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1 IntrodutionAnalysis of variane (ANOVA) models are an important lass of models in statis-tis, see, e.g. She��e (1959) and Rao (1973). As ANOVA models are linearmodels where a quantitative variable is explained by a series ofqualitative variables, the use of reent developments in matrix algebra for estima-tion purposes should be enouraged. In Polasek and Liu (1997) we suggested anew parameterization for ANOVA models and showed that rank de�ient matri-es an be used to estimate with the onept of generalized inverses. This leadsnot to new tests (sine the F-statisti is not hanged by the parameterization)but to new ways of reporting the estimated e�ets. The so-alled OLS� estima-tors produe non-unique e�et estimates, using the results of g-inverses of theross produt matrix. A unique e�et an be estimated using the Moore-Penroseinverse (matrix g-inverses and the Moore-Penrose inverse are disussed in, e.g.Magnus and Neudeker, 1991). This parameterization also allows a generaliza-tion of the ANOVA model to the Bayesian linear model, see Polasek and Liu(1997). Bayesian methods in ANOVA models have been previously applied in,e.g. Press (1989) and Searle et al. (1992), and a Bayesian robustness approahan be found in Polasek and Poetzelberger (1994).In this paper we extend the univariate ANOVAmodel to the multivariateMANOVAmodel. Again, the matrix formulation of the model makes the derivation of resultsmore ompat and allows a generalization to the multivariate Bayesian MANOVAmodel as well. The Bayesian analysis uses a onjugate Normal-gamma prior dis-tribution for the univariate ase and a onjugate Normal-Wishart prior distribu-tion for the multivariate ase. The multivariate OLS� and OLS+ estimators forthe one-way and two-way balaned design models are shown to be matrix exten-sions of the univariate ANOVA models. The non-unique OLS� estimators havetwo sets of solutions whih are interpreted as row-wise or olumn-wise averagesof deentered multivariate observations. The plan of the paper is as follows. Insetion 2 we derive the one-way MANOVA model for balaned design and setion3 desribes the two-way MANOVA model. In setion 4 we derive the OLS� andOLS+ estimators. A �nal setion onludes.2 One-way MANOVA for balaned designThe one-way MANOVA model for balaned design with the total number ofobservations N = qn an be written as a multivariate regression system (see, e.g.Press, 1989) yij = �i + uij; i = 1; : : : ; q; j = 1; : : : nK�1 K�1 K�1 2



where yij is a K � 1 vetor of the observations for the jth repliation in the ithpopulation, �i is the main e�et �i due to population i plus the grand mean �(�i = �i + �), and uij is an error term. In matrix form it isY = X �B + UN�K (N�q)(q�K) N�Kor 0BB� Y1...Yq 1CCA = (Iq 
 1n) � 0BB� �>1...�>q 1CCA+ 0BB� U1...Uq 1CCA ; (1)where Iq is a q � q identity matrix, 1n = (1; :::; 1)> is an n � 1 vetor, Yi =(yi1; : : : ; yin)> and Ui = (ui1; : : : ; uin)>, i = 1; : : : ; n are n�K matries.Consider mutually i.i.d. normal uijs with a K � 1 mean vetor equal to zero anda K �K variane matrix � > 0. The likelihood funtion is proportional toL(Y j X;B;�) / j � j�N2 exp(�12tr��1U>U):If the prior distribution for B = (�1; :::; �q)> and ��1 is of the onjugate normal-Wishart density family(B;��1) � NWq�K[B�;H�;��; n�℄;i.e. ��1 � WK(��; n�)and B j ��1 � Nq�K(B�;H�);then the posterior distribution is again normal-Wishart distributed:(B;��1 j X;Y) � NWq�K[B��;H��;���; n��℄:Let H�1� = 1n0 Iq 
��1, where n0 is the hypothetial sample size with respet tothe prior information B�, then the posterior parameters are (see Polasek, 1995)H�1�� = G�� 
�;B�� = G��(n0B� +X>Y);G�1�� = n0Iq +X>X;n�� = n� +N:Now for model (1) withX = Iq
1n we getG�1�� = n00Iq with the posterior degreesof freedom n00 = n0 + n. If B� = 1q�>�, then the posterior mean matrix isB�� = (b1��; : : : ;bq��)>= 1n00 (n01q�>� + nY�): (2)3



This follows from the ross produt termX>Y = (Iq 
 1>n) Yq�N N�K= 0BBBB� 1>n : : : 0... . . . ...0 : : : 1>n| {z }1CCCCA0BB� Y1...Yq 1CCAq= n � 0BB� �y1...�yq 1CCA = n �Y�; (3)q�Kwhere �Y� is a q �K matrix of sample means.Note that B�� in (2) is a simple average between the prior loation B� and themaximum likelihood (ML) loation Y�. An alternative way to obtain the result(3) using a ompat matrix notation is as follows.X>Y = (Iq 
 1>n)Y= (1>n 
 Iq)LnqY= (1>n 
 Iq)Y�= n �Y�;where Lnq is the so-alled N � N ommutation matrix (see, e.g. Magnus andNeudeker, 1991) with the following propertiesIq 
 1>n = (1>n 
 Iq)L>nq;L>nqLnq = IN ;LnqY = Y�;and Y� is a reordering of the dependent variable matrix Y. Also, the meanmatrix an be alulated as an average of empirial observation matries:�Y� = 1n nXj=1Y�j : q �K;Y� = (Y�>1 ; : : :Y�>n )> : N �K;Y�j = (y1j; : : : ; yqj)>; j = 1; : : : ; n:We easily see that the ith row of �Y� is �yi = 1n(y>i1 + : : :+ y>in), i = 1; : : : ; q.4



3 Two-way MANOVA for balaned designConsider the following two-way MANOVA model for balaned design with thetotal number of observations N = qnyij = �i + �j + uij; i = 1; : : : ; q; j = 1; : : : ; nK�1 K�1whih an be written as a multivariate regression system0BB� Y1...Yq 1CCA = (Iq 
 1n) 0BB� �>1...�>q 1CCA+ (1q 
 In) � 0BB� �>1...�>n 1CCA+ 0BB� U1...Uq 1CCAN�K N�q N�nor ompatly as Y = X1 �A + X2 �B + UN�K (N�q) (q�K) (N�n) (n�K) N�K= (X1 : X2) AB !+U= ~X � � + U; (4)(N�m) (m�K) N�Kwith the design blok matriesX1 = Iq 
 1n : N � q;X2 = 1q 
 In : N � nand the staked regression matrix~X = (X1 : X2) : N �m;with N = qn and m = q + n.Also, we de�ne a multivariate normal distribution for the error matrix U, i.e.U � N [0; IN 
�℄;where � is a K � K matrix and IN an N � N identity matrix. For the priordistribution we an assume exhangeability and onjugay, i.e., onditional onthe variane matrix � A � Nq�K[A�;HA� 
�℄;B � Nn�K[B�;HB� 
�℄;��1 � WK [��; n�℄:5



For simpliity we let for the prior loations and variane matriesA� = 1qa>�; (5)B� = 1nb>�; (6)HA� = 1n0a Iq; (7)HB� = 1n0b In; (8)where a� and b� are K � 1 vetors and n0a and n0b an be viewed as values of theprior information expressed in hypothetial sample sizes.The joint prior distribution of A and B given � is thenve �>= 0� ve A>ve B> 1A � N " 1q 
 a�1n 
 b� ! ; HA� 
� 00 HB� 
� !#mK�1 = N [ve �>�; ~H�℄: (9)Note that, instead of (5) and (6), if the prior loations areA� = a�1>K; (10)B� = b�1>K; (11)where a� and b� are vetors of q � 1 and n� 1 respetively, then the joint priordistribution of A and B given � isve �>= 0� ve A>ve B> 1A � N " a� 
 1Kb� 
 1K ! ; HA� 
� 00 HB� 
� !#mK�1 = N [ve �>�; ~H�℄: (12)Using onjugate Bayesian inferene (Polasek, 1995) yields the posterior normal-Wishart distribution �jY � NW [���; ~H��;���; n��℄; (13)~H�1�� = H�� 
�;��� = H��(H�1� �� + ~X>~X�̂) = H��(H�1� �� + ~X>Y); (14)H�1�� = H�1� + ~X>~X; (15)�̂ = ( ~X>~X)�1 ~X>Y;n�� = n� +N: 6



We an also onsider the following two-way MANOVA model for balaned designwith the total number of observations N = qn, whih is a multivariate general-ization of the two-way ANOVA model in Polasek and Liu (1997, p. 162)yk = (Iq 
 1n)�k + (1q 
 In)�k + uk; k = 1; : : : ; Kor ompatly as Y = X1 �A + X2 �B + UN�K (N�q) (q�K) (N�n) (n�K) N�K= (X1 : X2) AB !+U= ~X � � + U; (16)(N�m) (m�K) N�Kwhere X1 = Iq 
 1n : N � q;X2 = 1q 
 In : N � n;~X = (X1 : X2) : N �m;Y = (y1 : : : : : yK) : N �K;U = (u1 : : : : : uK) : N �K;A = (�1 : : : : : �K) : q �K;B = (�1 : : : : : �K) : n�K;with N = qn and m = q + n.We see that the matrix form in (16) is the same as in (4) and (13) holds for model(16).Now we ompute the posterior mean ��� with the prior preision matrixH�1� =  HA�1� 00 HB�1� !=  n0aIq 00 n0bIn ! ; (17)the ross-produt term ~X>Y and matrix H�1�� .Sine ~X>Y =  X>1YX>2Y ! ;7



where the design matrix is ~X = (X1 : X2)= (Iq 
 1n : 1q 
 In);we an alulate the two omponents of ~X>Y separately. For the �rst omponentwe �nd X>1Y = (Iq 
 1>n) Yq�N N�K= 0BBBB� 1>n : : : 0... . . . ...0 : : : 1>n| {z }1CCCCA 0BB� Y1...Yq 1CCAq= n � 0BB� �y1...�yq 1CCA = n � �Y�:qq�Kand for the seond omponentX>2Y = (1>q 
 In) Yn�N N�K= (In; : : : ; In)| {z }q 0BB� Y1...Yq 1CCA= Pqi=1Yi = q � �Yn: ;n�Kwhere �Y�:q is a q�K matrix of averages over n groups, and �Yn: an n�K matrixover q groups.Noting that ~X>~X =  X>1X1 X>1X2X>2X1 X>2X2 !=  Iq 
 1>n1n Iq1>n 
 1qI>q 
 1n 1>q1q 
 In !=  nIq 1q1>n1n1>q qIn ! ;and based on (15) and (17) we getH�1�� =  n00aIq 1q1>n1n1>q n00b In ! ;8



and (see Lemma A.1 in the appendix)H�� = 24 1n00a (Iq � nd1q1>q) 1d1q1>n1d1n1>q 1n00b (In � qd1n1>n) 35 ;where n00a = n0a + n; n00b = n0b + q and d = N � n00an00b .We an then use H�� to derive ��� in (14):��� = H�� " n0aA�n0bB� !+  Iq 
 1>n1>q 
 In !Y#= H��  n0aA� + n �Y�:qn0bB� + q �Yn: ! : (18)4 OLS� and OLS+ estimatorsFor model (4) we see that n0a = n0b = 0, i.e. H�1� = 0 in (14) leads to the lassialase in whih ( ~X>~X) is singular and the usual OLS estimator �̂ = ( ~X>~X)�1 ~X>Ydoes not exist. For studies on suh problems, see, e.g. Zellner (1971) and Dodgeand Majumdar (1979). We proeed along the lines of Polasek and Liu (1997). Forthe staked regression matrix ~X = (X1;X2) we use two expressions of ( ~X>~X)�,instead of ( ~X>~X)�1 for �̂ above, to give two OLS� estimators, and use the unique( ~X>~X)+ to give the OLS+ estimator.Theorem 4.1 Consider the two-way rank de�ient MANOVA model (4)Y = X1A+X2B+U:Two OLS� estimators are given by (a) and (b):(a) Â = �~Y� = 1n nXj=1 ~Y�j ;B̂ = �Y = 1q qXj=1Yj;and
9



(b) Â = �Y� = 1n nXj=1Y�j ;B̂ = �~Y = 1q qXi=1MnYi;where Y = 0BBB� Y1...Yq 1CCCA ; Y� = 0BBB� Y�1...Y�n 1CCCA = LnqY;~Y = 0BBB� ~Y1...~Yq 1CCCA ; ~Y� = 0BBB� ~Y�1...~Y�n 1CCCA ;~Yi =MnYi; ~Y�j =MqY�j ; i = 1; : : : ; q; j = 1; : : : ; n:n�K q�KThe projetion matries Mn = In � 1n1>n=n and Mq = Iq � 1q1>q=q are two en-tering matries, and Lnq is the ommutation matrix whih reorders the dependentvariable matrix Y.Proof 4.1 : The formula for OLS� estimators in the model is�̂ = ( ~X>~X)� ~X>Y:(a) Using the g-inverse given in Lemma A.2(a) of the appendix we �nd�̂ = 0� Â̂B 1A= 0� 1nMq 00 1qIn 1A0� Iq 
 1>n1>q 
 In 1A0BBB� Y1...Yq 1CCCA :This an be split up into two equations and the OLS� estimator of the �rstomponent is Â = 1n(Mq 
 1>n)Y10



= 1n(1>n 
Mq)Y�= 1n nXj=1 ~Y�j = �~Y�;and the seond omponent is B̂ = 1q (1>q 
 In)Y= 1q qXj=1Yj= �Y:(b) Using the g-inverse given in Lemma A.2(b) in the appendix yieldsthe following OLS� estimator:�̂ = 0� Â̂B 1A= 0� 1nIq 00 1qMn 1A0� Iq 
 1>n1>q 
 In 1A0BBB� Y1...Yq 1CCCA :This splits into two equations; the OLS� estimator of the �rst omponent isÂ = 1n(Iq 
 1>n)Y= 1n(1>n 
 Iq)Y�= 1n nXj=1Y�j= �Y�;and the seond omponent is B̂ = 1q (1>q 
Mn)Y= 1q qXi=1MnYi= �~Y:11



Theorem 4.2 Consider the two-way rank de�ient MANOVA model (4)Y = X1A+X2B+U:The two omponents of the OLS+ estimator are as follows:Â = nm �Y� + qm �~Y�;B̂ = qm �Y+ nm �~Y;where m = q + n.Proof 4.2 Using the Moore-Penrose inverse( ~X>~X)+given in Lemma A.2 in the appendix we obtain�̂ = ( ~X>~X)+ ~X>Y= 0� 1nMq + nm2Nq 1m21q1>n1m21n1>q 1qMn + qm2Nn 1A0� Iq 
 1>n1>q 
 In 1AY= 24 ( 1mIq + qmnMq)
 1>n1>q 
 ( 1mIn + nmqMn) 35Y;where Nq = Iq �Mq and Nn = In �Mn.The OLS+ estimator for the omponent A is thenÂ = [( 1mIq + qmnMq)
 1>n℄Y= 1m(Iq 
 1>n)Y+ qmn(Mq 
 1>n)Y= nm �Y� + qm �~Y�;and is B̂ = [1>q 
 ( 1mIn + nmqMn)℄Y= qm �Y+ nm �~Yfor B. 12



It is interesting to ompare the OLS estimators for the model. We see that thetwo omponents Â and B̂ of the OLS+ estimator are ompromises of those ofthe two OLS� estimators, respetively. Theprojetion matries for the OLS� and OLS+ estimators are idential with therelation ~X( ~X>~X)� ~X> = ~X( ~X>~X)+ ~X>= Iq 
 In �Mq 
Mn;and we an obtain the unique OLS estimator ~X�̂ for ~X� by using any OLS� orOLS+ estimator �̂.
A AppendixSeveral results on matrix inverse and generalized inverses have been used to derivethe normal OLS�1 estimator for the Bayesian two-way MANOVA model when itis nonsingular, and the OLS� and OLS+ estimators for the two-way MANOVAmodel whih is rank de�ient. These results are presented as follows:Lemma A.1 The posterior ovariane matrix isH�� = 0� n00aIq 1q1>n1n1>q n00b In 1A�1

= 24 1n00a (Iq � nd1q1>q) 1d1q1>n1d1n1>q 1n00b (In � qd1n1>n) 35 ;where n00a = n0a + n; n00b = n0b + q and d = N � n00an00b .Proof A.1 Using the rule of the inverse for a partitioned matrix we an easilyverify the above equality.Lemma A.2 The two hosen generalized inverses of ~X>~X used to give general-ized inverses ~X� = ( ~X>~X)� ~X> for ~X = (Iq 
 1n ; 1q 
 In) are(a) ( ~X>~X)� = 0� 1nMq 00 1q In 1A ;13



(b) ( ~X>~X)� = 0� 1nIq 00 1qMn 1A :The Moore-Penrose inverse of ~X>~X used in deriving the unique Moore-Penroseinverse ~X+ = ( ~X>~X)+ ~X> is( ~X>~X)+ = 0� 1nMq + nm2Nq 1m21q1>n1m21n1>q 1qMn + qm2Nn 1A :Here, Mq = Iq � 1q1q1>q;Nq = 1q1q1>q;Mn = In � 1n1n1>n;Nn = 1n1n1>n:Proof A.2 Using the de�nitions of a generalized inverse and the Moore-Penroseinverse we an easily verify the above equalities.ReferenesDodge, Y. and D. Majumdar (1979). An algorithm for �nding least square gen-eralized inverses for lassi�ation models with arbitrary patterns. J. Statist.Comput. Simul. 9, 1-17.Magnus, J.R. and H. Neudeker (1991). Matrix Di�erential Calulus with Appli-ations in Statistis and Eonometris. Wiley, Chihester.Polasek, W. (1995). Theoretial Bayesian Statistis.University of Basel, Switzerland.Polasek, W. and S. Liu (1997). On generalized inverses and Bayesian analysis insimple ANOVA models. Student, 2(2), 159-168.Polasek, W. and Poetzelberger, K. (1994) Robust Bayesian methods in simpleANOVA Models. J. of Planning and Inferene, 295-311.14
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