly)

2.6 Bayes test for outliers and break points

Let H; = {outlier at j} and H,, = {break point at m} be the hypotheses for
an outlier and a break point at a particular point in time, respectively.
Then the hypothesis H4 = {outlier and break point in the time series} is
given by the union of events

T T—k
Hy=JH; |J Hn. (36)
j=1

m=k+1

The marginal likelihood for this hypothesis is

T T—k
faly) = > > flylsm): pipm
7=1 m=k+1
1 +T—k N
— m 37
T_ka§+lf(y| ) (37)
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with the marginal likelihood conditional on a break point m is given by

1
T “

J

]~

fly|m)= fly [m,g). (38)

Il
—

Alternatively, the marginal likelihood can be calculated as

1

Faly) = 7221w 19); (39)
7=1
and f(y | 7) is given by (14) or (21), and fo(y) given by
L& (T —p=2\ oo o1, oo \_T=p=2
foly) = 7T (=) IS KBS o)
7=1
Then the Bayes factor is given by the ratio of (40) and (2.6):
foly)
B = . 41
Falv) .

2.7 Bayes test for outliers and heteroskedastic break
points

Let H; and H,, be the hypotheses as before and consider the additional hy-
potheses Hj_o = {homoskedastic model} and Hj,—; = {heteroskedastic model} .
Then the alternative hypothesis can be constructed as the union of simpler
hypotheses:

T 1
Ha=J H;|JH» | Hy. (42)
7=1 m h=0
Note that the null-hypothesis is simply given by Hy = U;F:l H;, since het-
eroskedasticity is only connected with the break point model. The marginal
likelihood for this problem is
flylih=0)— (Hu=o), and  fly[jh=1)— (Hp=1). (43)
Assuming equal probability, the marginal likelihood is given as the average

Taly 19) = 5L 1i:h = 0) % fy ] b= 1] (14)

12



Furthermore the marginal likelihood for the alternative is given by the aver-

age
T
(45)

Z (y 1)

The marginal likelihood under the nuH hypothesis is

T
T Z (v 1) (46)
with .
1 T—p—2\ o _1L T—p—2
= T (X e ESs) T )
7=1
Finally the Bayes factor is given by
faly)
= i 48
o) )

2.8 Bayes tests for outlier with informative priors
Assuming an AR(p) process with conjugate prior, we test the models

Hy:y=Xp+¢ (49)

T. (50)

against

HA:y:)N(B+6:Xﬂ+Dj19+6, g=1,...,
The marginal likelihood under Hy is given by
[ HLPT(%) (nas)m?
= 2 1 5 51
fO(y) T |H*|5 F(n*) (n**s**)n**/Z ( )

2

and for H,4 we have to average

T
Talv) =73 faly 1) (52)
where - g




Note that | [, | = s2|H,|. Therefore we have for the Bayes factor of Hy against
Hy

(]2 (s )™ 2 HL| 75 (i) 702
% ZjT:l |[§** |%(n*§*)n*/2|[§,‘r* |—% (P )~/
| H | 3 (n*s*)n*/Q(n**S**)—n**/Q

T2 =1 |2 (18 ) /257 (R )70 /2

3 Multivariate outlier models

3.1 Multivariate outlier models

In this section we consider the following multivariate regression model with
outliers

Y =XB+D;s+U, j=1,....T. (55)

Again D; is a dummy variable defined as the j-th unity vector of dimension
T, and ¢ is a (1 x M) row vector of outliers ( a different location shift for the
M regressions).

The errors are multivariate normally distributed:

The multivariate model can be written in compact form as
Y=XB+U, or Y~NXBYXolI (56)

with X = (X : Dj)aT x(k+1) regressor matrix, and B = (B :6;) the
(k4 1) x M matrix of regression coefficients. We derive the marginal likeli-
hood for 3 different priors.

Theorem 3.1 Multivariate break points with outliers
For the multivariate break point model (56) we assume a (conjugate) normal-
Wishart prior

p(B,Y) = NWI[B,, H.,%,,n,]. (57)

In the context of a multivariate VAR model one can use the univariate outlier
model as in section 2.1 for all the M regressions.

14



The marginal likelihood for a break point at 5 and informative prior is given

by

. _MT Cp,, Z* % |[:I**|M/2
SVIj) = om) 2 e (59)
with the parameters
Y =S.+UU+A, U=Y-XB,
hatB = (X'X)7'X'Y,
A= X'X+H' = X'X — a0 + HY,
A=(B-B)I(X'X)" + HI (B~ B.).
M .
7% —1 * 1 —
= oM rlt = (59)

7=1
and no. =n.+71, v, =X'D;, 57=1,....T.
Proof: Since the model is structurally equivalent to the ordinary normal-
Wishart regression model, the result follow from Polasek and Ren (1997).

Lemma 3.1.a Multivariate regression with outliers (non-informative
prior)

The multivariate model for outliers with non-informative prior is given as in
(55). Then the marginal likelihood for the event { break point in the time
series } is given by

T—p—2

_M oA
FOVLG) = XX 0T ) AR — i

s A
with 4; = U’Dj and
0=Y-XB-Dé=Y— XB,
where X = (X : D;) and B= (X’X)~'X'Y is the multivariate OLS estima-
tf(’)i;)of: See Polasek and Ren (1997).

Lemma 3.1.b Multivariate regression with outliers (fractional prior)
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For the homoskedastic multivariate regression model (55) the fractional marginal

likelihood for be(0,1) is given by

To, A, T(1-b) T—k Tb—k
f(Y) = 6% |ri0 2rM(—)/rM( ) (61)

2 2
with N . . o .
U=Y -XB, and B=(XX)"'XY.
k

ktl
2

k1
E+1\ 2 | .~ o 7ok T—Fk+1
= (1) i (),

(and t = 0) we get the simpler formula

Proof: Use the results of Polasek and Ren (1997) for model (56).

3.2 Multivariate regression with break points and out-
liers

In this section we are deriving the marginal likelihood with 3 priors for the
multivariate break point and outlier model given by

Y, X\By |
i)~ (R ) e penen]

X, By
= N e Y I 2

K&&)’®4’ (62)
where the unknown break point can liein £+ 1 <m <T — k.

Theorem 3.2 Homoskedastic multivariate break point model with
outlier (informative priors)
Consider model (62) with the conjugate prior distribution

f(Blv BQ? Z_l) = N[Bl*7 b & gl*]N[B%m Y & gQ*]W[Z*, n*] (63)

Then the marginal likelihood for the multivariate regression model is given
by
Cwr I Crxx M/2 M/2
JY)=@2r)"7 Y po——|Hy M2 Hyoo M2,

m=k+1 Crx

2 (64)
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with the constants ¢, and ¢, given as in (59), p, = 7,

H. :Hi;1+X;Xia t=1,2, (65)

[EEs

AL A A

2
Yo = S+ Y AUU + (Br — Bo)[(X; X)) + HZ'|7Y(B: — Bi)}, (66)
=1

and

Us=Y,— XiB;, Bi=(X/X)7' XY, i=12 (67)

Proof:
Use the results of the break point model in Polasek and Ren (1997).

Lemma 3.2.a Homoskedastic break point model with outliers (non-
informative prior)
We consider model (62) with non-informative prior

M+1

f(B17B27Z)O<|Z|_ .

Then the marginal likelihood for the event { outlier in Y } is given by

T—k - P T
f(Y) = Z pm|U1U1‘|‘U2U2 2FM(—)
m=k+1 2
w20 X0 X X H (63)

with the rows of U; and U, given as

{ ﬁ;l = yﬂ/ _ x;lﬂih fOT j S m, (69)
ﬁj? =ypn' — %1527 for 3 >m,
and
g2 { =X B (Yo = XiBy) —apdhyl, for j<m, 0)
o (Y1 = XuB)'(Y1 — XiBy), for j>m,
[y, = { (V2= XaBo) (Yo = XaBy) — i), for j>m o)y
T Va - XoBo) (Ve — XaBa),  for j<m,

The leverage points h;; are given as in (15), and the y;i and :1;;2 are j-th rows
of Y; and X;, 72 = 1,2, respectively.
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Proof: In analogy to theorem 3.1 and observe the location of the outliers.

Lemma 3.2.b Homoskedastic break point model with outliers (frac-
tional prior)

We consider model (62) and use the fractional prior approach of O’Hagan
(1995). Then the marginal likelihood for the event { outlier in Y } is given
by

T—k

Y)Y = 3 puln(UU0, + U0,)7 7 b5
m=k+1
T — 2k Th— 2k
T ( )/ T ( ) (72)

2
with the rows of U; and U, defined as in (70) and (71).

For b = %T"'z we obtain a slight simplification

Tk 2k + 2\
RO = 3 () @t Gy
m=k+1
T — 2k
W) (73

3.3 Heteroskedastic multivariate break points and out-
liers

In this section we extend the previous discussion of the multivariate break
point model and we analyse the heteroskedastic multivariate regression model
with break points and outliers.

The model is given as an extension of the homoskedastic model (62)

Y X1By 4 Y @ Iy, 0
] = (e (P9 w2 )

B X1 B, ¥ ® I, 0
SR ) st )

with ny = m and ny =1 — m.
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Theorem 3.3 Heteroskedastic break point model with outliers (in-
formative prior)
We consider the model (74) with the following conjugate prior distribution
~ ~ ~ ~ 2 ~ ~
f(B17 B27 21_17 22_1) = H N[BZ*7 Zz* ® Hz*]W[Zwm ni*]7
=1
where the * — Index denotes known prior parameter matrices.
Then the marginal likelihood for the multivariate model is given by

> f()F(Ya), (75)

m=k+1

where the marginal likelihoods of the upper and lower models are given by

|
| .|

Cryxxg |i
e 15,7

1 =1,2

Y

J(Y;) = (2m)7H"

“li Tl:

With ¢ and ¢ given as in (59).

Lemma 3.3.a Heteroskedastic break point model with outliers (non-
informative prior)

Consider the heteroskedastic multivariate break point model with outliers as
n (74). The marginal likelihood for the event { outlier in Y } with non-
informative prior is

T—k

FOY) = 3 pal XX 7T XX T AN
m=k+1
m —k T—m—k
v | —— | Ty | —————

M(m—k)

_ _M
E o e P 0 i

(76)
with hj,, given as in (15), and the sum of squares matrix of the residuals are
given by

U{]Ulj == U U1 u]u h !

foj<m: itim> 77
ogsm {UQJUQJ_UUQ, ()

19



e
10 = Uil
04055 = U400, — dijih7)

v f j>m:{ = (78)

Proof: Apply lemma 3.1.a twice.

Lemma 3.3.b Heteroskedastic break point model with outliers (frac-
tional prior)

We consider the heteroskedastic break point model with outliers (74) and
use the fractional prior approach of O’Hagan (1995). Then the marginal
likelihood for fractional prior is

20



T-2k

f(Y) = Z pmbTb|7TU1/U1

m=2k+1
Ty (nl_zkH) Ty (m_zkH)
Ty (nlb—k-l—l) Ty (ngb—k-l—l)

A/A 2(1 b)
2Ua|”

T—2k it
= Z pmbTbH |7TU U|

m=2k+1

FM( l 2k+1)

nib—k+1\’
FM( 2 )

(79)

where the sum of squares matrices for Ul and Ug are given as in (77) and

(78).

3.4 The Bayes factor for the multivariate outlier mod-

els

We consider the two multivariate regression models with the matrices Y :

nxMand X :n xEk
Y ~NXB,X® 1],

Y ~ NIXB+ DsA, S @ 1],
The fractional marginal likelihood for the model (81) is

S

The fractional Bayes factor for any fraction 0 < b < 1 is given by

FHY) = 6% =00y

1-b

By = | UUs (U 01) Y|~

with

()

(83)



U, =Y —-XB, B=(X'X)"'X",
U,=Y —XB—DsA, (B A) = (X' X)X,

and

X = (X : Dy).

4 Examples

Table 1 analyses the (real) Swiss GNP and (real) Swiss Consumption for
the period 1970 Q1 to 1993 Q2 for fractional prior where the Bayes factor
is calculated by formula (53). For both time series the marginal likelihood
selects the lag order p = 2 and in both cases the outlier model is selected also
for lag 2. If we adopt the 9:19:99 rule for quantifying evidence with Bayes
factors and the log equivalent (i.e. In9 = 2.2, In19 = 2.9 and In99 = 4.6)
then we see that differences in the log marginal likelihood are quite close. In
the last row we have calculated the averages of the log likelihood over the 5
periods.

In Table 2 we used the informative Bayes model to test for stationarity /non-
stationarity in the time series. The first two columns evaluates the non-
stationarity of the GNP and consumption series. Lag order 5 is found for
GNP and lag 2 for consumption and the unit root model (non-stationarity)
is accepted.

Table 3 is an extended analysis for the outlier model in Table 1. Now we
include a break point model as an alternative and we discover that the break
point model with outliers fits the data best. Also the average marginal
likelihood over all lag length indicate that there is decisive evidence for the
AR break point model.

While Table 3 tests the homoskedastic case, Table 4 shows the break point
comparison for marginal likelihoods. Now we see that the marginal likelihood
picks up lag length 2 in both models and the differences in consumption is
larger than the model without trend.

The bivariate AR regression break point model is shown in Table 5 and
favours slightly VAR outlier model for order p = 1.
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5 Conclusions

This paper shows how the marginal likelihood approach for model selection
of Polasek and Ren (1997) can be applied to the univariate and multivariate
linear model in the presence of outliers and break points. The model assumes
a normal-gamma or a normal-Wishart conjugate prior distribution which
allows a closed form integration for calculating the Bayes factor and the
marginal likelihood. The fractional Bayes factor of O’Hagan (1995) can be
fitted nicely in this framework and lead to quite simple formulars in the case of
non-informative priors. The approach is demonstrated for a macroeconomic
example involving Swiss income and consumption. We find that the AR break
point model and VAR outlier model is favored over the simple AR models.
A further extension of this approach to AR model selection in presence of
unit roots can be found in Pelloni and Polasek (1998).

23



GNP

Order AR AR-outlier | Bayes factor

1 -28.8602 | -27.6991 0.3131

2 -25.2707* | -23.2414* 0.1314

3 -26.2865 | -24.2599 0.1318

4 -26.1485 | -24.6281 0.2186

5 -26.7735 | -24.8610 0.1477
Ave. | -26.6679 | -24.9379 0.1885

Consumption

Order AR AR-outlier | Bayes factor

1 -86.9461 | -81.5249 0.0044

2 -83.6903* | -77.2270* 0.0029

3 -83.9526 | -76.5808 0.0019

4 -84.8609 | -77.2905 0.0005

5 -85.6335 | -77.3346 0.0002
Ave. | -85.0167 | -77.9916 0.0019

Table 1: The log marginal likelihood of AR model, the log of
average marginal likelihood (6) and of AR outlier model for
Swiss GNP and consumption from 1970 Q1 to 1993 Q2 with

fractional prior and Bayes factor (28)

( * maximum marginal likelihood )
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Order Nonstationarity Stationarity
P GNP Consumption GNP Consumption
1 -26.7873 -81.3930 -26.9553 -84.1907
2 -26.1211 -80.0339* -27.7769 -84.0320*
3 -25.4228 -81.0418 -27.1269 -85.2720
4 -24.6705 -81.3218 -27.6295 -85.9959
5 -22.1161* -82.3220 -26.2795* -86.7633
6 -22.6250 -83.4973 -26.5631 -87.9805

Table 2 AR model: The unit root (stationarity) test with the
log of marginal likelihood for Swiss GNP and consumption
(original data) from 1970 Q1 to 1993 Q2 and fractional prior

maximum marginal likelihood )
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GNP
AR break | AR break point | Bayes factor
Order point with outlier
1 -26.4391 -23.5739 0.0569
2 -24.8772%* -20.1199* 0.0085
3 -26.7824 -20.8784 0.0027
Ave. | -26.0329 -21.5241 0.0227
Consumption
AR break | AR break point | Bayes factor
Order point with outlier
1 -78.7601 -79.6437 2.4195
2 -75.2243* -77.3578 8.4443
3 -76.6213 -72.4543* 0.0154
4 -79.1109 -73.6674 0.0043
Ave. | -77.4292 -75.7808 2.7208

Table 3 : The log marginal likelihood of the AR break point
model and (6) AR break point (homoskedastic) with outlier
for Swiss GNP and consumption from 1970 Q1 to 1993 Q2

and fractional prior

( * maximum marginal likelihood )
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GNP
AR break | AR break point | Bayes factor
Order point with outlier
1 -27.7853 -26.9401 0.4294
2 -26.2791* -24.8473%* 0.2388
3 -28.6702 -25.3060 0.0345
Ave. | -27.5782 -25.6978 0.2342
Consumption
AR break | AR break point | Bayes factor
Order point with outlier
1 -78.7653 -71.8447 0.0009
2 -74.7624* -69.8956** 0.0076
3 -75.4322 -72.9279 0.0817
4 -75.0132 -73.7331 0.2780
Ave. | -75.9932 -72.1003 0.0920

Table 4 : The log marginal likelihood of the AR break point
model and (6) AR break point (heteroskedastic) with outlier
for Swiss GNP and consumption from 1970 Q1 to 1993 Q2

and fractional prior
( * maximum marginal likelihood )
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p VAR VAR-outlier | Bayes factor

1 -60.6871 -60.3824 0.7373

2 | -53.6207* | -53.4474%* 0.8408

3 -56.3326 -56.1885 0.8658

3 -58.3634 -58.2465 0.8896
Awve. | -57.2509 -57.0662 0.8333

Table 5 VAR(p) and VAR(p) with outlier: The log marginal
likelihood of VAR model and the log of average marginal

likelihood of VAR outlier model for Swiss GNP and
consumption from 1970 Q1 to 1993 Q2 with fractional prior

p | Nonstationarity | Stationarity
1 -50.4197* -56.9198*
2 -52.9816 -59.8293
3 -52.3332 -61.3383
4 -56.9765 -66.2083

Table 6 VAR model: The unit root (stationarity) test with
the log of marginal likelihood for Swiss GNP and
consumption from 1970 Q1 to 1993 Q2 and fractional prior

( * maximum marginal likelihood )
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Figure 1: The log marginal likelihood (6) of the Swiss GNP from 1970 Q1 to
1993 Q2 for AR(p) outlier model
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Swiss GNP (fourth difference)
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Figure 2: Fourth difference: Marginal likelihood (6) of the Swiss GNP (fourth
difference) from 1970 Q1 to 1993 Q2 for AR(p) outlier model
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Swiss consumption (fourth difference)
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Figure 3: Fourth difference: Marginal likelihood (6) of the Swiss consumption
(fourth difference) from 1970 Q1 to 1993 Q2 for AR(p) outlier model
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Swiss GNP from 1970 Q1 to 1993 Q2
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Figure 4: The log marginal likelihood (14) of the Swiss GNP from 1970 Q1
to 1993 Q2 for AR(p) break point model with outlier, equal variance and
non-informative prior
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Swiss consumption from 1970 Q1 to 1993 Q2
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Figure 5: The log marginal likelihood (14) of the Swiss consumption from
1970 Q1 to 1993 Q2 for AR(p) break point model with outlier, equal variance
and non-informative prior
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Swiss GNP from 1970 Q1 to 1993 Q2
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Figure 6: The log marginal likelihood (21) of the Swiss GNP from 1970 Q1
to 1993 Q2 for AR(p) break point model with outlier, unequal variance and
non-informative prior
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Swiss consumption from 1970 Q1 to 1993 Q2
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Figure 7: The log marginal likelihood (21) of the Swiss consumption from
1970 Q1 to 1993 Q2 for AR(p) break point model with outlier, unequal

variance and non-informative prior
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