Publications

Found 213 results
[ Author(Asc)] Title Type Year
Filters: First Letter Of Last Name is B  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
B
[2007-30] Büyükasik E, Lomp C. Rings whose modules are weakly supplemented are perfect. .Edit
Büyükasik E, Lomp C. Rings whose modules are weakly supplemented are perfect. Applications to certain ring extensions. Math. Scand.. 2009;105:25-30.Edit
[2008-30] Büyükasik E, Lomp C. When δ-semiperfect rings are semiperfect .Edit
[2008-5] Büyükasik E, Lomp C. On a recent generalization of semiperfect rings .Edit
Büyükasik E, Lomp C. On a recent generalization of semiperfect rings. Bull. Aust. Math. Soc.. 2008;78:317-325.Edit
Büyükasik E, Lomp C. When δ-semiperfect rings are semiperfect. Turkish J. Math.. 2010;34:317-324.Edit
Burness T, Marion C, Testerman D. On irreducible subgroups of simple algebraic groups. Mathematische Annalen. 2017;367(3-4):1259-1309.Edit
Burness T, Ghandour S, Marion C, Testerman D. Irreducible almost simple subgroups of classical algebraic groups. Memoirs of the American Mathematical Society. 2015;236:vi+110.Edit
Burciu S, Kadison L. Subgroups of depth three. In: Surveys in differential geometry. Volume XV. Perspectives in mathematics and physics. Vol 15. Int. Press, Somerville, MA; 2011. 1. p. 17-36p. Edit
Burciu S, Kadison L, Külshammer B. On subgroup depth. Int. Electron. J. Algebra. 2011;9:133-166.Edit
Bullejos M., García-Sánchez PA. Minimal presentations for monoids with the ascending chain condition on principal ideals. Semigroup Forum. 2012;85:185-190.Edit
Brzeziński T, Kaoutit LE, Lomp C. Non-commutative integral forms and twisted multi-derivations. J. Noncommut. Geom.. 2010;4:289-312.Edit
Brychkov Y., Marichev O., Yakubovich SB. Integral Appell $F_3$-transformation with respect to parameters. In: Complex analysis and applications '85 (Varna, 1985). Publ. House Bulgar. Acad. Sci., Sofia; 1986. 1. p. 135-140p. Edit
Brunat JM, de Oliveira AG, Noy M. Partitions of a finite Boolean lattice into intervals. European J. Combin.. 2009;30:1801-1809.Edit
[2007-24] Bruin H, Todd M. Return time statistics for invariant measures for interval maps with positive Lyapounov exponent .Edit
[2007-23] Bruin H, Todd M. Equilibrium states for interval maps: potentials of bounded range .Edit
[2007-37] Bruin H, Todd M. Equilibrium states for interval maps: the potential −tlog|Df| .Edit
[2008-41] Bruin H, Todd M. Equilibrium staes for interval maps: potentials with $\sup \phi - \inf \phi < \htop(f)$ .Edit
Broda S, Cavadas S, Ferreira M, Moreira N. Deciding Synchronous Kleene Algebra with Derivatives. In: Drewes F, editor. Implementation and Application of Automata, 20th International Conference (CIAA 2015). Vol 9223.; 2015. 4. p. 49-62p. (LNCS; vol 9223).Edit
Broda S, Machiavelo A, Moreira N, Reis R. On the Average Size of Glushkov and Equation Automata for KAT Expressions 2013.
[2011-37] Broda S, Machiavelo A, Moreira N, Reis R. Study of the Average Size of Glushkov and Partial Derivative Automata .
Broda S, Machiavelo A, Moreira N, Reis R. The Average Transition Complexity of Glushkov and Partial Derivative Automata. In: Mauri G., Leporati A., editors. Developments in Language Theory, 15th International Conference, DLT 2011, Milano, Italy, July 2011. Proceedings. Vol 6795. Milano, Italy; 2011. 9. p. 93-104p. Edit
[2014-36] Broda S, Cavadas S, Moreira N. Derivative Based Methods for Deciding SKA and SKAT DCC-FC & CMUP, Universidade do Porto .Edit
Broda S, Holzer M, Maia E, Moreira N, Reis R. On the Mother of All Automata: the Position Automaton. In: Developments in Language Theory.; 2017. Edit
Broda S, Machiavelo A, Moreira N, Reis R. On the Average State Complexity of Partial Derivative Automata: an analytic combinatorics approach. International Journal of Foundations of Computer Science. 2011;22:1593-1606.

Pages