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Abstract

The presence of outliers and break points are important questions
in any applications of econometric time series analysis� This paper
shows how Bayes tests for di�erent type and complexity can be con�
structed using the concept of marginal likelihood� The results can be
viewed as an extension of Polasek and Ren ������� If the location
of the break point is not known� the lag length� and possible het�
eroskedastic errors are present� one can calculate the Bayes factors in
a normal�gamma regression model quite easily� The search for outliers
and break points can be extended to the multivariate normal�Wishart
regression model� The approach is demonstrated with Swiss macro�
economic time series GNP and consumption�

Keywords	 Bayes tests� marginal likelihood� outliers� break points� het�
eroskedasticity� variable selection� autoregressive processes�
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� Introduction

The selection of models for practical applications is despite many discussions
and many new developments an unsolved problem� Automatic model selec�
tion from a Bayesian perspective is very time consuming as well since the
calculations of Bayes factors always requires is the concept of informative
criteria as e�g� AIC and BIC �Aitkin ������ Recently� the advance of the
automatic model selection by intrinsic Bayes factors �Berger and Perrichi
���	� and fractional Bayes factors �O
Hagen ����� have become a model in
Bayesian statistics� Therefore we will make an attempt in this paper to show
how the marginal likelihood di�er by assuming a full conjugate prior and a
a fractional approach�
Time series models react very sensitive on the presence of outliers and break
points� Therefore the detection of 
change
 in a time series is a topic with a
long history from a classical point of view �see e�g� Hackl ����� and in recent
time also from a Bayesian perspective� Modeling outliers have become easy
using the Gibbs sampler �Verdinelli and Wasserman �������� but also struc�
tural breaks can be analysed from di�erent perspective as in Polasek and
Ren ������� This paper is concerned with the question if the two problems�
outliers and structural breaks� can be analysed in a combined way using the
concept of marginal likelihood�
For simplicity reasons we put the time series data for the autoregressive
processes into linear regression framework� Assuming a conjugate normal�
Wishart distribution we can use the closed integration formula of Polasek and
Ren ������ to calculate the marginal likelihoods� In their discussion� Bar�
bieri and Conigliani �in Polasek ����� showed how the marginal likelihood
�and the fractional Bayes factors� can be calculated if the exact likelihood
function for AR process is used�
Therefore we analyse in section � the problem of univariate outliers and break
points and in section � the problem of multivariate outliers and break points�
In section � we demonstrate the approach by economic examples� Section �
concludes with the discussions�
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� Marginal likelihood for outliers

��� Univariate outlier models

In this section we consider the univariate regression model with outliers� Let
y be a T � � vector of the dependent variable and X a T � k matrix of full
rank of independent variables� In case of an AR�p� process the �rst column
of X is a vector of ones and the other columns are p lags such that k � p���
We consider T outlier models� indexed by j � �� � � � � T � i�e�

y � Xj�j �Dj� � �� j � �� � � � � T� ���

where Dj is a dummy variable� i�e� the j�th unity vector of length T �
The model can be written in compact form as

y � �Xj
��j � � ���

with �Xj � �X � Dj� and ��j � ��j � ��� If no confusion is possible� we will
drop the index j� The OLS estimate of model ��� is given by

���j � � �X
�

j
�Xj�

�� �X
�

jy� ���

To carry out a Bayes test we need an informative prior distribution� We
suggest the following simple procedure which is based on the idea of tightness
restriction as in Litterman ����	� for the outlier model

��j�� � N

�
�b� �

�
b�
�

�
� �H� �

�
H� �
� s�

�

��
� ���

where b� can be set to zero or a unity vector if we believe in a random walk
prior distribution� For �H� we assume the tightness structure

�H� � diag�h��� �� � � � � p� s�
�
��

where h is a small number to ensure a non�informative prior for the inter�
cept� For the variance of the outlier we assume simply that it is about the
same size as the data dispersion� s�

�
� var�y�� Thus� we assume for the prior

precision �� � ��s��
�
��� n���� a gamma distribution� where n� � � is the

minimum number of prior degree of freedoms�
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In the next theorem we will derive the marginal likelihood for the informa�
tive model� As special cases we list subsequently the results for the non�
informative and the fractional marginal likelihood cases

Theorem ��� The marginal likelihood for informative priors
Consider the regression model with outliers as in ��� with informative �con�
jugate� prior distribution �see also Polasek ���� or Poirier ���	�

� ��� ��� � N������ �H�� s
�
�
� n���

Then the marginal likelihood for the event �outlier at point j
 is given by

f�yjj� � ��
T
�
j �H��j

���

j �H�j���
�
��n�����

��n����
�

�n�s���
n�
�

�n��s����
n��
�
� ���

where
n�� � n� � T�

�H��
��

� �X � �X � �H��
�
�

n��s
�
��

� n�s
�
�
� ESS � ���� � ������ �X � �X��� � �H��

��� ��� � ����

ESS � �y � �X ������y � �X�����

and ��j is the OLS estimate given in ����
Proof�
See Polasek and Ren �������

Lemma ����a Regression models and outliers with non�informative
prior
The marginal likelihood for the model ��� is given by

f�yjj� � jX �Xj�
�
�h

�
�
�

j ��ESS �
e�j
hj

����
T�p��

� �
�
T � p � �

�

�
�� �	�

with
hj � �� x�j�X

�X���xj� xj � X �Dj � �k � ��� ���

ej � yj � x�j
�b� �b � � �X � �X��� �X �y� �X � �X � Dj��

ESSj � �y � �X�b���y � �X�b�� j � �� � � � � T�
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ESS � �y �X�b���y �X�b��

and the OLS estimate is
b � �X �X���X �y�

Proof�
Insert the stacked model ��� into the marginal likelihood of the linear regres�
sion model given in Polasek and Ren ������� and note that

j �X � �X j � jX �Xjj�� x�j�X
�X���xjj � jX �Xjhj ���

with hj given as in ��� and

ESSj � ESS �
e�j
hj
� j � �� � � � � T� ���

Lemma ����b The fractional marginal likelihood for AR�p� model
with outliers
Consider the univariate outlier model as in ���� then the fractional marginal
likelihood is given by

f�b �yjj� � b
Tb�k

� ��ESSj�
T �b���

� �

�
T � k

�

�
��

�
Tb� k

�

�
� ����

Proof�
O
Hagan ������ considers for the regression model the non�informative class
of priors p��� ��� � ��t where t can be any integer� In this paper we will use
t � � for all fractional priors� For details see also Polasek and Ren �������

��� The homoskedastic AR�p� break point models
with outlier

Consider the homoskedastic break point model with outlier�
y�
y�

�
�

�
Xm��
Xm��

�
�Dj� �

�
	�
	�

�
� j � �� � � � � T� ����

where Dj is a T � � vector with a � in the j � th position�

Theorem ��� The marginal likelihood for informative priors
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For the homoskedastic break point regression model we assume the following
conjugate prior distribution�

���
���

�
j�� � N

��
�b��
�b��

�
� �� �H�

�
�

and
��� � ��s�

�
� n���

Then the marginal likelihood is given by

f�y� � �����
T
�

�n�s���
n���

j �H�jj
�
���n����

�
T�kX

m�k��

pmj �Hmj j
�
� j �Hm

j j
�
� �n��s

�
��
��

n��
� � ��n����� ����

with parameters
n�� � n� � T�

�H��
mj � �H��

�j � �X �

mj
�Xmj �

� �Hm
j ��� � �H��

�j � �Xm�

j
�Xm
j �

n��s
�
��

� n�s
�
�
� �ESSmj � �ESS

m

j � ��b��j �
����j�

��� �X �

mj
�Xmj�

�� � �H�j�
����b��j �

����j� �

� ��b��j �
����j�

��� �Xm�

j
�Xm
j ��� � �H�j�

����b��j �
����j��

and
����j � � �X

�

mj
�Xmj�

�� �X
�

mjym�
����j � � �Xm�

j
�Xm
j ��� �Xm�

j ym� ����

Lemma ����a The marginal likelihood with non�informative prior
The marginal likelihood for the homoskedastic model with non�informative
prior

f�yjj� �
T�kX

m�k��

pmjX
�

mXmj
�

�
� jXm�Xmj�

�
�h

�
�
�

jm

��
T

�
� k���

T
��k�ESSm � ESSm �

e�j
hjm

��
T
��k� ����

	



where the leverage points are given by

hjm �

�
� � x�j�Xm

�Xm���xj if j � m�
� � x�j�X

m�Xm���xj if j 
 m�
����

and x�j � X �Dj is the j�th vector of the regression matrix and the residuals
are

ej �

�
yj � x�j

��� if j � m�

yj � x�j
��� if j 
 m�

��	�

Lemma ����b The fractional marginal likelihood �for � � b � �� is given by

f�b �yjj� �
T�kX

m�k��

pmb
Tb��k

� �� �ESSmj � � �ESSm
j ��

T�Tb
�

��

�
T � �k

�

�
��

�
Tb� �k

�

�
� ����

For b � �k�T we have

f�b �yjj� �
T�kX

m�k��

pm�� �ESSmj � � �ESSm
j ��

T��k
� � �

�
T � �k

�

�
� ����

��� The heteroskedastic AR�p� break point model
with outlier

For the heteroskedastic break point regression model with outlier�
y�
y�

�
� N

��
X���
X���

�
�Dj�j�

�
���Im �
� ���IT�m

��
� ����

Theorem ��� The marginal likelihood for informative priors
we assume the following conjugate prior distribution�

���jj���
���jj���

�
� N

��
�b��j
�b��j

�
� �H�j �

�
���

�H��j �

� ���
�H��j

��
�

and
���i � ��s�i�� ni��� i�����
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Then the marginal likelihood �conditional that point j is an outlier� is given
by

f�yjj� � �����
T
�

�Y
i��

�ni�s�i��
ni���

j �Hi�jj
�
���ni����

�
T�kX

m�k��

pm
�Y

i��

j �Hi��jj
�
���ni�����

�ni��s�i�����
ni��
�

����

with parameters
n��� � n�� �m�

n��� � n�� � T �m�

�H��
i��j � �H��

i�j � �X
�

ij
�Xij �

ni��s
�
i�� � ni�s

�
i� � �ESSij � ��bi�j �

���ij�
��� �X �

ij
�Xij�

�� � �Hi�j�
����bi�j �

���ij��

�ESSij � �yi � �Xij
���ij�

�

�yi � �Xij
���ij��

and
���ij � � �X �

ij
�Xij�

�� �X �

ijyi� i�����

Lemma ����a The marginal likelihood with non�informative prior
The marginal likelihood for the heteroskedastic model with non�informative
prior is given by

f�yjj� �
T�kX

m�k��

pmjX
�

�X�j
�

�
� jX �

�X�j
�

�
�

�

�
m� k

�

�
�

�
T �m� k

�

�

h
�

�
�

jm ��ESS�j�
�
m�k
� ��ESS�j�

�
T�m�k

� ����

with the leverage point hjm given as in ����� Note that we need for j �
�� � � � � T the following expressions for the error sum of squares

if j � m �

�
ESS�j � �y� �X�

������y� �X�
����� e�j�hjm�

ESS�j � �y� �X�
������y� �X�

�����
����

�



or

if j 
 m �

�
ESS�j � �y� �X�

����
��y� �X�

�����

ESS�j � �y� �X�
������y� �X�

����� e�j�hjm�

and the residual ej given as in ��	� with the OLS estimates

��� � � �X�
� �X��

�� �X�
�

y� and �X� � �X� � D�j�� ����

or
��� � � �X�

� �X��
�� �X�

�

y� and �X� � �X� � D�j�

with e�j � m� � and e�j � �T �m�� � being the dummy variable or the j�th
unity vector� respectively�

Lemma ����b The fractional marginal likelihood for the heteroskedastic
break point model �with b 	 �m��� � �m���� is given by

f�b �yjj� �
T�kX

m�k��

pmb
Tb�k���

�
m� k

�

�
��

�
mb� k

�

�

��� �ESS�j�
�
m�mb

� �� �ESS�j�
�

�T�m����b�
�

�
�
T�m�k

�

�
�
�
�T�m�b�k

�

�� ����

��� A Bayes test for outliers

Let Hj � foutlier at jg be the hypothesis that there is an outlier at point
j � �� � � � � T � The hypothesis HA � foutlier in the time seriesg is given by
the union of events

HA �
T	
j��

Hj �

The posterior odds for the test of H� � fno outlierg over HA are given by

Pr�H�jy�

Pr�HAjy�
�

f��y�

fA�y�
�
Pr�H��

Pr�HA�
� ����

and the marginal likelihood of the alternative is

fA�y� �
TX
j��

f�y j j� � pj

�
�

T

TX
j��

f�y j j� � �f�y�� ��	�

�



and for the null�hypothesis

f��y� � jX �Xj�
�
� ��ESS��

T�p��
� �

�
T � p � �

�

�
� ����

where we assume equal probability for the presence of an outlier at any time
point� pj � ��T� Then the Bayes factor is

B �
f��y�

fA�y�
�

T � ��ESS��
T�p��

� ��T�p��
�

�
TP
j��

���ESS �
e�
j

hj
���

T�p��
� � h

�
�
�

j ��T�p��
�

�
� ����

��� Bayes test for break points in an AR�p� process

Denote the following hypotheses as Hm � fbreak point at mg and Hp �
forder of the AR process is pg� We want to test the hypotheses that there
is a break point across di�erent orders of the AR process�
Thus� we consider the null�hypotheses and the modi�ed null hypothesis
�H� � H�

S
foutlier at point jg� i�e�

�H� � fThe AR model is of order �� or �� or � � � � pmaxg�

H� �
pmax	
p��

Hp� � �H� �
pmax	
p��

Hp

T	
j��

Hj�� ����

and the alternative is that there is additionally a break point�

HA �
pmax	
p��

Hp

T�k	
m�k��

Hm� � �HA � HA

T	
j��

Hj�� ����

The marginal likelihood for null�hypothesis is

f��y� �
pmaxX
p��

f�y j p� � pp� ����

where pp is the prior probability of an AR�p� model with lag p and

f�y j p� � �
�
T � p� �

�

�
jX �

pXpj
�

�
� ��ESSp�

�
T�p��

� ����

��



with Xp � ��� x�� � � � � xp�� ESSp � �y �Xp
��p���y �Xp

��p��
Also� we �nd for the alternative hypothesis

fA�y� �
�

pmax

pmaxX
i��

f�y� ����

with the average marginal likelihood given as

f�y j p� �
�

T � �k

T�kX
m�k��

f�y j p�m�� ����

and f�y j p�m� is the marginal likelihood of an AR�p� model with breakpoint
m given by

f�y j p�m� � �
�
T � p � �

�

�
jX

�

p�mXp�mj
�

�
� ��ESSp�m�

�
T�p��

� � ����

where Xp�m and ESSp�m are a function of p as well�
Then Bayes factor is

B �
f��y�

fA�y�
�

��� Bayes test for outliers and break points

Let Hj � foutlier at jg and Hm � fbreak point at mg be the hypotheses for
an outlier and a break point at a particular point in time� respectively�
Then the hypothesis HA � foutlier and break point in the time seriesg is
given by the union of events

HA �
T	
j��

Hj

T�k	
m�k��

Hm� ��	�

The marginal likelihood for this hypothesis is

fA�y� �
TX
j��

T�kX
m�k��

f�y j j�m� � pjpm

�
�

T � �k

T�kX
m�k��

f�y j m� ����

��



with the marginal likelihood conditional on a break point m is given by

f�y j m� �
�

T

TX
j��

f�y j m� j�� ����

Alternatively� the marginal likelihood can be calculated as

fA�y� �
�

T

TX
j��

f�y j j�� ����

and f�y j j� is given by ���� or ����� and f��y� given by

f��y� �
�

T

TX
j��

�
�
T � p� �

�

�
j �X

�

j
�Xjj

�
�
� �� gESSj�

�
T�p��

� � ����

Then the Bayes factor is given by the ratio of ���� and ���	��

B �
f��y�

fA�y�
� ����

��	 Bayes test for outliers and heteroskedastic break
points

Let Hj and Hm be the hypotheses as before and consider the additional hy�
pothesesHh�� � fhomoskedastic modelg andHh�� � fheteroskedastic modelg �
Then the alternative hypothesis can be constructed as the union of simpler
hypotheses�

HA �
T	
j��

Hj

	
m

Hm

�	
h��

Hh� ����

Note that the null�hypothesis is simply given by H� �
ST
j��Hj� since het�

eroskedasticity is only connected with the break point model� The marginal
likelihood for this problem is

f�y j j� h � ��� �Hh���� and f�y j j� h � ��� �Hh���� ����

Assuming equal probability� the marginal likelihood is given as the average

fA�y j j� �
�

�
�f�y j j� h � �� � f�y j j� h � ���� ����

��



Furthermore the marginal likelihood for the alternative is given by the aver�
age

fA�y� �
�

T

TX
j��

fA�y j j�� ����

The marginal likelihood under the null hypothesis is

f��y� �
�

T

TX
j��

f��y j j� ��	�

with

f��y� �
�

T

TX
j��

�
�
T � p� �

�

�
j �X

�

j
�Xjj

�
�
� �� gESSj�

�
T�p��

� � ����

Finally the Bayes factor is given by

B �
fA�y�

f��y�
� ����

��
 Bayes tests for outlier with informative priors

Assuming an AR�p� process with conjugate prior� we test the models

H� � y � X� � 	 ����

against
HA � y � �X �� � 	 � X� �Dj�� 	� j � �� � � � � T� ����

The marginal likelihood under H� is given by

f��y� � ��
T
�
jH��j

�
�

jH�j
�
�

��n��
� �

��n�� �

�n�s��n���

�n��s���n����
� ����

and for HA we have to average

fA�y� �
�

T

TX
j��

fA�y j j�� ����

where

fA�y j j� � ��
T
�
j �H��j

�
�

j �H�j
�
�

��n��
�
�

��n�� �

�n��s��n���

�n���s���n����
� ����

��



Note that j �H�j � s�
�
jH�j� Therefore we have for the Bayes factor of H� against

HA

B�
A �

jH��j
�
� �n�s��n���jH�j

�
�
� �n��s����n����

�
T

PT
j�� j

�H��j
�
� �n��s��n���j �H�j

�
�
� �n���s����n����

�
jH��j

�
� �n�s��n����n��s����n����

�
T

PT
j�� j �H��j

�
� �n��s��n���s��� �n���s����n����

� ����

� Multivariate outlier models

��� Multivariate outlier models

In this section we consider the following multivariate regression model with
outliers

Y � XB �Dj� � U� j � �� � � � � T� ����

Again Dj is a dummy variable de�ned as the j�th unity vector of dimension
T � and � is a ���M� row vector of outliers � a di�erent location shift for the
M regressions��
The errors are multivariate normally distributed�

U � NT�M ����� IT ��

The multivariate model can be written in compact form as

Y � �X �B � U� or Y � N � �X �B��� IT � ��	�

with �X � �X � Dj� a T � �k � �� regressor matrix� and �B � �B � �j�� the
�k � �� �M matrix of regression coe�cients� We derive the marginal likeli�
hood for � di�erent priors�

Theorem ��� Multivariate break points with outliers
For the multivariate break point model ��	� we assume a �conjugate� normal�
Wishart prior

p� �B� ��� � NW � �B�� �H�� ���� n��� ����

In the context of a multivariate VARmodel one can use the univariate outlier
model as in section ��� for all the M regressions�

��



The marginal likelihood for a break point at j and informative prior is given
by

f�Y jj� � �����
MT
�
cn��
cn�

j��j
n�
�

j���j
n��
�

j �H��j
M��

j �H�jM��
� ����

with the parameters

��� � �� � �U � �U ��� �U � Y � �X ��B�

hat �B � � �X � �X��� �X �Y�

�H��
��

� �X � �X �H��
�

� �X � �X � xjx
�

j �H��
�
�

� � � ��B � �B��
��� �X � �X��� �H��

��� ��B � �B���

cn� � �
Mn�
� �

M�M���
�

MY
j��

��
n� � � � j

�
�� ����

and n�� � n� � T� xj � X �Dj � j � �� � � � � T�
Proof� Since the model is structurally equivalent to the ordinary normal�
Wishart regression model� the result follow from Polasek and Ren �������

Lemma����a Multivariate regression with outliers �non�informative
prior�
The multivariate model for outliers with non�informative prior is given as in
����� Then the marginal likelihood for the event f break point in the time
series g is given by

f�Y jj� � jX �Xj�
M
� h

�
M
�

j �M

�
T � p � �

�

�
��

M
� �T�k�j �U � �U � �uj�u

�

jh
��
j j�

M�T�k�
�

�	��
with �uj � �U �Dj and

�U � Y �X �B �Dj
�� � Y � �X ��B�

where �X � �X � Dj� and
��B � � �X � �X��� �X �Y is the multivariate OLS estima�

tor�
Proof� See Polasek and Ren �������

Lemma����b Multivariate regression with outliers �fractional prior�

��



For the homoskedasticmultivariate regression model ���� the fractional marginal
likelihood for b	����� is given by

f�b �Y � � b
Tb
� j� �U � �U j�

T ���b�
� �M

�
T � k

�

�
��M

�
Tb� k

�

�
�	��

with
��U � Y � �X ��B� and ��B � � �X

� �X��� �X
�

Y�

Note that for b � k��
�

�and t � �� we get the simpler formula

f�b �Y � �

�
k � �

T

� k��
�

j� �U � �U j�
T�k��

� �M

�
T � k � �

�

�
�

Proof� Use the results of Polasek and Ren ������ for model ��	��

��� Multivariate regression with break points and out�
liers

In this section we are deriving the marginal likelihood with � priors for the
multivariate break point and outlier model given by�

Y�
Y�

�
� N

��
X�B�

X�B�

�
�Dj���� IT

�

� N

��
�X�

�B�

�X�
�B�

�
��� IT

�
� �	��

where the unknown break point can lie in k � � � m � T � k�

Theorem ��� Homoskedastic multivariate break point model with
outlier �informative priors�
Consider model �	�� with the conjugate prior distribution

f� �B�� �B���
��� � N � �B����� �H���N � �B����� �H���W ���� n��� �	��

Then the marginal likelihood for the multivariate regression model is given
by

f�Y � � �����
MT
�

T�kX
m�k��

pm
cn��
cn�

jH���j
M��jH���j

M��j���j
n���� �	��

�	



with the constants cn�� and cn� given as in ����� pm � �
T�k

�

H��
i�� � H��

i� �X
�

iXi� i � �� �� �	��

��� � �� �
�X

i��

f �U
�

i
�Ui � � �Bi �Bi��

���X
�

iXi�
�� �H��

i� ���� �Bi �Bi��g� �		�

and
�Ui � Yi �Xi

�Bi� �Bi � � �Xi
� �Xi�

�� �Xi
�Yi� i � �� �� �	��

Proof�
Use the results of the break point model in Polasek and Ren �������

Lemma ����a Homoskedastic break point model with outliers �non�
informative prior�
We consider model �	�� with non�informative prior

f�B�� B���� � j�j�
M��
� �

Then the marginal likelihood for the event f outlier in Y g is given by

f�Y � �
T�kX

m�k��

pmj �U
�

�
�U� � �U

�

�
�U�j

k�T
� �M �

T � k

�
�

��
M
� �T��k�jX �

�X�j
�
M
� jX�

�X�j
�
M
� h

����
jm �	��

with the rows of U� and U� given as�
�u
�

j� � yj�
� � x

�

j�
���� for j � m�

�u
�

j� � yj�
� � x

�

j�
���� for j 
 m�

�	��

and

�U �
�
�U� �

�
�Y� �X�

�B����Y� �X�
�B��� �uj��u

�

j�h
��
j� � for j � m�

�Y� �X�
�B����Y� �X�

�B��� for j 
 m�
����

�U �
�
�U� �

�
�Y� �X�

�B����Y� �X�
�B��� �uj��u

�

j�h
��
j� � for j 
 m�

�Y� �X�
�B����Y� �X�

�B��� for j � m�
����

The leverage points hji are given as in ����� and the y
�

ji and x
�

ji are j�th rows
of Yi and Xi� i � �� �� respectively�

��



Proof� In analogy to theorem ��� and observe the location of the outliers�

Lemma ����b Homoskedastic break point model with outliers �frac�
tional prior�
We consider model �	�� and use the fractional prior approach of O
Hagan
������� Then the marginal likelihood for the event f outlier in Y g is given
by

f�b �Y � �
T�kX

m�k��

pmj�� �U
�

�
�U� � �U

�

�
�U��j

�
T�Tb

� b
Tb
�

�M �
T � �k

�
���M �

Tb� �k

�
� ����

with the rows of �U� and �U� de�ned as in ���� and �����
For b � �k��

� we obtain a slight simpli�cation

f�b �Y � �
T�kX

m�k��

pm

�
�k � �

T

�k��

j�� �U �

�
�U� � �U

�

�
�U��j

�
T
��k��

�M �
T � �k

�
�� ����

��� Heteroskedastic multivariate break points and out�
liers

In this section we extend the previous discussion of the multivariate break
point model and we analyse the heteroskedastic multivariate regression model
with break points and outliers�
The model is given as an extension of the homoskedastic model �	���

Y�
Y�

�
� N

��
X�B�

X�B�

�
�Dj��

�
�� � In� �

� �� � In�

��

� N

��
�X�

�B�

�X�
�B�

�
�

�
�� � In� �

� �� � In�

��
����

with n� � m and n� � T �m�

��



Theorem ��� Heteroskedastic break point model with outliers �in�
formative prior�
We consider the model ���� with the following conjugate prior distribution

f� �B�� �B�� ��
��
� � ����

� � �
�Y

i��

N � �Bi���i� � �Hi��W ��i�� ni���

where the � � Index denotes known prior parameter matrices�
Then the marginal likelihood for the multivariate model is given by

f�Y � �
T�kX

m�k��

pmf�Y��f�Y��� ����

where the marginal likelihoods of the upper and lower models are given by

f�Yi� � �����Mni
cn��i
cn�i

j����ij
n
��i
�

j���ij
n
�i
�

j �H��ij
M
�

j �H�ij
M
�

� i � �� �

with cn�i and cn��i given as in �����

Lemma ����a Heteroskedastic break point model with outliers �non�
informative prior�
Consider the heteroskedastic multivariate break point model with outliers as
in ����� The marginal likelihood for the event f outlier in Y g with non�
informative prior is

f�Y � �
T�kX

m�k��

pmjX
�

�X�j
�
M
� jX �

�X�j
�
M
� h

�M��
jm

�M

�
m� k

�

�
�M

�
T �m� k

�

�

j� �U �

�j
�U�jj

�
M�m�k�

� j� �U �

�j
�U�jj

�
M�T�m�k�

� ��	�

with hjm given as in ����� and the sum of squares matrix of the residuals are
given by

if j � m �

�
�U �

�j
�U�j � �U �

�
�U� � �uj�u�jh

��
jm�

�U �

�j
�U�j � �U �

�
�U��

����

��



if j 
 m �

�
�U �

�j
�U�j � �U �

�
�U��

�U �

�j
�U�j � �U �

�
�U� � �uj�u�jh

��
jm�

����

Proof� Apply lemma ����a twice�

Lemma����b Heteroskedastic break point model with outliers �frac�
tional prior�
We consider the heteroskedastic break point model with outliers ���� and
use the fractional prior approach of O
Hagan ������� Then the marginal
likelihood for fractional prior is

��



f�Y � �
T��kX

m��k��

pmb
Tbj� �U

�

�
�U�j

�
n����b�

� j� �U
�

�
�U�j

�
n����b�

�

�M

�
n��k��

�

�
�M

�
n�b�k��

�

� �M

�
n��k��

�

�
�M

�
n�b�k��

�

�
�

T��kX
m��k��

pmb
Tb

�Y
i��

j� �U
�

i
�Uij

�
ni���b�

�

�M

�
ni�k��

�

�
�M

�
nib�k��

�

� � ����

where the sum of squares matrices for �U� and �U� are given as in ���� and
�����

��� The Bayes factor for the multivariate outlier mod�
els

We consider the two multivariate regression models with the matrices Y �
n�M and X � n� k

Y � N �XB��� In�� ����

Y � N �XB �D�A��� In�� ����

The fractional marginal likelihood for the model ���� is

f�b �Y � � b
nb
� j� �U �

�
�U�j

�
n���b�

� �M

�
n� k

�

�
��M

�
nb� k

�

�
� ����

The fractional Bayes factor for any fraction � � b � � is given by

Bb � cbj �U �
�
�U�� �U �

�
�U��

��j�
n���b�

� ����

with

cb �
�M

�
n�k
�

�
�M

�
n�k��

�

� �M

�
nb�k
�

�
�M

�
nb�k��

�

� �

��



�U� � Y �X �B� �B � �X �X���X �Y�

�U� � Y �X �B �D�
�A� � �B� �A�� � � �X � �X��� �X �Y�

and
�X � �X � D���

� Examples

Table � analyses the �real� Swiss GNP and �real� Swiss Consumption for
the period ���� Q� to ���� Q� for fractional prior where the Bayes factor
is calculated by formula ����� For both time series the marginal likelihood
selects the lag order p � � and in both cases the outlier model is selected also
for lag �� If we adopt the ������� rule for quantifying evidence with Bayes
factors and the log equivalent �i�e� ln � � ���� ln �� � ��� and ln �� � ��	�
then we see that di�erences in the log marginal likelihood are quite close� In
the last row we have calculated the averages of the log likelihood over the �
periods�
In Table � we used the informative Bayes model to test for stationarity non�
stationarity in the time series� The �rst two columns evaluates the non�
stationarity of the GNP and consumption series� Lag order � is found for
GNP and lag � for consumption and the unit root model �non�stationarity�
is accepted�
Table � is an extended analysis for the outlier model in Table �� Now we
include a break point model as an alternative and we discover that the break
point model with outliers �ts the data best� Also the average marginal
likelihood over all lag length indicate that there is decisive evidence for the
AR break point model�
While Table � tests the homoskedastic case� Table � shows the break point
comparison for marginal likelihoods� Now we see that the marginal likelihood
picks up lag length � in both models and the di�erences in consumption is
larger than the model without trend�
The bivariate AR regression break point model is shown in Table � and
favours slightly VAR outlier model for order p � ��

��



� Conclusions

This paper shows how the marginal likelihood approach for model selection
of Polasek and Ren ������ can be applied to the univariate and multivariate
linear model in the presence of outliers and break points� The model assumes
a normal�gamma or a normal�Wishart conjugate prior distribution which
allows a closed form integration for calculating the Bayes factor and the
marginal likelihood� The fractional Bayes factor of O
Hagan ������ can be
�tted nicely in this framework and lead to quite simple formulars in the case of
non�informative priors� The approach is demonstrated for a macroeconomic
example involving Swiss income and consumption� We �nd that the AR break
point model and VAR outlier model is favored over the simple AR models�
A further extension of this approach to AR model selection in presence of
unit roots can be found in Pelloni and Polasek �������
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GNP
Order AR AR�outlier Bayes factor
� �������� �������� ��	�	�
� ��
������ ��	������ ���	��
	 �������
 �����
�� ���	��
� �������
 �������� ������

 ������	
 �������� ������

Ave� �������� �����	�� �����


Consumption
Order AR AR�outlier Bayes factor

� �������� ����
��� ������
� ��	����	� ��������� ������
	 ��	��
�� ����
��� ������
� �������� �������
 �����


 ��
��		
 ����		�� ������

Ave� ��
����� �������� ������

Table �
 The log marginal likelihood of AR model� the log of
average marginal likelihood ��� and of AR outlier model for
Swiss GNP and consumption from ���� Q� to ���	 Q� with

fractional prior and Bayes factor ����
� ! maximum marginal likelihood �

��



Order Nonstationarity Stationarity
p GNP Consumption GNP Consumption
� �������	 ����	�	� �����

	 ��������
� �������� �����		�� �������� �����	���
	 ��
����� �������� �������� ��
�����
� �������
 ����	��� �������
 ��
���
�

 ��������� ����	��� �������
� ������		
� ������
� ��	����	 ����
�	� �������


Table � AR model
 The unit root �stationarity� test with the
log of marginal likelihood for Swiss GNP and consumption

�original data� from ���� Q� to ���	 Q� and fractional prior
� ! maximum marginal likelihood �

��



GNP
AR break AR break point Bayes factor

Order point with outlier
� �����	�� ��	�
�	� ���
��
� ��������� ��������� �����

	 �������� �������� ������
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��� ������

Consumption

AR break AR break point Bayes factor
Order point with outlier

� �������� ������	� �����

� ��
����	� ����	
�� �����	
	 �������	 �����
�	� ����
�
� �������� ��	����� �����	

Ave� �������� ��
����� ������

Table 	 
 The log marginal likelihood of the AR break point
model and ��� AR break point �homoskedastic� with outlier
for Swiss GNP and consumption from ���� Q� to ���	 Q�

and fractional prior
� ! maximum marginal likelihood �

�	



GNP
AR break AR break point Bayes factor

Order point with outlier
� ������
	 �������� ������
� ��������� �������	�� ���	��
	 �������� ��
�	��� ���	�


Ave� ����
��� ��
����� ���	��

Consumption

AR break AR break point Bayes factor
Order point with outlier

� ������
	 �������� ������
� ��������� ������
��� ������
	 ��
��	�� �������� ������
� ��
���	� ��	��		� ������

Ave� ��
���	� �������	 ������

Table � 
 The log marginal likelihood of the AR break point
model and ��� AR break point �heteroskedastic� with outlier
for Swiss GNP and consumption from ���� Q� to ���	 Q�

and fractional prior
� ! maximum marginal likelihood �

��



p VAR VAR�outlier Bayes factor
� �������� ����	��� ���	�	
� �
	������ �
	������� ������
	 �
��		�� �
�����
 ����
�
	 �
��	�	� �
�����
 ������

Ave� �
���
�� �
������ ���			

Table 
 VAR�p� and VAR�p� with outlier
 The log marginal
likelihood of VAR model and the log of average marginal

likelihood of VAR outlier model for Swiss GNP and
consumption from ���� Q� to ���	 Q� with fractional prior

p Nonstationarity Stationarity
� �
������� �
�������
� �
������ �
�����	
	 �
��			� ����		�	
� �
�����
 �������	

Table � VAR model
 The unit root �stationarity� test with
the log of marginal likelihood for Swiss GNP and

consumption from ���� Q� to ���	 Q� and fractional prior
� ! maximum marginal likelihood �

��
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Figure �� The log marginal likelihood �	� of the Swiss GNP from ���� Q� to
���� Q� for AR�p� outlier model
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Figure �� The log marginal likelihood ���� of the Swiss GNP from ���� Q�
to ���� Q� for AR�p� break point model with outlier� equal variance and
non�informative prior
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Figure �� The log marginal likelihood ���� of the Swiss consumption from
���� Q� to ���� Q� for AR�p� break point model with outlier� equal variance
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Figure 	� The log marginal likelihood ���� of the Swiss GNP from ���� Q�
to ���� Q� for AR�p� break point model with outlier� unequal variance and
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Figure �� The log marginal likelihood ���� of the Swiss consumption from
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