Publications

Found 213 results
[ Author(Asc)] Title Type Year
Filters: First Letter Of Last Name is B  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
B
[2008-30] Büyükasik E, Lomp C. When δ-semiperfect rings are semiperfect .Edit
[2008-5] Büyükasik E, Lomp C. On a recent generalization of semiperfect rings .Edit
Büyükasik E, Lomp C. On a recent generalization of semiperfect rings. Bull. Aust. Math. Soc.. 2008;78:317-325.Edit
Büyükasik E, Lomp C. Rings whose modules are weakly supplemented are perfect. Applications to certain ring extensions. Math. Scand.. 2009;105:25-30.Edit
Büyükasik E, Lomp C. When δ-semiperfect rings are semiperfect. Turkish J. Math.. 2010;34:317-324.Edit
[2007-30] Büyükasik E, Lomp C. Rings whose modules are weakly supplemented are perfect. .Edit
Burness T, Ghandour S, Marion C, Testerman D. Irreducible almost simple subgroups of classical algebraic groups. Memoirs of the American Mathematical Society. 2015;236:vi+110.Edit
Burness T, Marion C, Testerman D. On irreducible subgroups of simple algebraic groups. Mathematische Annalen. 2017;367(3-4):1259-1309.Edit
Burciu S, Kadison L, Külshammer B. On subgroup depth. Int. Electron. J. Algebra. 2011;9:133-166.Edit
Burciu S, Kadison L. Subgroups of depth three. In: Surveys in differential geometry. Volume XV. Perspectives in mathematics and physics. Vol 15. Int. Press, Somerville, MA; 2011. 1. p. 17-36p. Edit
Bullejos M., García-Sánchez PA. Minimal presentations for monoids with the ascending chain condition on principal ideals. Semigroup Forum. 2012;85:185-190.Edit
Brzeziński T, Kaoutit LE, Lomp C. Non-commutative integral forms and twisted multi-derivations. J. Noncommut. Geom.. 2010;4:289-312.Edit
Brychkov Y., Marichev O., Yakubovich SB. Integral Appell $F_3$-transformation with respect to parameters. In: Complex analysis and applications '85 (Varna, 1985). Publ. House Bulgar. Acad. Sci., Sofia; 1986. 1. p. 135-140p. Edit
Brunat JM, de Oliveira AG, Noy M. Partitions of a finite Boolean lattice into intervals. European J. Combin.. 2009;30:1801-1809.Edit
[2007-24] Bruin H, Todd M. Return time statistics for invariant measures for interval maps with positive Lyapounov exponent .Edit
[2007-23] Bruin H, Todd M. Equilibrium states for interval maps: potentials of bounded range .Edit
[2007-37] Bruin H, Todd M. Equilibrium states for interval maps: the potential −tlog|Df| .Edit
[2008-41] Bruin H, Todd M. Equilibrium staes for interval maps: potentials with $\sup \phi - \inf \phi < \htop(f)$ .Edit
[2013-22] Broda S, Machiavelo A, Moreira N, Reis R. Glushkov and Equation Automata for KAT Expressions .
Broda S, Machiavelo A, Moreira N, Reis R. On the average number of states of partial derivative automata. In: Developments in language theory. Vol 6224. Springer, Berlin; 2010. 1. p. 112-123p. (Lecture Notes in Comput. Sci.; vol 6224).Edit
Broda S, Machiavelo A, Moreira N, Reis R. On the Average Size of Glushkov and Equation Automata for KAT Expressions. In: FCT. United Kingdom, Liverpool: Springer; 2013. 7. p. 72-83p.
[2014-36] Broda S, Cavadas S, Moreira N. Derivative Based Methods for Deciding SKA and SKAT DCC-FC & CMUP, Universidade do Porto .Edit
Broda S, Machiavelo A, Moreira N, Reis R. On the Equivalence of Automata for KAT-expressions. Vol 8493. Beckmann A, Csuhaj-Varjú E, Meer K, editors 2014.Edit
Broda S, Machiavelo A, Moreira N, Reis R. The average transition complexity of Glushkov and partial derivative automata. In: Developments in language theory. Vol 6795. Springer, Heidelberg; 2011. 9. p. 93-104p. (Lecture Notes in Comput. Sci.; vol 6795).Edit
Broda S, Machiavelo A, Moreira N, Reis R. On the Average Size of Glushkov and Equation Automata for KAT Expressions 2013.

Pages

Error | CMUP

Error

The website encountered an unexpected error. Please try again later.