Publications
Simulation Based Design of Optimal Phasing Plans for an Intersection with Semi-Actuated Signals. In: Proceedings of the Twelfth International Conference on Civil, Structural and Environmental Engineering Computing.; 2009. 2. 246.Edit
Automorphic orbits in free groups: words versus subgroups. Internat. J. Algebra Comput.. 2010;20:561-590.Edit
Recognizable subsets of a group: finite extensions and the abelian case. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS. 2002:195-215.
Groups and automata: a perfect match. J. Automata Lang. Combin.. 2012;17(2-4):277-292.
Normal-convex embeddings of inverse semigroups. Glasgow Math. J.. 1993;35:115-121.
[2015-25] On the circulation of algebraic knowledge in the Iberian península: the sources of Pérez de Moya's Tratado de Arithmetica (1573) .Edit
Equações no «Libro de Algebra» de Pedro Nunes. Vol 68 APM 2002.Edit
Howson’s property for semidirect products of semilattices by groups. Comm. Algebra. 2016;44(6):2482-2494.Edit
[2012-16] Groups and automata: a perfect match .
Heart Rate Variability in Children Submitted to Surgery. Journal of Anesthesia & Clinical Research. 2016;7.Edit
Free group languages: rational versus recognizable. Theor. Inform. Appl.. 2004;38:49-67.
Numerical relations and skill level constrain co-adaptive behaviors of agents in sports teams. PloS one. 2014;9:e107112.Edit
Contribuição para o estudo do manuscrito Arte de Marear de Juan Pérez de Moya. LLULL. 2012;35(76):351-379.Edit
Extensions and submonoids of automatic monoids. Theoret. Comput. Sci.. 2002;289:727-754.Edit
On a class of automata groups generalizing lamplighter groups. Internat. J. Algebra Comput.. 2005;15:1213-1234.Edit
On the semilattice of idempotents of a free inverse monoid. Proc. Edinburgh Math. Soc. (2). 1993;36:349-360.
Francisco Gomes Teixeira. CIM Bulletin. 2004;16:21-23.Edit
Finite idempotent inverse monoid presentations. Internat. J. Algebra Comput.. 2011;21:1111-1133.
[2015-41] On the circulation of algebraic knowledge in the Iberian península:the sources of Pérez de Moya's Tratado de Arithmetica (1573) .Edit
Rational subsets of partially reversible monoids. Theoret. Comput. Sci.. 2008;409:537-548.